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Abstract. Given a nonlinear function h separating a convex and a concave function, we provide
various conditions under which there exists an affine separating function whose graph is somewhere
almost parallel to the graph of h. Such results blend Fenchel duality with a variational principle and
are closely related to the Clarke–Ledyaev mean value inequality.
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1. Introduction. The central theorems in this paper blend two completely dis-
tinct types of result, both fundamental in optimization theory: Fenchel duality and
variational principles. The simplest version of Fenchel duality states that for any
convex functions f and g on Rn satisfying f ≥ −g, a regularity condition implies the
set

L
def
= {y ∈ Rn : f∗(y) + g∗(−y) ≤ 0}

is nonempty (where f∗ is the Fenchel conjugate of f). Geometrically, this means there
exists an affine function sandwiched between f and −g. On the other hand, one of
the easiest examples of a variational principle states that if h is a locally Lipschitz
function bounded below on Rn, then h has arbitrarily small Clarke subgradients:

0 ∈ cl (Im ∂h).

Geometrically, there are points where the graph of h is almost horizontal (in a certain
nonsmooth sense).

The theorems we discuss here combine the features of both results above. We
consider functions f , g, and h as before, now satisfying f ≥ h ≥ −g, and under
various regularity conditions we prove

L ∩ cl (Im ∂h) 6= ∅.
Geometrically, there are affine functions between f and −g whose graphs are some-
where almost parallel to the graph of h.

As we show by means of various examples, the existence of a suitable affine
separating function depends on both local and asymptotic properties of the three
functions. Hence the regularity conditions we need to impose combine assumptions
on the domains of the primal functions, f and g, and of their conjugates, f∗ and g∗,
as well as local and global growth conditions on h.
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The key tool for our results is a recent, somewhat surprising mean value inequality
of Clarke–Ledyaev [3], rephrased as a hybrid sandwich theorem in [6]. We illustrate the
application of this type of result with two apparently simple but rather remarkable
consequences. First, any convex function f and locally Lipschitz function h ≤ f
satisfy

domf∗ ∩ cl (Im ∂h) 6= ∅.

Second (a “squeeze theorem”), any locally Lipschitz functions p ≥ h ≥ q with p(0) =
h(0) = q(0) satisfy

∂p(0) ∩ ∂h(0) ∩ ∂q(0) 6= ∅.

We have not been able to find simple proofs or references for either of these two
results.1

With the exception of this last squeeze theorem, our results do not appear to be
substantially easier with the assumption that h is smooth (in which case ∂h reduces to
the singleton∇h). We believe they provide further evidence of the depth, applicability,
and fundamental nature of the Clarke–Ledyaev inequality in optimization theory.

2. Notation and preliminary results. We begin by reviewing some basic
ideas from convex analysis (see [7]). Given a convex set A ⊂ Rn, we denote by affA
the smallest affine space containing A and by riA the set of the internal points of
A ⊂ affA (with the induced topology). Observe that riA is a nonempty convex set.
Given a function f : Rn → [−∞,∞], we denote its effective domain by

dom f
def
= {x ∈ Rn : f(x) <∞}

and by epi f its epigraph, the set

epi f
def
= {(x, r) ∈ Rn ×R : r ≥ f(x)},

a convex set if and only if f is convex. The hypograph of the function −g is instead

hyp(−g)
def
= {(x, r) ∈ Rn ×R : r ≤ −g(x)},

again a convex set if and only if g is convex. The epigraph of f is closed if and only
if f is lower semicontinuous in the usual sense.

We shall write f ∈ Γ0 to mean that epi f is nonempty, closed, and convex and
does not contain vertical lines.

For a set A, let IA be the indicator function of the set A,

IA(x) =

{
0 if x ∈ A,
∞ otherwise.

In particular, IkB denotes the indicator function of the ball centered at 0 ∈ Rn and
with radius k.

1Subsequent investigations revealed alternative approaches to the last theorem independent of
the Clarke–Ledyaev result [1]. Nonetheless, the original approach we present here remains attractive
for its transparency.
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The Fenchel conjugate of a function f : Rn → [−∞,∞] is the function f∗ : Rn →
[−∞,∞] defined by

f∗(y)
def
= sup

x∈Rn

{〈y, x〉 − f(x)},

a convex lower semicontinuous function (even if f is not) which belongs to Γ0 if f
does. Furthermore, f = f∗∗, providing f ∈ Γ0.

The function f is said to be cofinite if its conjugate f∗ satisfies dom f∗ = Rn.

It is easy to see this is equivalent to saying that lim‖x‖→∞
f(x)
‖x‖ = ∞ [5, Chapter 10,

Proposition 1.3.8].
The subdifferential of a convex function f at a point x ∈ dom f is the closed

convex set

∂f(x)
def
= {y ∈ Rn : f(z) ≥ f(x) + 〈y, z − x〉 for all z ∈ Rn}.

The fundamental connection between the subdifferentials of a function and of its
Fenchel conjugate is shown by the following Fenchel identity:

y ∈ ∂f(x)⇐⇒ f(x) + f∗(y) = 〈y, x〉.
It follows, in particular, that y ∈ ∂f(x) if and only if x ∈ ∂f∗(y), providing f ∈ Γ0.

Given two functions p, q : Rn → [−∞,∞], we define the infimal convolution
between them by

(p2q)(x) = inf
y∈Rn

{p(y) + q(x− y)},

a convex function if p and q are, possibly assuming the value −∞, and that may fail
to be lower semicontinuous. Finally, for a function p ∈ Γ0, we denote by

pk
def
= p2k‖ · ‖,

the infimal convolution between p and k‖ · ‖: this function is the largest k-Lipschitz
function minorizing p. For more about convex functions, the interested reader is
invited to consult [4], [5], [7].

Next we briefly consider the subdifferential of a locally Lipschitz function h :
U → R, where U is an open subset of Rn. This notion is not uniquely defined in the
literature, and here we make the choice of the Clarke subdifferential (see [2]) which is
more suited for our scopes, as an example in the final section will show. To define it,
first let us introduce the notion of generalized directional derivative of h at the point
x in the direction v:

h◦(x, v)
def
= lim sup

z→x
t↘0

h(z + tv)− h(z)

t
.

The function v 7→ h◦(x, v) is everywhere finite, subadditive, and positively homoge-
neous; hence, in particular, it is continuous and convex. Then the subdifferential of h
at x is defined as

∂h(x)
def
= {y ∈ Rn : 〈y, v〉 ≤ h◦(x, v) for all v ∈ Rn},

a nonempty closed convex set. Moreover, if k is a Lipschitz constant for h, the sub-
differential is norm-bounded by k. In particular, the multifunction ∂h is bounded on
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bounded sets. Observe that the Clarke subdifferential of h at x is the same set as the
(convex) subdifferential of the function v 7→ h◦(x, v) at v = 0, a simple but useful
property we shall use throughout this paper.

For more about nonsmooth analysis for locally Lipschitz functions, the interested
reader is invited to consult [2].

In this paper we shall deal with two convex functions f, g ∈ Γ0 and a locally
Lipschitz function h such that f ≥ h ≥ −g. For a moment, let us focus on the
problem of nonemptyness of the set

L
def
= {y ∈ Rn : f∗(y) + g∗(−y) ≤ 0}.

This set can be characterized in a more geometric way, as the following easy propo-
sition states.

Proposition 2.1. Let f, g ∈ Γ0. Then, for y ∈ Rn,

f∗(y) + g∗(−y) ≤ 0

if and only if there exists a ∈ R such that

f(x) ≥ a+ 〈y, x〉 ≥ −g(x) for all x ∈ Rn.

Thus the problem of nonemptyness of L is equivalent to finding an affine separator
lying below f and above g. This can be stated in terms of a separation problem for
the sets epi f and hyp(−g). The assumption f ≥ −g ensures that

ri epif ∩ ri hyp(−g) = ∅,
(see [4, Chapter 4, Proposition 1.1.9]) and this in turn implies that epi f and hyp(−g)
can be separated by a hyperplane [4, Chapter 3, Theorem 4.1.4]. However, it can
happen that the only separating hyperplane is vertical, which unfortunately says
nothing about nonemptyness of L.

The first result stating that L is nonempty is the following well-known Fenchel
duality theorem [7, Theorem 31.1], which in our setting can be rephrased in the
following way.

Theorem 2.1. Let f, g ∈ Γ0 be such that f ≥ −g and suppose

ri (dom f) ∩ ri (dom g) 6= ∅.
Then there exists y ∈ Rn such that

f∗(y) + g∗(−y) ≤ 0.

We illustrate the role of the assumption on the domains of f and g with the help
of the following four examples, where the set L is always empty.

Example 2.1.

f(x) =

{ −√x if x ≥ 0,
∞ otherwise,

g(x) =

{
0 if x = 0,
∞ otherwise.

Here ri (dom f) ∩ ri (dom g) = ∅.
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Example 2.2.

f(u, v) =

{ −1 if uv ≥ 1, u ≥ 0,
∞ otherwise,

g(u, v) =

{
0 if u ≥ 0, v = 0,
∞ otherwise.

Here we have dom f ∩ dom g = ∅.
Example 2.3.

f(u, v) =

{
u if v = −1,
∞ otherwise,

g(u, v) =

{
0 if v = 0,
∞ otherwise.

Here the distance between dom f and dom g is 1.
In the last two examples the domains of f and g do not intersect, while in the

first example a crucial role is played by the fact that inf(f + g) = 0. In the following
example inf(f + g) > 0, and yet there is no affine separator. Observe that such an
example could not be provided in one dimension [4, Chapter 1, Remark 3.3.4].

Example 2.4.

f(u, v) =

{
1− 2

√
uv if u, v ≥ 0,

∞ otherwise,

g(u, v) =

{
1− 2

√−uv if u ≤ 0, v ≥ 0,
∞ otherwise.

A straightforward calculation shows

f∗(u∗, v∗) =

{ −1 if u∗ ≤ 0, u∗v∗ ≥ 1,
∞ otherwise,

g∗(u∗, v∗) =

{ −1 if u∗ ≥ 0, u∗v∗ ≤ −1,
∞ otherwise.

Thus the set L is empty.

3. Sandwich theorems. We turn now to the case of three functions f , g, and
h, such that f and g are convex, h is locally or globally Lipschitz, and f ≥ h ≥ −g.
Examples 2.2, 2.3, and 2.4 show that the existence of a locally Lipschitz function h
between f and −g (take h(x, y) = −xy in all cases) does not change the situation:
there is no affine separator.

First let us recall now some known results.
Theorem 3.1 (see [6, Theorem 2]). Let C be a nonempty convex compact set in

Rn. Let f, g ∈ Γ0 and with domains contained in C. Let h : Rn → R be Lipschitz on
a neighborhood of C. Suppose moreover f ≥ h ≥ −g on C.
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Then there exist c ∈ C and y ∈ ∂h(c) such that

f∗(y) + g∗(−y) ≤ 0.

Boundedness of C can be relaxed at the expense of requiring more about the
functions f and g and/or about the function h. Specifically, we have the following
two results.

Theorem 3.2 (see [6, Theorem 7]). Let C be a nonempty closed convex set in
Rn. Let f, g ∈ Γ0 be cofinite, with domains contained in C. Moreover suppose

int (dom f) ∩ int (dom g) 6= ∅.
Let h : Rn → R be locally Lipschitz on a neighborhood of C and suppose f ≥ h ≥ −g
on C.

Then there exist c ∈ C and y ∈ ∂h(c) such that

f∗(y) + g∗(−y) ≤ 0.

Theorem 3.3 (see [6, Theorem 8]). Let C be a nonempty closed convex set in
Rn. Let f, g ∈ Γ0 be cofinite, with domains contained in C. Let h : Rn → R be
globally Lipschitz on a neighborhood of C and suppose f ≥ h ≥ −g on C.

Then there exist c ∈ C and y ∈ ∂h(c) such that

f∗(y) + g∗(−y) ≤ 0.

Observe one does not need a qualification condition on the domains of f and g
if h is globally Lipschitz. In the last two theorems, however, cofiniteness is required,
which can be regarded as a (strong) qualification condition on the domains of the
conjugates.

The first result we want to prove deals simply with the existence of the affine
separator. To prove it, we need the following proposition about regularizing Fenchel
problems.

Proposition 3.1. Suppose p, q ∈ Γ0 and

(•) ri (dom p) ∩ ri (dom q) 6= ∅.
Then, for all large k, we have

inf(p+ q) = inf(pk + qk)

and

argmin(p+ q) = argmin(pk + qk).

Proof. To prove the first equality, we need to prove only inf(p+ q) ≤ inf(pk + qk).
There is nothing to prove if inf(p+ q) = −∞. Therefore, let us assume it is finite. (It
cannot be ∞ because of (•).) By Fenchel duality, there is y ∈ Rn such that

− inf(p+ q) = p∗(y) + q∗(−y).

Take k > ‖y‖. Then



NONSMOOTH DUALITY, SANDWICH, AND SQUEEZE THEOREMS 619

− inf(p+ q) = p∗(y) + q∗(−y) = (p∗ + IkB)(y) + (q∗ + IkB)(−y)

= (pk)∗(y) + (qk)∗(−y) ≥ inf
z∈Rn

((pk)∗(z) + (qk)∗(−z))

= − inf(pk + qk) ≥ − inf(p+ q).

This shows the first equality and also that y as above is optimal for the problem of
minimizing, on Rn, (pk)∗(·) + (qk)∗(−·).

Now, writing down optimality conditions, we obtain, using k > ‖y‖,

x ∈ argmin(p+ q)⇔ p(x) + q(x) = −p∗(y)− q∗(−y),

⇔ x ∈ ∂p∗(y) ∩ ∂q∗(−y),

⇔ x ∈ ∂(p∗ + IkB)(y) ∩ ∂(q∗ + IkB)(−y),

⇔ x ∈ ∂(pk)∗(y) ∩ ∂(qk)∗(−y),

⇔ x ∈ argmin(pk + qk).

We begin our sequence of main results by proving some variants of Fenchel du-
ality, where the usual regularity condition is replaced by the existence of a Lipschitz
separator.

Theorem 3.4. For f, g ∈ Γ0, suppose

ri (dom f∗) ∩ ri (–dom g∗) 6= ∅.

Suppose further there exists a locally Lipschitz function h such that f ≥ h ≥ −g.
Then there is y ∈ Rn such that

f∗(y) + g∗(−y) ≤ 0.

(Moreover, if inf(f + g) = 0, then such a y can be found in the range of ∂h.)
Proof. From Proposition 3.1, applied to p = f∗ and q(·) = g∗(−·), we have

inf((f∗)k(·) + (g∗)k(−·)) = inf(f∗(·) + g∗(−·))

and

argmin((f∗)k(·) + (g∗)k(−·)) = argmin(f∗(·) + g∗(−·))

for all large k. Apply Theorem 3.1 to the functions f + IkB , h, and g+ IkB , for large
k, and the set C = kB, to find yk ∈ Im ∂h such that

(f∗)k(yk) + (g∗)k(−yk) ≤ 0.

If

yk ∈ argmin((f∗)k(·) + (g∗)k(−·))

(as in the case when inf(f + g) = 0), then we deduce f∗(yk) + g∗(−yk) ≤ 0 and we
conclude. Otherwise, for all large k,

0 > inf((f∗)k(·) + (g∗)k(−·)) = inf(f∗(·) + g∗(−·)).
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Thus there is y ∈ Rn such that f∗(y) + g∗(−y) ≤ 0, as required.
We provided here the result when inf(f + g) = 0 for the sake of completeness.

However observe that under the assumptions of Theorem 3.4 inf f + g is attained. In
this circumstance the squeeze theorem in the next section will provide a more precise
result.

With respect to the role of the assumptions in Theorem 3.4, Example 2.1 shows
the set L can be empty if we do not assume the existence of a locally Lipschitz
function sandwiched between f and −g, while Example 2.2 shows the necessity of the
qualification condition

ri (dom f∗) ∩ ri (–dom g∗) 6= ∅.
We turn now to the problem of providing conditions under which the slope of an

affine separator can be found in the closure of the range of the Clarke subdifferential
of the separating function h. To do this, we prove first the following proposition.

Proposition 3.2. Suppose f, g ∈ Γ0 satisfy f ≥ −g. For k = 1, 2, . . ., define

Lk
def
= {y ∈ Rn : (f∗)k(y) + (g∗)k(−y) ≤ 0}

and

L
def
= {y ∈ Rn : f∗(y) + g∗(−y) ≤ 0}.

Then Lk is a decreasing collection of closed convex sets containing L, and

yk ∈ Lk, yk → y implies y ∈ L.
If moreover the condition

0 ∈ int (dom f− dom g)

holds, then the sets Lk for large k are all contained in a compact set.
Proof. Since (f∗)k ≤ (f∗)k+1 ≤ f∗, clearly L ⊂ Lk+1 ⊂ Lk, for all k > 0. Let us

prove that, if yk is such that yk → y and

(f∗)k(yk) + (g∗)k(−yk) ≤ 0 for all k,

then

f∗(y) + g∗(−y) ≤ 0.

From Proposition 2.1 there exists ak ∈ R such that

f(x) ≥ ak + 〈yk, x〉 ≥ −g(x) for all x ∈ kB.
It is easy to show the sequence {ak} is bounded, so it has some cluster a ∈ R. (Use
the boundedness of {yk} and the existence of an element x ∈ dom f ∩ dom g.) It
follows that

f(x) ≥ a+ 〈y, x〉 ≥ −g(x) for all x ∈ Rn,

so y ∈ L. We have proved the first part of the claim. Now define a function

v(w) = inf
x∈Rn

(f(x+ w) + g(x))
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and a sequence of functions decreasing pointwise to v,

vk(w) = inf
x∈Rn

((f + IkB)(x+ w) + (g + IkB)(x)).

Observe that (vk)∗(y) = (f∗)k(y) + (g∗)k(−y) and v∗(y) = f∗(y) + g∗(−y) and that
dom v = dom f − dom g, so that 0 ∈ int (dom v).

Since v is continuous at 0, there exist reals r > 0 and α and a cube C such that
rB ⊂ C ⊂ int(dom v) and v ≤ α− 1 on C. Hence, for large k we have vk ≤ α on each
vertex of C and hence on rB, so (vk)∗(w) ≥ r‖w‖ − α for all points w in Rn, and
therefore Lk ⊂ (α/r)B.

We are now ready for a new result.
Theorem 3.5. For f, g ∈ Γ0, and locally Lipschitz h : Rn → R satisfying

f ≥ h ≥ −g, suppose

0 ∈ int (dom f− dom g).

Then

∃y ∈ cl (Im ∂h) : f∗(y) + g∗(−y) ≤ 0.

Proof. Apply Theorem 3.1 to the functions f + IkB ≥ h ≥ −(g + IkB), for large
k. Then there exists

yk ∈ Im (∂h) : (f∗)k(yk) + (g∗)k(−yk) ≤ 0.

By Proposition 3.2 the sequence (yk) clusters and any cluster point satisfies the re-
quired property.

We intend now to prove that the constraint qualification in Theorem 3.5 can be
replaced by an assumption involving the growth of f and h at infinity. To do this, we
need the following proposition.

Proposition 3.3. For f ∈ Γ0 and locally Lipschitz h satisfying f ≥ h, suppose

lim inf
‖x‖→∞

f(x)

‖x‖ > max

{
lim sup
‖x‖→∞

h(x)

‖x‖ , 0
}
.

Then, for all large k, fk ≥ h.
Proof. Let 0 < a < b and c be such that

f(x)

‖x‖ ≥ b,
h(x)

‖x‖ ≤ a,

for all x such that ‖x‖ ≥ c. Then there exists rbf ∈ R such that

f(x) ≥ r + b‖x‖ for all x ∈ Rn,

and f has bounded level sets. For the sake of contradiction, suppose there exists, for
each k ∈ N, xk such that fk(xk) < h(xk). Two cases can occur.

(i) (xk) is unbounded. Taking a subsequence, we can suppose ‖xk‖ → ∞. For
k > b, we have fk(xk) ≥ r + b‖xk‖. It follows that

a‖xk‖ ≥ h(xk) > fk(xk) ≥ r + b‖xk‖,



622 A. S. LEWIS AND R. E. LUCCHETTI

a contradiction.
(ii) (xk) is bounded. Again taking a subsequence, we can suppose xk → x. Pick

m > ‖x‖ and r so that h is r-Lipschitz on mB. Since f has compact level sets, for
each k there is yk such that h(xk) > fk(xk) = f(yk) + k‖xk − yk‖. As h(xk)→ h(x),
for large k one has

f(yk) ≤ f(yk) + k‖xk − yk‖ ≤ h(x) + 1.

Thus (yk) is bounded and, taking another subsequence, we can suppose yk → y. Since

k‖xk − yk‖ ≤ h(x) + 1− inf f for all k,

we deduce y = x. Thus, for large k, xk, yk ∈ mB, so

h(xk) ≤ h(yk) + r‖xk − yk‖ ≤ f(yk) + k‖xk − yk‖ < h(xk),

a contradiction.
Theorem 3.6. For f, g ∈ Γ0 and locally Lipschitz h : Rn → R satisfying

f ≥ h ≥ −g, suppose

lim inf
x→∞

f(x)

‖x‖ > max

{
lim sup
x→∞

h(x)

‖x‖ , 0
}
.

Then

∃y ∈ cl (Im ∂h) : f∗(y) + g∗(−y) ≤ 0.

Proof. From Proposition 3.3, fk ≥ h ≥ −g for large k. Since we know dom fk −
dom g = Rn, Theorem 3.5 implies there exists y ∈ cl Im ∂h with

f∗(y) + g∗(−y) ≤ (fk)∗(y) + g∗(−y) ≤ 0.

The proof of the theorem above relies on the fact that we are able to construct
a function p ∈ Γ0 such that f ≥ p ≥ h and whose domain contains internal points.
However, to do this is not always possible, as the following example shows.

Example 3.1. Let

f(u, v) =

{
0 if v = 0,
∞ otherwise

and h(u, v) = |uv|. Suppose the convex function p satisfies f ≥ p ≥ h. Then clearly
p(u, 0) = 0 for all u. For any real u and v and positive integer r,

1

r
p(u, v) =

1

r
p(u, v) +

r − 1

r
p(u, 0)

≥ p
(
u,
v

r

)
= p

(
u,
v

r

)
+ p(r, 0)

≥ 2p

(
u+ r

2
,
v

2r

)
≥
∣∣∣∣ (u+ r)v

2r

∣∣∣∣
→ |v|

2
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as r →∞. Hence p(u, v) = +∞ whenever v 6= 0, so p = f .
The next result deals with the case of h being globally Lipschitz.
Theorem 3.7. For f, g ∈ Γ0 and globally Lipschitz h : Rn → R, suppose

f ≥ h ≥ −g. Then

∃y ∈ cl (Im ∂h) : f∗(y) + g∗(−y) ≤ 0.

Proof. Apply Theorem 3.3 to the functions f + IkB , h, and g+ IkB to obtain the
existence of yk ∈ Im ∂h such that

(f + IkB)∗(yk) + (g + IkB)∗(−yk) ≤ 0.

Since h is globally Lipschitz, (yk) has a cluster point y. Then we conclude with the
help of Proposition 3.2.

The next example shows that in general no y ∈ Im ∂h satisfies f∗(y)+g∗(−y) ≤ 0.
Example 3.2. Let f(x) = |x|,

g(x) =

{
1 + x2 if x ≥ 0,
∞ otherwise,

h(x) =

{
x− exp(−x) if x ≥ 0,
2x− 1 otherwise.

Then all the assumptions of Theorem 3.5 are fulfilled, and moreover h is globally
Lipschitz.

We end the section by proving a unilateral result which can be regarded as a
generalized variational principle.

Theorem 3.8. For f ∈ Γ0 and locally Lipschitz h : Rn → R, suppose f ≥ h.
Then

cl (Im ∂h) ∩ dom f∗ 6= ∅.

Proof. Choose any point z ∈ dom f and real k > ‖z‖. Define g(·) = IkB(·) −
infkB h and apply Theorem 3.5.

The special case f = 0 gives the well-known variational result that a locally
Lipschitz function h which is bounded above satisfies 0 ∈ cl (Im ∂h).

4. Squeeze theorems. In this section we specialize the situation studied before.
We shall make the further assumption that there is a point where the three functions
are equal. In this case, as we shall see, we are able to provide more precise results.

We shall start with the following easy proposition, that we state without proof.
Proposition 4.1. For f, g ∈ Γ0 satisfying f ≥ −g, suppose there exists x such

that f(x) = −g(x). Then

{y : f∗(y) + g∗(−y) ≤ 0} = ∂f(x) ∩ −∂g(x).

We prove now a “convex” squeeze theorem.
Theorem 4.1. For f, g ∈ Γ0 and locally Lipschitz h : Rn → R satisfying

f ≥ h ≥ −g, suppose there exists x ∈ Rn such that f(x) = −g(x). Then

∂f(x) ∩ ∂h(x) ∩ −∂g(x) 6= ∅.
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Proof. Without loss of generality, we can suppose x = 0. For each positive integer
r, as f ≥ h ≥ −g on 1

rB, we can apply Theorem 3.1 to find xr ∈ 1
rB and yr ∈ ∂h(xr)

with

(f + I 1
rB

)∗(yr) + (g + I 1
rB

)∗(−yr) ≤ 0.

By Proposition 4.1

yr ∈ ∂(f + I 1
rB

)(0) ∩ −∂(g + I 1
rB

)(0) = ∂f(0) ∩ −∂g(0).

Since ∂h is locally bounded, there exists a subsequence (yrk) of (yr) converging to
some y, and since xrk → 0 and ∂h is closed, y ∈ ∂h(0).

The next squeeze theorem deals instead with three locally Lipschitz functions. To
prove it, we need the following proposition.

Proposition 4.2. Let f : Rn → R be locally Lipschitz and suppose δ > 0. Then

f(0) + f◦(0, x) + δ‖x‖ > f(x)

for all small nonzero x.
Proof. Suppose that f(0) = 0, that f is k-Lipschitz near 0, and that, for the sake

of contradiction, there is a sequence (xr) such that xr 6= 0 for all r and xr → 0, with

f◦(0, xr) + δ‖xr‖ ≤ f(xr).

Thus

f◦
(

0,
xr
‖xr‖

)
+ δ ≤ f(xr)

‖xr‖ .

Suppose, without loss of generality, xr
‖xr‖ → d. Then

lim sup
r→∞

f◦
(

0,
xr
‖xr‖

)
+ δ ≤ lim sup

r→∞
f(xr)

‖xr‖
= lim sup

r→∞
f(‖xr‖d) + f(xr)− f(‖xr‖d)

‖xr‖
≤ lim sup

r→∞
f(‖xr‖d) + k‖xr − ‖xr‖d‖)

‖xr‖
≤ f◦(0, d).

It follows that

f◦(0, d) + δ ≤ f◦(0, d),

which is impossible.
Theorem 4.2. Suppose f, h, g : Rn → R are three locally Lipschitz functions

such that f ≥ h ≥ g. Moreover, suppose f(x) = g(x) for some x. Then

∂f(x) ∩ ∂h(x) ∩ ∂g(x) 6= ∅.
Proof. Suppose, without loss of generality, f(0) = h(0) = g(0) = 0. By Proposi-

tion 4.2, for each r ∈ N, there exists εr > 0 such that

f◦(0, x) +
‖x‖
r
≥ h(x) ≥ −

(
(−g)◦(0, x) +

‖x‖
r

)



NONSMOOTH DUALITY, SANDWICH, AND SQUEEZE THEOREMS 625

for all x such that ‖x‖ ≤ εr. Now, take ε < εr. Then

f◦(0, x) +
‖x‖
r

+ IεB(x) ≥ h(x) ≥ −
(

(−g)◦(0, x) +
‖x‖
r

+ IεB(x)

)
for all x ∈ Rn. We can then apply Theorem 4.1 to get an element yr such that

yr ∈ ∂
(
f◦(0, ·) +

‖ · ‖
r

+ IεB(·)
)

(0) ∩ ∂h(0)

∩ −∂
(

(−g)◦(0, ·) +
‖ · ‖
r

+ IεB(·)
)

(0)

=

(
∂f(0) +

1

r
B

)
∩ ∂h(0) ∩

(
∂g(0) +

1

r
B

)
.

Since yr ∈ ∂h(0), the sequence (yr) is bounded and any of its cluster points does the
job.

Corollary 4.1. Let f1 ≥ f2 ≥ · · · fk : Rn → R be locally Lipschitz. Suppose
f1(0) = · · · = fk(0). Then

k⋂
i=1

∂fi(0) 6= ∅,

provided at least one of the following conditions holds:
• k = 1, 2, 3;
• at least one fi is smooth;
• n = 1, 2.

Proof. The cases k = 2 and the case when fi is smooth follow from the sum rule
applied to f1 − f2 and fj − fi, respectively. The case k = 3 is Theorem 4.2 and the
cases n = 1, 2 are consequences of Theorem 4.2 and Helly’s theorem.

5. Final remarks. We have seen some sandwich and squeeze theorems, deal-
ing with convex and locally Lipschitz functions. While the convex subdifferential is
standard, there are several notions of subdifferential for locally Lipschitz functions.
Here we use the Clarke subdifferential rather than, for instance, the approximate sub-
differential, because the latter is not suitable for the results we seek. Consider the
following simple example.

Example 5.1. Let

f(x) = I[−1,1](x),

g(x) = |x|+ I[−1,1](x),

and

h(x) = −|x|.
Then f ≥ h ≥ −g and h is (globally) Lipschitz. However

L = {y : f∗(y) + g∗(y) ≤ 0} = {0},
while the approximate subdifferential of h is the set {−1, 1}.

Finally, here is a list of questions we leave to the interested reader.
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Question 1. Does

ri (dom f) ∩ ri (dom g) 6= ∅

imply

L ∩ cl (Im ∂h) 6= ∅?

Question 2. Does

ri (dom f∗) ∩ ri (–dom g∗) 6= ∅

imply

L ∩ cl (Im ∂h) 6= ∅?

Question 3.2 Does the nonsmooth squeeze result of Corollary 4.1 hold more gen-
erally for any n, k?
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