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Abstract. The eigenvalues of a symmetric matrix depend on the matrix nonsmoothly. This paper describes
the nonsmooth analysis of these eigenvalues. In particular, | present a simple formula for the approximate
(limiting Fréchet) subdifferential of an arbitrary function of the eigenvalues, subsuming earlier results on
convex and Clarke subgradients. As an example | compute the subdifferentialkéhttzgest eigenvalue.
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1. Introduction

Two opposite perspectives motivate this work. First, variational properties of the eigen-
values of a symmetric matrix are fundamental in several areas of optimization: since
these eigenvalues vary nonsmoothly with the matrix, nonsmooth analysis is the obvious
language of study. Secondly, the health of the area of nonsmooth analysis depends ulti-
mately on its power to illuminate interesting examples: eigenvalue optimization is such
an example, both in its relevance and challenge.

Sensitivity of the eigenvalues of a matrix with respect to a single parameter is
aclassical subject. (An excellent standard reference is [13].) Engineering design abounds
with eigenvalue optimization problems involving many parameters (see the recent survey
paper [19], for example), and over the last few years semidefinite programming in
particular has been widely studied, mainly due to its amenability to interior point
methods (see the survey [27], for example).

By contrast with the classical approach of [13], one may consider the eigenvalues
of a matrixX in the Euclidean space afx n real symmetric matriceS(n) directly as
functions of X (see for example [5, 22, 23, 9]). Writing these eigenvalues (by multipli-
city) A1(X) = A2(X) > ... > An(X), | define the ‘eigenvalue’ map

A:Sn) — R",
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having componentss, Ap, ... , An. The variational analysis of this map is the subject
of this paper.

Any extended-real-valued function of the eigenvalues of the m&tdan be written
in the composite form

foi:Sn)— [—o0,+o0], Q)

where the functionf : R" — [—o0, +00] is invariant under coordinate permutations.
My main result (Theorem 6) identifies the subdifferentiaf o A)(X) as the set of
matrices

{UT(Diagu)U : U orthogonal UT (Diagi(X))U = X, u € af(A(X))} ,

where Diagu denotes the diagonal matrix with diagonal entyi@suo, ... , un. Thus
the subgradients of the underlying functibicharacterize the subgradients of the matrix
function f o A.

By ‘subdifferential’ | mean the ‘approximate subdifferential’ first investigated by
Mordukhovich [20], and studied also by Kruger [14] and loffe [11]. Of the many notions
introduced in recent years, this subdifferential is the smallest satisfying reasonable cal-
culus rules, and is therefore often the object of choice in nonconvex optimization. The
book [25] revolves around this idea. The subdifferential formula above remains valid for
the Fréchet subdifferential, and, by taking convex hulls, for the Clarke subdifferential
(when f is locally Lipschitz). Whenf is convex, the approximate and usual subdiffe-
rentials coincide. This paper therefore unifies, simplifies, and refines the subdifferential
resultsin [15] and [16]. The corresponding results for Hermitian matrices are completely
analogous.

Nonsmooth analysts will ask why | have not simply applied a standard chain rule to
the composite function (1). Such a rule (see for example [12, Cor 5.3]) shows

a(f o) c [ Jay™ (X : y e af(u(X)} .

This formula has a number of drawbacks. First, it is only an inclusion, and the usual
conditions for equality do not obviously hold (see for example [25, Thm 10.49]).
Secondly, calculating(y" 1)(X) does not seem essentially any easier than the original
calculation. Lastly, even after circumventing the first two difficulties, using this result
to derive the elegant subdifferential formula above does not appear immediate. | have
therefore taken a direct approach.

The subdifferential formula provides some pretty results. For example, the approxi-
mate subdifferential of thi’th largest eigenvalue at the zero matrix consists of those
positive semidefinite matrices with trace 1 and rank at mostk 4+ 1. Omitting the
rank condition gives the Clarke subdifferential, a striking illustration of the distinction
between the two notions.

To summarize, functions of eigenvalues provide an important testing-ground for
nonsmooth analysis. | hope these results also prove useful to practitioners of eigenvalue
optimization.
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2. The approximate subdifferential

This paper concerns the first order behaviour of functions of the eigenvalues of a symme-
tric matrix variable. Optimization theorists study first order behaviour via generalized
gradients: the convex subdifferential is prototypical [24]. For nonconvex functions,
various generalized gradients have been studied, inspired originally by the ideas of
Clarke [3]. More recently, a notion of subdifferential originating with ideas of loffe,
Mordhukovich and Kruger has received increasing attention. This notion, commonly
called the ‘approximate subdifferential’, is the one | study in this work.

| follow the terminology and notation of [25]. Given a Euclidean spEdby which
I mean a finite-dimensional real inner-product space), a fundtiore — [—o0, o],
and a poini in E at which f is finite, an elemeny of E is aregular subgradienof f
atx if it satisfies

fx+2 > f(X) +(y,z) +0(z) asz— OinE .

As usual,o(-) denotes a real-valued function defined on a neighbourhood of the origin
in E, and satisfying lim.o ||z "o(z) = 0. The set of regular subgradients is denoted
9 f(x): it is always closed and convex.

This definition is just a one-sided version of the classical (Fréchet) derivative. In-
deed, itis also known as the ‘Fréchet subdifferential’. Without modificiation, this natural
concept of subdifferential has some disadvantages: even for well-behaved furfctions
it may, for example, be empty. The idea of the approximate subdifferential resolves
these difficulties by a process of ‘stabilization’. An elemgiof E is an(approximate)
subgradientf there is a sequence of points in E approaching with values f(x")
approaching the finite valu&(x), and a sequence of regular subgradightis A f(x")
approachingy. The set of all subgradients is tif@pproximate) subdifferential f(x).
Common alternative names are ‘limiting Fréchet subgradient (subdifferential)’. If, ins-
tead ofy" approachingy in this definition, there is a sequence of reflslecreasing
to 0 for whicht, y* approachey, theny is a horizon subgradienthe set of horizon
subgradients is denoted® f(x). If f(x) is infinite then the set8 f(x) andéf(x) are
defined to be empty, ani f(x) to be{0}. If f is proper and convex, bothf(x) and
3 f(x) coincide with the usual convex subdifferential. Finally, if the functiois finite
at the pointx with at least one subgradient there then i(G$arke) regularat x if it is
lower semicontinuous near every subgradient is regular, and furthermore

A% f(x) = (3 f(x)>™

(whereC® denotes the recession cone of a closed conveR)set see [25, Cor 8.11].
For a functionf which is locally Lipschitz arounc, convex combinations of
subgradients are calle@larke subgradientsThe set of Clarke subgradients is the
Clarke subdifferentiab® f(x). (This definition is equivalent to the standard one in [3]
— see for example [12, Thm 2].)
Let L be a subset of the spaég and fix a poini in E. An elemend of E belongs
to thecontingent conéo L at x, written K(L|x), if eitherd = O or there is a sequence
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(X" in L approaching with ||x" — x| ~1(x" — x) approachingid| ~1d. The(negative)
polar of a subseH of E is the set

H ={yeE:(X,y) <0Vxe H}.
| use the following easy and standard result later.

Proposition 1 (Normal cone)Given a functiorf : E — [—o0, +00]and a poinix®in
E, any regular subgradient dfatx®is polarto the level sdt = {x € E : f(x) < f(x°)}
atx?: that is,

Af(x®) c (K(L|x®)~.

Proof. For any regular subgradiegtand any elemerd of K(L|x%), | want to show
(y,d) < 0.1 can assumd is finite atx® andd is nonzero, so there is a sequence
(x") approaching® with f(x") < f(x%) for each index such that if | define vectors
Z = x" —x%then|Z'||~1Z approachegd|~1d. By definition,

f(x% > f(x') > f(x°) + (y, Z) + o(z')

for eachr; dividing through byj|Z' || and taking the limit completes the proof.
O

The functions in this paper have important invariance properties which I continually
exploit. A linear transformatiog on the spacé& is orthogonalif it preserves the inner
product: that is

(gx, gy) = (x, y) forall elements andy of E ,

Such linear transformations comprise a gr&f). A function f on E is invariant
under a subgrou of O(E) if f(gx) = f(x) for all pointsx in E and transformations
gin G.

In the following result,f’(-; -) denotes the usual directional derivative:

f(x+tz2) — f(0

" , (when well-defined)

f'(x; z2) = lim
(X; 2) m

for elementx andz of E.

Proposition 2 (Subgradient invariance).If the functionf : E — [—o0, +00] is
invariant under a subgrou® of O(E), then any poin in E and transformatiory

in G satisfyd f(gx) = ga f(x). Corresponding results hold for regular, horizon, and (if
f is Lipschitz aroundk) Clarke subgradients, and is regular at the poingx if and
only if it is regular atx. Furthermore, for any elemeantof E, the directional derivative
f/(gx; g2) exists if and only iff’(x; z) does, and in this case the two are equal.
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Proof. The result about directional derivatives follows immediately from the definition.
Turning to the claims about subgradients, supposeyfitst f(x), so small elements
of E satisfy f(x +2) > f(X) + (y, z) + 0(2). The invariance off shows

f(gx+2) = f(x + g~ 12)
f(x) + (y. g7%2) + o(g"*2)
f(gx) +(gy. 2) +0(2) ,

v

whencegy € 3 f(gx).

Now supposg € 3 f(x), so for a sequence of poinksin E approaching with f(x")
approachingf(x), there is a sequence of regular subgradighta 3 f(x") approaching
y. Consequentlygx” approachegx with f(gx') = f(x") — f(x) = f(gx), andgy
approachegy with, by the abovegy e 3 f(gx). Hencegy € 3f(gx), as | claimed.
The converse is immediate, and the horizon subgradient case is almost identical. The
Clarke case follows from the observation

3¢ f(gx) = conva f(gx) = convgd f(x) = gconva f(x) = ga°f(x) .

The regularity claim follows quickly from these results: regularityfodt x implies
af(gx) = gaf(Ax) = gaf(x) = a f(gx) # 0, and it is also easy to che¢k® f(gx) =
o> f(x) = g(a f(x))*>° = (ga f(x))*>° = (3 f(gx))°°. The result follows.

O

This section ends with a lemma which is useful in the later analysis of regularity.

Lemma 1 (Recession)orany nonempty closed convex suliSef E, closed subgroup
H of O(E), and transformatiorg in O(E), the segHCis closed, and if it is also convex
then its recession cone ¢gH(C).

Proof. Assumeg is the identity: the general case follows easily. Given sequeixtgs
in C and (hy) in H, supposeh,x" approacheg. SinceH is compact, without loss
of generality assumé, approaches a transformatitnin H. Thush; (X' — h~12)
approaches zero, and since the transformatippseserve the nornx” approaches the
pointh—1z, which therefore lies it€. Thusz € HC, soHC is closed.

Fix a pointx in C. Given any vectod in C* and transformatioh in H, | know
X + td € C for all positive realt, and hencéax + t(hd) € HC. Thushd belongs to
(HO)*°, and so | deducel(C*) c (HC)®~.

Conversely, given any vectdrin (HC)*°, | know x + td € HC for all positive real
t. SinceH is compact, there is a sequence of positive rgapproaching+oco, and
a sequence of transformatidmsapproachingp in H, satisfyingx +t,d € h; C for each
r. 1 deduce, for each

h-ld 4+t 1(h Ix—x) et H(C—x),

and lettingr approachbo showsh~1d € C*, sod € H(C*®), as | claimed.
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3. The normal space

This section describes a fundamental result for variational properties of eigenvalues.
The result is not new, and it is possible to give an elementary (though somewhat long)
proof. However, since some basic differential geometry greatly enhances understanding
of this key result, and since a self-contained proof for nonspecialists seems not readily
accessible, | sketch the proof from this perspective.

Consider the group af x n real orthogonal matrice§(n). This set is a ‘submani-
fold’ of the Euclidean space of all x n real matricesM(n). All we need to know here
about a ‘manifold’ in Euclidean space is that, locally, it is the solution set of a smooth
equation with surjective Jacobian, and hence the ‘tangent space’ coincides with the
contingent cone. For example, an easy calculation shows that the tangent spacg to
at the identity matrixl, denotedT; (O(n)), is just the subspace of skew-symmetric
matrices,A(n).

Consider the ‘adjoint’ action of the group(n) on the Euclidean space afx n
real symmetric matrice§(n) (with the inner product X, Y) = tr XY), defined by
U.X = UTXU, for all U in O(n) and X in S(n). Notice that any vectox in R" and
matrix P in the group ofi x n permutation matriceB(n) satisfy Diag Px) = PT .Diagx.

For a fixed matrixX in S(n), the orbitO(n).X = {UTXU : U € O(n)} is just the
set of symmetric matrices with the same eigenvalues (and multiplicitieX) &kere,
then, is the key fact (c.f. [1, p. 243] and [7, p. 150]).

Theorem 1 (Normal space).The orbit O(n).X is a submanifold of the spac&n),
with tangent space

Tx(O(n).X) ={XZ—-2ZX:Z e A(n)}, (2
and normal space
(Tx(O(n). X)L = {Y € S(n) : XY = YX]. (3)
(Sketch proof)Consider the ‘stabilizer’
O(n)x = {U € O(n) : UTXU = X} .

The idea of the proofis to relate the orkitn). X with the quotient grou®(n)/O(n) x.
This quotient group itself can be given the structure of a manifold (turning it into a
‘homogeneous space’). All we need to know about this construction is that the map

¢ : O(N)/O(N)x — O(Nn).X, defined by
UOn)x) — UTXU, forU in O(n),

is then a diffeomorphism, and hence its differentialis an isomorphism between the
corresponding tangent spaces

Tom)x (O(N)/O(n)x) andTx(O(n).X) .

(See for example [7, p. 150, C5] and [2, p. 108] for detalils.)
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Consider, on the other hand, the quotient map

7 : O(n) — O(n)/O(n)x, defined by
U — U(O(n)x), forallU in O(n).

The differential of this map,
dr : T (O(n)) = Tomx (O(n)/O()x)

has kerneT,; (O(n)x) (see for instance [2, p. 165]), and hence, by counting dimensions,
is onto.
Now consider a third map

¥ O(n) — O(n).X, defined by
U~ UTXU, forU in O(n).

Sinceyr = ¢ o r, the chain rule (at) gives
()T (O(N)) = Tx(O(n).X) .

But as | noted abovel; (O(n)) is just A(n), and an easy calculation shows that any
matrix Z in A(n) satisfieqdy)Z = XZ — Z X. Equation (2) now follows.
Finally, if a matrixY in S(n) commutes withX then any matrixZ in A(n) satisfies

tr(XZ—ZX)Y =tr(YX)Z —trZ(YX) = 0.
Conversely, suppose
tr(XZ—2zZX)Y =0 forall Zin A(n) .
ChoosingZ = XY — Y X gives

0=tr(X(XY =YX — (XY= YX)X)Y
= tr XY2X +tr YX2Y — tr XYXY—trYXYX
= —tr (XY = YX)(XY — YX),

whenceXY = Y X. Equation (3) follows.
O

| support my claim that the Normal Space Theorem (1) is fundamental in the
following sections. However, as an immediate application, | next use it to derive an
important inequality, essentially due to von Neumann [21] (the condition for equality
coming from [26]).

The following rather standard combinatorial lemma is an essential tool in the proof
(see [15]). | denote the cone of vectors R" satisfyingxy > x2 > ... > X by RZ.

Lemma 2. Any vectorsc andy in R and any matrixP in P(n) satisfy the inequality
x" Py < xTy; equality holds if and only if some matr@ in P(n) satisfiesQx = x and
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Two matricesX andY have asimultaneous ordered spectral decompositfahere
is a matrixU in O(n) satisfyingX = U.DiagA(X) andY = U.DiagA(Y).

Theorem 2 (Von Neumann—Theobald)Any matricesX and Y in S(n) satisfy the
inequalitytr XY < A(X)TA(Y); equality holds ifand only iK andY have a simultaneous
ordered spectral decomposition.

Proof. For fixed X andY, consider the optimization problem

a= sup trYZ (4)
Zeo(). X

There is a matriXJ in O(n) satisfyingY = U.DiagA(Y), and then choosing =
U.DiagA(X) showsx > A(X)TA(Y).

On the other hand, since the orldtn). X is compact, problem (4) has an optimal
solution,Z = Zg say, which by stationarity must satisfy

Y L Tz,(O(n).X) (= Tz,(O(n).Zo)) .

The Normal Space Theorem now shows that the matiaasd Zo commute and hence
there is a matrixJ in O(n) simultaneously diagonalizing them:

Y = U.Diag(Pr(Y)) and Zg = U.DiagA(Zp), (5)
for some matrixP in P(n). Hence
a=1trYZo = A(Zo)' PA(Y) < M(Z0) A (V) = A(X)TAY) <,

using Lemma 2, whence = A(X)TA(Y), and some matrixQ in P(n) satisfies
QA(Zp) = A(Zo) and QA(Y) = PA(Y): combining this with the decompositions (5)
gives a simultaneous ordered spectral decompositioharfd Zg. The result now fol-
lows.

|

This section ends with another simple linear-algebraic result which is useful later.

Proposition 3 (Simultaneous conjugacy)Given vectors, y, u andv in R", there is
a matrixU in O(n) with Diagx = U.Diagu andDiagy = U.Diagv if and only if there
is a matrix P in P(n) with x = Puandy = Pu.

Proof. The ‘only if’ case withx = uis Lemma 3.5in [18], and the general case reduces
to this case by a simple trick. Considering eigenvalues shows there is a @atriR(n)
with u = Qx. Hence | can write

Diagx = (Q'U).Diagx and Diagy = (Q"U).Diag(Q"v) .
By the result | quoted above, there is a matin P(n) with
x=Rx=RQ'uandy=RQ"v,

so | can choos® = RQ'. Conversely, for the ‘if’ direction, | can choose= PT.
o
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4. Simultaneous diagonalization

Functions of the eigenvalues of a symmetric matrix are the subject of this paper. Two
slightly different perspectives help. The first views such functions as those which are
invariant under orthogonal similarity transformations, while the second directly con-
siders functions of the eigenvalugg-). The following trivial result shows these two
perspectives are equivalent.

Proposition 4 (Invariant functions). The following two properties of a matrix function
F : S(n) — [—o0, +00] are equivalent:

(i) F isorthogonally invariant; that is, any matrice< in S(n) andU in O(n) satisfy
F(U.X) = F(X).

(i) F = f o for somepermutation-invariant functionf : R" — [—o0, +0o0] (that
is, any vectox in R" and matrixP in P(n) satisfy f(Px) = f(x)).

Proof. The implication(ii) = (i) follows from the invariance of eigenvalues under
orthogonal similarity. To see the converse, deffioe = F(DiagXx).
O

Definition 1. An eigenvalue functionis an extended-real-valued function &m) of
the formf o A for a functionf : R" — [—o0, +0o0]: the functionf is understood to be
permutation-invariant.

Many elementary but important properties of eigenvalue functfassfollow from
the facts that the functiohis globally Lipschitz (with constant 1 — see [17, Thm 2.4])
and thatf = (f o 1) o Diag. In particular, notice that o A is continuous (respectively
lower semicontinuous, Lipschitz) at a mat&in S(n) if and only if f is continuous
(respectively lower semicontinuous, LipschitzpaX).

My analysis of eigenvalue functions depends heavily on the following fundamental
fact.

Theorem 3 (Commutativity). If a matrix Y in S(n) is a subgradient or horizon sub-
gradient of an eigenvalue function at a matiin S(n) then X and Y commute.
Furthermore, if the eigenvalue function is Lipschitz aroutdandY is a Clarke sub-
gradient there, theiX andY commute.

Proof. Call the eigenvalue functioR, and assume first that the subgradiéig regular.
By the Normal Cone Proposition (1), the constancyain the orbitO(n). X shows

Y € (KUZ: F(Z) < FOX)} | X))~
C (K(O(n).X | X))~
= (Tx(O(n). X))+

(since, as | mentioned, the tangent space coincides with the contingent cone). The result
follows from the Normal Space Theorem (1).
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Now supposeY is a subgradient oF at X, so for some sequence of matricgs
in S(n) approachingX there is a corresponding sequence of regular subgradfemts
dF(X;) approaching’'. By the first part,

If Y is a horizon subgradient then instead \of approachingY, we havet,Y,
approaching’, where the realg decrease to 0. Thus

XY: I|[n XrtrYr = |III:n trYr Xr == YX .

If the eigenvalue function is locally Lipschitz then any Clarke subgradient is a convex
combination of subgradients, and since every subgradient commuteXywath must
any convex combination.

O

Commuting symmetric matrices are simultaneously digonalizable. Hence if the
matrix Y in S(n) is a subgradient of some eigenvalue function at the matrim S(n)
then some vectorsandy in R" and some matrixJ in O(n) satisfy

X = U.Diagx and Y = U.Diagy .

Consequently, by the Subgradient Invariance Proposition (2) applied to theSpace
with the adjoint action of the grouP(n), Diagy must be a subgradient at DiagThus

to characterize when a matrikis a subgradient of an eigenvalue function at a matrix
X, it suffices to consider the case wherandY are both diagonal. In one direction this
is easy, as | show below.

Proposition 5. Any vectors< andy in R" and eigenvalue functioffi o A satisfy
Diagy € 9(f o A)(Diagx) = y € 9f(x) .
Corresponding results hold for regular and horizon subgradients.

Proof. Suppose first that Diagis a regular subgradient. For a small vectan R" |
obtain

f(x+2z) = (f o 1)(Diagx + Diagz)
(f o 1)(Diagx) + tr (Diagy)(Diagz) + o(Diagz)
fx) + y'z+ 0(2),

v

whencey € 3 f(x).

Now assume Diag € d(f o A)(Diagx), so there is a sequence of matricgsin
S(n) approaching Diag, with f(A(X;)) approachingf(x), and a sequence of regular
subgradient¥; in A(f o M)(Xr) approaching Diag. By the Commutativity Theorem
(3) there are sequences of vecterandy’ in R" and matrices); in O(n) with

X; = U;.Diagx" and Y; = U,.Diagy' (6)
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for each index. The Subgradient Invariance Proposition (2) now shows Biag
d(f o A)(Diagx"), whence by the first paryf € 3 f(x").

Since the grou®(n) is compact, | can assunig approaches a matrld in O(n).
Hence, from equations (6), there must be vectoasdv in R™ with

UT .Diagx = Diagu and UT.Diagy = Diagv, (7)

andu andv must be the limits of the sequenced) and(y") respectively. Since the
first equation of (7) demonstratefigu) = f(x), v belongs tod f(u). But equations
(7) also guarantee the existence of a ma®ixn P(n) with x = Pu andy = P,
by the Simultaneous Conjugacy Proposition (3). Applying the Subgradient Invariance
Proposition (2) again, this time to the sp&ewith the groupP(n), y belongs td f(x),
as | claimed. The horizon subgradient argument is almost identical.

O

5. Directional derivatives of eigenvalues

There is one missing ingredient for characterizing subgradients of eigenvalue functions.
I need, for vectorg andy in R™ and an eigenvalue functioho A, to show

yedf(x) = Diagy € d(f or)(Diagx). (8)

This implication, which is the aim of this section, rests on somewhat deeper properties
of the eigenvalue map. | begin with some easy preliminary results. For a vegtar

R", I write X for the vector (irRY) with the same components arranged in nonincreasing
order.

Lemma 3. For any vectorw in RZ, the functionw X is convex, and any vectorin
R] satisfiesDiagw € d(w' 1)(Diagx).

Proof. The permutation-invariant functiofi : R" — R defined byf(z) = w'z is
convex, since

f(z) = maw' Pz: P € P(n)} ,
by Lemma 2. It suffices to show that any matéixn S(n) satisfies
tr (Diagw)(Z — Diagx) < w'A(Z) — w'X,

or in other words, ttDiagw)Z < w' A(Z). This inequality follows from the Von
Neumann-Theobald Theorem (2).
O

For a vectox in R", | write P(n)x for the stabilizer ok in the groupP(n):
P(n)xy = {P € P(n) : Px=x} .

The nextresultis [16, Lemma 2.2].
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Lemma 4. For vin R" andx in er‘, if the stabilizerP(n)y is a subgroup oP(n), then
v A is differentiable aDiagx with (vT 1)’ (Diagx) = Diagv.

I can now derive the main tool of this section, which gives directional derivative
information about the eigenvalue mapThe adjoint of the map Diag R" — S(n) is
the map diag: S(n) — R" taking a matrixZ to a vector with components its diagonal
entries.

Theorem 4 (Eigenvalue derivatives)Any vectox in RT and matrixZ in S(n) satisfy
diagZ e conv(P(n)x)\’'(Diagx; Z)). 9)

Proof. Partition the sefl, 2, ... , n} into consecutive blocks of integeks Io, ... , Ik,
so thatxj = x; if and only if the indices andj belong to the same block. Correspon-
dingly, write any vector in R" in the form

k
y=EPy. wherey" eR!"Iforeachr .
r=1

Notice also that the stabilizéP(n)yx consists of matrices of permutations fixing each
block I;.

Now suppose relation (9) fails. From the existence of a separating hyperplane, some
vectory in R" satisfies

y'diagZ > y" P\/(Diagx; Z) forall P in P(n)y. (10)

Let § denote the vecta®, y'. There is a vector in R" with equal components within
every blockl; (or in other words withP(n)x a subgroup oP(n),) so thatv + ¥ lies in
RY.Lemma 3 shows

Diag(v+ ¥) € a((v + §) T 1) (Diagx) ,
or equivalently, any matriX in S(n) satisfies
tr (T(Diag (v + 9))) < (v+ §)T A (Diagx; T). (11)
On the other hand, Lemma 4 shows
tr (T(Diagv)) = v' A'(Diagx; T). (12)
Subtracting equation (12) from inequality (11) gives
tr (T(Diag§)) < 975’ (Diagx; T). (13)

Writing diagZ = z = @, 7, there is a matrixQ in P(n)x satisfying

diag(Q.2) = @? .
r
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Now choosingl' = Q.Z in inequality (13) and using Lemma 2 repeatedly shows

7o (@) (@)

= tr((Q.Z)Diag¥)
< 972/ (Diagx; Q.2)
= §7)/(Diagx; 2),

using the Subgradient Invariance Proposition (2). But now choosing the niirix
inequality (10) so thaPTy = § gives a contradiction.
O

The directional derivative of the eigenvalue magives a first order estimate which
is uniform in the direction of perturbation. The next result makes this precise.

Lemma 5. Given a matrixX in §(n), small matricesZ in S(n) satisfy
AX+2Z)=1(X)+21(X; 2)+0(2) .

Proof. This relationship relies only on the Lipschitzness and directional differentiability
of the mapx (see for example [8, Lem 2.1.1]). These two properties follow easily from
writing each component function as the difference of the two finite convex functions,
Y j—1Aj andY_j_} 4] (see Lemma 3).
O
| can now prove the implication (8).

Theorem 5. For any vectors<in RY andy in R", and any eigenvalue functioho 2,

yedf(x) = Diagy € d(f oA)(Diagx) .

Proof. By the Subgradient Invariance Proposition (2), every element of the finite set
P(n)yxy is a regular subgradient dfatx. The convex hull of this set, which | denate
has support function given by

8% (2) = max{z' Py: P € P(n)y}, forallzinR".

This function is sublinear, with global Lipschitz const#mgt].
Fix a reale > 0. The definition of regular subgradients implies, for small vectors
in R",

f(x+2) > f(x) + 83 (2 —elz]. (14)
On the other hand, using the previous lemma (5), small matddasS(n) must satisfy

IA(Diagx + Z) — x — 2'(Diagx; 2)|| < ellZ]| ,
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and hence, by inequality (14),

f(L(Diagx + 2))
= f(x+ (A(Diagx + Z) — X))
> f(x) — ¢||A(Diagx + Z) — x||
+ &% (V' (Diagx; Z) + [r(Diagx + Z) — x — A’ (Diagx; Z)])
> f(x) + 84 (V' (Diagx; 2)) — (1 + lylDell Z|,

using the Lipschitz property of.
The Eigenvalue Derivatives Theorem (4) states

diagZ € conv(P(n)x)'(Diagx; Z)). (15)

Since the polytope\ is obviously invariant under the groug(n)x, so is its support
function, whence

8% (P\'(Diagx; 2)) = &% (V' (Diagx; 2)) ,

for any matrixP in P(n)x. This, combined with the convexity éf, and relation (15),
demonstrates

8 (diagZ) < &3 (A (Diagx; Z)) .
So the argument above shows

f(.(Diagx + 2)) > f(x) + 63 (diagZ) — (L + ylDell Z]|

f(x) +y'diagZ — (1 + [lylDell Z|
f(x) + (Diagy, Z) — (1 + Ilyl)el ZII,

=
=

and since: was arbitrary, the result follows.
i

Corollary 1 (Diagonal subgradients). For any vectorsk andy in R" and any eigen-
value functionf o A,

ye df(x) < Diagy € d(f o A)(Diagx) .

Corresponding results hold for regular and horizon subgradientsf lis Lipschitz
aroundx(X) then the implication=" also holds for for Clarke subgradients.

Proof. By virtue of Proposition 5, | need only prove the implicatioas’ Suppose
first thaty is a regular subgradient. Fixing a matfxin P(n) satisfyingx = Px, the
assumptiory € 3 f(x) implies Py € 3 f(Px), by the Subgradient Invariance Proposition
(2). Hence the previous result shows

PT.Diagy = Diag(Py) € d(f o A)(DiagPx) = d(f o A)(P'.Diagx) ,

and the result follows by applying the Subgradient Invariance Proposition again.
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Now suppose € df(x), so there is a sequence of vectgtsin R" approaching,
with f(x") approachingf(x), and a sequence of regular subgradieyitse 9 f(x")
approachingy. Hence Diag" approaches Diag with f(1(Diagx")) approaching
f(A(Diagx)), and by the above argument, each matrix Diags a regular subgra-
dient of f o A at Diagx". Since Diag/’ approaches Diag, the result follows. The
horizon subgradient case is amost identical.

If the function f is Lipschitz around.(X) andy is a Clarke subgradient &t then
y is a convex combination of subgradientse af(x). Since, by the above argument,
each matrix Diag' is a subgradient of o A at X, and Diagy is a convex combination
of these matrices, Diagmust be a Clarke subgradient.

]

Note 1.1 prove the converse implicatior=" in the Clarke case in §8.

6. The main result

My main result, characterizing the subgradients of an arbitrary eigenvalue function,
combines the diagonal case developed in the previous section with the diagonal reduction
argument of 84. Recall for matric&sin S(n) andU in O(n) the notatiorJ. X = uTXxuU.

Theorem 6 (Subgradients).The (approximate) subdifferential of any eigenvalue fun-
ction f o A at a matrixX in S(n) is given by the formula

a(f o 1)(X) = O(n)*.Diag(d f(A(X))), (16)
where
O(n)* = {U € O(n) : U.Diagr(X) = X} .
The sets of regular and horizon subgradients satisfy corresponding formulae.
Proof. For any vectory in d f(1(X)), the Diagonal Subgradients Corollary (1) shows
Diagy € o(f o A)(DiagA(X)) ,
and now, for any matrikJ in O(n)*, the Subgradient Invariance Proposition (2) implies
U.Diagy € a(f o 1)(U.DiagAr(X)) = a(f o A)(X) ,

as required.

On the other hand, any subgradiefiin o(f o 1)(X) commutes withX, by the
Commutativity Theorem (3). Hencé andY diagonalize simultaneously: there is a ma-
trix U in O(n)* and a vectoy in R" with Y = U.Diagy. The Subgradient Invariance
Proposition shows

Diagy € o(f o A)(DiagA(X)) ,

whencey € af(A(X)), by the Diagonal Subgradients Corollary. Thus the matrix
belongs to the right-hand-side of equation (16), as required. The arguments for regular
and horizon subgradients are completely analogous.

O
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Note 2. The Clarke subdifferential satisfies the corresponding formula in the locally
Lipschitz case — see §8.

Corollary 2 (Unique regular subgradients).An eigenvalue functioho has a unique
regular subgradient at a matriX in Sn) if and only if f has a unique regular subgra-
dient atA(X).

Proof. Supposef has a unique regular subgradigrdt (X). Then the subdifferential

formula (16) shows that every matrix in the nonempty convex6&étb A)(X) has the

same norm, namelyy||, and hence this set is a singleton. The converse is immediate.
o

The same proof, in the Lipschitz case, works for Clarke subgradients, which shows
that f o A is strictly differentiable aiX if and only if f is strictly differentiable ak (X)
(see [16]). Another proof of this fact follows later in the section. A more direct proof of
the following result appears in [16].

Corollary 3 (Fréchet differentiability). An eigenvalue functiof o A is Fréchet diffe-
rentiable at a matrixX in §(n) if and only if f is Fréchet differentiable ax(X).

Proof. This follows immediately from the preceding result, since a fundticmFréchet
differentiable at a point if and only if both and—h have unique regular subgradients
there.

i

Corollary 4 (Regularity). Suppose the permutation-invariant functidnis finite at
A(X) (foramatrixX in S(n)), and has at least one subgradientthere. Then the eigenvalue
function f o 1 is (Clarke) regular atX if and only if f is regular ati(X).

Proof. Since f has a subgradient a{X), the Subgradients Theorem (6) shofs A
has a subgradient &. Furthermoref o A is lower semicontinuous ned if and only
if fislower semicontinuous nearX).

By definition, f is regular at.(X) if and only if it is lower semicontinuous near
A(X) and the conditions

Af(L(X)) = df(A(X)) # ¥, and (17)
(0 FLX))™® = 8% F(L(X)) (18)

hold, wheread o A is regular atX if and only if it is lower semicontinuous nearand
the conditions

A(for)(X)=a(for)(X) #4, and (19)
O(f o) (X)) = 9(f o A)(X), (20)

hold. By formula (16) and its regular analogue, condition (17) implies condition (19).
Conversely, condition (19) is equivalent to

a(f o A)(Diagr(X)) = d(f o A)(Diagr(X)) # @ ,
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by the Subgradient Invariance Proposition (2), and condition (17) follows by the Dia-
gonal Subgradients Corollary (1).

Applying the Recession Lemma (1) to the regular version of formula (16), noting
that the set of regular subgradients is always closed and convex, shows

(A(f 0 (X)) = OM)*.[Diagd f(1(X))1* = O(n)*.Diag[(d F(L(X)))*] .

Hence condition (18) implies condition (20), by the horizon version of formula (16).
On the other hand, condition (20) is equivalent to

(A(f o M)(Diagr(X))>® = 9%°(f o 1)(Diagr(X)) ,
by the Subgradient Invariance Proposition, whence

Diag (3 f(1(X)))>®) = (Diagd f(A(X)))>®
= (3(f o 1)(Diagr(X)) N DiagR™ >
= (3(f o 1)(Diagr(X)))* N DiagR"
= 3°°(f o 1)(Diagi(X)) N DiagR"
= Diag (3™ f(L(X))),

using the Diagonal Subgradients Corollary again. Condition (18) follows.
i

Corollary 5 (Strict differentiability). An eigenvalue functiorf o A is strictly diffe-
rentiable at a matrixX in S(n) if and only if the functionf is strictly differentiable at
A(X).

Proof. Strict differentiability of f ati(X) is equivalent, by [25, Thm 9.18], to continuity
in aneighbourhood and regularity of bottand— f atA(X). The result therefore follows
by the Regularity Corollary (4).

O

The Subgradients Theorem (6) is more attractive (although perhaps less practical)
when written in a graphical form. The graph of the subdifferential is the set Gragh
{(x,y) € (RM?:y e af(x)}. Define a binary operation : O(n) x (RM? — ((n))?2
by

U * (X, y) = (U.Diagx, U.Diagy) .

Corollary 6 (Subdifferential graphs). The graph of the subdifferential of an eigenva-
lue functionf o A is given by the formula

Graphd(f o A) = O(n) * Grapha f .

Analogous formulae hold for the subdifferentialsa> and (in the locally Lipschitz
case)d®.
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Proof. A pair of matrices(X,Y) lies in Graph(f o A) exactly whenY belongs to
a(for)(X),andinthis case, by the Subgradients Theorem, there is a yaéctof (1 (X))
and a matriXJ in O(n)* satisfyingY = U.Diagy. Hence(X, Y) = U x (A(X), ).

Conversely, for a pair of vectorsg, y) in Graphd f and a matriXJ in O(n), yliesin
af(x), whence Diagy € d(f o A)(Diagx), by the Diagonal Subgradients Corollary (1).
The Subgradient Invariance Proposition now implieBiagy € a( f o 1)(U.Diagx), or
in other wordsJ * (X, y) € Grapha(f o). The arguments for the other subdifferentials
are exactly analogous.

O

An eigenvalue functionf o A is convex if and only if the functionf is convex
(see [17]). In this case the regular subgradients are exactly the subgradients in the usual
sense of convex analysis. The following result (cf. [17]) is easy to deduce from the
regular case of the Subgradients Theorem.

Corollary 7 (Convex subgradients).Consider an eigenvalue functidro A, where the
function f is convex. A matri¥Y in S(n) is a (convex) subgradient df o A at a matrix

X in §n) if and only if X andY have a simultaneous ordered spectral decomposition
andA(Y) is a (convex) subgradient df at 1 (X).

7. Invariance under Young subgroups

The Subgradients Theorem (6) provides one approach to the calculation of Clarke
subgradients. To pursue this approach, in this section | first derive a subsidiary result
about an important class of convex sets.

A subsetC of the Euclidean spack is invariant under a subgroufs of O(E)
if gC = C for all transformationgy in G. If the function f : R" — [—o0, +00]
is permutation-invariant then the regular subdifferentialfofit a pointx in R" is
a convex set, invariant under the stabiligén)y (by the Subgradient Invariance Propo-
sition (2)). Subgroups dP(n) of the form P(n)yx are calledYoung subgroupshey are
those subgroups corresponding to permutations preserving given partitions of the set

{1,2,...,n}. In this section | prove a general property of convex sets invariant under
Young subgroups.
Given an equivalence relatien on the se{l, 2, ... , n}, define a subspace

RY = {x € R": x; = xj whenevei ~ j},
and two groups

P(N)~ = {P e P(n) : Px=xforallx e R"},
O(n)~ = {U € O(n) : U.Diagx = Diagx for all x € R" }.

ThusP(n)~ consists of those matrices of permutations leaving invariant the equivalence
classes of-.
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| can always reorder the basis so thahas equivalence classes consecutive blocks
of integersly, I, ..., Ix: then I write any vectoy in R" in the form

K
y= @yr, wherey" e R!""! for eachr |
r=1

and for matricedJ" in M(|l;|) for eachr, | write Diag(U") for the block diagonal
matrix

ulto... o
oOuU2... 0
0 0 ... UK

Then it is easy to calculate the notions above:

R" = &RAL.... 7,
P(n)~ = {Diag(P") : P" € P(|l;|) foreachr}, and
O(n)~ = {Diag(U") : U" € O(|I;|) foreachr}.

Theorem 7 (Invariant sets).If ~ is an equivalence relation on the gdt 2, ... , n}
and the convex s& c R" is invariant under the grou(n)~, then the set of matrices
O(n)~.DiagC is convex.

Proof. Reorder the basis as above. Diagonalizing each diagonal block easily shows the
identity

O(n)~.DiagC = {Diag(X") : @ A(X") € C}. (21)

For two matricesX = Diag(X") andY = Diag(Y") in this set, and a number in
[0, 1], | wish to show

aX+ (1 —a)Y € O(n)~.DiagC ,
or equivalently, by identity (21),
Prex +a-ayHecC.
r
Since (21) showsp; A(X") and@; A(Y") both lie in the convex se&E, which is invariant
under the grougP(n), it suffices to show
S raX + (L —a)Y") e conv(P(N){@ A(X"), & A(YD))) .

If this fails then there is a separating hyperplane: there exists a veetap, z' in R"
satisfying

(Z, ®rA@X” + (1 —a)Y")) > max(z, P(N)~{®r A(X"), & A(YDH}).
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But then Lemmas 2 and 3 show

Y Z A@X + L —a)Y) > max{z (7, n(XD)) , Z(?,A(Y’))}

r r r

> oY (T X))+ A—) Y (7, MYD)
- Zr(?, ar(X") + (1 — a)/\(\;r»
> Xr: (Z, MaX" + (L —a)Y")
> Xr: (7', M@X" + (1 —a)Y"),
:

which is a contradiction.

8. Clarke subgradients

The Subgradients Theorem (6) did not cover the case of the Clarke subdifferential
because of the missing converse in the Diagonal Subgradients Corollary. This section
remedies this using the Invariant Sets Theorem (7). The main result, which follows, first

appeared in [16], via a different approach.

Theorem 8 (Clarke subgradients).The Clarke subdifferential of a locally Lipschitz
eigenvalue functiorf o A at a matrixX in §n) is given by the formula

3°(f o 1)(X) = O(n)*.Diag (3¢ f(L(X))). (22)

Proof. Assume firstX = Diagx for a vectorx in RL: the general case follows easily,
using the Subgradient Invariance Proposition (2). Define an equivalence relation
{1,2,...,n}by

i~j & X=Xj.

Then it is easy to verifyO(n)P9% = O(n)~, and sincex is invariant under the
group P(n)~, the convex seb® f(x) is also invariant undeP(n)~. (by the Subgra-
dient Invariance Proposition). The Invariant Set Theorem now shows that the set
O(n)~.Diaga® f(x) is convex.

The Subgradients Theorem (6) demonstrates

3°(f o 1)(Diagx) = conva(f o 1)(Diagx) = conv(O(n)~.Diagd f(x)) .
The inclusion

O(n)~.Diagd f(x) c O(n)~.Diagd® f(x)
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is trivial, so the convexity of the right-hand-side shows
conv(O(n)~.Diagd f(x)) ¢ O(n)~.Diagd® f(x) .

But sinced®f(x) = convdf(x), the reverse inclusion is immediate, and the result
follows.
|

The Diagonal Subgradients Corollary is interesting in its own right, so this section
concludes with the Clarke version.

Corollary 8 (Diagonal Clarke subgradients).For any vectorsc andy in R" and any
eigenvalue functiorf o 2,

ye d°f(x) « Diagy e 3°(f o 1)(Diagx) .

Proof. The Diagonal Subgradients Corollary (1) shows the implicatie. ‘For the
converse, assuming Digge 3°(f o A)(Diagx), the Clarke Subgradients Theorem
above shows the existence of a matfiin O(n) and a vectoz in 3¢ f(X) with Diagy =
U.Diagz and Diagk = U.DiagX. By the Simultaneous Conjugacy Proposition (3), there
is a matrixP in P(n) with y = Pzandx = PX, and the result now follows from the
Subgradient Invariance Proposition (2).

O

9. Order statistics and individual eigenvalues

This article ends with an example illustrating the main result. Specifically, | apply the
Subgradients Theorem (6) to calculate the approximate subdifferential of the individual
eigenvalueii(-). In part my aim is to provide a useful tool, while on the other hand
giving an elegant and nontrivial illustration of the approximate subdifferential.

The restriction of the functiong to the diagonal matrices is théth order sta-
tistic ¢k : R" — R (applied to the vector of diagonal entries). More precisely, this
(permutation-invariant) function

#(x) = k" largest element dfixy, Xa, . . . , Xn}

(or in other wordgpk(X) = (X)), satisfies the relatiogk(x) = Ak(Diagx). To apply the
Subgradients Theorem, notg = ¢ o A: thus | must first compute the subdifferential
of ¢x. | denote the canonical basisRY by {e!, €, ..., €"}.

Proposition 6. At any pointx in R", the regular subgradients of théth order statistic
are described by

A _ Jconvi€ : xi = gk(¥)}, if k = Lor g_1(X) > Px(X),
9K(x) = { @, otherwise

’

ando*® ¢k (x) = {0}.
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Proof. Define a set of indiceb = {i : xj = ¢x(X)}. If the inequalitypr_1(X) > ¢dk(X)
holds then clearly, close to the poitthe functionp is given byw € R" = max¢| w.
The subdifferential at of this second function (which is convex)is justcdev: i € |}.

On the other hand, in the cagg_1(x) = ¢k(X), suppose is a regular subgradient,
and so satisfies

P(X+2) > ¢p(X) +y'z+0(z), asz— 0.

For any index in I, all small positives satisfy ¢x(x + s€) = dk(x), from which |
deducey; < 0, but also

¢k (x—azé) = k() — 6.,

iel

which implies the contradictio® ;_, yi > 1. The horizon subdifferential is easy to
check.
O

To simplify notation, for general subgradients | concentrate first on thexcase.
For a vectory in R" | write
suppy = {i : yi # O}
the number of elements in this set is theappy|. Thesimplexin R" is the set described
by
A= {yeR”:yzO, Yy =1} — convie!, &,... €}

Proposition 7. The Clarke subdifferential of tHéth order statisticgy at the origin is
just the simplexA, whereas the (approximate) subdifferential is given by

d(0) = {y € A: |suppyl <n—k+1} .
Regularity holds if and only & = 1.

Proof. Since any regular subgradient@f at any point always lies in the right-hand-

side set (by the previous proposition), so does an arbitrary subgradient, since this set is
closed. Conversely, given any vectaoelonging to the right-hand-side, choose a subset

J of exactly(k — 1) indicesi for whichy; is zero. The previous proposition shows, for

any smalls > 0,

y e convie :i ¢ J} = e (82&) ;
ied
whence, by taking limitsy € dgx(0), as | claimed. The Clarke case follows by taking

convex hulls, and the regularity claim is immediate, by the previous proposition.
o
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I denote the cone of positive semidefinite matricesSin) by S(n)*. The next
result follows immediately from the previous proposition by applying the Subgradients
Theorem (6).

Corollary 9. The Clarke subdifferential of tHéth eigenvalue at the origin is given by
a0 ={YeSmt:trY=1},
whereas the (approximate) subdifferential is given by
k0 ={YeSmT:trY =1 rank¥Y <n—k+1}.
Regularity holds if and only & = 1.

The arguments for the general cases are completely analogous, leading to the follo-
wing results.

Theorem 9 ['th order statistic). The Clarke subdifferential of tHéth order statistic
¢k at a pointx in R" is given by

3°i(x) = convie : X = pk(x)} ,
whereas the (approximate) subdifferential is given by

Ipk(X) = {y € 3k (x) : |suppy| < o}, where
a=1-Kk+|[{i : X > (X}
Regularity holds if and only bx_1(X) > ¢k(X).

Corollary 10 (Eigenvalue subgradients)The Clarke subdifferential of tHéth eigen-
value at a matrixX in n) is given by

Cak(X) = conv{uu’ :u e R", ull =1, Xu=ik(X)u}, (23)
whereas the (approximate) subdifferential is given by
Ik (X) = {Y € 3 (X) : rankY < «}, where
a=1-—k+[{i : 4i(X) = a(X)}I.
Regularity holds if and only ifx_1(X) > Ak(X).

Formula (23) was first observed in [4] (see also [16]), although a weaker version
appears in [6].

| conclude with a nice application of formula (23) to a well-known eigenvalue
isotonicity result (see [10], p. 181). For matricEsandY in S(n), | write X > Y or
X > Y to meanX — Y is positive semidefinite or definite respectively.

Corollary 11 (Eigenvalue isotonicity).For any matricesX andY in Sn),

X>=Y = AX) > i), and
X>=Y = A(X) > A(Y).
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Proof. For any indexX, by the Lebourg Mean Value Theorem [3], Thm 2.3.7, there is
a matrixZ in S(n) such that

A(X) = 2k(Y) € (3°4k(2), X =Y).

The result now follows easily from formula (23).
O
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