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Abstract. The eigenvalues of a symmetric matrix depend on the matrix nonsmoothly. This paper describes
the nonsmooth analysis of these eigenvalues. In particular, I present a simple formula for the approximate
(limiting Fréchet) subdifferential of an arbitrary function of the eigenvalues, subsuming earlier results on
convex and Clarke subgradients. As an example I compute the subdifferential of thek’th largest eigenvalue.
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1. Introduction

Two opposite perspectives motivate this work. First, variational properties of the eigen-
values of a symmetric matrix are fundamental in several areas of optimization: since
these eigenvalues vary nonsmoothly with the matrix, nonsmooth analysis is the obvious
language of study. Secondly, the health of the area of nonsmooth analysis depends ulti-
mately on its power to illuminate interesting examples: eigenvalue optimization is such
an example, both in its relevance and challenge.

Sensitivity of the eigenvalues of a matrix with respect to a single parameter is
a classical subject. (An excellent standard reference is [13].) Engineering design abounds
with eigenvalue optimization problems involving many parameters (see the recent survey
paper [19], for example), and over the last few years semidefinite programming in
particular has been widely studied, mainly due to its amenability to interior point
methods (see the survey [27], for example).

By contrast with the classical approach of [13], one may consider the eigenvalues
of a matrixX in the Euclidean space ofn× n real symmetric matricesS(n) directly as
functions ofX (see for example [5, 22, 23, 9]). Writing these eigenvalues (by multipli-
city) λ1(X) ≥ λ2(X) ≥ . . . ≥ λn(X), I define the ‘eigenvalue’ map

λ : S(n)→ Rn ,
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having componentsλ1, λ2, . . . , λn. The variational analysis of this map is the subject
of this paper.

Any extended-real-valued function of the eigenvalues of the matrixX can be written
in the composite form

f ◦ λ : S(n)→ [−∞,+∞], (1)

where the functionf : Rn → [−∞,+∞] is invariant under coordinate permutations.
My main result (Theorem 6) identifies the subdifferential∂( f ◦ λ)(X) as the set of
matrices

{UT(Diagµ)U : U orthogonal, UT(Diagλ(X))U = X, µ ∈ ∂ f(λ(X))} ,

where Diagµ denotes the diagonal matrix with diagonal entriesµ1, µ2, . . . , µn. Thus
the subgradients of the underlying functionf characterize the subgradients of the matrix
function f ◦ λ.

By ‘subdifferential’ I mean the ‘approximate subdifferential’ first investigated by
Mordukhovich [20], and studied also by Kruger [14] and Ioffe [11]. Of the many notions
introduced in recent years, this subdifferential is the smallest satisfying reasonable cal-
culus rules, and is therefore often the object of choice in nonconvex optimization. The
book [25] revolves around this idea. The subdifferential formula above remains valid for
the Fréchet subdifferential, and, by taking convex hulls, for the Clarke subdifferential
(when f is locally Lipschitz). Whenf is convex, the approximate and usual subdiffe-
rentials coincide. This paper therefore unifies, simplifies, and refines the subdifferential
results in [15] and [16]. The corresponding results for Hermitian matrices are completely
analogous.

Nonsmooth analysts will ask why I have not simply applied a standard chain rule to
the composite function (1). Such a rule (see for example [12, Cor 5.3]) shows

∂( f ◦ λ) ⊂
⋃
{∂(yTλ)(X) : y ∈ ∂ f(λ(X))} .

This formula has a number of drawbacks. First, it is only an inclusion, and the usual
conditions for equality do not obviously hold (see for example [25, Thm 10.49]).
Secondly, calculating∂(yTλ)(X) does not seem essentially any easier than the original
calculation. Lastly, even after circumventing the first two difficulties, using this result
to derive the elegant subdifferential formula above does not appear immediate. I have
therefore taken a direct approach.

The subdifferential formula provides some pretty results. For example, the approxi-
mate subdifferential of thek’th largest eigenvalue at the zero matrix consists of those
positive semidefinite matrices with trace 1 and rank at mostn − k + 1. Omitting the
rank condition gives the Clarke subdifferential, a striking illustration of the distinction
between the two notions.

To summarize, functions of eigenvalues provide an important testing-ground for
nonsmooth analysis. I hope these results also prove useful to practitioners of eigenvalue
optimization.
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2. The approximate subdifferential

This paper concerns the first order behaviour of functions of the eigenvalues of a symme-
tric matrix variable. Optimization theorists study first order behaviour via generalized
gradients: the convex subdifferential is prototypical [24]. For nonconvex functions,
various generalized gradients have been studied, inspired originally by the ideas of
Clarke [3]. More recently, a notion of subdifferential originating with ideas of Ioffe,
Mordhukovich and Kruger has received increasing attention. This notion, commonly
called the ‘approximate subdifferential’, is the one I study in this work.

I follow the terminology and notation of [25]. Given a Euclidean spaceE (by which
I mean a finite-dimensional real inner-product space), a functionf : E→ [−∞,∞],
and a pointx in E at which f is finite, an elementy of E is aregular subgradientof f
at x if it satisfies

f(x+ z) ≥ f(x)+ 〈y, z〉 + o(z) asz→ 0 in E .

As usual,o(·) denotes a real-valued function defined on a neighbourhood of the origin
in E, and satisfying limz→0 ‖z‖−1o(z) = 0. The set of regular subgradients is denoted
∂̂ f(x): it is always closed and convex.

This definition is just a one-sided version of the classical (Fréchet) derivative. In-
deed, it is also known as the ‘Fréchet subdifferential’. Without modificiation, this natural
concept of subdifferential has some disadvantages: even for well-behaved functionsf ,
it may, for example, be empty. The idea of the approximate subdifferential resolves
these difficulties by a process of ‘stabilization’. An elementy of E is an(approximate)
subgradientif there is a sequence of pointsxr in E approachingx with values f(xr )

approaching the finite valuef(x), and a sequence of regular subgradientsyr in ∂̂ f(xr )

approachingy. The set of all subgradients is the(approximate) subdifferential∂ f(x).
Common alternative names are ‘limiting Fréchet subgradient (subdifferential)’. If, ins-
tead ofyr approachingy in this definition, there is a sequence of realstr decreasing
to 0 for whichtr yr approachesy, theny is a horizon subgradient: the set of horizon
subgradients is denoted∂∞ f(x). If f(x) is infinite then the sets∂ f(x) and ∂̂ f(x) are
defined to be empty, and∂∞ f(x) to be{0}. If f is proper and convex, both∂ f(x) and
∂̂ f(x) coincide with the usual convex subdifferential. Finally, if the functionf is finite
at the pointx with at least one subgradient there then it is(Clarke) regularat x if it is
lower semicontinuous nearx, every subgradient is regular, and furthermore

∂∞ f(x) = (∂̂ f(x))∞

(whereC∞ denotes the recession cone of a closed convex setC) — see [25, Cor 8.11].
For a function f which is locally Lipschitz aroundx, convex combinations of

subgradients are calledClarke subgradients. The set of Clarke subgradients is the
Clarke subdifferential∂c f(x). (This definition is equivalent to the standard one in [3]
— see for example [12, Thm 2].)

Let L be a subset of the spaceE, and fix a pointx in E. An elementd of E belongs
to thecontingent coneto L at x, written K(L|x), if eitherd = 0 or there is a sequence
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(xr ) in L approachingx with ‖xr − x‖−1(xr − x) approaching‖d‖−1d. The(negative)
polar of a subsetH of E is the set

H− = {y ∈ E : 〈x, y〉 ≤ 0 ∀x ∈ H} .

I use the following easy and standard result later.

Proposition 1 (Normal cone).Given a functionf : E→ [−∞,+∞]and a pointx0 in
E, any regular subgradient off atx0 is polar to the level setL = {x ∈ E : f(x) ≤ f(x0)}
at x0: that is,

∂̂ f(x0) ⊂ (K(L|x0))− .

Proof. For any regular subgradienty and any elementd of K(L|x0), I want to show
〈y,d〉 ≤ 0. I can assumef is finite at x0 and d is nonzero, so there is a sequence
(xr ) approachingx0 with f(xr ) ≤ f(x0) for each indexr such that if I define vectors
zr = xr − x0 then‖zr‖−1zr approaches‖d‖−1d. By definition,

f(x0) ≥ f(xr ) ≥ f(x0)+ 〈y, zr 〉 + o(zr )

for eachr ; dividing through by‖zr‖ and taking the limit completes the proof.
ut

The functions in this paper have important invariance properties which I continually
exploit. A linear transformationg on the spaceE is orthogonalif it preserves the inner
product: that is

〈gx, gy〉 = 〈x, y〉 for all elementsx andy of E ,

Such linear transformations comprise a groupO(E). A function f on E is invariant
under a subgroupG of O(E) if f(gx) = f(x) for all pointsx in E and transformations
g in G.

In the following result,f ′(·; ·) denotes the usual directional derivative:

f ′(x; z) = lim
t↓0

f(x+ tz)− f(x)

t
, (when well-defined)

for elementsx andz of E.

Proposition 2 (Subgradient invariance).If the function f : E → [−∞,+∞] is
invariant under a subgroupG of O(E), then any pointx in E and transformationg
in G satisfy∂ f(gx) = g∂ f(x). Corresponding results hold for regular, horizon, and (if
f is Lipschitz aroundx) Clarke subgradients, andf is regular at the pointgx if and
only if it is regular atx. Furthermore, for any elementz of E, the directional derivative
f ′(gx; gz) exists if and only iff ′(x; z) does, and in this case the two are equal.
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Proof. The result about directional derivatives follows immediately from the definition.
Turning to the claims about subgradients, suppose firsty ∈ ∂̂ f(x), so small elementsz
of E satisfy f(x+ z) ≥ f(x)+ 〈y, z〉 + o(z). The invariance off shows

f(gx+ z) = f(x+ g−1z)

≥ f(x)+ 〈y, g−1z〉 + o(g−1z)

= f(gx)+ 〈gy, z〉 + o(z) ,

whencegy∈ ∂̂ f(gx).
Now supposey ∈ ∂ f(x), so for a sequence of pointsxr in E approachingx with f(xr )

approachingf(x), there is a sequence of regular subgradientsyr in ∂̂ f(xr ) approaching
y. Consequently,gxr approachesgx with f(gxr ) = f(xr ) → f(x) = f(gx), andgyr

approachesgy with, by the above,gyr ∈ ∂̂ f(gxr ). Hencegy ∈ ∂ f(gx), as I claimed.
The converse is immediate, and the horizon subgradient case is almost identical. The
Clarke case follows from the observation

∂c f(gx) = conv∂ f(gx) = convg∂ f(x) = gconv∂ f(x) = g∂c f(x) .

The regularity claim follows quickly from these results: regularity off at x implies
∂ f(gx) = g∂ f(x) = g∂̂ f(x) = ∂̂ f(gx) 6= ∅, and it is also easy to check∂∞ f(gx) =
g∂∞ f(x) = g(∂̂ f(x))∞ = (g∂̂ f(x))∞ = (∂̂ f(gx))∞. The result follows.

ut
This section ends with a lemma which is useful in the later analysis of regularity.

Lemma 1 (Recession).For any nonempty closed convex subsetCof E, closed subgroup
H of O(E), and transformationg in O(E), the setgHCis closed, and if it is also convex
then its recession cone isgH(C∞).

Proof. Assumeg is the identity: the general case follows easily. Given sequences(xr )

in C and (hr ) in H , supposehr xr approachesz. Since H is compact, without loss
of generality assumehr approaches a transformationh in H . Thus hr (xr − h−1z)
approaches zero, and since the transformationshr preserve the norm,xr approaches the
pointh−1z, which therefore lies inC. Thusz ∈ HC, so HC is closed.

Fix a pointx in C. Given any vectord in C∞ and transformationh in H , I know
x + td ∈ C for all positive realt, and hencehx+ t(hd) ∈ HC. Thushd belongs to
(HC)∞, and so I deduceH(C∞) ⊂ (HC)∞.

Conversely, given any vectord in (HC)∞, I know x+ td ∈ HC for all positive real
t. SinceH is compact, there is a sequence of positive realstr approaching+∞, and
a sequence of transformationshr approachingh in H , satisfyingx+ tr d ∈ hr C for each
r . I deduce, for eachr

h−1
r d+ t−1

r (h−1
r x− x) ∈ t−1

r (C− x) ,

and lettingr approach∞ showsh−1d ∈ C∞, sod ∈ H(C∞), as I claimed.
ut
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3. The normal space

This section describes a fundamental result for variational properties of eigenvalues.
The result is not new, and it is possible to give an elementary (though somewhat long)
proof. However, since some basic differential geometry greatly enhances understanding
of this key result, and since a self-contained proof for nonspecialists seems not readily
accessible, I sketch the proof from this perspective.

Consider the group ofn× n real orthogonal matrices,O(n). This set is a ‘submani-
fold’ of the Euclidean space of alln× n real matrices,M(n). All we need to know here
about a ‘manifold’ in Euclidean space is that, locally, it is the solution set of a smooth
equation with surjective Jacobian, and hence the ‘tangent space’ coincides with the
contingent cone. For example, an easy calculation shows that the tangent space toO(n)
at the identity matrixI , denotedTI (O(n)), is just the subspace of skew-symmetric
matrices,A(n).

Consider the ‘adjoint’ action of the groupO(n) on the Euclidean space ofn × n
real symmetric matricesS(n) (with the inner product〈X,Y〉 = tr XY), defined by
U.X = UT XU, for all U in O(n) and X in S(n). Notice that any vectorx in Rn and
matrix P in the group ofn×n permutation matricesP(n) satisfy Diag(Px) = PT .Diagx.

For a fixed matrixX in S(n), the orbitO(n).X = {UT XU : U ∈ O(n)} is just the
set of symmetric matrices with the same eigenvalues (and multiplicities) asX. Here,
then, is the key fact (c.f. [1, p. 243] and [7, p. 150]).

Theorem 1 (Normal space).The orbit O(n).X is a submanifold of the spaceS(n),
with tangent space

TX(O(n).X) = {X Z− Z X : Z ∈ A(n)}, (2)

and normal space

(TX(O(n).X))
⊥ = {Y ∈ S(n) : XY= YX}. (3)

(Sketch proof).Consider the ‘stabilizer’

O(n)X = {U ∈ O(n) : UT XU = X} .
The idea of the proof is to relate the orbitO(n).X with the quotient groupO(n)/O(n)X.
This quotient group itself can be given the structure of a manifold (turning it into a
‘homogeneous space’). All we need to know about this construction is that the map

φ : O(n)/O(n)X → O(n).X, defined by

U(O(n)X) 7→ UT XU, for U in O(n),

is then a diffeomorphism, and hence its differentialdφ is an isomorphism between the
corresponding tangent spaces

TO(n)X(O(n)/O(n)X) andTX(O(n).X) .

(See for example [7, p. 150, C5] and [2, p. 108] for details.)
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Consider, on the other hand, the quotient map

π : O(n)→ O(n)/O(n)X, defined by

U 7→ U(O(n)X), for all U in O(n).

The differential of this map,

dπ : TI (O(n))→ TO(n)X(O(n)/O(n)X)

has kernelTI (O(n)X) (see for instance [2, p. 165]), and hence, by counting dimensions,
is onto.

Now consider a third map

ψ : O(n) → O(n).X, defined by

U 7→ UT XU, for U in O(n).

Sinceψ = φ ◦ π, the chain rule (atI ) gives

(dψ)TI (O(n)) = TX(O(n).X) .

But as I noted above,TI (O(n)) is just A(n), and an easy calculation shows that any
matrix Z in A(n) satisfies(dψ)Z = X Z− Z X. Equation (2) now follows.

Finally, if a matrixY in S(n) commutes withX then any matrixZ in A(n) satisfies

tr (X Z− Z X)Y = tr (YX)Z − tr Z(YX) = 0 .

Conversely, suppose

tr (X Z− Z X)Y = 0 for all Z in A(n) .

ChoosingZ = XY− YX gives

0 = tr (X(XY− YX)− (XY− YX)X)Y

= tr XY2X + tr YX2Y− tr XYXY− tr YXYX

= −tr (XY− YX)(XY− YX),

whenceXY= YX. Equation (3) follows.
ut

I support my claim that the Normal Space Theorem (1) is fundamental in the
following sections. However, as an immediate application, I next use it to derive an
important inequality, essentially due to von Neumann [21] (the condition for equality
coming from [26]).

The following rather standard combinatorial lemma is an essential tool in the proof
(see [15]). I denote the cone of vectorsx in Rn satisfyingx1 ≥ x2 ≥ . . . ≥ xn by Rn≥.

Lemma 2. Any vectorsx and y in Rn≥ and any matrixP in P(n) satisfy the inequality
xT Py≤ xT y; equality holds if and only if some matrixQ in P(n) satisfiesQx= x and
Qy= Py.
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Two matricesX andY have asimultaneous ordered spectral decompositionif there
is a matrixU in O(n) satisfyingX = U.Diagλ(X) andY = U.Diagλ(Y).

Theorem 2 (Von Neumann–Theobald).Any matricesX and Y in S(n) satisfy the
inequalitytr XY≤ λ(X)Tλ(Y); equality holds if and only ifX andYhave a simultaneous
ordered spectral decomposition.

Proof. For fixedX andY, consider the optimization problem

α = sup
Z∈O(n).X

tr YZ. (4)

There is a matrixU in O(n) satisfyingY = U.Diagλ(Y), and then choosingZ =
U.Diagλ(X) showsα ≥ λ(X)Tλ(Y).

On the other hand, since the orbitO(n).X is compact, problem (4) has an optimal
solution,Z = Z0 say, which by stationarity must satisfy

Y ⊥ TZ0(O(n).X) (= TZ0(O(n).Z0)) .

The Normal Space Theorem now shows that the matricesY andZ0 commute and hence
there is a matrixU in O(n) simultaneously diagonalizing them:

Y = U.Diag(Pλ(Y)) and Z0 = U.Diagλ(Z0), (5)

for some matrixP in P(n). Hence

α = tr YZ0 = λ(Z0)
T Pλ(Y) ≤ λ(Z0)

Tλ(Y) = λ(X)Tλ(Y) ≤ α ,
using Lemma 2, whenceα = λ(X)Tλ(Y), and some matrixQ in P(n) satisfies
Qλ(Z0) = λ(Z0) and Qλ(Y) = Pλ(Y): combining this with the decompositions (5)
gives a simultaneous ordered spectral decomposition ofY andZ0. The result now fol-
lows.

ut
This section ends with another simple linear-algebraic result which is useful later.

Proposition 3 (Simultaneous conjugacy).Given vectorsx, y, u andv in Rn, there is
a matrixU in O(n) with Diagx = U.Diagu andDiagy = U.Diagv if and only if there
is a matrixP in P(n) with x = Pu and y = Pv.

Proof. The ‘only if’ case withx = u is Lemma 3.5 in [18], and the general case reduces
to this case by a simple trick. Considering eigenvalues shows there is a matrixQ in P(n)
with u = Qx. Hence I can write

Diagx = (QTU).Diagx and Diagy = (QTU).Diag(QTv) .

By the result I quoted above, there is a matrixR in P(n) with

x = Rx= RQTu and y = RQTv ,

so I can chooseP = RQT . Conversely, for the ‘if’ direction, I can chooseU = PT .
ut
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4. Simultaneous diagonalization

Functions of the eigenvalues of a symmetric matrix are the subject of this paper. Two
slightly different perspectives help. The first views such functions as those which are
invariant under orthogonal similarity transformations, while the second directly con-
siders functions of the eigenvaluesλi (·). The following trivial result shows these two
perspectives are equivalent.

Proposition 4 (Invariant functions). The following two properties of a matrix function
F : S(n)→ [−∞,+∞] are equivalent:

(i) F is orthogonally invariant ; that is, any matricesX in S(n) andU in O(n) satisfy
F(U.X) = F(X).

(ii) F = f ◦ λ for somepermutation-invariant function f : Rn → [−∞,+∞] (that
is, any vectorx in Rn and matrixP in P(n) satisfy f(Px) = f(x)).

Proof. The implication(ii ) ⇒ (i) follows from the invariance of eigenvalues under
orthogonal similarity. To see the converse, definef(x) = F(Diagx).

ut
Definition 1. An eigenvalue functionis an extended-real-valued function onS(n) of
the form f ◦ λ for a function f : Rn→ [−∞,+∞]: the functionf is understood to be
permutation-invariant.

Many elementary but important properties of eigenvalue functionsf ◦λ follow from
the facts that the functionλ is globally Lipschitz (with constant 1 — see [17, Thm 2.4])
and thatf = ( f ◦ λ) ◦Diag . In particular, notice thatf ◦ λ is continuous (respectively
lower semicontinuous, Lipschitz) at a matrixX in S(n) if and only if f is continuous
(respectively lower semicontinuous, Lipschitz) atλ(X).

My analysis of eigenvalue functions depends heavily on the following fundamental
fact.

Theorem 3 (Commutativity). If a matrix Y in S(n) is a subgradient or horizon sub-
gradient of an eigenvalue function at a matrixX in S(n) then X and Y commute.
Furthermore, if the eigenvalue function is Lipschitz aroundX, andY is a Clarke sub-
gradient there, thenX andY commute.

Proof. Call the eigenvalue functionF, and assume first that the subgradientY is regular.
By the Normal Cone Proposition (1), the constancy ofF on the orbitO(n).X shows

Y ∈ (K({Z : F(Z) ≤ F(X)} | X))−
⊂ (K(O(n).X | X))−
= (TX(O(n).X))

⊥

(since, as I mentioned, the tangent space coincides with the contingent cone). The result
follows from the Normal Space Theorem (1).
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Now supposeY is a subgradient ofF at X, so for some sequence of matricesXr
in S(n) approachingX there is a corresponding sequence of regular subgradientsYr in
∂̂F(Xr ) approachingY. By the first part,

XY= lim
r

Xr Yr = lim
r

Yr Xr = YX .

If Y is a horizon subgradient then instead ofYr approachingY, we havetr Yr
approachingY, where the realstr decrease to 0. Thus

XY= lim
r

Xr tr Yr = lim
r

tr Yr Xr = YX .

If the eigenvalue function is locally Lipschitz then any Clarke subgradient is a convex
combination of subgradients, and since every subgradient commutes withX, so must
any convex combination.

ut
Commuting symmetric matrices are simultaneously digonalizable. Hence if the

matrix Y in S(n) is a subgradient of some eigenvalue function at the matrixX in S(n)
then some vectorsx andy in Rn and some matrixU in O(n) satisfy

X = U.Diagx and Y = U.Diagy .

Consequently, by the Subgradient Invariance Proposition (2) applied to the spaceS(n)
with the adjoint action of the groupO(n), Diagy must be a subgradient at Diagx. Thus
to characterize when a matrixY is a subgradient of an eigenvalue function at a matrix
X, it suffices to consider the case whenX andY are both diagonal. In one direction this
is easy, as I show below.

Proposition 5. Any vectorsx andy in Rn and eigenvalue functionf ◦ λ satisfy

Diagy ∈ ∂( f ◦ λ)(Diagx)⇒ y ∈ ∂ f(x) .

Corresponding results hold for regular and horizon subgradients.

Proof. Suppose first that Diagy is a regular subgradient. For a small vectorz in Rn I
obtain

f(x+ z) = ( f ◦ λ)(Diagx+Diagz)

≥ ( f ◦ λ)(Diagx)+ tr (Diagy)(Diagz)+ o(Diagz)

= f(x)+ yT z+ o(z),

whencey ∈ ∂̂ f(x).
Now assume Diagy ∈ ∂( f ◦ λ)(Diagx), so there is a sequence of matricesXr in

S(n) approaching Diagx, with f(λ(Xr )) approachingf(x), and a sequence of regular
subgradientsYr in ∂̂( f ◦ λ)(Xr ) approaching Diagy. By the Commutativity Theorem
(3) there are sequences of vectorsxr andyr in Rn and matricesUr in O(n) with

Xr = Ur .Diagxr and Yr = Ur .Diagyr (6)
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for each indexr . The Subgradient Invariance Proposition (2) now shows Diagyr ∈
∂̂( f ◦ λ)(Diagxr ), whence by the first part,yr ∈ ∂̂ f(xr ).

Since the groupO(n) is compact, I can assumeUr approaches a matrixU in O(n).
Hence, from equations (6), there must be vectorsu andv in Rn with

UT .Diagx = Diagu and UT .Diagy = Diagv, (7)

andu andv must be the limits of the sequences(xr ) and(yr ) respectively. Since the
first equation of (7) demonstratesf(u) = f(x), v belongs to∂ f(u). But equations
(7) also guarantee the existence of a matrixP in P(n) with x = Pu and y = Pv,
by the Simultaneous Conjugacy Proposition (3). Applying the Subgradient Invariance
Proposition (2) again, this time to the spaceRn with the groupP(n), y belongs to∂ f(x),
as I claimed. The horizon subgradient argument is almost identical.

ut

5. Directional derivatives of eigenvalues

There is one missing ingredient for characterizing subgradients of eigenvalue functions.
I need, for vectorsx andy in Rn and an eigenvalue functionf ◦ λ, to show

y ∈ ∂̂ f(x) ⇒ Diagy ∈ ∂̂( f ◦ λ)(Diagx). (8)

This implication, which is the aim of this section, rests on somewhat deeper properties
of the eigenvalue mapλ. I begin with some easy preliminary results. For a vectorx in
Rn, I write x̄ for the vector (inRn≥) with the same components arranged in nonincreasing
order.

Lemma 3. For any vectorw in Rn≥, the functionwTλ is convex, and any vectorx in
Rn≥ satisfiesDiagw ∈ ∂(wTλ)(Diagx).

Proof. The permutation-invariant functionf : Rn → R defined by f(z) = wT z̄ is
convex, since

f(z) = max{wT Pz : P ∈ P(n)} ,
by Lemma 2. It suffices to show that any matrixZ in S(n) satisfies

tr (Diagw)(Z −Diagx) ≤ wTλ(Z)− wT x ,

or in other words, tr(Diagw)Z ≤ wTλ(Z). This inequality follows from the Von
Neumann-Theobald Theorem (2).

ut
For a vectorx in Rn, I write P(n)x for the stabilizer ofx in the groupP(n):

P(n)x = {P ∈ P(n) : Px = x} .
The next result is [16, Lemma 2.2].
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Lemma 4. For v in Rn andx in Rn≥, if the stabilizerP(n)x is a subgroup ofP(n)v then
vTλ is differentiable atDiagx with (vTλ)′(Diagx) = Diagv.

I can now derive the main tool of this section, which gives directional derivative
information about the eigenvalue mapλ. The adjoint of the map Diag: Rn → S(n) is
the map diag: S(n)→ Rn taking a matrixZ to a vector with components its diagonal
entries.

Theorem 4 (Eigenvalue derivatives).Any vectorx in Rn≥ and matrixZ in S(n) satisfy

diagZ ∈ conv(P(n)xλ′(Diagx; Z)). (9)

Proof. Partition the set{1,2, . . . ,n} into consecutive blocks of integersI1, I2, . . . , Ik,
so thatxi = xj if and only if the indicesi and j belong to the same block. Correspon-
dingly, write any vectory in Rn in the form

y =
k⊕

r=1

yr , whereyr ∈ R|Ir | for eachr .

Notice also that the stabilizerP(n)x consists of matrices of permutations fixing each
block Ir .

Now suppose relation (9) fails. From the existence of a separating hyperplane, some
vectory in Rn satisfies

yTdiagZ > yT Pλ′(Diagx; Z) for all P in P(n)x. (10)

Let ŷ denote the vector⊕r yr . There is a vectorv in Rn with equal components within
every blockIr (or in other words withP(n)x a subgroup ofP(n)v) so thatv+ ŷ lies in
Rn≥. Lemma 3 shows

Diag(v+ ŷ) ∈ ∂((v+ ŷ)Tλ)(Diagx) ,

or equivalently, any matrixT in S(n) satisfies

tr (T(Diag(v+ ŷ))) ≤ (v+ ŷ)Tλ′(Diagx; T). (11)

On the other hand, Lemma 4 shows

tr (T(Diagv)) = vTλ′(Diagx; T). (12)

Subtracting equation (12) from inequality (11) gives

tr (T(Diag ŷ)) ≤ ŷTλ′(Diagx; T). (13)

Writing diagZ = z= ⊕r zr , there is a matrixQ in P(n)x satisfying

diag(Q.Z) =
⊕

r

zr .
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Now choosingT = Q.Z in inequality (13) and using Lemma 2 repeatedly shows

yTz ≤
(⊕

r

yr

)T (⊕
r

zr

)
= tr ((Q.Z)Diag ŷ)

≤ ŷTλ′(Diagx; Q.Z)
= ŷTλ′(Diagx; Z),

using the Subgradient Invariance Proposition (2). But now choosing the matrixP in
inequality (10) so thatPT y = ŷ gives a contradiction.

ut
The directional derivative of the eigenvalue mapλ gives a first order estimate which

is uniform in the direction of perturbation. The next result makes this precise.

Lemma 5. Given a matrixX in S(n), small matricesZ in S(n) satisfy

λ(X + Z) = λ(X)+ λ′(X; Z)+ o(Z) .

Proof. This relationship relies only on the Lipschitzness and directional differentiability
of the mapλ (see for example [8, Lem 2.1.1]). These two properties follow easily from
writing each component functionλi as the difference of the two finite convex functions,∑i

j=1 λ j and
∑i−1

j=1 λ j (see Lemma 3).
ut

I can now prove the implication (8).

Theorem 5. For any vectorsx in Rn≥ and y in Rn, and any eigenvalue functionf ◦ λ,

y ∈ ∂̂ f(x) ⇒ Diagy ∈ ∂̂( f ◦ λ)(Diagx) .

Proof. By the Subgradient Invariance Proposition (2), every element of the finite set
P(n)xy is a regular subgradient off at x. The convex hull of this set, which I denote3,
has support function given by

δ∗3(z) = max{zT Py : P ∈ P(n)x}, for all z in Rn .

This function is sublinear, with global Lipschitz constant‖y‖.
Fix a realε > 0. The definition of regular subgradients implies, for small vectorsz

in Rn,

f(x+ z) ≥ f(x)+ δ∗3(z)− ε‖z‖. (14)

On the other hand, using the previous lemma (5), small matricesZ in S(n) must satisfy

‖λ(Diagx+ Z)− x− λ′(Diagx; Z)‖ ≤ ε‖Z‖ ,
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and hence, by inequality (14),

f(λ(Diagx+ Z))

= f(x+ (λ(Diagx+ Z)− x))

≥ f(x)− ε‖λ(Diagx+ Z)− x‖
+ δ∗3(λ′(Diagx; Z)+ [λ(Diagx+ Z)− x− λ′(Diagx; Z)])
≥ f(x)+ δ∗3(λ′(Diagx; Z))− (1+ ‖y‖)ε‖Z‖,

using the Lipschitz property ofλ.
The Eigenvalue Derivatives Theorem (4) states

diagZ ∈ conv(P(n)xλ′(Diagx; Z)). (15)

Since the polytope3 is obviously invariant under the groupP(n)x, so is its support
function, whence

δ∗3(Pλ′(Diagx; Z)) = δ∗3(λ′(Diagx; Z)) ,
for any matrixP in P(n)x. This, combined with the convexity ofδ∗3 and relation (15),
demonstrates

δ∗3(diagZ) ≤ δ∗3(λ′(Diagx; Z)) .
So the argument above shows

f(λ(Diagx+ Z)) ≥ f(x)+ δ∗3(diagZ)− (1+ ‖y‖)ε‖Z‖
≥ f(x)+ yTdiagZ − (1+ ‖y‖)ε‖Z‖
= f(x)+ 〈Diagy, Z〉 − (1+ ‖y‖)ε‖Z‖,

and sinceε was arbitrary, the result follows.
ut

Corollary 1 (Diagonal subgradients). For any vectorsx and y in Rn and any eigen-
value functionf ◦ λ,

y ∈ ∂ f(x) ⇔ Diagy ∈ ∂( f ◦ λ)(Diagx) .

Corresponding results hold for regular and horizon subgradients. Iff is Lipschitz
aroundλ(X) then the implication ‘⇒’ also holds for for Clarke subgradients.

Proof. By virtue of Proposition 5, I need only prove the implications ‘⇒’. Suppose
first that y is a regular subgradient. Fixing a matrixP in P(n) satisfyingx̄ = Px, the
assumptiony ∈ ∂̂ f(x) implies Py∈ ∂̂ f(Px), by the Subgradient Invariance Proposition
(2). Hence the previous result shows

PT .Diagy = Diag(Py) ∈ ∂̂( f ◦ λ)(Diag Px) = ∂̂( f ◦ λ)(PT .Diagx) ,

and the result follows by applying the Subgradient Invariance Proposition again.
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Now supposey ∈ ∂ f(x), so there is a sequence of vectorsxr in Rn approachingx,
with f(xr ) approachingf(x), and a sequence of regular subgradientsyr ∈ ∂̂ f(xr )

approachingy. Hence Diagxr approaches Diagx with f(λ(Diagxr )) approaching
f(λ(Diagx)), and by the above argument, each matrix Diagyr is a regular subgra-
dient of f ◦ λ at Diagxr . Since Diagyr approaches Diagy, the result follows. The
horizon subgradient case is amost identical.

If the function f is Lipschitz aroundλ(X) andy is a Clarke subgradient atx, then
y is a convex combination of subgradientsyi ∈ ∂ f(x). Since, by the above argument,
each matrix Diagyi is a subgradient off ◦ λ at X, and Diagy is a convex combination
of these matrices, Diagy must be a Clarke subgradient.

ut
Note 1. I prove the converse implication ‘⇐’ in the Clarke case in §8.

6. The main result

My main result, characterizing the subgradients of an arbitrary eigenvalue function,
combines the diagonal case developed in the previous section with the diagonal reduction
argument of §4. Recall for matricesX in S(n) andU in O(n) the notationU.X = UT XU.

Theorem 6 (Subgradients).The (approximate) subdifferential of any eigenvalue fun-
ction f ◦ λ at a matrixX in S(n) is given by the formula

∂( f ◦ λ)(X) = O(n)X.Diag(∂ f(λ(X))), (16)

where

O(n)X = {U ∈ O(n) : U.Diagλ(X) = X} .
The sets of regular and horizon subgradients satisfy corresponding formulae.

Proof. For any vectory in ∂ f(λ(X)), the Diagonal Subgradients Corollary (1) shows

Diagy ∈ ∂( f ◦ λ)(Diagλ(X)) ,

and now, for any matrixU in O(n)X, the Subgradient Invariance Proposition (2) implies

U.Diagy ∈ ∂( f ◦ λ)(U.Diagλ(X)) = ∂( f ◦ λ)(X) ,
as required.

On the other hand, any subgradientY in ∂( f ◦ λ)(X) commutes withX, by the
Commutativity Theorem (3). HenceX andY diagonalize simultaneously: there is a ma-
trix U in O(n)X and a vectory in Rn with Y = U.Diagy. The Subgradient Invariance
Proposition shows

Diagy ∈ ∂( f ◦ λ)(Diagλ(X)) ,

whencey ∈ ∂ f(λ(X)), by the Diagonal Subgradients Corollary. Thus the matrixY
belongs to the right-hand-side of equation (16), as required. The arguments for regular
and horizon subgradients are completely analogous.

ut
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Note 2. The Clarke subdifferential satisfies the corresponding formula in the locally
Lipschitz case — see §8.

Corollary 2 (Unique regular subgradients).An eigenvalue functionf ◦λhas a unique
regular subgradient at a matrixX in S(n) if and only if f has a unique regular subgra-
dient atλ(X).

Proof. Supposef has a unique regular subgradienty atλ(X). Then the subdifferential
formula (16) shows that every matrix in the nonempty convex set∂̂( f ◦ λ)(X) has the
same norm, namely‖y‖, and hence this set is a singleton. The converse is immediate.

ut
The same proof, in the Lipschitz case, works for Clarke subgradients, which shows

that f ◦ λ is strictly differentiable atX if and only if f is strictly differentiable atλ(X)
(see [16]). Another proof of this fact follows later in the section. A more direct proof of
the following result appears in [16].

Corollary 3 (Fréchet differentiability). An eigenvalue functionf ◦ λ is Fréchet diffe-
rentiable at a matrixX in S(n) if and only if f is Fréchet differentiable atλ(X).

Proof. This follows immediately from the preceding result, since a functionh is Fréchet
differentiable at a point if and only if bothh and−h have unique regular subgradients
there.

ut
Corollary 4 (Regularity). Suppose the permutation-invariant functionf is finite at
λ(X) (for a matrixX in S(n)), and has at least one subgradient there. Then the eigenvalue
function f ◦ λ is (Clarke) regular atX if and only if f is regular atλ(X).

Proof. Since f has a subgradient atλ(X), the Subgradients Theorem (6) showsf ◦ λ
has a subgradient atX. Furthermore,f ◦ λ is lower semicontinuous nearX if and only
if f is lower semicontinuous nearλ(X).

By definition, f is regular atλ(X) if and only if it is lower semicontinuous near
λ(X) and the conditions

∂ f(λ(X)) = ∂̂ f(λ(X)) 6= ∅, and (17)

(∂̂ f(λ(X)))∞ = ∂∞ f(λ(X)) (18)

hold, whereasf ◦ λ is regular atX if and only if it is lower semicontinuous nearX and
the conditions

∂( f ◦ λ)(X) = ∂̂( f ◦ λ)(X) 6= ∅, and (19)

(∂̂( f ◦ λ)(X))∞ = ∂∞( f ◦ λ)(X), (20)

hold. By formula (16) and its regular analogue, condition (17) implies condition (19).
Conversely, condition (19) is equivalent to

∂( f ◦ λ)(Diagλ(X)) = ∂̂( f ◦ λ)(Diagλ(X)) 6= ∅ ,
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by the Subgradient Invariance Proposition (2), and condition (17) follows by the Dia-
gonal Subgradients Corollary (1).

Applying the Recession Lemma (1) to the regular version of formula (16), noting
that the set of regular subgradients is always closed and convex, shows

(∂̂( f ◦ λ)(X)))∞ = O(n)X.[Diag∂̂ f(λ(X))]∞ = O(n)X.Diag[(∂̂ f(λ(X)))∞] .
Hence condition (18) implies condition (20), by the horizon version of formula (16).

On the other hand, condition (20) is equivalent to

(∂̂( f ◦ λ)(Diagλ(X)))∞ = ∂∞( f ◦ λ)(Diagλ(X)) ,

by the Subgradient Invariance Proposition, whence

Diag((∂̂ f(λ(X)))∞) = (Diag∂̂ f(λ(X)))∞

= (∂̂( f ◦ λ)(Diagλ(X)) ∩ DiagRn)∞

= (∂̂( f ◦ λ)(Diagλ(X)))∞ ∩DiagRn

= ∂∞( f ◦ λ)(Diagλ(X)) ∩ DiagRn

= Diag(∂∞ f(λ(X))),

using the Diagonal Subgradients Corollary again. Condition (18) follows.
ut

Corollary 5 (Strict differentiability). An eigenvalue functionf ◦ λ is strictly diffe-
rentiable at a matrixX in S(n) if and only if the functionf is strictly differentiable at
λ(X).

Proof. Strict differentiability of f atλ(X) is equivalent, by [25, Thm 9.18], to continuity
in a neighbourhoodand regularity of bothf and− f atλ(X). The result therefore follows
by the Regularity Corollary (4).

ut
The Subgradients Theorem (6) is more attractive (although perhaps less practical)

when written in a graphical form. The graph of the subdifferential is the set Graph∂ f =
{(x, y) ∈ (Rn)2 : y ∈ ∂ f(x)}. Define a binary operation∗ : O(n) × (Rn)2 → (S(n))2

by

U ∗ (x, y) = (U.Diagx,U.Diagy) .

Corollary 6 (Subdifferential graphs). The graph of the subdifferential of an eigenva-
lue functionf ◦ λ is given by the formula

Graph∂( f ◦ λ) = O(n) ∗Graph∂ f .

Analogous formulae hold for the subdifferentials∂̂, ∂∞ and (in the locally Lipschitz
case)∂c.
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Proof. A pair of matrices(X,Y) lies in Graph∂( f ◦ λ) exactly whenY belongs to
∂( f ◦λ)(X), and in this case, by the Subgradients Theorem, there is a vectoryin ∂ f(λ(X))
and a matrixU in O(n)X satisfyingY = U.Diagy. Hence(X,Y) = U ∗ (λ(X), y).

Conversely, for a pair of vectors(x, y) in Graph∂ f and a matrixU in O(n), y lies in
∂ f(x), whence Diagy ∈ ∂( f ◦ λ)(Diagx), by the Diagonal Subgradients Corollary (1).
The Subgradient Invariance Proposition now impliesU.Diagy ∈ ∂( f ◦λ)(U.Diagx), or
in other wordsU ∗ (x, y) ∈ Graph∂( f ◦λ). The arguments for the other subdifferentials
are exactly analogous.

ut

An eigenvalue functionf ◦ λ is convex if and only if the functionf is convex
(see [17]). In this case the regular subgradients are exactly the subgradients in the usual
sense of convex analysis. The following result (cf. [17]) is easy to deduce from the
regular case of the Subgradients Theorem.

Corollary 7 (Convex subgradients).Consider an eigenvalue functionf ◦λ, where the
function f is convex. A matrixY in S(n) is a (convex) subgradient off ◦ λ at a matrix
X in S(n) if and only if X andY have a simultaneous ordered spectral decomposition
andλ(Y) is a (convex) subgradient off at λ(X).

7. Invariance under Young subgroups

The Subgradients Theorem (6) provides one approach to the calculation of Clarke
subgradients. To pursue this approach, in this section I first derive a subsidiary result
about an important class of convex sets.

A subsetC of the Euclidean spaceE is invariant under a subgroupG of O(E)
if gC = C for all transformationsg in G. If the function f : Rn → [−∞,+∞]
is permutation-invariant then the regular subdifferential off at a pointx in Rn is
a convex set, invariant under the stabilizerP(n)x (by the Subgradient Invariance Propo-
sition (2)). Subgroups ofP(n) of the formP(n)x are calledYoung subgroups: they are
those subgroups corresponding to permutations preserving given partitions of the set
{1,2, . . . ,n}. In this section I prove a general property of convex sets invariant under
Young subgroups.

Given an equivalence relation∼ on the set{1,2, . . . ,n}, define a subspace

Rn∼ = {x ∈ Rn : xi = xj wheneveri ∼ j } ,

and two groups

P(n)∼ = {P ∈ P(n) : Px = x for all x ∈ Rn∼},
O(n)∼ = {U ∈ O(n) : U.Diagx = Diagx for all x ∈ Rn∼}.

ThusP(n)∼ consists of those matrices of permutations leaving invariant the equivalence
classes of∼.
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I can always reorder the basis so that∼ has equivalence classes consecutive blocks
of integersI1, I2, . . . , Ik: then I write any vectory in Rn in the form

y =
k⊕

r=1

yr , whereyr ∈ R|Ir | for eachr ,

and for matricesUr in M(|Ir |) for eachr , I write Diag(Ur ) for the block diagonal
matrix 

U1 0 . . . 0
0 U2 . . . 0
...

...
. . .

...

0 0 . . . Uk

 .

Then it is easy to calculate the notions above:

Rn∼ = ⊕r R(1,1, . . . ,1)T ,

P(n)∼ = {Diag(Pr ) : Pr ∈ P(|Ir |) for eachr }, and

O(n)∼ = {Diag(Ur ) : Ur ∈ O(|Ir |) for eachr }.
Theorem 7 (Invariant sets).If ∼ is an equivalence relation on the set{1,2, . . . ,n}
and the convex setC ⊂ Rn is invariant under the groupP(n)∼, then the set of matrices
O(n)∼.DiagC is convex.

Proof. Reorder the basis as above. Diagonalizing each diagonal block easily shows the
identity

O(n)∼.DiagC = {Diag(Xr ) : ⊕rλ(X
r ) ∈ C}. (21)

For two matricesX = Diag(Xr ) andY = Diag(Yr ) in this set, and a numberα in
[0,1], I wish to show

αX + (1− α)Y ∈ O(n)∼.DiagC ,

or equivalently, by identity (21),⊕
r

λ(αXr + (1− α)Yr ) ∈ C .

Since (21) shows⊕rλ(Xr ) and⊕rλ(Yr ) both lie in the convex setC, which is invariant
under the groupP(n)∼, it suffices to show

⊕rλ(αXr + (1− α)Yr ) ∈ conv(P(n)∼{⊕rλ(X
r ), ⊕r λ(Y

r )}) .
If this fails then there is a separating hyperplane: there exists a vectorz = ⊕r zr in Rn

satisfying

〈z,⊕rλ(αXr + (1− α)Yr )〉 > max〈z, P(n)∼{⊕rλ(Xr ), ⊕r λ(Yr )}〉 .
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But then Lemmas 2 and 3 show

∑
r

〈zr , λ(αXr + (1− α)Yr )〉 > max

{∑
r

〈zr , λ(Xr )〉 ,
∑

r

〈zr , λ(Yr )〉
}

≥ α
∑

r

〈zr , λ(Xr )〉 + (1− α)
∑

r

〈zr , λ(Yr )〉

=
∑

r

〈zr , αλ(Xr )+ (1− α)λ(Yr )〉

≥
∑

r

〈zr , λ(αXr + (1− α)Yr )〉

≥
∑

r

〈zr , λ(αXr + (1− α)Yr )〉,

which is a contradiction.
ut

8. Clarke subgradients

The Subgradients Theorem (6) did not cover the case of the Clarke subdifferential
because of the missing converse in the Diagonal Subgradients Corollary. This section
remedies this using the Invariant Sets Theorem (7). The main result, which follows, first
appeared in [16], via a different approach.

Theorem 8 (Clarke subgradients).The Clarke subdifferential of a locally Lipschitz
eigenvalue functionf ◦ λ at a matrixX in S(n) is given by the formula

∂c( f ◦ λ)(X) = O(n)X.Diag(∂c f(λ(X))). (22)

Proof. Assume firstX = Diagx for a vectorx in Rn≥: the general case follows easily,
using the Subgradient Invariance Proposition (2). Define an equivalence relation∼ on
{1,2, . . . ,n} by

i ∼ j ⇔ xi = xj .

Then it is easy to verifyO(n)Diagx = O(n)∼, and sincex is invariant under the
group P(n)∼, the convex set∂c f(x) is also invariant underP(n)∼ (by the Subgra-
dient Invariance Proposition). The Invariant Set Theorem now shows that the set
O(n)∼.Diag∂c f(x) is convex.

The Subgradients Theorem (6) demonstrates

∂c( f ◦ λ)(Diagx) = conv∂( f ◦ λ)(Diagx) = conv(O(n)∼.Diag∂ f(x)) .

The inclusion

O(n)∼.Diag∂ f(x) ⊂ O(n)∼.Diag∂c f(x)
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is trivial, so the convexity of the right-hand-side shows

conv(O(n)∼.Diag∂ f(x)) ⊂ O(n)∼.Diag∂c f(x) .

But since∂c f(x) = conv∂ f(x), the reverse inclusion is immediate, and the result
follows.

ut
The Diagonal Subgradients Corollary is interesting in its own right, so this section

concludes with the Clarke version.

Corollary 8 (Diagonal Clarke subgradients).For any vectorsx andy in Rn and any
eigenvalue functionf ◦ λ,

y ∈ ∂c f(x) ⇔ Diagy ∈ ∂c( f ◦ λ)(Diagx) .

Proof. The Diagonal Subgradients Corollary (1) shows the implication ‘⇒’. For the
converse, assuming Diagy ∈ ∂c( f ◦ λ)(Diagx), the Clarke Subgradients Theorem
above shows the existence of a matrixU in O(n) and a vectorz in ∂c f(x̄)with Diagy =
U.Diagzand Diagx = U.Diagx̄. By the Simultaneous Conjugacy Proposition (3), there
is a matrixP in P(n) with y = Pz andx = Px̄, and the result now follows from the
Subgradient Invariance Proposition (2).

ut

9. Order statistics and individual eigenvalues

This article ends with an example illustrating the main result. Specifically, I apply the
Subgradients Theorem (6) to calculate the approximate subdifferential of the individual
eigenvalueλk(·). In part my aim is to provide a useful tool, while on the other hand
giving an elegant and nontrivial illustration of the approximate subdifferential.

The restriction of the functionλk to the diagonal matrices is thek’th order sta-
tistic φk : Rn → R (applied to the vector of diagonal entries). More precisely, this
(permutation-invariant) function

φk(x) = kth largest element of{x1, x2, . . . , xn}
(or in other wordsφk(x) = (x̄)k), satisfies the relationφk(x) = λk(Diagx). To apply the
Subgradients Theorem, noteλk = φk ◦ λ: thus I must first compute the subdifferential
of φk. I denote the canonical basis inRn by {e1,e2, . . . ,en}.
Proposition 6. At any pointx in Rn, the regular subgradients of thek’ th order statistic
are described by

∂̂φk(x) =
{

conv{ei : xi = φk(x)}, if k = 1 or φk−1(x) > φk(x),
∅, otherwise,

,

and∂∞φk(x) = {0}.
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Proof. Define a set of indicesI = {i : xi = φk(x)}. If the inequalityφk−1(x) > φk(x)
holds then clearly, close to the pointx, the functionφk is given byw ∈ Rn 7→ maxi∈I wi .
The subdifferential atx of this second function (which is convex) is just conv{ei : i ∈ I }.

On the other hand, in the caseφk−1(x) = φk(x), supposey is a regular subgradient,
and so satisfies

φk(x+ z) ≥ φk(x)+ yTz+ o(z), asz→ 0 .

For any indexi in I , all small positiveδ satisfyφk(x + δei ) = φk(x), from which I
deduceyi ≤ 0, but also

φk

(
x− δ

∑
i∈I

ei

)
= φk(x)− δ ,

which implies the contradiction
∑

i∈I yi ≥ 1. The horizon subdifferential is easy to
check.

ut
To simplify notation, for general subgradients I concentrate first on the casex = 0.

For a vectory in Rn I write

suppy = {i : yi 6= 0};
the number of elements in this set is then|suppy|. Thesimplexin Rn is the set described
by

1 =
{

y ∈ Rn : y ≥ 0,
∑

yi = 1
}
= conv{e1,e2, . . . ,en} .

Proposition 7. The Clarke subdifferential of thek’ th order statisticφk at the origin is
just the simplex1, whereas the (approximate) subdifferential is given by

∂φk(0) = {y ∈ 1 : |suppy| ≤ n− k+ 1} .
Regularity holds if and only ifk = 1.

Proof. Since any regular subgradient ofφk at any point always lies in the right-hand-
side set (by the previous proposition), so does an arbitrary subgradient, since this set is
closed. Conversely, given any vectory belonging to the right-hand-side, choose a subset
J of exactly(k− 1) indicesi for which yi is zero. The previous proposition shows, for
any smallδ > 0,

y ∈ conv{ei : i 6∈ J} = ∂̂φk

(
δ
∑
i∈J

ei

)
,

whence, by taking limits,y ∈ ∂φk(0), as I claimed. The Clarke case follows by taking
convex hulls, and the regularity claim is immediate, by the previous proposition.

ut
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I denote the cone of positive semidefinite matrices inS(n) by S(n)+. The next
result follows immediately from the previous proposition by applying the Subgradients
Theorem (6).

Corollary 9. The Clarke subdifferential of thek’ th eigenvalue at the origin is given by

∂cλk(0) = {Y ∈ S(n)+ : tr Y = 1} ,
whereas the (approximate) subdifferential is given by

∂λk(0) = {Y ∈ S(n)+ : tr Y = 1, rankY ≤ n− k+ 1} .
Regularity holds if and only ifk = 1.

The arguments for the general cases are completely analogous, leading to the follo-
wing results.

Theorem 9 (k’th order statistic). The Clarke subdifferential of thek’ th order statistic
φk at a pointx in Rn is given by

∂cφk(x) = conv{ei : xi = φk(x)} ,
whereas the (approximate) subdifferential is given by

∂φk(x) = {y ∈ ∂cφk(x) : |suppy| ≤ α}, where

α = 1− k+ |{i : xi ≥ φk(x)}|.
Regularity holds if and only ifφk−1(x) > φk(x).

Corollary 10 (Eigenvalue subgradients).The Clarke subdifferential of thek’ th eigen-
value at a matrixX in S(n) is given by

∂cλk(X) = conv{uuT : u ∈ Rn, ‖u‖ = 1, Xu= λk(X)u}, (23)

whereas the (approximate) subdifferential is given by

∂λk(X) = {Y ∈ ∂cφk(X) : rankY ≤ α}, where

α = 1− k+ |{i : λi (X) ≥ λk(X)}|.
Regularity holds if and only ifλk−1(X) > λk(X).

Formula (23) was first observed in [4] (see also [16]), although a weaker version
appears in [6].

I conclude with a nice application of formula (23) to a well-known eigenvalue
isotonicity result (see [10], p. 181). For matricesX andY in S(n), I write X � Y or
X � Y to meanX − Y is positive semidefinite or definite respectively.

Corollary 11 (Eigenvalue isotonicity).For any matricesX andY in S(n),

X � Y⇒ λ(X) ≥ λ(Y), and

X � Y⇒ λ(X) > λ(Y) .
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Proof. For any indexk, by the Lebourg Mean Value Theorem [3], Thm 2.3.7, there is
a matrixZ in S(n) such that

λk(X)− λk(Y) ∈ 〈∂cλk(Z), X − Y〉 .
The result now follows easily from formula (23).

ut
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