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Abstract—We propose a novel nonnegative matrix factorization model that aims at finding localized, part-based, representations of

nonnegative multivariate data items. Unlike the classical nonnegative matrix factorization (NMF) technique, this new model, denoted

“nonsmooth nonnegative matrix factorization” (nsNMF), corresponds to the optimization of an unambiguous cost function designed to

explicitly represent sparseness, in the form of nonsmoothness, which is controlled by a single parameter. In general, this method

produces a set of basis and encoding vectors that are not only capable of representing the original data, but they also extract highly

localized patterns, which generally lend themselves to improved interpretability. The properties of this new method are illustrated with

several data sets. Comparisons to previously published methods show that the new nsNMF method has some advantages in keeping

faithfulness to the data in the achieving a high degree of sparseness for both the estimated basis and the encoding vectors and in

better interpretability of the factors.

Index Terms—nonnegative matrix factorization, constrained optimization, datamining, mining methods and algorithms, pattern

analysis, feature extraction or construction, sparse, structured, and very large systems.
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1 INTRODUCTION

NONNEGATIVEmatrix factorization (NMF) [1], [2] has been
introduced as a matrix factorization technique that

produces ausefuldecomposition in the analysis of data.NMF
decomposes the data as a product of two matrices that are
constrained by having nonnegative elements. This method
results in a reduced representation of the original data that
can be seen either as a feature extraction or a dimensionality
reduction technique. More importantly, NMF can be inter-
preted as a parts-based representation of the data due to the
fact that only additive, not subtractive, combinations are
allowed. This is possible because of the nonnegativity
constraints imposed in this model, which, unlike other
factorizationmethods, such as singular value decomposition
(SVD) or independent component analysis (ICA) [3], are only
capable of extracting holistic features from the data.

Formally, the nonnegative matrix decomposition can be

described as follows:

V �WH; ð1Þ

where V 2 IRp�n is a positive data matrix with p variables

and n objects, W 2 IRp�q are the reduced q basis vectors or

factors, and H 2 IRq�n contains the coefficients of the linear

combinations of the basis vectors needed to reconstruct the

original data (also known as encoding vectors). The main

difference between NMF and other classical factorization

models relies in the nonnegativity constraints imposed on

both the basis (W) and encoding vectors (H). In this way,

only additive combinations are possible:

ðVÞi� � ðWHÞi� ¼
X

q

a¼1
WiaHa�: ð2Þ

NMF has been successfully used in diverse fields of science

such asbiomedical applications [4], [5], [6], [7], face andobject

recognition [8], [9], color science [10], [11], and polyphonic

music transcription [12], among others. Increasing interest in

this factorization technique isdue to the intuitivenatureof the

method,which has the ability to extract additive parts of data

sets that are highly interpretable, while reducing the

dimensionality of the data at the same time.
Even if NMF has been presented and used as a method

capable of finding the underlying parts-based structure of

complex data, there is no explicit guarantee in the method

to support this property other than the nonnegativity

constraints. In fact, taking a closer look at the basis and

encoding vectors produced by NMF, it is noticeable that

there is a high degree of overlapping among basis vectors

that contradict the intuitive nature of the “parts” [13]. In this

sense, a matrix factorization technique capable of producing

more localized, less overlapped feature representations of

the data is highly desirable in many applications. In this

direction, there are several reported attempts for solving

this problem by making modifications to the original NMF

functional to enforce sparseness on the basis vectors, the

encoding vectors, or both [14], [15], [16], [17].
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In this study, a different matrix factorization technique is

presented, based on a new cost function and its optimiza-

tion algorithm. The cost function is derived by introducing

a modification to the Lee and Seung method [2] in order to

demand sparseness to both the basis and encoding vectors.

The new method, here referred to as Nonsmooth Non-

negative Matrix Factorization (nsNMF), differs from the

original in the use of an extra smoothness matrix for

imposing sparseness. The goal of nsNMF is to find sparse

structures in the basis functions that explain the data set.

The interpretation of the new factorization is twofold: Data

can be faithfully reconstructed using additive combinations

of the basis functions, while, at the same time, interpretation

of the basis functions is straightforward. The underlying

rationale is to find a positive decomposition of the data into

nonoverlapping parts.
This paper is organized as follows: In Section 2, the

classical NMF problem, its optimization algorithm, and a

description of related methods are described. In Section 3,

the original NMF functional is extended with a smoothing

matrix to achieve sparseness on both the basis and encoding

vectors. The optimization algorithm is also presented.

Section 4 and 5 present some factorization examples on

synthetic and real data sets. Finally, Section 6 contains some

concluding remarks.

2 REVIEW OF NONNEGATIVE MATRIX

FACTORIZATION (NMF) AND ITS SPARSE

VARIANTS

In this section, we will briefly describe the original

nonnegative matrix factorization method [2] and some of

the works that, to the best of our knowledge, are closely

related to the work presented here [14], [15], [16], [17].

2.1 Nonnegative Matrix Factorization (NMF)

A formal description of Nonnegative Matrix Factorization

as described in [2] follows: Let:

V �WH; ð3Þ

where V 2 IRp�n is a data matrix with p variables and

n objects, W 2 IRp�q are the factor vectors by columns, and

H 2 IRq�n contains the encoding vectors or projections, q � p,

all matricesV;W;H are nonnegative, and the columns ofW

(the basis vectors) are normalized (sum up to 1).

The objective function, based on the Poisson likelihood, is:

D V;WHð Þ ¼
X

p

i¼1

X

n

j¼1
Vij ln

Vij

WHð Þij
� Vij þ WHð Þij

 !

;
ð4Þ

which, after some simplifications and elimination of pure

data terms, gives:

D V;WHð Þ ¼
X

p

i¼1

X

n

j¼1

X

q

k¼1
WikHkj � Vij ln

X

q

k¼1
WikHkj

 !

:
ð5Þ

Taking the derivative with respect to H gives:

@

@Hab
D V;WHð Þ ¼

X

p

i¼1
Wia �

X

p

i¼1

VibWia

P

q

k¼1
WikHkb

: ð6Þ

The gradient algorithm then states:

Hab  Hab � �ab
@

@Hab
D V;WHð Þ; ð7Þ

Hab  Hab þ �ab
X

p

i¼1

VibWia

P

q

k¼1
WikHkb

�
X

p

i¼1
Wia

2

6

6

4

3

7

7

5

; ð8Þ

for some step size �ab.

Forcing:

�ab ¼
Hab

P

p

i¼1
Wia

ð9Þ

gives the multiplicative rule:

Hab  Hab

P

p

i¼1
WiaVibð Þ=P

q

k¼1
WikHkb

P

p

i¼1
Wia

: ð10Þ

Taking the derivative with respect to W gives:

@

@Wcd
D V;WHð Þ ¼

X

n

j¼1
Hdj �

X

n

j¼1

VcjHdj

P

q

k¼1
WckHkj

: ð11Þ

The gradient algorithm then states:

Wcd  Wcd � �cd
@

@Wcd
D V;WHð Þ; ð12Þ

Wcd  Wcd þ �cd
X

n

j¼1
Vcj

Hdj

P

q

k¼1
WckHkj

�
X

n

j¼1
Hdj

2

6

6

4

3

7

7

5

: ð13Þ

Forcing the step size:

�cd ¼
Wcd

P

n

j¼1
Hdj

ð14Þ

gives:

Wcd  Wcd

P

n

j¼1
HdjVcj

� �

=
P

q

k¼1
WckHkj

P

n

j¼1
Hdj

: ð15Þ

404 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 3, MARCH 2006



Finally, the derived algorithm is as follows:

1. Initialize W and H with positive random numbers.
2. For each basis vector Wa 2 IRp�1, update the

corresponding encoding vector Ha 2 IR1�n, followed
by updating and normalizing the basis vector Wa.
Repeat this process until convergence.

Formally, the detailed algorithm follows:

Repeat until convergence:

For a = 1...q do begin

For b = 1...n do

Hab  Hab

P

p

i¼1
WiaVibð Þ=P

q

k¼1
WikHkb

P

p

i¼1
Wia

: ð16Þ

For c=1...p do begin

Wca  Wca

P

n

j¼1
HajVcj

� �

=
P

q

k¼1
WckHkj

P

n

j¼1
Haj

: ð17Þ

Wca  
Wca

P

n

j¼1
Wja

: ð18Þ

End

End

2.2 Local Nonnegative Matrix Factorization (LNMF)

Inspired by the original NMF method [2], Feng et al. [14]

introduced the Local Nonnegative Matrix Factorization

(LNMF) algorithm intended for learning spatially localized,

parts-based representation of visual patterns. Their aim was

to obtain a truly part-based representation of objects by

imposing sparseness constraints on the encoding vectors

(matrix H) and locality constraints to the basis components

(matrix W). Those constraints, in addition to nonnegativity,

produced an algorithm able to extract binary-like, quasi-

orthogonal basis components.

Formally, the problem was defined as follows:

Taking the factorizationproblemdefined in (1), defineA ¼
aij
� �

¼W
t
W andB ¼ bij

� �

¼ HH
t, whereA;B 2 IRq�q. The

LNMF algorithm is based on the following three additional

constraints:

1. Maximum Sparseness in H. It should contain as many
zero components as possible. This implies that the
number of basis components required to representV
is minimized. Mathematically, each aij should be
minimum.

2. Maximum expressiveness of W. This constraint is
closely related to the previous one and it aims at
further enforcing maximum sparseness in H. Math-
ematically,

Pq
i¼1 bii should be maximum.

3. Maximum orthogonality ofW. This constraint imposes
that different bases should be as orthogonal as
possible to minimize redundancy. This is forced by
minimizing

P

8i;j;i 6¼j aij. Combining this constraint,
with the one described in point 1, the objective is to
minimize

P

8i;j aij.

Thus, 8i; j, the constrained divergence function described in

[14], is:

D V;WHð Þ ¼
X

p

i¼1

X

n

j¼1

 

Vij ln
Vij

ðWHÞij
� Vij þ ðWHÞij

!

þ �
X

q

i;j¼1
aij � �

X

q

i¼1
bii;

ð19Þ

where �; � > 0 represent some constants for expressing the

importance of the additional constraints described above.

One possible solution for this problem was described in [14]

and is very similar to the original NMF algorithm described

in [2]. Basically, it consists of the following steps:

Repeat until convergence:

For a =1...q do begin
For b = 1...n do

Hab  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Hab

X

p

i¼1
WiaVibð Þ=

X

q

k¼1
WikHkb

s

: ð20Þ

For c = 1...p

Update W using (17) and (18)

End

Notice that the minimization algorithm described in [14]

eliminated the use of � and �. Even if this might look like a

practical advantage, it also limits control over the sparse-

ness constraints.

2.3 Nonnegative Sparse Coding (NNSC)

Similar to the LNMF algorithm, the Nonnegative Sparse

Coding (NNSC) [15] method is intended to decompose

multivariate data into a set of positive sparse components

by using theory inherited from Linear Sparse Coding [18],

[19]. Combining a small reconstruction error with a

sparseness criterion, the objective function defined in [15] is:

E V;WHð Þ ¼ 1

2
V�WHk k2þ�

X

q

i¼1

X

n

j¼1
f Hij

� �

; ð21Þ

where the form of f defines how sparseness on H is

measured and � controls the trade-off between sparseness

and the accuracy of the reconstruction. In [15], the authors

used a linear activation penalty function to measure the

sparseness, leading to the following objective function and

its minimization algorithm:

E V;WHð Þ ¼ 1

2
V�WHk k2þ�

X

q

i¼1

X

n

j¼1
Hij: ð22Þ
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Algorithm

1. Initialize W and H to random strictly positive
matrices of the appropriate dimensions, and normal-
ize each column ofW. Let � > 0 denote the step-size.

2. Iterate until convergence:

a. Calculate new Was

W W� � WH�Vð ÞHt: ð23Þ

b. Any negative values in W are set to zero
c. Normalize each column of W.
d. Calculate new H as

Hi;j  Hi;j

ðWt
VÞij

ðWt
WHÞij þ �Þ : ð24Þ

2.4 Sparse Nonnegative Matrix Factorization
(SNMF)

Liu et al. [17]modified themethod described previously [15].
Instead of using a Euclidean least-square type functional, as
in (22), they used a divergence term as in the original NMF
paper [2] (see, e.g., (4)). Thus, the sparse NMF functional is:

DðV;WHÞ ¼
X

p

i¼1

X

n

j¼1

 

Vij ln
Vij

ðWHÞij
� Vij þ ðWHÞij

!

þ �
X

ij

Hij

ð25Þ

for � � 0.
This method forces sparseness via minimizing the sum of

all Hij. The update rule for matrix H is:

Hab  Hab

P

p

i¼1
WiaVibð Þ=P

q

k¼1
WikHkb

1þ �
; ð26Þ

while the update rule for W is expressed in (17) and (18).

2.5 Nonnegative Matrix Factorization with
Sparseness Constraints (NMFSC)

A more recent work related to the addition of sparseness
constraints to the classical NMF problem has also been
proposed by Hoyer [16]. This method minimizes
E V;WHð Þ ¼ V�WHk k2 under the following constraints:

SparsenessðWiÞ ¼ Sw; 8i; i ¼ 1::q;

SparsenessðHiÞ ¼ Sh; 8i; i ¼ 1::q;

whereWi is the ith column of W,Hi is the ith row of H, Sw

and Sh are the desired sparseness values for W and H,
respectively, and are user-defined parameters. The sparse-
ness criteria proposed in [16] uses a measure based on the
relationship between the L1 and L2 norm of a given vector:

SparsenessðxÞ ¼
ffiffiffi

n
p � P

xj

�

�

�

�

� �

=
ffiffiffiffiffiffiffiffiffiffiffi

P

x2
j

q

ffiffiffiffiffiffiffiffiffiffiffiffi

n� 1
p ; ð27Þ

where n is the dimensionality of the vector x.
This sparseness measure quantifies how much energy of

a vector is packed into only a few components. This
function evaluates to 1 if and only if x contains only a single
nonzero component, and takes a value of 0 if and only if all

components are equal, interpolating smoothly between the
two extremes.

Details of the lengthy algorithm are omitted here and can
be found in [16].

3 OUR PROPOSAL: NONSMOOTH NONNEGATIVE

MATRIX FACTORIZATION (nsNMF)

All the methods described in the previous section try to
achieve further sparseness in the nonnegative matrix
factorization model by means of the ad hoc addition of
constraints or penalization terms to thedivergence functional
or to the Euclidean least squares functional. Such constraints
or penalizations can be applied to the basis vectors alone, to
the encoding vectors alone, or simultaneously to both basis
and encoding vectors.

Because of the multiplicative nature of the model, i.e.,
“basis” multiplied by “encoding,” sparseness in one of the
factors will almost certainly force “nonsparseness” or
smoothness in the other, in order to compensate for the final
product to reproduce thedata as best aspossible.On theother
hand, forcing sparseness constraints on both the basis and the
encoding vectors will deteriorate the goodness of fit of the
model to the data. Therefore, from the outset, this approach is
doomed to failure in achieving generalized sparseness and
satisfactory goodness of fit.

These critical aspects of the previously published
methods have motivated the direct modification of the
model as the means to achieve global sparseness. The new
model proposed in this study, denoted as “NonSmooth
Nonnegative Matrix Factorization” (nsNMF), is defined as:

V ¼WSH; ð28Þ
where V, W, and H are the same as in the original NMF
model. The positive symmetric matrix S 2 IRq�q is a
“smoothing” matrix defined as:

S ¼ 1� �ð ÞIþ �

q
11

T ; ð29Þ

where I is the identity matrix, 1 is a vector of ones, and the
parameter � satisfies 0 � � � 1.

The interpretation of S as a smoothing matrix can be
explained as follows: Let X be a positive, nonzero, vector.
Consider the transformed vector Y ¼ SX. If � ¼ 0, then
Y ¼ X and no smoothing on X has occurred. However, as
�! 1, the vector Y tends to the constant vector with all
elements almost equal to the average of the elements of X.
This is the smoothest possible vector in the sense of
“nonsparseness” because all entries are equal to the same
nonzero value, instead of having some values close to zero
and others clearly nonzero.

Note that the parameter � controls the extent of smooth-
ness of the matrix operator S. However, due to the multi-
plicative nature of the model (28), strong smoothing in Swill
force strong sparseness in both the basis and the encoding
vectors in order to maintain faithfulness of the model to the
data. Therefore, the parameter � controls the sparseness of the
model. Note that, when � ¼ 0, the model corresponds to the
basic NMF.

Further insight into the nature of the new nsNMF model
can be obtained from the dual interpretation of (28), which
can be equivalently written as:
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V ¼ WSð ÞH ¼W SHð Þ:
Nonsparseness in the basis W will force sparseness in the
encoding H. At the same time, nonsparseness in the
encoding H will force sparseness in the basis W. Due
precisely the simultaneity of both conditions, sparseness
will be enforced on both basis and encoding parts.

The new algorithm is very straightforward to derive by
simply substituting the nsNMF model (28) into the diver-
gence functional in (4) and following the same procedure to
minimize the functional as performed in (5)-(15). For a given
sparseness parameter value 0 � � � 1, the final algorithm is a
simple modification of the original, basic NMF algorithm
given by (16)-(18):

1. In the update equation for H (16), substitute Wð Þ
with WSð Þ.

2. In the update equation for W (17), substitute Hð Þ
with SHð Þ.

3. Equation (18) remains the same.

4 EXPERIMENTS

4.1 Synthetic Data Set

As mentioned in the previous section, the multiplicative
nature of the sparse variants of the NMFmodel will produce
a paradoxical effect: Imposing sparseness in one of the
factors will almost certainly force smoothness in the other in
an attempt to reproduce the data as best as possible.

Additionally, forcing sparseness constraints on both the
basis and the encoding vectors will decrease the explained
variance of the data by the model. To demonstrate that our
new nsNMF method is less susceptible to this effect, we
carried out a simple experiment with an artificial data set
composed of five variables measured on 20 objects (items).
This was generated by multiplying two matrices, A 2 IR5�3

and B 2 IR3�20, where each element of each matrix was
assigned an independent uniform [0, 1] pseudorandom
number. There was no sparseness included into this data set.

The only feature in this data set is that it is positive and
that it can be represented exactly with only three factors
(three basis and three encoding vectors). This property is
ideal for studying the deterioration of goodness of fit
between the data and the model, as a function of
sparseness, for the different methods.

Table 1 shows the results when using exactly three factors

in all cases. Different NMF-typemethodswere applied to the

same randomly generated positive data set (5 variables,

20 items, rank = 3). Themethods are denoted asNMF, LNMF,

SNMF,NMFCS, and the new nsNMFmethod, as described in

Section 2. When applicable, different levels of sparseness

were used. The table reports the explained variance achieved

by the factorization as well as the average sparseness of the

basis vectors and of the encoding vectors (see (27)). Note that

“average sparseness” is defined as the average of the
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sparseness value (given by (27)) over all factors (columns of

matrixW) and encoding vectors (rows of matrixH).
As expected, NMF achieves 100 percent explained

variance, with low sparseness values (using (21)). The

LNMF method, which has no control over the extent of

sparseness, explains only 93 percent of the variance while

achieving high sparseness for the basis vectors, but

extremely low sparseness for the encoding vectors.
Despite the fact that the SNMF method is designed to

control sparseness, it seems to be incapable of obtaining an

actual increase in sparseness, while the explained variance

deteriorates tremendously. The NMFSC method performs

as expected, enforcing sparseness, but at the expense of a

dramatic loss of faithfulness between the data and the

model. Finally, the new nsNMF model maintains almost

perfect faithfulness to the data (> 99.9 percent explained

408 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 3, MARCH 2006

Fig. 1. Sample images from the swimmer data set. Each image is
composed of a torso and four limbs in different positions.

Fig. 2. Results of applying (a) NMF and (b) nsNMF algorithms to the
swimmer data set. In both cases, 17 factors were generated. A value of
� ¼ 0:5 was used for the nsNMF model. Note that, in (a), the eighth
factor of the first row represents a nonsparse representation of the two
limbs and a torso, while, in (b), the seventh factor in the second row
contains a stronger torso signal.

Fig. 3. Results of the NMF algorithm applied to the faces data set. (a) Forty-nine NMF basis components representing average parts of the faces

contained in the database. (b) Coefficients (encodings) of four sample images. Total explained variance of the model: 95.72 percent.



variance) for a wide range of achieved sparseness, thus
outperforming the other methods.

4.2 Swimmers Data Set

The “swimmer” data set is described in [20]. It consists of a set
of black-and-white images with four moving parts (limbs),
each able to exhibit four different positions (articulations).
Each individual image contains a “torso” of 12 pixels in the
center and four “limbs” of six pixels that can be in one of four
different positions. In total, there are 256 images of dimension
32� 32 pixels, containing all possible limb positions/
combinations. Fig. 1 shows a subset of these images.

The swimmer data set was used in [20] to demonstrate
the ability of the NMF algorithm to find the parts (limbs). It
was specifically created by an NMF-style generative model
obeying some predefined rules, such as separability and
complete factorial sampling. In [20], NMF was tested with
this data set to demonstrate its capacity in finding parts. To
that end, 16 factors were used. The factors showed that the
16 different articulated parts were properly resolved and
perfectly agreed with the list of generators (four limbs in
four different positions and one common torso) [20].

However, it is worth emphasizing that, in that study, the
torso is not properly resolved since it is explicitly an invariant

region that violated the rules used for generating the data.
With the purpose of testing the “interpretability” of the
factorizations, we reanalyzed this data using 17 factors
instead of only 16. The idea was to check the ability of NMF
and nsNMF in finding the limbs and the torso separately, as is
expected in a parts-based representation of this data. Fig. 2
shows the best results (according to the functional values) of
the NMF and nsNMFmethods selected from 20 independent
runs, eachwith random initializations. It can be noticed from
Fig. 2 thatNMF failed in extracting the 16 limbs and the torso,
whilensNMFsuccessfully explained thedatausingone factor
for each independent part. These results are in total
agreement with the nature of both methods: NMF extract
parts of the data in a more holistic manner, while nsNMF
sparsely represents the same reality.

4.3 Faces Data Set

In order to test the sparseness ability of the proposed
algorithm, we applied nsNMF to the CBCL face database
from MIT [21]. The database contains 2,429 19� 19 facial
low resolution gray-level images. The same data set has also
been used in [2] to present the capacity of the NMF
algorithm to produce a part-based representation of the

PASCUAL-MONTANO ET AL.: NONSMOOTH NONNEGATIVE MATRIX FACTORIZATION (NSNMF) 409

Fig. 4. nsNMF basis components with facial data set for different values of �. (a) � ¼ 0:5. Total explained variance of the model: 83.84 percent.

(b) � ¼ 0:6. Total explained variance of the model: 80.69 percent. (c) � ¼ 0:7. Total explained variance of the model: 78.17 percent. (d) � ¼ 0:8. Total

explained variance of the model: 76.44 percent.



facial images. For comparison purposes, the same number

of factors (49) has been used in our experiments.

4.3.1 NMF Results

Fig. 3 shows the results using the Lee and Seung algorithm

[2] applied to the facial database using 49 factors. Even if

the factors’ images give an intuitive notion of a parts-based

representation of the original faces, the factorization is not

really sparse enough to represent unique parts of an

average face. In other words, the NMF algorithm allows

some undesirable overlapping of parts, especially in those

areas that are common to most of the faces in the input data.

Fig. 3b shows the encoding coefficients for four sample

images. As can be noticed, the coefficients are not sparse.

This corroborates the hypothesis that, in order to reproduce

the input images, the generated model needs to combine

almost all of the factors in different overlapped proportions.

4.3.2 nsNMF Results

The nsNMF algorithm was applied to the facial database

with different set of sparseness parameters � ¼ 0:5, � ¼ 0:6,

� ¼ 0:7, and � ¼ 0:8. Figs. 4 and 5 show the results.
These results demonstrate the intrinsic nature of the

nsNMFalgorithmwheremore localized features appearwith

increasing values of the sparseness parameters. Since sparse-

ness is equally applied on both the bases images and the

coefficients, the sparse features are alsoobserved inboth.This

result has a beneficial practical implicationdue to the fact that
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Fig. 5. Encoding vectors for four sample images and different values of sparseness: (a) � ¼ 0:5, (b) � ¼ 0:6, (c) � ¼ 0:7, (d) � ¼ 0:8. The effect of

sparseness in the encoding vectors is more evident with the increase of �.



this new algorithm is not only able to extract localized
features from a given data set, but also because it tries to
explain each item in the data set by the additive combination
of aminimumnumber of components (Fig. 5). This allows the
recognition of the most important parts for a given item and,
thus, it facilitates the interpretation stage in the data analysis
process, as will be show, in the next section.

The faces data set has also been used in most of the
previously related works [14], [15], [16], [17] to graphically
illustrate the sparseness properties of their methods.
Interested readers can also find a visual representation of
the sparse faces decomposition in those related contribu-
tions to make a more visual qualitative comparison with the
method presented here.

5 REAL APPLICATION: LOW-RESOLUTION BRAIN

ELECTROMAGNETIC TOMOGRAPHY (LORETA)

This data set consists of time series of electric neuronal
activity (current density) calculated at a large number of
voxels located over the human cortex. This is an enormous
amount of spatio-temporal data, thus making the task of
understanding the mechanisms of brain information proces-
sing very difficult. One approach to aid in interpreting such
complicated data is to model the spatio-temporal current
densities in terms of a small number of factor pairs. In this
model, the basis vectors would be certain normalized spatial
distributions that have maximum activity in brain areas that
are specialized in certain cognitive functions and the
encoding vectors would be the time course of activation of
the corresponding spatial distribution basis vector.However,
this type of model will be simple only if the representations

are sparse: The basis vectors consisting of the normalized
spatial distribution of current density should be zero almost
everywhere, except for nonzero values at some few brain
regions, and the encoding vectors consisting of time course of
activation should be zero almost everywhere, except at
certain time intervals.

The original experimental data, known as an event related
potential (ERP), corresponds to time varying measurements
of scalp electric potential differences obtainedwhile a human
subject is viewing, in the right visual field, a computer screen
displaying a checkerboard pattern that is reversing 1.1 times
per second. Potentials were recorded at a sampling rate of
512 Hz from 21 scalp electrodes. The average brain response,
time locked to pattern reversal onset, is known as the average
ERP. Seventy pattern reversals per subject were averaged.
This experiment was performed on 21 subjects and the grand
average ERP over all subjects was analyzed. These data are
described in further detail in [22].

In general, scalp electric potentials are due to electrically
active neurons distributed over the cortex. The estimation of
the spatial distribution of electric neuronal activity based on
scalp potentials is known as a solution to the inverse problem
of electroencephalography. In this study, we employed the
low-resolution electromagnetic tomography (LORETA)
method [22]. This tomography has been theoretically and
experimentally validated [23], [24]. In its current implemen-
tation, it computes electric neuronal activity at 2,394 voxels
distributedover thehumancortex, usinga standardizedhead
model [25].

Fig. 6 illustrates the grand-average ERP for 21 electrodes

and 256 discrete time samples (total time 0.5 sec).
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Fig. 6. Grand average scalp electric potentials (21 electrodes) due to right visual field stimulation with pattern reversal checkerboard. The upper-right
inset illustrates the distribution of the electrodes over the scalp, as seen from above, A = anterior, P = posterior, L = left ear, R = right ear. For the
vertical voltage axis, upward is positive and downward is negative. The three vertical cursors correspond to the main components (peaks) of the
brain response in this experiment and they are denoted as N70 (70 msec), P100 (100 msec), and P140 (140 msec).



Fig. 7 illustrates the distribution of electric neuronal
activity over cortical graymatter, as estimatedwithLORETA,
at the time instants of themaincomponents (peaks) of theERP
shown inFig. 6.Note that themaximumactivity is localized in
left visual cortical areas for the N70 and P100 peaks and then
localized in rightvisual cortical areas for theP140peak.This is
to be expected from known neuroanatomy and neurophy-
siology of the visual pathway: The right visual field projects
onto the right hemiretinas of the eyes andbothproject into the
left visual cortex, which later projects to the right hemisphere
using transcallosal connections.

The nsNMF model was fitted to the total electric
neuronal activity data, which consisted of a positive data
matrix of current densities with 2,394 variables (voxels) and
256 objects or items (discrete time instants). In this setting,
the basis vectors will be the brain maps of dimension 2,394,
corresponding to cortical distributions of electric neuronal
activity for different “brain modes,” and the encoding
vectors will be time series of dimension (discrete duration)

256, corresponding to the time course of activation of the
“brain modes.” Five (q ¼ 5) brain maps and time series
were used in this study.

Fig. 8 shows the estimated “encoding vectors,” i.e., the
time course of activation for each brain mode. In corre-
spondence with known neurophysiology, the three main
events in visual information processing are parsimoniously
represented separately by sequential activations with peaks
at 70 msec for encoding vector “004,” followed by the
activation peak at 100 msec for encoding vector “005,” and
ending with the activation peak at 140 msec for encoding
vector “002.” The time series of encoding vector “001” has
maximum amplitude in later stages of visual information
processing (> 200 msec). Finally, the time series of encoding
vector “003” has the smallest amplitude of all time series
and appears to explain only some residual variance at very
early and very late stages of visual information processing.

Fig. 9 shows only three “basis vectors” or brain modes,
which had current density values large enough to contribute
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Fig. 7. LORETA-estimated electric neuronal activity (current density, �A=mm2) distribution at the main peaks after pattern reversal checkerboard
stimulation of the right visual field: N70 (70 msec), P100 (100 msec), and P140 (140 msec). Cortical gray matter is shown outlined in a set of axial

(horizontal) slices through the brain, from inferior to superior. Each slice is viewed from above, nose up. Coordinates are: X from left (L) to right (R);

Y from posterior to anterior; Z from inferior to superior. The current density is gray-scale encoded.



sufficiently to the reconstructionof thedata. It isworthnoting
that the time course of activations is extremely sparse,
practically segmenting the time axis into disjoint brain
modes. When the classical NMF model was applied to this
data, activation time series were very smooth and noninter-
pretable (resultsnot shownhere). Furthermore, theonlybrain
modes (basis vectors) that located electric neuronal activity
large enough to contribute to the data reconstruction are in
satisfactory agreement with known neuroanatomy and
neurophysiology of the visual pathway, regarding the timing
of activation of the left and right visual cortices.

6 CONCLUSIONS AND DISCUSSION

There has been great interest in the nonnegative matrix
factorization method in the past few years due to its effective
ability in extractinghuman intelligible features.Data analysis
processing is a complex task, especially when high dimen-
sional andnoisy data is used, so that anymethod that helps in
alleviating the interpretation of the data is more than
welcome. The approach presented here is an attempt to
improve the ability of the classical NMF algorithm in this
process by producing truly sparse components of the data
structure and, at the same time, to identify which of these
components are better represented by each individual item.
Experimental results have shown that the nsNMF algorithm
described here is capable of achieving this goal. The
representation of the basis vectors in the examples presented
here shows clear localized features of the data due to the
sparseness conditions imposed by the algorithm.

Several real-life applications can benefit from the proper-
ties of this method. For example, note that, if the coefficients
for each item in the data set are properly sorted, a robust
clustering of the items by their most important features can
be easily achieved. This process can be interpreted as
biclustering [26], [27] since both, the data items (contained
in the rows of matrix H) and their features (contained in the
columns ofmatrixW) are grouped together at the same time.
The practical advantages of such biclustering methods has
been proven in fields such as gene expression data analysis
[28], [29], [30], [31], [32], [33], [34], topic extraction from
documents [35], [36], and biomedical applications [37], to
mention only a few.

The experimental results on both synthetic data and real
data sets have shown that the nsNMF algorithm out-
performed the existing sparse NMF variants in performing
parts-based representation of the data while maintaining the
goodness of fit. This capability is very useful in real data
mining applications where dimensionality reduction can be
achieved while the interpretation of the data becomes easier.
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Fig. 8. Encoding vectors, using � ¼ 0:6 in the nsNMF model, corresponding to time course of activation of five “brain modes.” Data corresponds
to electric neuronal activity for brain response to visual pattern reversal presented to the right visual field. The three vertical cursors correspond
to the main components (peaks) of the brain response in this experiment and they are denoted as N70 (70 msec) for encoding vector “004,”
P100 (100 msec) for encoding vector “005,” and P140 (140 msec) for encoding vector “002.” Fig. 9 displays only the significant basis vectors
corresponding to the brain modes.
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