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Data analyses typically rely upon assumptions about the miss-

ingness mechanisms that lead to observed versus missing data,

assumptions that are typically unassessable. We explore an

approach where the joint distribution of observed data and miss-

ing data are specified in a nonstandard way. In this formulation,

which traces back to a representation of the joint distribution of

the data and missingness mechanism, apparently first proposed

by J. W. Tukey, the modeling assumptions about the distribu-

tions are either assessable or are designed to allow relatively

easy incorporation of substantive knowledge about the prob-

lem at hand, thereby offering a possibly realistic portrayal of

the data, both observed and missing. We develop Tukey’s rep-

resentation for exponential-family models, propose a computa-

tionally tractable approach to inference in this class of models,

and offer some general theoretical comments. We then illus-

trate the utility of this approach with an example in systems

biology.

missing not at random | nonignorable missingness mechanism |

Tukey’s representation | Bayesian analysis | exponential tilting

M issing data are ubiquitous in the social and biomedical sci-
ences, and the credibility of any data analysis is dependent

on the assumed mechanism that leads to the missing data, as well
as on the mode of inference (1). Here, we work within a frame-
work in which the estimand involves both observed and missing
data (2). An important concept is that of ignorable missing data
under which there is no need to specify a model for the miss-
ingness indicators to achieve valid Bayesian or likelihood-based
inference (3–5).

There are two basic approaches to specify the joint distribu-
tion of the complete data (observed and missing) and missing-
ness indicators. The first approach, called selection modeling,
is to posit a standard model for the complete data and then
specify a model that selects observed data from the complete
data, referred to as the missingness mechanism (6). The second
approach, called pattern-mixture modeling, is to specify sepa-
rate distributions for each pattern of observed and missing data,
thus eschewing explicit assumptions about the missingness mech-
anism (7, 8). The fundamental challenge with these two basic
approaches is that assumptions about the missingness mecha-
nism, whether explicit or implicit, are rarely testable from the
observed data. As a result, literature on inference in the pres-
ence of missing data includes strategies for assessing sensitivity
to model specifications (1, 7, 9, 10), often using a model assuming
ignorability as a baseline.

Contributions

Most statistical analyses involving nonignorable missingness
mechanisms use one of two approaches: pattern-mixture models
or selection models. Here, we develop an alternative approach,
evidently originally proposed by J. W. Tukey in a discussion of
ref. 11, and described by ref. 12, which has thus far remained
recondite. The key insight is to represent the joint distribution
of the complete data and missingness indicators in a way such
that assumptions are either assessable or, typically, allow the

incorporation of substantive knowledge about the problem at
hand, thereby offering a path to elicit a realistic portrayal of
the data. This work is related to previous work on, so called,
exponential-tilt pattern-mixture models for nonignorable miss-
ing data (13–16). We make the connection between exponential
tilting and Tukey’s representation, but we focus explicitly on
describing the utility of Tukey’s representation for Bayesian
inference with nonignorable missing data (16). Also, we intro-
duce a class of flexible and widely applicable models based on
logistic missingness mechanisms and exponential-family models
for the observed data.

Basic Models for Missing Data. Discussion of models for miss-
ing data can be found in a variety of places, including (11,
17). We introduce ideas in the simple case where the data are
exchangeable scalar random variables.

Let Y =(Y1,Y2, . . . ,YN )′ be the complete data and R=
(R1,R2, . . . ,RN )′ represent the response indicators for Y ; Yi is
“missing” when Ri = 0 and “observed” when Ri =1. Assuming
independence between observations (Yi ,Ri), the joint distribu-
tion for (Yi ,Ri) can be written in independent and identically
distributed (i.i.d.) form:

P(Y ,R | θ)=
∏

i

f (Yi ,Ri | θ),

where θ is a parameter vector with a prior distribution. For
notational simplicity, we focus on the case without covariates
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although the approach can easily be extended to include
covariates (Theory).

The Selection Factorization. The selection approach (6) factors the
joint distribution of (Yi ,Ri) as

f (Yi |θY )f (Ri |Yi , θR|Y ), [1]

using the distribution of the complete data, P(Yi |θY ), and
the missingness mechanism, i.e., P(Ri |Yi , θR|Y ), which controls
which complete-data values are observed and which are missing,
where the parameters θY and θR|Y are for the complete-data
and missingness-mechanism parameters, respectively. Typical
selection modeling has θY distinct from θR|Y , where “distinct”
(3) means in disjoint parameter spaces and a priori inde-
pendent (if distributions are specified). Common models for
f (Yi |θY ) include the normal, with mean µ and variance σ2,
i.e., f (Yi |θY )∼N (µ,σ2) with θY =(µ,σ2), or the Bernoulli
with unknown probability of success, i.e., f (Yi |θY )∼Bern(p)
with θY = p. Common missingness mechanisms used in prac-
tice include the logistic and probit models (18), for the former
f (Ri |Yi , θR|Y )∼ logit−1(α+βYi) with θR|Y =(α,β).

The Pattern-Mixture Factorization. The pattern-mixture approach
(7, 8) is the alternative basic factorization. Here, the complete-
data distribution is specified as a mixture of observed data and
missing-data components,

f (Yi ,Ri |θ)= f (Yi |Ri , θY |R)f (Ri |θR), [2]

where θobsY |R =(θobsY |R, θ
obs
Y |R) and thus θ=(θobsY |R, θ

mis
Y |R, θR) are

the observed-data parameters, missing-data parameters, and
the population fraction of observed data, respectively. Here
f (Ri |θR), a Bernoulli distribution, is easily estimated by the frac-

tion of indicators equal to one. The model for f (Yi |Ri =1, θobsY |R)
is typically chosen to fit the observed data well. There is no infor-
mation in the observed data or indicators, Ri , about θmis

Y |R. This
factorization omits an explicit specification for the missingness
mechanism, about which there may be substantive knowledge.
Tukey’s representation offers another choice.

Tukey’s Representation. John W. Tukey, recorded in ref. 12, sug-
gested an alternative representation of the joint distribution
for (Yi ,Ri), which he referred to as the “simplified selection

model,” with parameters θobsY |R, θR|Y , and θR:

f (Yi ,Ri | θ)= f (Yi |Ri =1, θobsY |R)

× f (Ri =1 | θR) ·
f (Ri |Yi , θR|Y )

f (Ri =1 |Yi , θR|Y )
, [3]

where θobsY |R are the parameters of the observed data den-
sity. The missingness mechanism describes the probability that
Yi is observed or missing given its value. Here, we focus on
models using Tukey’s representation when the observed-data
distribution is an exponential-family distribution and when the
missingness mechanismf (Ri =1 |Yi , θR|Y ) is the inverse-logit of
some function of Yi . Tukey’s representation can be obtained
from Bayes’ rule or through an application of Brook’s lemma
(19, 20), commonly referenced in the theory of spatial autore-
gressive models (21). Brook’s Lemma is only applicable when
the so-called “positivity condition” (due to Hammersley and
Clifford) is satisfied (20), which for Tukey’s representation
means that

IfP(Ri = r |θR)> 0 andP(Yi = y |θY )> 0

ThenP(Ri = r ,Yi = y |θ)> 0

for all pairs of values (r , y), where θY are the parameters for
the complete-data distribution of Yi .

∗ This condition enforces
regularity in the way the supports of the marginal distributions
relate to the support of the corresponding joint distribution
and avoids pathological cases (e.g., the case in ref. 22). This
condition is not trivially satisfied in missing-data problems. For
instance, Tukey’s representation cannot be applied to models
where P(Ri =1|Yi < c, θR|Y )= 0, for some finite c, as when
the complete data are normal but the observed data are trun-
cated normal. Consequently, here we focus on problems where
P(Ri =1|Yi , θR|Y )> 0, that is, where the support of the missing
data is a nontrivial subset of the support of the observed data.
Moreover, as we discuss later, the distributions specified in Eq.
3 must imply an integrable joint density (20). With Tukey’s rep-
resentation, the “integrability condition” constrains the rate at
which the tails of the distribution for the observed data decrease
relative to the rate at which the odds of a missing value increase.
This condition is further discussed in A Note on the Integrability
Condition.

Unlike related work with exponential-tilting models discussed
in Connections to Exponential Tilting, Tukey’s approach focuses
on an explicit formulation of the missingness mechanism. We
describe the utility of Bayesian inference with Tukey’s repre-
sentation, and we show that it is tractable when the missingness
mechanism is logistic and the observed-data distribution is in the
exponential family.

Advantages and Challenges of Tukey’s Representation. A notion
central to the arguments in this paper is that although joint dis-
tributions can be represented mathematically in several ways, a
particular representation may involve components that are more
easily elicited from investigators or more easily estimated from
data. As Holland notes (12), a main advantage of Tukey’s rep-
resentation is that it involves the observed-data density, f (Yi |
Ri =1, θobsY |R), and the marginal probability of a missing observa-
tion, both of which can be estimated directly, and the missingness
mechanism, f (Ri |Yi , θR|Y ), which is often natural to elicit in
the context of a specific application.

Modeling and Inference Using Tukey’s Representation. Let f obs(yi |
θobsY |R) denote the observed-data density parameterized by θobsY |R.

Using Eq. 3, we can write the joint density for (yi , ri) as

f (yi , ri | θ)∝







f obs(yi | θobsY |R) if ri =1
f (ri=0|yi ,θR|Y )

f (ri=1|yi ,θR|Y )
f obs(yi |θobsY |R) if ri =0,

or

f (ri =1 | yi , θR|Y )ri−1
f (ri =0 | yi , θR|Y )1−ri f

obs(yi | θobsY |R),
[4]

with normalization constant

Q(θY |R=1, θR|Y )

=

(

1+

∫

f (ri =0 | yi , θR|Y )

f (ri =1 | yi , θR|Y )
f
obs(yi |θobs

Y |R) dyi

)−1

. [5]

Theorem 1 documents that the normalization constant Q is the
population fraction of data that are observed. In the class of
“exponential-tilt pattern-mixture” models (13), it is assumed that

*In Tukey’s representation θY = (θobs
Y|R , θR , θR|Y ).
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the missing-data density is f mis(yi)= em(yi )f obs(yi) for some
function m . Theorem 2 shows that with Tukey’s representation

f
mis(yi)∝

f (ri =0 | yi , θR|Y )

f (ri =1 | yi , θR|Y )
f
obs(yi).

As such, Tukey’s representation can be expressed in the expo-

nential-tilt framework where m(yi)= log
(

f (ri=0|yi ,θR|Y )

f (ri=1|yi ,θR|Y )

)

+

const. Tukey’s representation focuses on parameterizing the
meaningful missingness mechanism f (ri =1 | yi , θR|Y ), rather
than on a hard to interpret “exponential-tilt function.”

With Bayesian inference with missing data, at each iteration of
a Markov chain Monte Carlo (MCMC) procedure, missing data
often are imputed, and so in such a setting, it is advantageous
for the missing-data density to have a tractable form. Below, we
introduce a class of models for which computation of the normal-
ization constant Q(θY |R=1, θR|Y ) is tractable and implies simple
distributional forms for both the missing-data and complete-data
distributions.

Exponential-Family Models. Suppose the observed-data distribu-
tion belongs to an exponential family and that the logit of the
missingness mechanism is linear in the sufficient statistics of that
family. Formally, let f obs be an exponential-family distribution
with natural parameter θobsY |R = η, that is,

f
obs(yi | θobsY |R)= h(yi)g(η)e

T(yi )
′η, [6]

where g(η) is the normalization function and T (yi) is the natural
sufficient statistic. A logistic missingness mechanism in T (yi),
with θR|Y =(α,β),

f (ri =1 | yi , θR|Y )= logit−1 (α+T (yi)
′β) [7]

=
1

1+ e−α−T(yi )′β
, [8]

implies that

f (ri =0 | yi , θR|Y )

f (ri =1 | yi , θR|Y )
= e

−α−T(yi )
′β .

Then, as shown in Theorem 3, the normalization function Q in
Eq. 5 can be written as a simple function of the normalization
constant g(·) in the exponential-family formulation of f obs,

Q(θobsY |R, θR|Y )=
g(η+β)

g(η+β)+ eαg(η)
. [9]

For the class of exponential family (EF)-logistic models defined
by Eqs. 6 and 7, the missing-data distribution, as specified in Eq.
10, is from the same exponential family as the observed data with
natural parameter θmis

Y |R (Theorem 3).† Here, we have θmis
Y |R =

η+β, and

f
mis(y |η,β)= h(y)g(η+β)eT(y)′(η+β). [10]

This statement is formalized in Theorem 2. Missing-data imputa-
tion in this model class is straightforward. The EF-logistic model
corresponds to an exponential-tilt pattern-mixture model where
m(yi) is parameterized as a linear function of the sufficient
statistics of the observed-data distribution. Since a large source

†In multiparameter exponential families, η and β are assumed to be column vectors of

the same length. See the normal-logistic example in Estimation and Inference.

of uncertainty about any inferential target is due to the miss-
ingness mechanism, specifying a scientifically justifiable prior
distribution for θR|Y is important.

In Modeling Assumptions and in SI Appendix, we describe
extensions of this basic logistic-EF model.

Estimation and Inference. The primary estimands of interest are
typically functions of the parameters specifying the complete-
data distribution, θY . Because the observed- and missing-data
densities for EF-logistic models are both exponential families
(Eqs. 6 and 10), the complete-data distribution is a mixture of
exponential families. In this paper, we focus on Bayesian infer-
ence for θY via the likelihood, which is obtained as a product
of terms (4) for each observation. In the EF-logistic model,
analytic expressions for the normalization constant Q and the
likelihood are available, and thus standard MCMC methods are
applicable (23).

Note that an alternative strategy for estimation is to estimate

f obs(yi) nonparametrically using the empirical distribution of
the observed data. When the complete-data estimands are sim-
ple univariate summaries of the complete-data distribution, this
strategy is straightforward because it is easy to integrate a func-
tion with respect to the empirical distribution. However, this
approach ignores the uncertainty about the true observed data
density and may also suffer because, as a consequence of the
positivity condition of Brook’s lemma, Tukey’s representation
is appropriate only when the missing-data density is absolutely
continuous with respect to the observed-data distribution. Using
the empirical distribution as if it were the true observed-data
distribution implies that the complete data, missing data, and
observed data must all have the same discrete support as the
finite observed data.

We take a simple approach to computation via MCMC, which
is computationally less demanding than alternative methods that
characterize the geometry of the solution space. Consider a sim-
ple normal-logistic model for illustration, with T (yi)

′ =(yi , y
2
i )

and θR|Y =(α,β1,β2) with α corresponding to the intercept
and β=(β1,β2)

′ the rate at which the odds of selection change
in yi and y2

i . Here, we assume the observed data follows a
standard normal distribution, for convenience. Later, we con-
sider more general cases, including a normal distribution with
arbitrary mean µ and SD σ (Modeling Assumptions). Concretely,

f (ri =1 | yi ,α,β)= logit−1 (α+β1yi +β2y
2
i ) [11]

f
obs(yi)=Normal (0, 1),

where the standard normal distribution has fixed and known nat-
ural parameters θobsY |R =(η1, η2)= (0,−1/2). Rather than spec-

ifying a prior distribution on (α,β1,β2), we specify a prior
distribution on Q and β, but not on α. We then solve Eq. 9 for α
to obtain

α(Q , η,β)= log

(

g(η1 +β1, η2 +β2)

g(η1, η2)

(1−Q)

Q

)

, [12]

for general (η1, η2). For the normal distribution, g(η1, η2)=

√−η2e
η
2
1

4η2 .‡ For simplicity, assume β2 =0, that is, the log odds
of missingness is linear in yi only, and recall that the natu-
ral parameters for the standard normal are θobsY |R =(η1, η2)=

(0,−1/2). Then, Eq. 12 simplifies to

α=
−β2

1

2
+ log

(

1−Q

Q

)

.

‡Note that, by convention, all multiplicative constants are part of the base measure, h(y).
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We use this strategy for inference to demonstrate the utility of
Tukey’s representation.

Illustration on Transcriptomic and Proteomic Data. We demonstrate
the utility of Tukey’s representation by revisiting a recent analysis
of biological data aimed at quantifying the coordination between
transcription and translation (24).

Scientific Question and Data. In experiments involving measure-
ments of transcriptomic and proteomic data, messenger RNA
(mRNA) transcripts and proteins that occur at low levels are
less likely to be observed (25, 26). This makes it challeng-
ing to infer normalization constants for absolute protein lev-
els (27), cluster genes into functionally related sets (28), infer
the degree of coordination between transcription and transla-
tion (24), and determine the ratio of dynamic range inflation
from transcript to protein levels (29). Here, we demonstrate
how data analysis with Tukey’s representation can be used
to investigate some of these issues by assessing the sensitiv-
ity of estimands to different assumptions about the missingness
mechanism.

In this analysis, we explore imputation of missing values
in a dataset of mRNA and protein abundances in yeast Sac-
charoymyces cerevisiae in exponential-growth phase. We model
transcript measurements (mRNA) from ref. 30 and protein
measurements from ref. 31 on 5,854 genes. About 14% of
the transcript measurements have missing values (nobs =5034),
while about 36% missing of the protein measurements have
missing values (nobs =3747). These data were gathered in exper-
iments that were designed in part to understand the degree
of coordination between transcription and translation, as well
as to identify the relative dynamic ranges of transcript and
protein abundances. We treat the complete-data mean and vari-
ance as estimands of interest in the analysis. We also consider
the ratio of SDs from the two datasets as the quantity that
describes the relative inflation of dynamic range between mRNA
and protein. Note that in this application, we focus on esti-
mands that are functions of marginal quantities only and ignore
the dependence between mRNA and protein levels. For more
complex estimands, one approach to modeling the multivari-
ate structure would be to incorporate a copula, in addition to
the marginal models, which describes the dependence between
observations.

Modeling Assumptions. It is standard to assume that both
complete-data mRNA and protein levels are log-normally dis-
tributed (32, 33), although this assumption may not be justified
(34, 35) and is also not testable. Here, we use Tukey’s factor-
ization; we model the observed data as a mixture of normal
distributions and specify a prior distribution for the parame-
ters of the logistic missingness mechanism, instead of modeling
the complete data directly. Together, these assumptions imply
a more flexible distribution over complete-data densities. We
found that a mixture with K =3 components gave a reasonable
approximation to the observed-data density.

In experiments measuring transcript and protein abundances,
molecules that occur at lower abundances are typically much
harder to measure. Thus, we expect a nonignorable missing-data
mechanism in which the probability of observation decreases
monotonically with decreasing abundance. Evidence suggests
that a logistic missingness mechanism with a strictly positive
slope, β, is plausible (36). However, as noted in ref. 37, miss-
ing values can occur for multiple reasons, at different stages of
the data-collection process. Thus, we generalize the EF-logistic
model to allow the selection mechanism to have a logistic form
that asymptotes at some value less than one. The observed-data
distribution and missingness mechanism together define the joint
distribution for a single observation i :

f
obs(yi |ri =1, θobsY |R)∼

K
∑

k=1

wkN (yi ;µk ,σ
2
k ), [13]

f (ri =1|yi , θR|Y )=
κeβyi+α

1+ eβyi+α
, [14]

with θobsY |R =(µ,σ,w) and θR|Y =(α,β,κ). Here, 0< (1−κ)<
1 corresponds to the fraction of data that is missing completely
at random, and α and β describe the odds of a missing value,
with β parameterizing the rate at which the odds of a missing
value change in yi . Under this model, the implied missing-data
distribution is

f
miss(yi |ri =0,β,κ,wk ,µk ,σk )

= (1−κ∗)f obs(yi |ri =1,µk ,σk )

+κ∗

(

K
∑

k=1

w
∗
k N (yi ;µk +βσ2

k ,σ
2
k )

)

. [15]

The full derivation of the mixture weights w∗
k and κ∗ (functions

of wk and κ) is given in SI Appendix.
To complete the specifications for the analysis, we propose

prior distributions for the parameters Q , β and κ. As in the
normal-logistic example in Estimation and Inference, rather than
specifying a prior distribution for α, we specify a prior distribu-
tion on Q , which is well identified. Under this specification, α is
a deterministic function of Q ,β and κ. Computing the value of α
is unnecessary as it does not appear in the missing-data density.
In this application, our prior specification is

β∼Beta(1, 3)

Q ∼Uniform(0, 1)

κ |Q ∼ 1− (1−Q)Beta(1, 2), κ≥Q . [16]

We chose a uniform prior on Q , the population fraction of
observed data. The results are not sensitive to this choice because
the population fraction of observed data is well identified. On
the contrary, κ and β are not estimable from data, and thus the
results are very sensitive to the prior specifications. Ideally, these
specifications should incorporate as much expertize and knowl-
edge about the measurement technology or observation mech-
anism as possible. In the application we consider, Karpievitch
et al. (37) and other authors reported that Missing Completely
at Random (MCAR) censoring is expected to affect a relatively
small proportion of the proteins (e.g., < 20%). The parameter κ
captures the fraction of missing data that is abundance-specific,
not MCAR. Under our prior specification, the fraction of the
missing data that is MCAR follows a β(1, 2) distribution. This
prior has high variance (reflecting our uncertainty) but implies
on average that one-third of the missing data is MCAR. Note
that κ must be greater than Q because the selection probabilities
cannot be less than the population fraction of observed data.

The prior on β specifies beliefs about the rate at which log odds
of missingness change. This depends on the measurement tech-
nology and experimental design and thus is expected to be quite
variable across datasets. From Eq. 15, we see that the mean of
each missing-data component corresponds to a location shift of
βσ2

k of the observed-data mean. This intuition can help us spec-
ify plausible priors on β. If we set β=0, then all missingness is
MCAR. Alternatively, one may want to calibrate the prior for
β using ancillary data about the sensitivity of the measurement
technology.

Draws from the full prior distribution are shown in Fig. 1, Top
Left in gray, around the prior mean in black.

Data Analysis. Fig. 1, Bottom Left shows the fit to the pro-
tein measurements (31), when β is set to its median posterior

19048 | www.pnas.org/cgi/doi/10.1073/pnas.1815563117 Franks et al.
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Fig. 1. Model fit to proteomic abundance data (log molecules per cell [log mol./cell]) from ref. 31 data using two approaches: Tukey’s representation (Left)

and the selection factorization (Right). The gray lines in Top Left represent draws of the selection mechanism from the prior distribution provided in Eq. 16.

The black, red, and blue lines in Bottom Left and Bottom Right correspond to the estimated densities of complete data, missing data, and observed data,

respectively.

value. For comparison, Fig. 1, Bottom Right shows the fit of the
selection-factorization model in refs. 24 and 29, which assumes
the complete data are distributed according to a lognormal and
the missingness mechanism is logistic, with the mean linear in
yi . The black, red, and blue lines, in both Fig. 1, Bottom Left
and Bottom Right, correspond to the estimated densities of com-
plete data, missing data, and observed data, respectively. Note
that under the selection model, the estimated observed-data den-
sity (blue) is a poor fit to empirical distribution of the observed
data, especially near the mode. The corresponding results for the
transcript measurements (30) are provided in SI Appendix.

In Fig. 2, we compare the estimated complete-data means
and SDs for the protein measurements using Tukey’s represen-
tation model implied by Eqs. 13 and 16 to the estimates from
the selection-factorization model in ref. 24. In the selection-
model parameterization, not all parameters can be estimated
from data (38). We found empirically that the likelihood of the
selection factorization has two modes: one where κ=1 (corre-
sponding to the usual selection model with logistic asymptote

of 1) and one where κ= Nobs
N

(corresponding to a fully MCAR
model). For both sets of measurements, the estimates obtained
with the MCAR model and with the selection-factorization
model bracket the estimates obtained with Tukey’s representa-
tion. Under the selection-factorization model, the complete-data
SD is large and the mean is small relative to the estimates from
Tukey’s representation. The results suggest that the parametric
assumptions associated with the selection-factorization models
overly constrain the fit to the observed data.

Table 1 reports exact numerical estimates of the two estimands
of interest.

Recent published analyses of data using the selection factor-
ization found that translational regulation widens the dynamic
range of protein expression (24, 29). One way to quantify the rel-
ative dynamic ranges of mRNA and protein is by computing the
ratio of the SDs between log-mRNA and log-protein levels. A
value of this ratio less than 1 suggests that the dynamic range of
protein levels is smaller than that of mRNA and is taken as evi-
dence of a suppressive role of translational regulation. A value
greater than 1 is taken as evidence of amplification.

We used posterior estimates of the complete-data SDs,
obtained from the three competing models fit to both protein
and mRNA measurements (30, 31) to estimate the distribution
of the dynamic range ratios, displayed in Fig. 3. The results
obtained with Tukey’s representation are consistent with those
reported by ref. 29, suggesting that translational regulation
reflects amplification of protein levels.

This brief case study demonstrates the relative ease of
applied data analysis with Tukey’s representation models and
the increased flexibility of models specified using this full condi-
tional specification. By directly modeling the observed data, we
avoid the need for Monte Carlo integration of the missing data
and do not require parametric specifications for the complete-
data density as is typical for selection models. By modeling the
selection function directly, we are also able to express uncer-
tainty about the missing-data density beyond the simple location
and scale changes typical in pattern-mixture model sensitivity
analyses.

Discussion

Tukey’s representation provides a powerful alternative for spec-
ifying missing-data models. It allows analysts to eschew some
difficult questions about identifiability in models for nonignor-
able missing data (38) by factoring the joint distribution of the
complete data, Y , and missing-data indicators, R, in such a way
that the missingness mechanism is the only component that must
rely on assumptions unassessable using observed data.

Theory. Thus far, we largely worked with exponential-family
models. Here, we make formal statements about exponential-
family models, as well as give results that hold more
generally.
Theorem 1. The normalization constant Q(θobsY |R, θR|Y ), given in

Eq. 5, is equal to the population fraction of observed data:

(

1+

∫

f (ri =0 | yi , θR|Y )

f (ri =1 | yi , θR|Y )
f
obs(yi | θobsY |R) dyi

)−1

= E[ri | θobsY |R, θR|Y ].
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Fig. 2. Posterior distributions of the complete-data mean (Left) and

complete-data SD (Right) for protein data (31). The MCAR estimates (red)

and an estimate assuming normality of the complete data (blue) are shown

as vertical lines for comparison. Under the prior distribution in Eq. 16,

estimates using the MCAR and the selection-factorization models are at

opposite ends of these posterior distributions.

Proof (SI Appendix): A consequence of Theorem 1 is that
the missing-data density can be expressed as a function of the
observed-data density.
Theorem 2. If the positivity condition is satisfied, i.e., f mis is abso-

lutely continuous with respect to f obs, then f mis can be expressed as
a function of the observed-data density and the selection function

f
mis(yi | θR|Y , θY |R) [17]

=
Q(θY |R, θR|Y )

1−Q(θY |R, θR|Y )

f (ri =0 | yi , θR|Y )

f (ri =1 | yi , θR|Y )
f
obs(yi | θY |R).

Proof (SI Appendix): This result is a consequence of set-
ting ri =0 in the complete-data likelihood (Eq. 4). Eq. 17 can
help assess the plausibility of various missingness mechanisms—
not at random, completely at random, and at random (5)—by
viewing them as functions of the odds of a missing value ver-

sus an observed value,
f (ri=0|yi ,θR|Y )

f (ri=1|yi ,θR|Y )
. For instance, when the

odds have low variance, it may be more reasonable to assume
the missing-data mechanism is completely at random, or at
random.

Eq. 17 also leads to a general understanding of the main result
regarding exponential families, which can be summarized in the
following statement.
Theorem 3. Assume the observed-data distribution, f obs(y | θobsY |R),

belongs to an exponential family, with natural parameter θobsY |R =

η and natural sufficient statistic T (y), and that the selection

function, f (r =1 | y , θR|Y )= logit−1 (α+T (y)′β) with θR|Y =

(α,β). Then the implied missing-data distribution, f mis(y | θmis
Y |R),

is in the same exponential family as the observed-data distri-
bution, with natural parameter θmis

Y |R = η+β. When T (y) is P-

dimensional, η and β are also P-dimensional vectors. The nor-
malization constant of the complete-data distribution has the
form

(

1+

∫

f (ri =0 | yi , θR|Y )

f (ri =1 | yi , θR|Y )
f
obs(yi | θobsY |R) dyi

)−1

[18]

=
g(η+β)

g(η+β)+ eαg(η)
,

where g(η) is the expression for the normalization constant in the
exponential family.

Proof (SI Appendix): For Corollary 1, assume that the
observed-data distribution is a K -component mixture of distribu-
tions in a common exponential family, with natural parameters

θobsY |R =(η(1), η(2), . . . , η(K)), natural sufficient statistic T (y),
and mixture weights wk ,

f
obs(y | θobsY |R)=

K
∑

k=1

wk f
obs(y | η(k)),

and that the selection function is logistic in T(y), f (r =1 | y ,
θR|Y )= logit−1 (α+T (y)′β). Then the implied missing-data

distribution, f mis(y |θmis
Y |R), is a K -component mixture of dis-

tributions in the same exponential family as the observed-data

components, with natural parameters, θmis
Y |R =(η(1) +β, η(2) +

β, . . . , η(K) +β), and weights

w
∗
k =wk

gk

(

η(k)
)

gk (η(k) +β)

/





K
∑

k=1

wk

gk

(

η(k)
)

gk (η(k) +β)



,

where g(η) is the expression for the normalization constant in
the common exponential family.

Tukey’s representation can be extended to model incomplete
data accounting for observed covariates, for instance, by simply
conditioning on x ,

f (yi , ri | xi , θ) [19]

∝
N
∏

i=1

[

f (yi | ri =1, xi , θ
obs
Y |R) ·

f (ri | yi , xi , θR|Y )

f (ri =1 | yi , xi , θR|Y )

]

.

The factor f (yi | ri =1, xi , θ
obs
Y |R) is estimable from the observed

values. A potential challenge in applications that include covari-
ates is the need to specify the selection probabilities, f (ri |
yi , x , θR|Y ), for all values of x .

We can also apply Tukey’s factorization with multivariate data
in situations where we have a monotone missing-data mechanism
(39). A missing-data pattern is called “monotone” if ~yi is a K -
dimensional multivariate random variable that can be ordered
such that if y j

i is missing, then all variables yk
i , k > j are also miss-

ing. In this case, the complete-data distribution can be written
using Tukey’s representation as

f (~y ,~r | θ) [20]

∝
N
∏

i=1

K
∏

k=1

[

f
(

y
k
i | rki =1, rk−1

i = . . .= r
1
i =1, yk−1

i , . . . ,

y
1
i , θ

obs
Y |R

)

× f (rki | yk
i , r

1
i = . . .= rk−1

i =1, y1
i , . . . , y

k−1
i , θR|Y )

f (rki =1 | yk
i , r

1
i = . . .= rk−1

i =1, y1
i , . . . , y

k−1
i , θR|Y )

]

,

Table 1. Estimates for the quantities of interest obtained with

three models, from protein and mRNA data

Estimand Tukey’s Rep. Selection MCAR Dataset

Mean 7.42 (7.18, 7.73) 6.84 7.82 Prot.

SD 1.66 (1.52, 1.94) 2.01 1.55 Prot.

Mean 0.51 (0.44, 0.59) 0.35 0.60 mRNA

SD 1.13 (1.07, 1.23) 1.23 1.08 mRNA

Ratios 1.48 (1.28, 1.73) 1.62 1.43 Both

The dynamic range ratios are computed using both datasets. We report

maximum-likelihood point estimates for both the MCAR and selection

models. We report posterior medians and 95% posterior intervals (in paren-

theses) for Tukey’s representation. Units are in log molecules per cell. Tukey’s

Rep., Tukey’s representation.
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Fig. 3. Posterior distribution of dynamic range ratios obtained using

Tukey’s representation (histogram), the maximum-likelihood estimation

dynamic range on the normal selection-factorization model (blue) (29) and

the MCAR model (red).

where, as in the univariate setting, f (yk
i | rki =1, rk−1

i = . . .=

r1i =1, yk−1
i , . . . , y1

i , θ
obs
Y |R) is observed but f (rki =1 | yk

i , r
1
i =

1, . . . , rk−1
i =1, y1

i , . . . , y
k−1
i , θR|Y ) is not.

Connections to Exponential Tilting. Tukey’s representation has
an interesting connection to exponential-tilting methods (13–
15). Both approaches model the missing-data distribution by
modifying the observed-data distribution by a multiplicative fac-
tor. However, the strategies to obtain such factors, and their
interpretations, differ.

In exponential tilting, we write f mis(y) directly, using a tilting
function q(y), as

f
mis(y)=

e−q(y)

∫

e−q(y)f obs(y)dy
f
obs(y),

whereas Tukey’s representation induces f mis(y), indirectly, as

f
mis(y)=

Q

1−Q

1−π(y)

π(y)
f
obs(y).

The multiplication factor in the exponential-tilting formulation
is a direct consequence of the choice of q(y). The multiplication
factor in Tukey’s representation is a function of the fraction of
observed data Q and of the odds of missingness.

The relation between exponential tilting and Tukey’s repre-
sentation is similar in spirit to the relation between a frequentist
penalized likelihood and a posterior distribution, in which the
penalty is implied by the choice of a prior distribution. Tukey’s
representation offers a principled way to derive specific forms of
q(y) from assumptions made on f mis.

Importantly, however, exponential tilting requires specifying
the function q(y) somewhat arbitrarily, and because of that, the
data analysis may often require a serious sensitivity analysis, for
the results to be defensible. In contrast, Tukey’s representation
requires the specification of a fully generative model, the pieces
of which are arguably easier to defend in scientific applications.

To explore this equivalence in more detail, we write f mis

in exponential-tilting form by exponentiating the log of the
multiplicative factor from Theorem 2,

f
mis(yi | θR|Y , θY |R)

= exp

{

log

(

Q(θY |R, θR|Y )

1−Q(θY |R, θR|Y )

f (ri =0 | yi , θR|Y )

f (ri =1 | yi , θR|Y )

)}

f
obs

× (yi | θY |R).

The right hand side of this equation can be seen as
exp{−q(yi , θtilt)} f obs(yi | θY |R), where q(y , θtilt) is a function-
valued sensitivity parameter specified in exponential-tilting mod-
els. In Tukey’s representation, when using the logistic selection
function, the exponential factor has interpretable components:
the log odds of missingness and the log odds of selection.
More generally, the parametric form for q is often a com-
plicated function of the selection parameters, even when the
equivalent selection function in Tukey’s representation is easily
interpretable.

Tukey’s representation opens the door to more transparent
analyses in problems that involve missing data. For example,
in the model in Illustration on Transcriptomic and Proteomic
Data, we can derive the implied tilting function (SI Appendix)
given the missingness mechanism f (ri | yi , θR|Y ) and the nor-
malization constant Q(θY |R, θR|Y ). Here, we have the following
exponential-tilt function:

−q(y , θtilt)= log

(

e
−α

(

K
∑

k

wk

κ

g(η)

g(η∗)

)

+
1−κ

κ

)

+ log

(

1

κ
e
−βy−α +

1−κ

κ

)

, [21]

where η∗ = η+β. The complex nature of this function high-
lights the importance of prior specification for the selection
function, as opposed to the tilting function. As another exam-
ple, in this paper, we focus on cases where we specify a prior
distribution for β, the rate at which the odds of selection change
in T (yi)= yi . We show that for fixed β, α is identified in the
two-parameter logistic model. However, in some applications,
we may have more prior knowledge about α, the log odds of
missingness given yi =0. In this case, if we specify a prior dis-
tribution on α, then β is identified. This further illustrates how,
in many contexts, it is easier to elicit priors and justify parame-
terizations for the fully generative specification of the selection
function.

Even in light of specific equivalences for specific choices of
the various factors, working with the q(y) function implied by
Tukey’s generative approach may be more easily defensible, say,
in medical, biological, economics, or legal contexts.

A Note on the Integrability Condition. Not all integrable speci-
fications for f obs(yi | θobsY |R) and f (ri | yi , θR|Y ) imply a proper

distribution for f mis(yi | θobsY |R, θR|Y ). The integrability condition

requires the sum θobsY |R + θR|Y to lie in the natural param-
eter space of the exponential family. In practice, analysts
may want to consider missing-data mechanisms that involve

a richer set of parameters, θ̃R|Y , such as including an inter-
cept, as demonstrated in Illustration on Transcriptomic and
Proteomic Data. In such cases, θR|Y is taken to denote the

subset of parameters in θ̃R|Y that multiply the sufficient statis-

tics of f obs. The derivations in Modeling and Inference Using
Tukey’s Representation can easily be extended to this situation,
accordingly.

For example, assume that the natural parameter θobsY |R = η, and
that the missing-data mechanism is logistic with extended param-

eter vector θ̃R|Y =(α,β)= (α, θR|Y ) and f (ri =1 | yi ,α,β)=
(1+ e−(α+T(yi )

′β))−1. Then, Eqs. 9 and 10 become
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Q(η,β)=
g(η+β)

g(η+β)+ g(η)eα
, [22]

f
mis(y | η,β)= h(y)g(η+β)eT(y)′(η+β). [23]

The class of EF-logistic models defined in Eqs. 6 and 7 can
be further generalized in two useful ways, while maintaining its
desirable properties. For instance, generalizing f obs to be a mix-
ture of exponential families is straightforward (Corollary 1) and
does not increase computation substantially. Relaxing assump-
tions about the missingness mechanism can be more difficult.
Still, it is possible to model f (ri | yi , θR|Y ) with a mixture of
logistic functions, including a missingness mechanism where a
fraction of the data is missing completely at random (as is shown
in the applied example).

Inferential Strategies. Recall the simple normal-logistic model,

f (ri =1 | yi ,α,β)= logit−1(α+βyi)

f
obs(yi)=Normal (0, 1).

The inferential strategy proposed was to posit prior distribu-
tions on β and Q . Each iteration of the MCMC sampler yields
a sample for β and Q and implied sample for α. A conceptually
simpler approach to inference would be to place a prior distribu-
tion on all of the parameters of the missingness mechanism (i.e.,
α and beta) and solve for the implied Q at each iteration of the
sampler.

In situations where the number of missing values is itself
missing, as with truncated data, specifying a prior distribution
for all of the parameters of the missingness mechanism would
lead to an implied prior distribution for the unknown number
of missing values, or equivalently, the population fraction of
observed data Q; this approach was also used in the original
expectation-maximization algorithm paper (40).

In situations where the number of missing values is known,
however, as with censored data, and therefore Q can be esti-
mated from observed data, the support of the likelihood is
a constrained parameter space, and a number of choices for
the prior distribution on β would lead to a posterior distribu-
tion that is challenging to explore using Monte Carlo methods.
Specifically, because the population fraction of observed data
are identifiable, Theorem 1 describes a moment constraint that

restricts the region, where the parameters of the missingness
mechanism have positive support, to a lower dimensional ridge.
Fig. 4 illustrates this phenomenon for the simple normal-logistic
model and increasing sample size.

Sequential Monte Carlo and other specialized Monte Carlo
methods that exploit the geometry of the support of pos-
terior distribution may provide solutions in this situation
(41–44).

Concluding Remarks

In this paper, we used EF-logistic models to illustrate how
Tukey’s representation can be used to encode nonmonotonicity
in the missingness mechanism and to model data with complex
distributional forms. The EF-logistic models are widely applica-
ble as they can be applied to data that are well approximated
by mixtures of exponential families. Although not explored here,
similar logic can be applied to facilitate inference for models with
nonlogistic selection mechanisms that can be well approximated
by mixtures of logistic functions. These EF-logistic models could
also be used to facilitate tipping-point analyses (45) or to incor-
porate subjective model uncertainty via prior distributions on the
missingness mechanism (2).

Tukey’s representation is most useful when it is feasible to
posit reasonable prior distributions on the selection mechanism.
Translating expert knowledge into a functional form can be chal-
lenging, in general, and a logistic missingness mechanism is not
always a good choice. In practice, Tukey’s representation should
be used in concert with strategies for expert prior elicitation
(46–48). Nevertheless, prior elicitation for Tukey’s representa-
tion is simpler than for other factorizations, because it involves
only the set of parameters θR|Y . In contrast, the selection factor-
ization requires additional assumptions about the complete-data
density.

In many settings, like the example presented in our applied
analysis, we may be able to collect data that partially inform the
specification for the selection mechanism. As such, when possi-
ble, we can design experiments to learn about the functional form
of f (ri |yi , θR|Y ) as well as to further refine prior distributions for
θR|Y . Along these lines, Tukey’s representation may be useful in
the context of multiphase inference, which is intimately related
to problems in missing data (49). In these problems, when pre-
processing data, we often have strong knowledge (or control) of
the missingness mechanism yet a weaker understanding of the
underlying scientific model.

Fig. 4. The region of positive support for the likelihood, restricted to the parameters of the missingness mechanism, is increasingly constrained as the

population fraction of observed data, Q, is estimated with increasingly high precision. This intuition is illustrated by the width of the ridge, which is

a function of the amount of information about Q. We simulated data from a standard normal distribution and a logistic missingness mechanism. The

parameters (α, β) were set to get 90% missing data. The sample size determines the amount of information: N = 100 (Left) and N = 1,000 (Right).
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Finally, in this paper, we focus on the class of problems
where the data are univariate and i.i.d. Extending this method-
ology to a broader class of multivariate missing-data problems is
challenging. We show that Tukey’s representation is easily exten-
sible to montone missing data, where the observed-data models
can easily be replaced by conditional models. For more gen-
eral missing-data patterns, Tukey’s representation is nontrivial.
However, we believe that Tukey’s representation can be a par-
ticularly useful tool for specifying joint multivariate distributions
using only the full conditionals. Empirical work in this area has
shown that imputation using a Gibbs sampler can be effective,
even though the specified conditional densities can be incom-
patible (e.g., do not imply a proper joint distribution) (50, 51).
In these so-called partially incompatible Gibbs samplers, each
Gibbs would involve missing-data imputation of a single variable

given the rest, through Tukey’s representation. Such extensions
are the subject of future research by us.

In conclusion, we argue that Tukey’s representation, which
represents a hybrid of the selection and pattern-mixture mod-
els is an underresearched yet promising alternative for modeling
nonignorable missing data.

Data Availability. All raw input and processed output data are
available in Dryad (DOI: 10.5061/dryad.rg367 and DOI: 10.5061/
dryad.d644f).
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