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This is a case study of an undergraduate calculus student’s nonstandard conceptions 
of the real number line. Interviews with the student reveal robust conceptions of the 
real number line that include infinitesimal and infinite quantities and distances. 
Similarities between these conceptions and those of G. W. Leibniz are discussed and 
illuminated by the formalization of infinitesimals in A. Robinson’s nonstandard 
analysis. These similarities suggest that these student conceptions are not mere 
misconceptions, but are nonstandard conceptions, pieces of knowledge that could be 
built into a system of real numbers proven to be as mathematically consistent and 
powerful as the standard system. This provides a new perspective on students’ “strug-
gles” with the real numbers, and adds to the discussion about the relationship between 
student conceptions and historical conceptions by focusing on mechanisms for main-
taining cognitive and mathematical consistency.
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The conclusions we reach when we research student thinking are highly influ-
enced by the way we regard a conception that differs from the standard ones held 
by communities of mathematicians. If we treat such a conception as a mere miscon-
ception, as a simple lack of knowledge or as an incorrect idea that should be 
eradicated, then we may miss some important aspects of how that conception func-
tions within a student’s understanding. This article offers an extreme example of 
how examining the functionality and structure of a student’s conceptions, rather 
than dismissing these conceptions as misconceptions, reveals a meaningful struc-
ture to the student’s conceptions that otherwise might have been overlooked.

THEORETICAL BACKGROUND

During the past 40 years, mathematics education researchers have accumulated 
a large body of research about student conceptions that differ from standard concep-
tions. During this time their outlook on such conceptions has undergone two broad 
changes, one after another. The first general transition was to stop treating such a 
student conception as a complete lack of knowledge and to start treating it as a 
piece of knowledge, albeit an incorrect one, a “misconception” (e.g., Schwarzenberger 
& Tall, 1978). Rather than viewing learners as empty vessels waiting to be filled, 
the perspective assumed that learners often approach a topic with misconceptions 
arising from their experiences and that learning occurs when these misconceptions 
are replaced by correct conceptions. This perspective therefore suggests that it is 
important for researchers to learn more about these student misconceptions, 
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particularly what kinds of environmental and pedagogical factors create or reinforce 
them. Studies using this approach have provided useful information not only about 
what misconceptions often occur but also about how they can arise from overgen-
eralization or inappropriate transfer (e.g., Matz, 1982).

A subsequent important shift in thinking has been to stop treating learning as a 
process of replacing misconceptions with correct conceptions, but rather as a process 
of building new knowledge from prior understandings. This shift has its roots in the 
Piagetian tradition of genetic epistemology, which treats prior knowledge as some-
thing that is never overwritten, but is always integrated within the new knowledge 
structures (Piaget & Garcia, 1983/1989). This perspective is articulated in more detail 
by proponents of radical constructivism, who claim that a learner has cause to recon-
struct her knowledge only when she experiences a perturbation, an experience or 
conception that does not fit with her current schema (von Glasersfeld, 1995). With 
this perspective, the intent of research is less to eliminate “misconceptions” than to 
understand the nature of conceptions, in order to give learners tasks that induce 
perturbations leading to the productive restructuring of knowledge. Researchers who 
use this perspective advocate focusing not upon replacing faulty knowledge but upon 
refining and reorganizing it (Smith, diSessa, & Roschelle, 1993). 

This perspective opens new avenues for inquiry, such as studying the experiences 
that induce productive perturbation for the learner, but it also entails the acknowl-
edgment of subjectivity in several ways and requires the careful consideration of 
the role of the observer. For instance, the holder of a given conception has no reason 
to suspect that it is a misconception unless it is perturbed. This suggests that the 
term “misconception” should just be replaced with conception (Confrey, 1991), 
because we have no access to an objective frame of reference by which a conception 
can be judged to be correct or incorrect. Nonetheless, it is worthwhile to be able to 
specify when the observer projects that a learner’s conception will eventually 
conflict with one of the learner’s other stable conceptions or experiences and will 
be restructured during the resulting accommodation. We say that the observer 
considers the learner’s conception to be perturbable.

There are several ways that subjectivity arises when the objective notion of 
misconception is replaced with the idea of perturbability. One well-known way is 
the issue of intersubjectivity: The researcher’s interpretation of a student conception 
is itself a conception, and thus might itself be perturbed and updated due to further 
experiences with the student (von Glasersfeld, 1995).

A less-explored manifestation of subjectivity is that we have no objective way to 
know that any conception of ours is unperturbable. The fact that a conception has 
not yet been perturbed does not mean that it is unperturbable. For instance, suppose 
I am a teacher and I encounter a student conception that seems to contradict one of 
mine. I assume it to be perturbable and begin looking for ways to induce a pertur-
bation for the student. If, after a while, I cannot produce an experience that induces 
a perturbation for my student, I might wonder, is it perhaps my conception—not 
the student’s—that is perturbable? After all, just because my conception differs 
from hers, and mine has not been perturbed (yet), does not mean that it never will 
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be perturbed. This scenario may sound absurd, especially if, as the teacher, my 
conception is the standard one taken as shared by other mathematically educated 
persons. If I cannot readily induce a perturbation for the student, surely it is because 
I know too little about the student’s conceptions and how they relate to one another, 
not because the standard conception that I hold will someday be perturbed.

But another possibility exists, revealed by this subjectivity: It could still be that 
neither my conception nor that of my student is perturbable. Perhaps the student’s 
conception can be part of a stable cognitive structure and so can mine. Yet these 
conceptions still contradict each other, meaning that it is ultimately impossible for 
either my student or me to simultaneously and stably hold both conceptions.

It is important to note that the student’s conception could still soon experience a 
perturbation, even if I as a teacher do not project it. After all, I may only be paying 
attention to the mathematical implications of the student’s conceptions and ignoring 
myriad other factors that might give rise to a perturbation. It is certainly not the case 
that the only sources of perturbation are mathematical inconsistency, although these 
are the sources of perturbation primarily focused on in this article. For instance, the 
conception could be perturbed if it someday functions less powerfully than the stan-
dard one, or less flexibly across contexts, or less generalizably in novel situations.

But what if the stable structures into which these two competing conceptions can 
be built are in fact not appreciably different in power and flexibility either? In other 
words, suppose there is no reason, based on stability, viability, power, or flexibility, 
that I as the teacher can anticipate preferring one conception to the other. In this 
scenario, however unlikely, we are justified in calling the learner’s conception a 
nonstandard conception. It is a conception that contradicts the standard conception, 
yet it is no objective “misconception,” nor is it a conception that appears to await 
perturbation by the learner’s other conceptions or future experiences due to incon-
sistency, lack of power, or viability. 

There are several important things to notice about a nonstandard conception. 
First of all, this reasoning is entirely theoretical so far. I have not shown that 
nonstandard conceptions actually occur, nor have I suggested where one might look 
to find them; I have simply made a case that they could exist based on a radical 
constructivist perspective on conceptions.

Second, a nonstandard conception would be an unusual entity, one that to my 
knowledge does not appear in the literature. To make this point clear, it is worth 
describing a few things that a nonstandard conception is not. A nonstandard concep-
tion is not simply an alternate strategy or algorithm. Certainly research has shown 
that in order to solve problems students often develop strategies and algorithms, 
sometimes as alternatives to the standard ones they are taught (e.g., Carpenter & 
Moser, 1984; Gravemeijer, Cobb, Bowers, & Whitenack, 2000). But these are not 
necessarily nonstandard conceptions, because a novel strategy for, say, adding two-
digit whole numbers, need not conflict with any standard conceptions. A student’s 
conception about how the decompose-and-add-like-units algorithm (Fuson, 2003) 
works for adding two-digit whole numbers need not conflict with her conception 
of how the standard school addition algorithm works. In fact, a student who holds 
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both of these conceptions might be considered to have a rich understanding of 
addition, not an inconsistent one.

A nonstandard conception is also not simply a robust misconception. Researchers 
have often identified student conceptions that are very difficult to change, such as 
epistemological obstacles, which are described as misconceptions that are both 
tenacious and seemingly unavoidable (e.g., Brousseau, 1997; Sierpinska, 1987). 
Nonetheless, these are not nonstandard conceptions. They may be stubborn, but 
they are still perturbable, and must undergo restructuring in order for the student 
to have access to more powerful or general mathematics.

Third, nonstandard conceptions indicate a bifurcation in a learning trajectory, a 
place from which some learners may go one direction and some a different direction. 
At this crossroad, although there might yet be reasons for the student to take the 
well-worn path instead of the road less traveled, these reasons would not be purely 
mathematical ones. The existence of such a bifurcation would be interesting for its 
own sake and surely would be helpful for teachers to understand. But there is another 
reason for us to pay attention to it: its potential for informing the relationship 
between the way that our students learn and conceptualize mathematics and the way 
that mathematics developed historically. If there are nonstandard conceptions that 
can be built into structures that are as powerful, consistent, and viable as the standard 
one, then it would not be surprising if such nonstandard conceptions occurred in the 
historical development of mathematics as well. The implication goes both ways: If 
we see nonstandard conceptions in the reasoning of our students, this gives us some-
thing to look for in history; if we see nonstandard conceptions in history, it gives us 
something to look for in our students’ reasoning. This would be one of many 
instances in which a learning theory suggests a significant relationship between 
student learning and historical development in mathematics (e.g., Brousseau, 1997; 
Kaput, 1994; Piaget & Garcia, 1983/1989; Sfard, 1992; Sierpinska, 1987; an over-
view of this body of research appears in Furinghetti & Radford, 2008).

Finally, the existence of nonstandard conceptions would provide insight into how 
students can have access to deep mathematical ideas that they are not explicitly 
taught, even ideas that are incommensurable with the ones they are taught. A student 
who maintains a nonstandard conception despite instruction to the contrary is likely 
to be a student who thinks clearly and mathematically, pursuing the consistency 
and coherence of her mental mathematical model rather than caving to the pressure 
of the classroom.

In this article, I show the existence of some nonstandard conceptions held by a 
student, Sarah, about the real number line, particularly conceptions that involve 
infinitesimal quantities and distances. These conceptions are nonstandard because 
(a) they are incommensurate with standard conceptions of the real number line; (b) 
they are robust, viable, and apparently not perturbable in the face of instruction that 
contradicts them; and (c) they could be used to build a cognitive structure as powerful 
and consistent as the standard conceptual structure of the real number line.

Before describing Sarah’s conceptions, I first provide a historical and mathemat-
ical background about infinitesimals. Many of Sarah’s nonstandard conceptions of 
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infinitesimals are held by no less a mathematician than G. W. Leibniz, whose 
infinitesimal calculus led to some of the greatest mathematical discoveries of the 
18th century. Leibniz’ conceptions of infinitesimals were used in coherent, powerful 
systems of mathematical thought for more than a century.

Although history abandoned the course of infinitesimals, it was demonstrated 
about 50 years ago that a nonstandard mathematical system can be built from 
infinitesimals with the same power, consistency, and rigor as the standard system 
of real numbers taught in school today. I describe in some detail the development 
of this system, nonstandard analysis, because it provides strong evidence that 
Sarah’s conceptions truly are nonstandard.

HISTORICAL BACKGROUND

Throughout the 1670s and 1680s, Gottfried Wilhelm Leibniz developed the 
infinitesimal calculus. His system of calculus was largely detailed in personal corre-
spondences, and its first complete exposition was found in L’Hôpital’s 1696 calculus 
textbook, l’Analyse des Infiniment Petits pour l’Intelligence des Lignes Courbes.1 
His system is fundamentally based on infinitesimal quantities, positive quantities 
that are smaller than any finite positive number. He accomplished the basic opera-
tions of calculus by partitioning a curved line into an infinite number of straight 
“sides” that are infinitesimal in length. A derivative is then the slope of one of these 
straight sides, and an integral is an infinite sum of infinitesimal polygonal areas.

To calculate these derivatives and integrals, it was crucial for Leibniz to develop 
an algebra of operations on infinitesimal, finite, and infinite numbers. Leibniz’ 
first published treatment in which he employed this algebra appeared in 1684 
(Leibniz, 1684/1969, p. 272–280). For his calculus to work, Leibniz posited that 
there exist infinitely many infinitesimal numbers, a belief opposed by a number of 
mathematicians of the time who believed that there exist no infinitesimals or that 
there is only one (Mancosu, 1996). For Leibniz, the continuum is infinitely divis-
ible, containing no atomic unit.2 For example, if one raises an infinitesimal to 
successively larger powers, it will become smaller and smaller. In every neighbor-
hood of a given number, there is a microcosmic world of numbers that looks like 
the larger continuum. “Since the continuum is divisible to infinity, any atom will 
be of infinite kinds like a sort of world, and there will be worlds within worlds to 
infinity [R. Ely, trans.]” (Leibniz 1663–72/1966, p. 241).

Leibniz’ algebra of operations on infinitesimal numbers included rules such as 
i  f is infinitesimal; f ÷ I is infinitesimal; (f 1 + i1)/(f2 + i2)  f1/f2; and f + i  f (here 
i is an infinitesimal number; f, f1, and f2 are finite numbers with f2 nonzero; and I 
is an infinite number). Although there are at least a dozen such rules and heuristics 

1Mathematics historian Fred Rickey translates this as Analysis of the Little-Bitty-Guys for the Study 
of Curved Lines (Bressoud, 1994). 

2Leibniz did describe indivisible units called monads, but these are metaphysical and are not directly 
related to the continuum. For a more complete treatment of monads vs. infinitesimals in Leibniz’ 
metaphysics, see Ross, 1992.
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for working with infinitesimals, the most important for calculus are like the latter 
two specified previously, which show how to simplify difference quotients to get 
derivatives.

This method of calculus was employed and extended by most of the great conti-
nental mathematicians of the 18th century, including the Bernoullis, Euler, and 
Legendre. During this time, there were vehement attacks on the idea of infinitesimal 
quantities (Grabiner, 1981), such as the famous paper by Bishop Berkeley in 1734, 
which specifically targeted Newton’s fluxions and laid out foundational problems 
that were not resolved for over a century. What was an infinitesimal? Could one be 
produced and examined in the real world? Leibniz at times discussed an infinitesimal 
as the final term in a sequence of numbers approaching zero, but this did not 
particularly clarify matters. For example, what is the “final term”? Historian H. Bos 
(1974) suggested that this vagueness was a crucial element that led to the rapid 
development of calculus, but which also ultimately caused the system to be rejected 
on grounds of mathematical and philosophical rigor. Even though the idea was vague, 
mathematicians still readily worked with infinitesimals for two reasons: They were 
relatively intuitive and they kept producing important results. In the 18th century, 
Leibniz’ “useful fictions” produced an explosion of mathematical discoveries in 
mechanics, calculus of variations, probability theory, astronomy, and more.

But in the beginning of the 1800s, mathematicians began encountering counter-
intuitive and even contradictory results arising from a cavalier treatment of conver-
gence, many of which surfaced in a discussion of Fourier’s 1807 paper on trigono-
metric series (Bressoud, 1994). The informal reliance on the intuition of 
infinitesimal quantities did nothing to resolve these debates, so mathematicians 
such as Cauchy and Bolzano independently worked to develop a foundational 
system of limits that could be used to ground the behavior of infinite series and 
functions. The rigorization of calculus culminated in the ε δ–  definition of limit, 
ultimately formalized by Weierstrass in the 1860s, marking the general disappear-
ance of infinitesimals from the foundations of advanced calculus (Grattan-
Guinness, 1970).

It was curious that infinitesimals, which supported a century of lively mathemat-
ical discovery, could not be formalized in such a way as to create a rigorous system 
of calculus. It seemed strange that these entities could be used so intuitively to 
discover calculus-based results, and yet would have to be jettisoned when it came 
time to check one’s proofs. The reason became clear in another century: It was not 
infinitesimals that were at fault, but rather that the field of mathematical logic was 
not developed enough to allow for a rigorous treatment of infinitesimals until the 
work of Abraham Robinson (1961, as cited in Robinson, 1996).

The logicians of the early 1900s followed Hilbert’s program to establish math-
ematical proof as a set of rigorous formal operations that do not result in paradoxes 
or contradictions. In order to view mathematical statements as abstract entities apart 
from any particular systems to which they referred, mathematicians such as Frege 
and Russell worked to develop (a) a formal language in which all mathematical 
statements could be written and (b) a set of purely syntactical rules according to 
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which new mathematical statements could be produced from old ones. The goal 
was then to determine whether these abstract proof rules governed what was true 
or not in the real mathematical worlds (models) to which these statements apply.

In studying these various mathematical models, Lowenheim and Skolem discov-
ered that it is possible to find two different models that look different from the 
outside, but the same from the inside. More precisely, all of the first-order logical 
statements that hold true about the objects in one model also hold true about the 
objects in the other model. Yet there are more global statements that can be made 
about the models themselves that are true about one of the models but are not true 
about the other model. In this way, it is possible to have substantively different 
models, but ones in which all the same statements are true within each model.

The first example was the “nonstandard” model of arithmetic (Skolem, 1934). 
The standard model of arithmetic is the set of natural numbers N (with operations 
such as +, −, ×, ÷, and relations such as =, <, >)—a world in which an abstract 
symbolic statement such as “ ∀v R v vo o o, ( , )” can be interpreted meaningfully (e.g., 
“For every natural number n, n equals n.”) and determined as true or false. The 
nonstandard model M developed by Skolem is the same as the standard model N, 
but with one notable difference: It also contains infinite numbers. In other words, 
M contains all standard counting numbers, and it also has some numbers that are 
larger than any of these counting numbers. Within the two models, all statements 
that hold true in one model hold true in the other: “2 + 2 = 4,” “every even number 
is divisible by 2,” “every number has a successor,” and so on. This means that both 
models are equally powerful and equally consistent and that both could be used to 
prove statements in arithmetic. Yet, from outside the models, we can see that the 
models are different; the nonstandard model contains infinite numbers and many 
of them. This difference between the two models is possible because there is no 
way to make a first-order logical statement that says, “n is an infinite number.”

Using a similar technique, in 1961 Abraham Robinson developed the most 
important nonstandard model of a mathematical system. This was a nonstandard 
model of analysis, a mathematical world in which Leibniz’ infinitesimal calculus 
can be formalized. By “analysis” I mean the set of formulas that characterizes 
advanced calculus, statements such as “every Cauchy sequence converges” and 
“every absolutely continuous function is an integral of its derivative.” The standard 
model of analysis is the set of real numbers and its operations and relations. The 
nonstandard model of analysis is the same, except that it contains infinitely small 
and infinitely large numbers as well. The set with the real number line and these 
infinite and infinitesimal numbers is called the nonstandard real numbers, or 
hyperreal numbers.

Not only did Robinson show that there are infinitesimal and infinite numbers in 
his model, he also formalized how to understand these numbers in comparison to 
finite numbers and how to operate with them. For example, an infinitesimal number 
can be viewed as an infinite sequence of numbers that converges to 0 (actually an 
equivalence class of such sequences). Likewise an infinite number can be 
constructed as an infinite sequence of finite numbers that approaches infinity. 
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Remarkably, the same set of operations concerning combinations of finite, infinite, 
and infinitesimal numbers that worked in Leibniz’ informal system also held in 
these nonstandard real numbers. In tribute to Leibniz, Robinson called an infini-
tesimal neighborhood of points a monad.

The most important of Robinson’s results is that with this formalization of infini-
tesimal and infinite quantities, every first-order formula that holds true in the standard 
real numbers also holds true in the nonstandard real numbers, and vice versa. This 
“transfer principle” implies that these two systems are equivalently powerful and 
consistent. This fact has led to some important mathematical discoveries. In partic-
ular, if a theorem is difficult to prove using standard analysis, it might be easy to prove 
using nonstandard analysis. Since we know that the same theorem must be true in 
both models, it does not matter which model is used to prove the result. For example, 
the proof of the intermediate value theorem, which is surprisingly complicated in 
standard analysis, is quite simple using nonstandard analysis. Another example is the 
work of Albeverio, Fenstad, Høegh-Krohn, and Lindstrøm (1986), which uses 
nonstandard analysis to prove new results about stochastic processes.

The nonstandard real numbers provide a satisfying vindication of Leibniz’ 
infinitesimal system. Robinson proved that the system that Leibniz used implicitly 
can be explicitly shown to be as consistent and powerful as the standard version of 
analysis. This means that calculus can be done using infinitesimals with a clean 
mathematical conscience, and, in fact, several calculus textbooks and other 
resources have been written that teach the subject using a simplified version of this 
approach (Henle & Kleinberg, 1979; Keisler, 1986, 2007). Nonetheless, although 
the nonstandard model of the real numbers marks a powerful, coherent, and math-
ematically correct mode of thought, it is one that is substantially different from the 
standard real number system taught in today’s classrooms.

In the next sections, I show how a student uses elements of this nonstandard 
model in her own thinking about the real numbers, despite being taught the standard 
system in her classes. Her conceptions involve not only fledgling versions of 
intuitive Leibnizian infinitesimals but also include methods of visualization and 
manipulation that resemble Robinson’s construction of the infinitesimal elements 
in his system of nonstandard analysis.

METHOD

Data Collection

This case study developed out of a larger study, in which 233 university calculus 
students completed a Calculus Conceptions Questionnaire on the 1st day of their 
1st or 2nd semester of a yearlong differential and integral calculus sequence. Their 
responses were then used to catalogue their conceptions about various calculus 
concepts: limits, functions, continuity, and the real number line. Six of these 
students, two males and four females, participated in follow-up interviews. The 
main purpose of these interviews was to clarify some of their conceptions in order 
to refine the coding scheme for the larger study. I had identified several response 
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patterns that were enigmatic and difficult to code but were displayed by multiple 
students, so I selected students to interview who had displayed these response 
patterns, based on their availability and willingness to be interviewed. Each inter-
view was about 30 minutes long, and was audiorecorded. Students’ written work 
as well as the interviewer’s notes about the written referents for the students’ 
comments supplemented the audiorecordings.

Since each of the six students that I interviewed had different questionnaire 
responses that required clarification, I used different interview protocols for each 
interview. However, there was one questionnaire item—Item 6—that I included in 
all six of the interview protocols (see Figure 1). I chose it because I was surprised 
that most of the students (83%) answered 6b as “true.” Because it is only a true–false 
item, the results from the questionnaire were limited in showing me why students 
responded the way that they did, so I wanted to follow up on it in all the interviews. 
As is typical for interviews that are semistructured, these protocols were designed to 
be flexible in adapting to and pursuing the participants’ responses (Denzin, 1989).

6. True or false:

a. T F  It is possible to choose two different points on the real 
number line that are touching one another.

b. T F  It is possible to choose two different points on the real 
number line that are infinitely close to one another.

Figure 1. Questionnaire Item 6.

The subject for this case study is Sarah, a sophomore whose high school calculus 
course excused her from taking Calculus I at the university. At the time of the inter-
views, she was taking Calculus II, and had taken a course on Finite Mathematics the 
previous year. At the university, Calculus I and Calculus II are each semester-long 
courses that do not require the students to construct proofs. The first includes calcu-
lating limits, derivatives, and integrals, and the second includes more integrals, 
sequences and series, parametric equations, and some differential equations.

The reason that I chose Sarah to be one of the interviewees had more to do with 
the ambiguous way that she responded to two of the items about functions than with 
her answers to the questions about the real number line. In the interview, I again 
presented her with these items about functions, and she answered them and 
described her thoughts about them to my satisfaction. It was her responses about 
the real number line that are of interest in this article. I found these responses 
fascinating and surprising, and the follow-up questions by which I pursued them 
were for the most part unscripted.

I asked Sarah to answer Item 6, and then I followed up on it with several questions 
to clarify her answer, including:
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another, but are not touching?

Sarah’s responses to these questions surprised me, and my prepared interview 
protocol was not detailed enough to pursue them. Because I wished to pursue her 
ideas about the real number line, I conducted a second interview with her 1 week 
later. I prepared another interview protocol that began with the same questions as 
listed previously but continued with questions such as:

to 1 over this one?

The first interview revealed that Sarah believed in infinitesimal numbers. The 
purpose of the questions in the second interview was to further explore these 
conceptions and to determine whether she would pursue them coherently. Each of 
the two interviews lasted about 45 minutes.

Data Analysis

Because the purpose of this case is to provide insight into the issue of alternate 
mathematical structures found in student thinking, it is an instrumental rather than 
intrinsic case study (Stake, 2000). As such, any account of Sarah’s thinking must 
be understood with respect to how my own concerns and conceptions inform the 
interview and my analysis of the interview. For example, I was not expecting 
conceptions relating to nonstandard analysis to emerge through the course of the 
interview. However, as I interpreted the interview data, my experience with the 
construction of the nonstandard real numbers and my knowledge of the infinites-
imal calculus of the 17th century both served as lenses for interpretation.

I did not originally design this interview around a case study about infinitesimals, 
with a carefully devised interview protocol and coding scheme. Sarah’s ideas about 
infinitesimals were surprising to me, and my follow-up questions were devised on 
the spot. This means that my coding scheme had to emerge gradually as I analyzed 
the interviews. For this reason, my coding scheme categories first developed very 
loosely through a process of open coding (Strauss & Corbin, 1990). First I looked at 
the specific notations and terminology that Sarah uses. An example of a notation she 
uses is “0.000. . .1,” and a term that she consistently uses is “infinitely close.” I then 
looked for other places in the interviews in which she used the same or similar nota-
tions or terms. Then I looked at the mathematical claims that she makes (true or 
untrue) about the real numbers. An example of such a claim is that 0.000. . .1 squared 
is infinitely close to zero. I looked for other places in the interview in which she makes 
the same or a very similar claim. After identifying the notations, terms, and claims 
she makes, I put them into categories of consistent usage. A consistent usage of a 
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notation, term, or claim indicates a conception that is rather stable, for example, 
“Infinitesimal numbers can be written as infinite decimal expansions with some extra 
decimal digits at the end.” Sarah uses such notation many times over the interviews 
and refers to these numbers as being “infinitely small” or “infinitely close.”

Once the conceptions had been identified, I determined whether each was inter-
pretable in, was conventionally used in, and was consistent with the other properties 
of the standard real numbers. For instance, in the standard real numbers, the notation 
0.000. . .1 is not conventional, and the claim that infinitely small numbers exist is 
false. Then I determined whether each conception could be interpreted in, was 
conventionally used in, and was consistent with the other properties of the infini-
tesimal systems of Leibniz and Robinson. For instance, the claim that there exist 
infinitely many infinitely small numbers is consistent with these systems. I treated a 
conception to be nonstandard if it could not be interpreted as being true in the standard 
real number system, but if it could be interpreted to be consistent in a model such as 
Leibniz’ or Robinson’s that includes infinitesimals. Finally, I looked for logical rela-
tionships between the conceptions and mathematical implications of the conceptions 
to determine whether the conceptions were consistent with each other. 

RESULTS

In this section I describe Sarah’s nonstandard conceptions about the real number 
line, illustrated by excerpts from the interviews, and I detail the reasons for inter-
preting her remarks the way I do. Some of these conceptions are easily detected, 
because they are beliefs that she describes and defends explicitly. Other conceptions 
she does not explicitly state, but rather acts in accordance with them.

Sarah’s Understanding of “Infinitely Close” and the Divisibility of the Number 
Line

I begin Sarah’s first interview by asking her to respond to Item 6 (see Figure 1). 
To 6a, she answers “false,” that it is not possible to find two different real numbers 
that are “touching” one another. She responds, “You can keep halving it, like cutting 
it in half and cutting it in half. You can get closer and closer and closer, but there’s 
always gonna be like a little space between it.” She had also responded “false” on 
this item on the original questionnaire, an answer shared by 90% of the other 
respondents. Her response and her interview comments about cutting in half again 
and again suggest that she believes that the number line does not have atomic units, 
but is rather arbitrarily divisible. Later in the interviews, as we shall see, she consis-
tently extends this property to infinitely small spaces as well.

To 6b, Sarah answers “true,” that it is possible to find two different real numbers 
that are “infinitely close” to one another. This is the same way that she answered 
on the original questionnaire, and the same way that 83% of the other students 
responded as well.

I then ask Sarah if she could provide an example of two numbers that are  
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“infinitely close to one another,” and she replies “3.999999 repeating forever” and 
“4.” To get a sense of what she means, I pursue this by asking if she could find 
another number that is infinitely close to those two:

I:   Okay. And can you find another number that’s infinitely close to both of those 
numbers? Is it possible to find another number that’s infinitely close to both of those 
two?

S:   Yes, because the repeating is you don’t know how long it’s repeating. If it’s repeating 
for infinity, there’s always going to be one more to infinity. You can always add 1 to 
infinity. So you can always add another 9 to the infinity of 9s that are coming.

I:   Okay. So how would you write down like the two different numbers that are like 
that? Or if you can, I don’t know.

S:  How would you write . . . ?
I:  How would you explain it? Like . . .
S:   You mean like . . . . Well, you could just say like three point nine nine nine whatever 

repeating forever to infinity, and 4. And then in between that is like three point nine 
nine nine to infinity plus [pause] an infinitely small number.

I:  Plus an infinitely small number?
S: Yeah, uh-huh. [She laughs.] [I1 03:06-04:32]

In this section, Sarah describes two numbers that she claims to be infinitely close 
to each other: “3.999 repeating forever to infinity” and “4.” She then says that these 
numbers are both infinitely close to “3.999 repeating forever plus an infinitely small 
number.”

This conception that there exist numbers that are infinitely close together is quite 
definitely a misconception about the standard real numbers. In the standard real 
numbers, two numbers are either the same or else they are a particular finite 
distance apart; the term “infinitely close” does not even make sense.

So what does Sarah understand when she hears “infinitely close”? One view 
might be that she really is just envisioning the standard real numbers, and she hears 
“very close.” Student misunderstandings certainly can arise from the fact that in 
colloquial usage “infinitely” often means “very.” For instance, another interviewed 
student in this study claimed that 1.001 and 1.002 were “infinitely close” but 1.1 
and 1.2 were not (Ely, 2007). But it is not clear that this simple misconception is 
Sarah’s view. For instance, to illustrate “infinitely close” she does not choose 
numbers such as 1.001 and 1.002. Rather, she chooses examples with infinite 
decimal representations, which she consistently describes as having an “infinity of 
9s” that are “repeating forever to infinity.” Perhaps even more telling is that she 
admits throughout the interview that these numbers she writes that are “infinitely 
close” to other numbers, such as “3.999 repeating forever plus an infinitely small 
number,” are not actually “real,” but are numbers that she is inventing. For instance, 
she says that 0.000. . .1 (point zero repeating infinitely with a 1 after it) is “not 
really a number,” and in the interviews she is sheepish about using these objects. 
If Sarah just takes “infinitely close” to mean “very close,” then it seems that she 
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would not describe this by using numbers that she admits to be fabricated.
At this point in the interview, I choose to interpret Sarah’s remarks from the 

perspective that she is envisioning things that are infinitely close, rather than very 
close. This immediately raises the question about the features she envisions in a 
number system that supports a meaningful interpretation for “infinitely close.” At 
this point, it would be too early to say whether or not Sarah’s conception that there 
exist numbers that are infinitely close to each other is a misconception or a nonstan-
dard conception. Only as she develops notation for describing infinitely close and 
infinitely small numbers, and describes the features of these numbers, does it 
become apparent that her conceptions are indeed nonstandard.

The following is a nonstandard conception evidenced in Sarah’s responses:

Sarah’s Idea of and Emergent Notation for Infinitesimals

As I investigate Sarah’s conceptions of the number line, she begins to develop a 
notation for expressing what she means by “infinitely small” numbers and 
distances. In the following excerpt, I have just asked her what is between 0 999.  
and 1:

S:   If there was a way to express something like . . . I mean, this is not real at all . . . 
but like, zero repeating forever and then 1, then I would say that. Like an infinitely 
minuscule . . . hmm . . . 
. . .

I:  Is there . . . are there any numbers between 0.9 repeating and 1?
S:   Um . . . I mean, this isn’t really a number. [She writes 0.000. . .1.] This isn’t real, so 

. . .
I:  Point 0 repeating with a 1?
S:   Yeah. But um . . . I don’t know. I mean . . . There is numbers, because no matter how 

small you get it there’s still going to be some kind of space, and even in that tiny 
infinitely small space you can still cut that into infinity too and put numbers in there. 
So I would say yes but I don’t know how to express that.

I:  So how to express a number that’s in there?
S:  Yeah. [I1 08:25-10:10]

Although I am asking about a number that resides between 0.999. . . and 1, Sarah 
seems to be describing the distance between the two numbers. In the second inter-
view, when she does this again, I ask her about it and she corrects herself [I2 03:50-
04:24].

In this transcript, Sarah writes a number that she admits “isn’t real”: 0.000. . .1. 
This number is an example of what she calls an “infinitely small number,” as she 
mentions in the earlier transcript. The fact that she acknowledges that it “isn’t really 
a number” suggests that she is not simply thinking of a very small number with a 
large, but finite, number of zeroes. She is, in fact, envisioning an infinite number 
of zeroes. She consistently affirms this stance in the second interview as well, in 
which she again claims that between 0.999. . . and 1 there exists “an infinitely small 
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space,” and that between these two numbers there are “infinitely small numbers.” 
It is important to notice that even though I am referring to her “infinitely small 
numbers” as infinitesimals, she never uses the word infinitesimal.

Solely from her comments about infinitely small spaces and numbers, it would 
be difficult to determine what Sarah means. However, she develops an explicit 
notation for expressing these infinitesimal numbers and distances, which she often 
uses throughout both interviews. In this notation, it is possible to represent numbers 
using an infinite string of decimal digits, which can be followed by yet more digits. 
This notation not only enables her to represent infinitesimal numbers but also to 
generate new infinitesimal numbers from old ones. For example, in the second 
interview I ask her again about what is between 0.999. . . and 1, noting that we had 
discussed this briefly in the first interview:

I: I asked you what, are there any numbers between 0.9 repeating and one?
S: Um . . . yes.
I: And what did you, what did you, yeah . . .
S: Infinitely small numbers.
I:  Infinitely small numbers, okay, and what was, what would be an example of a number 

like that?
S: Like . . .
I: You can write it if you want.
S: Like . . . point zero repeating one [writes 0.000. . .1].
I: With a one? Okay. And how many zeroes are here?
S: An infinite number of zeroes.
I:  Okay, infinite number of zeroes. And then a one. Okay, so, I think, yeah, this is what 

you said last time, and I just wanted to make sure that . . .
S:  Yeah, as many nines that are here [points to 0.999. . .] are as many zeroes are there 

[points to 0.000. . .1].
I: Right, and if there are infinitely many, then they’re infinitely many there?
S:  Yeah.

I:  Okay. Um, so now I ask you, are there, are there other numbers between here and 
here [between 1 and 0.9 repeating]? Like . . .

S:  Um, maybe an even smaller one, like . . . hahaha [writes 0.000. . .01].
I: Okay . . .
S:  If you can do that.
I:   No, that, how many numbers are between here and here? [Points to 0.999. . . and 1.]
S:   An infinitely small, an infinite amount of infinitely small numbers. [I2 00:48-

02:00]

She claims that in her notation of “infinitely small numbers” there are infinitely 
many digits, followed by more digits. In this notation, it is important to attend to 
the numbers that come after the infinite string of digits: 0.000. . .1 and 0.000. . .01 
are different numbers. Her notation, which is a natural extension of the standard 
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decimal notation, serves to make her ideas about infinitesimals more explicit—
although at this point she is still conflating numbers with distances.

Sarah appears to be generating this notation, and the conclusions that it affords, 
through the course of the interviews. She already held a belief that there are infi-
nitely small distances and numbers, as evidenced in her responses on the initial 
questionnaire, but her way of describing them is emergent. In the beginning of the 
first interview, she just states “an infinitely small number.” By the end of the second 
interview, she has developed a notation for such numbers and has explored their 
properties extensively.

Her notation seems suggestive to her. By simply adding a different digit at the 
end of the infinite decimal expansion, she is able to describe another infinitely 
small number. In the preceding excerpt, this apparently enables her to generalize 
that there must be infinitely many such numbers, presumably because she could 
generate arbitrarily many such nonstandard expansions.

The following additional nonstandard conceptions were identified in Sarah’s 
responses:

decimal digits at the end.

Affordances of Sarah’s Notation: Infinitely Many Infinitesimals

Sarah’s emergent notation for infinitesimal numbers allows her to posit properties 
of infinitesimal numbers that she otherwise may not have been able to describe. 
One such property is that infinitesimal numbers can be ordered. For instance, in 
the following transcript, she orders two infinitesimal numbers. Both 0.000. . .01 
and 0.000. . .1 are “infinitely close to zero,” but the latter is still “a little bigger 
than” the former. I ask her where the number 0.000. . .1 would live on the number 
line, not as the distance between 0.999. . . and 1 but as the number itself:

S:   Oh, I would say that this number [points to 0.000. . .1] would be infinitely close to 
zero.

I: Oh, okay.
S:  So would this number [points to 0.000. . .01].
I:  And so would that number? Now, how would they relate to each other compared to 

zero? Like . . . like . . .
S:  Like oh . . . .
I: Where would you put both of these two numbers?
S:   This one [points to 0.000. . .1] would just be a little bigger than that one [points to 

0.000. . .01]. [I2 04:58-05:19]

Her emergent notation has also enabled her to claim that there exist infinitely 
many infinitesimal numbers. This can be seen in the previous excerpts. When I ask 
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her if there are any numbers between 0.999. . . and 1, she replies that “even in that 
tiny infinitely small space you can still cut that into infinity, too, and put numbers 
in there.” When I ask her how many, she responds, “An infinitely small, an infinite 
amount of infinitely small numbers.” When I ask her what the numbers in there 
look like, she says, “Well, they would look like, they would look [like] the big 
number line except, they would look exactly like the big number line except they 
wouldn’t be called the same numbers.”

These conceptions are misconceptions with respect to the standard real numbers. 
In the standard real numbers, there are no numbers between 0.999. . . and 1. For 
Sarah, there are infinitely many numbers, even though it is an infinitesimal space, 
and this miniature number line looks like the big number line. These conceptions 
are all features of Leibniz’ system of infinitesimals and of Robinson’s nonstandard 
real numbers as well. In particular, in both Leibniz’ and Robinson’s system, 
infinitesimals are generative—once we posit that an infinitesimal number exists, 
we can generate, and order, infinitely many infinitesimal numbers from this one. 
In his correspondence with the early 18th-century mathematician Nieuwentijt, who 
believed that there exists only one order of infinitesimal number, Leibniz asserted 
that any consistent system of infinitesimals must contain infinitely many infini-
tesimals, and that these must be orderable and manipulable by means of arithmetic 
operations (Mancosu, 1996).

The fact that Sarah’s conceptions accord with Leibniz rather than Nieuwentijt 
on this point suggests that she may be motivated by a desire to be consistent with 
the affordances of her notation. The notational process by which she came to posit 
the existence of one infinitesimal number allows also for the existence of many 
other infinitesimals, so consistency forces her to acknowledge these infinitesimals 
as well.

I also ask Sarah whether there are any rational numbers between 0.999. . . and 1. 
After puzzling for a while, she replies:

S:   I know that there has to be a rational nu—my principles say there has to be a rational 
number in there. Because it’s a tiny tiny space and there’s gotta be a rational nu . . . 
like the tiniest little space . . . [pause]. Because in infinity there’s still an infinitely 
small space, and in that infinitely small space . . . I mean, it’s an infinitely small 
space, but it’s infinity. So in infinity there is rational numbers. [I1 43:41-44:22]

Sarah resorts to her mathematical “principles” when she is presented with a ques-
tion about her model that she has never entertained. She seems to rely on her 
intuition that an “infinitely small space” has the same characteristics as a finite 
space, and so it must also contain rational numbers.

The following can be added to the list of nonstandard conceptions identified in 
Sarah’s responses: 

 
infinitesimal numbers in an infinitely small space.
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Operations on Infinitesimal Numbers: Squaring and Reciprocating

Also, like Leibniz, Sarah is happy to manipulate these infinitesimal numbers. In 
the second interview, I ask her to operate on her infinitesimal numbers in several 
ways:

I:  What did, what would you get if you took this number and squared it? Point zero 
repeating infinitely with a one after it. [0.000. . .1]

S: A smaller number.
I:  A smaller number, okay. Like, how, talk to me more, like, could you write it? Like 

how would you, you know what I mean?
S:  I, I don’t know how you would write it because it’d be kind of like exactly the same 

as that. It would look the same as that, but it would have more zeroes.
I: But it would have more zeroes?
S: Mm-hm.
I: How many more zeroes would it have?
S: Um, I don’t know. But it would be, it would be smaller.
I: Okay, okay. Yeah. Um, so okay.
S: Since this [0.000. . .1] is infinitely small, it would be infinitely smaller than that.
I: It would be infinitely smaller than that?
S: Yeah.
I:  So it’s like, so could you zoom in? Like, tell me what you mean by infinitely 

smaller.
S:  Like, I still think, I mean, I think maybe you said this example, like if you start cutting 

like, cutting something, you’re never going to get it to be nothing. But it’s going to 
be infinitely smaller than that, like maybe like a miniscule little thing, you can’t 
measure it but it’s not gone. [I2 06:36-07:54]

It is worth noting that it is not I, but Sarah, who had previously said something 
about “cutting.” In the first interview, her comments about cutting were in response 
to Item 6a, described at the beginning of the Results section.

In the first interview she said that you could zoom in infinitely to see the differ-
ence between 0.999. . . and 1. To pursue what she means by saying that the new 
number is “infinitely smaller” than the original one, I ask her where the new number 
would be on a number line that was “zoomed in” around 0:

I: Um, now, where would this number squared be? [0.000. . .1]
S: Closer to the zero, so . . .
I: Like how close to the zero?
S: I, I don’t really know. Maybe like infinitely close to the zero.
I: Okay.
S:  Because you’re squaring infinity, so it’s going to be, or, you’re squaring this. So it’s 

going to be infinitely more closer.
I: Oh, so could you zoom in then again infinitely much and then see that?
S: Yeah, yeah.
I: Okay.
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S: I mean you could never, but in theory, yeah.
I: Okay.
S:  Like most of the, like this could never, you could never be able to calc, like, calculate 

it if you’re talking about infinity and then infinity smaller, and then infinity smaller. 
But like, if infinity goes on forever, there’s gotta be something a little bit smaller. 
More infinity. [08:39-09:36]

Sarah appears to have not thought about squaring an infinitesimal number before 
now. She prefaces her answers with “I don’t know,” and she never specifies exactly 
how to represent 0.000. . .1 squared in her notation. Nonetheless, she is willing to 
assert several things about what happens if you square an infinitesimal number: (a) 
squaring the infinitesimal 0.000. . .1 generates a new number, one with more zeroes 
in its decimal representation; (b) this new number is “infinitely smaller” than the 
original infinitesimal number; and (c) the new number is “infinitely closer” to the 
number 0 than the original infinitesimal. These views seem to be an extension of 
some properties of the finite real numbers: Just as squaring a small finite number 
gives you a slightly smaller finite number, squaring an infinitesimal number gives 
you an infinitely smaller infinitesimal number. These views accord also with 
Leibniz’ conception that you can perform the same operations on infinitesimal 
numbers as you can on finite numbers, even though Sarah’s notation allows her to 
describe only a few of the features of such operations, without the detail that one 
might use to describe such operations on regular finite numbers.

In her last comment in the transcript above, she justifies her conception that one 
can square an infinitesimal and thus generate a smaller infinitesimal, even though 
you might not be able to calculate the result. Her reason is “If infinity goes on 
forever, there’s gotta be something a little bit smaller. More infinity.” This accords 
with her earlier justification that even an infinitely small space can still be cut and 
cut, and it will never be gone. These justifications suggest that infinitesimal 
numbers are arbitrarily divisible, a view that is consistent with her belief that infi-
nitely many numbers live in a small, even infinitesimal, space. As long as she 
continues to reject an atomist belief that there exist units that cannot be divided into 
smaller pieces, then the operations of dividing and squaring will always generate 
new numbers, even when applied to infinitesimals.

I then ask Sarah to perform another operation on her infinitesimal numbers, 
namely, to take the reciprocal of them. The reason I ask her this is that I want to 
ascertain whether she will consistently pursue her system. Up to this point, her 
answers are consistent with the systems of infinitesimals of Leibniz and Robinson, 
although her system is much more rudimentary and she appears to be investigating 
many of its features for the first time. In Leibniz’ and Robinson’s systems, the 
reciprocal of an infinitesimal number is an infinite one. Both Leibniz and Robinson 
realized that in order for a model that includes infinitesimals to be closed under the 
operation of division, the model must include infinite numbers as well, and many 
of them. I ask Sarah about reciprocals of infinitesimal numbers to determine 
whether she will realize the same thing and continue to pursue her conception of 
infinitesimal numbers in a consistent manner.
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I:  Okay. Okay, let me ask you a different question. What is one over this number? 
[Points to 0.000. . .1.]

S:  [Writes 1/0.000. . .1.] Oh yeah, this one doesn’t, well this is kind of like the one,  
an infinitely small number, that, that you, that we talked about before. If this  
[0.000. . .1] is smaller and smaller, then . . . [pauses] this [1/0.000. . .1] is just going 
to get bigger and bigger and bigger and bigger.

I:  The quotient is going to get bigger and bigger and bigger. Okay. Um . . . what about 
one over this number again here? [Points to 0.000. . .01.]

S: Bigger infinity than that. [Indicates 1/0.000. . .1.]
I: Bigger infinity than that?
S: Yeah, I know that’s really bad, heh.
I:  No, you tell me what you think, you’re telling me what you think, not what, not what 

you’re going to write down on your test next week.
S: [Laughing] Yeah.
I: So, a bigger infinity than that?
S: Yeah.
I: Um . . .
S:  I just think of it like, if it’s infinity, like yeah, like, what I’m saying, it’s kind of like 

not really making sense, like I know it doesn’t really sound right, but I feel like if 
there’s an infinity, then there has to be something bigger than the infinity, which is 
still infinity or, you know, small infinity. [I2 09:38-11:28]

Here Sarah claims that 1/0.000. . .1 is “going to get bigger and bigger and bigger 
and bigger,” and that 1/0.000. . .01 is a “bigger infinity than that.” Again Sarah’s 
answers are consistent with the features of Leibniz’ and Robinson’s systems, in 
which the reciprocals of infinitesimal numbers are infinite numbers.

Here Sarah talks about the first of these infinite numbers in a dynamic way. Up 
to this point, she has not used much dynamic language to describe infinitesimals, 
but here she says that the number 0.000. . .1 is smaller and smaller, so its reciprocal 
is going to get bigger and bigger. Until now her language suggests that she views 
these numbers to be static objects, not dynamic processes. She talks about 0.000 
. . .1 being, not getting, infinitely close to 0. She says that 0.999. . . and 1 are infi-
nitely close, not that they are getting infinitely close. Why does her language change 
here, so that now she says 0.000. . .1 is “smaller and smaller”?

One account for her dynamic language here, and not elsewhere, might be that 
here she is in the middle of determining properties of a brand new thing. She deter-
mines the properties by appealing to the finite elements of the process that produced 
the infinite thing. If she envisions 0.000. . .1 to be the final result of the sequence 
0.1, 0.01, 0.001, . . . , then she might try to determine 1/0.000. . .1 as the final result 
of the sequence 1/0.1, 1/0.01, 1/0.001, . . . . The former sequence is getting “smaller 
and smaller,” and the latter one is getting “bigger and bigger.” Therefore she proj-
ects that the number 1/0.000. . .1 is infinite. Once she has determined this, she may 
now be able to view the object statically, as a final product of the process that 
produced it. This enables her to say, for instance, that 1/0.000. . .01 is a “bigger 
infinity” than 1/0.000. . .1.
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This interpretation is in keeping with prior work about how students transition 
between processes and objects, put forth in the most detail in the ideas of encapsu-
lation (e.g., Dubinsky, 1991; Dubinsky, Weller, McDonald, & Brown, 2005) and 
reification (Sfard, 1991). Sarah talks about 0.000. . .1 as an object and is comfort-
able speaking about it in static terms throughout the interview. But here she unen-
capsulates it, thinking about it instead in terms of the process by which it was 
constructed. It is crucial that she is able to do this, because it enables her to make 
another infinite process to construct a new object. The result of this new process is 
the object 1/0.000. . .1. It is not surprising that Sarah’s infinitesimals and infinite 
numbers might be constructed as the products of infinite processes; in Robinson’s 
nonstandard model of the real numbers, infinitesimals and infinite numbers are 
constructed in the same way. The initial creation of new infinitesimal and infinite 
numbers involves the encapsulation and unencapsulation of infinite processes.

What is unusual is that Sarah proposes that 1/0.000. . .01 is a “bigger infinity” 
than 1/0.000. . .1. In particular, she views that taking the reciprocal of each of these 
two infinitesimals generates two different infinite numbers, rather than treating all 
infinite numbers as being the same. She admits that this is “really bad,” and indeed 
it is an unorthodox view, to say the least. She describes why she holds it by saying, 
“I feel like if there’s an infinity, then there has to be something bigger than the 
infinity, which is still infinity or, you know, small infinity.” Her vocal emphasis in 
this last statement makes her meaning clearer: She is suggesting that the fact that 
the second infinity is bigger than the first does not mean that the first is not infinite. 
The first is “still infinity”; it simply is “small infinity.” By maintaining that these 
two different infinitesimals generate two different infinite numbers when recipro-
cated, she now must consistently assert that there is not just one single infinity, but 
that there are different sizes of infinity. This is nothing as grandiose as cardinalities 
of infinite sets; it simply indicates that she is treating these infinities as numbers 
that can be operated on and compared, as with finite numbers. This is consistent 
with her treatment of infinitesimal numbers, and it is a feature of the nonstandard 
real numbers. Unfortunately, in the interview I do not ask her to describe or notate 
these infinite numbers further, so I do not know how far she would pursue opera-
tions on these infinite numbers.

Sarah says that these conceptions of hers about infinite numbers are “really bad” 
and she says, “I know it doesn’t really sound right.” Such comments are in keeping 
with earlier remarks that the numbers she is discussing are not “real,” that she knows 
that her answers are wrong, but that is just how she thinks about it. This is why I 
tell her here that her answers do not have to be the ones that she would record on a 
math test next week, but that I want to know what she thinks. Although she believes 
her answers to be incorrect, she nonetheless pursues them in a way that preserves 
their internal consistency, rather than responding in a way that she believes will be 
viewed as “correct.”

The following complete the list of nonstandard conceptions identified in Sarah’s 
responses:
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can be squared and their reciprocals can be taken. These operations generate new infini-
tesimal and infinite numbers, respectively.

numbers.

A Resilient System

Although Sarah often admits that these conceptions of hers are probably wrong, 
she still maintains them despite being shown the “correct” conceptions. At the end 
of the first interview she says that she has seen a proof in high school that 0.999. . . 
equals 1, but she never believed the proof. She asks me why she was supposed to 
believe that 0.999. . . = 1.

I oblige with a standard explanation (although not a rigorous proof, because it 
avoids the issue of convergence): I write N = 0.999. . . , so 10N = 9.999. . . , so  
by subtracting the equations, 9N = 9 , so N = 1. She still objects, saying that if  
0.999. . . really equals 1, then why do you even have 0.999. . . ? “The only reason 
to have 0.9 repeating is to show that it’s not 1!”

Then I ask her whether she believes that 0.333. . . equals 1/3. To my surprise, she 
says “no,” that she never really believed that either, even though “it’s what they make 
you memorize.” When she says that she does not really understand how to divide 1 
by 3, I ask her whether she is comfortable with 1/2 = 0.5. She says that is fine, because 
she could see that 5/10 is the same as 1/2. This is reasonable, because this was “a 
nice number,” as opposed to the infinite repeating decimal expansion for 1/3.

This particular episode takes place at the end of the first interview [I1 48:45-
52:11]. Because, as seen previously, she continues to assert in the second interview 
that 0.999. . . does not equal 1, it is clear that my explanation does not perturb her 
thinking. For instance, what follows is part of the initial portion of the second 
interview:

I:  Like, the question I asked last time was what is between 0.9 repeating and one?
S:  Right.
I:  How would you answer that?
S:   Um . . . an infinitely small space. If, if I were to, well now I know that they equal 

each other, I know that that’s right, but . . .
I:  But does that, is that how you think about that?
S:  I think about a little, an infinitely small space. [I2 00:25-00:43]

The resiliency of Sarah’s conceptions despite instruction to the contrary is illu-
minated by her views about how mathematics is learned in school. She believes 
that knowing the “correct” mathematical results, but still not believing or under-
standing them, is part of what doing mathematics in school is all about:

S:  . . . a lot of the things that I think, like, about math are just rules and memorizing 
rules that someone made up, and that’s why I think this is important to have, because 
what math students do, and this is what I do too: Studying for a math test is just like 
memorizing the rules, doesn’t matter why there’s rules there, you just memorize it 
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so you can use the formula on your test and get an A. You know? But it’s important 
for kids to, like, think of the concepts of it. That’s why this is good for me, see, 
because I don’t know the concepts . . . . [I1 46:23-46:54]

It is well known that many calculus-level students do not believe that 0.999. . . 
equals 1 (e.g., Tall & Vinner, 1981). In response to the question about 0.999. . . and 
1 on my original questionnaire, only 12% of the students said that 0.999. . . = 1 
(Ely, 2007). Furthermore, many students are not convinced by explanations such 
as the one I provide for Sarah for why the two numbers are equivalent (Sierpinska, 
1987). Sierpinska’s study shows examples of students that hold different kinds of 
robust conceptions about 0.999. . . , such as the heuristic dynamic conception of 
infinity (0.999. . . never equals 1, “no matter how many nines you put”), the poten-
tial actualist conception of infinity (“. . . unless it really goes to the very infinity, 
then it may be 1”), and a discursive empiricist attitude toward mathematics in 
general (mathematics is memorized, not discussed; thus, proofs or explanations 
that 0.999. . . = 1 are not convincing). Sarah’s comments here about mathematics 
being something “you just memorize” are in keeping with a discursive empiricist 
viewpoint. But Sarah’s other conceptions reveal an interesting reason for this.

Sarah’s discursive empiricist viewpoint may be a result of her conceptions about 
0.999. . . , rather than a cause. If she were able to pursue her nonstandard concep-
tions in a consistent way, then it would be illogical for her to accept that  
0.999. . . = 1. To accept that 0.999. . . = 1, she would have to go against the mecha-
nisms of consistency by which she generates and grounds her conceptions about 
infinitesimal numbers. Instead, to maintain the cognitive consistency of her own 
conceptions, she adopts a discursive empiricist attitude toward classroom mathe-
matics: Such mathematical ideas do not cohere with her own conceptions, but she 
must still be able to access them in order to get good grades. Only by assuring her 
many times that I want to hear what she thinks, not what she would say to get the 
grades in class, does she reveal in these interviews the resilient conceptions she 
holds beneath the memorized answers.

Sarah is maintaining an underlying set of intuitions that remains unaltered in 
spite of her classroom mathematics. After the interview, when I asked her where 
she learned her ideas about infinitely small and infinite numbers, she said it was 
not from any of her classrooms but that it was her own way of making sense of 
things. Although we have only her report of her classroom instruction, the resiliency 
of her conceptions suggests that opposing proofs, explanations, and classroom 
instruction are not perturbing her conceptions. This is in keeping with the interpre-
tation that her conceptions are genuinely nonstandard, surviving unperturbed 
because they are in fact unperturbable.

Sarah’s conceptions about infinitesimal and infinite numbers are consistent with 
the features of Leibniz’ system of infinitesimal and infinite numbers and Robinson’s 
nonstandard real numbers. A summary of the similarities among these three 
systems can be seen in Figure 2 (see pp. 140–141). Although the similarities are 
extensive, there is one enormous difference: Sarah has no “system”—she is 
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exploring the entailments of her conceptions as the interview proceeds. Her ideas are 
emergent, yet because they are motivated by a need to maintain self-consistency, they 
develop along the lines of Leibniz’ and Robinson’s systems. But there is no reason to 
believe that she would readily be able to use these emergent ideas for a different 
purpose, such as for doing calculus or analysis, as Leibniz and Robinson did.

Sarah certainly makes mistakes, such as conflating distance and number for a 
time. But her nonstandard conceptions are not mistakes, even though they contra-
dict the features of the standard real numbers. By recognizing that hers are nonstan-
dard conceptions, not misconceptions, we can account for why they are so resilient 
even though they contradict the classroom mathematics that she says she memorizes 
in order to get good grades on the tests. Without an understanding of Leibniz’ 
system of infinitesimals, or of Robinson’s formalization of this system, it would be 
tempting to dismiss Sarah’s ideas as being quirky but stubbornly wrong. With this 
understanding, it becomes evident that Sarah is developing a coherent framework 
and an emergent notation for thinking about infinitesimal quantities. Not only have 
her ideas not yet contradicted themselves mathematically for Sarah, the work of 
Robinson indicates that she could continue to pursue these ideas without their being 
perturbed.

DISCUSSION

Sarah’s case has several implications and suggests some promising lines of 
further study. First, Sarah’s story brings a new perspective to how students may be 
thinking about infinite processes and the real numbers. Although this may be the 
first time that this particular set of conceptions has been identified in a student, a 
belief in infinitesimal numbers and distances is not unusual among calculus 
students by any means. In the broader study out of which Sarah’s case emerged, 
31% of the calculus students claimed consistently over multiple questionnaire items 
that there exist infinitely small numbers and/or distances (Ely, 2007). Numerous 
studies have examined the difficulties that students have with the ideas of infinite 
processes and the real numbers (e.g., Cornu, 1991; Cottrill et al., 1996; Davis & 
Vinner, 1986; Przenioslo, 2004; Schwarzenberger & Tall, 1978; Sierpinska, 1987; 
Szydlik, 2000; Tall & Vinner, 1981; Weller, Brown, Dubinsky, McDonald, & 
Stenger, 2004; Williams, 1991). These studies show instances in which students 
may have been appealing to intuitions about infinitesimal numbers also. For 
example, in Tall and Vinner’s study (1981), students described 0.999. . . as being 
“just less than one, because the difference between it and one is infinitely small” 
(p. 159). Sarah’s story suggests that students who speak of infinitely small distances 
and numbers may not be simply “struggling” with ideas of infinity and the real 
numbers, but may be holding nonstandard conceptions.

If students have such intuitions about infinitesimals that they are not explicitly 
taught, then what is the origin of these intuitions? One answer may be the decimal 
notations used to represent real numbers. A notation such as 0.999. . . is seen by 
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Leibniz’ foundational 
system (ca. 1690)

Nonstandard analysis  
(ca. 1961) Sarah’s conceptions

There exist infinites-
imal, finite, and infinite 
numbers.

There exist infinites-
imal, finite, and infinite 
numbers. 

There exist infinites-
imal, finite, and infinite 
numbers.

There are infinitely 
many infinitesimal and 
infinite numbers. 
Operating on them 
produces other numbers: 
for example, squaring an 
infinitesimal produces a 
smaller infinitesimal; 
squaring an infinite 
number produces a 
larger infinite number. 
This can be done infi-
nitely. (Here Leibniz 
disagrees with 
Nieuwentijt (Mancosu, 
1996).) Any number, 
even an infinitesimal, 
can be divided infinitely 
many times.

There are infinitely 
many infinitesimal and 
infinite numbers. The 
nonstandard real 
numbers are a field 
extension of the real 
numbers, and are thus 
closed under the arith-
metical operations, 
which gives rise to infi-
nitely many infinites-
imal and infinite 
numbers. An infinites-
imal is the multiplicative 
inverse of an infinite 
number.

Sarah’s conception is 
quite similar to Leibniz’. 
One can keep dividing 
any length into infinitely 
smaller and smaller 
segments. Infinitesimal 
numbers can be operated 
upon: squaring an infini-
tesimal produces a 
smaller infinitesimal, 
and the reciprocal of an 
infinitesimal is an infi-
nite number.

An infinitesimal is not 
strictly defined or repre-
sented (other than as, 
say, dx); an infinite 
series has an infinites-
imal term at its end.

An infinitesimal can be 
precisely represented by 
an equivalence class of 
sequences of positive 
rational numbers {an} 
that converges to 0.

An infinitesimal can be 
represented by a decimal 
expansion that has digits 
extending past the 
“infinityth” decimal 
place. For instance, 
0.0000. . . (infinite 0s) 
with a 1 at the end.

One can find two 
different numbers infi-
nitely close to each 
other. In particular,  
f + i ≈ f (f is a finite 
number, i is an infinites-
imal).

One can find two 
different numbers infi-
nitely close to each 
other. Any nonstandard 
number is infinitely 
close to but not neces-
sarily equal to its stan-
dard part (n ≈ s(n)).

One can find two 
different numbers  
infinitely close to  
each other. For instance, 
0.000. . .1 and  
0.000. . .01 are both 
“infinitely close” to 0.

Nonstandard Student Conceptions
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Leibniz’ foundational 
system (c. 1690)

Nonstandard analysis  
(c. 1961) Sarah’s conceptions

If one zooms in enough 
on part of a thing, one 
will see that this part 
looks like a microcosm 
of the thing itself. There 
are worlds within 
worlds. This can only be 
done finitely in the real 
world, but in the mathe-
matical one it can be 
done infinitely, or at 
least it is a “useful 
fiction” to pretend that it 
can. On the other hand, 
monads are indivisible 
and spiritual units, as 
different from infinitesi-
mals (which are infi-
nitely divisible) as the 
limitlessness of God is 
from mere infinite quan-
tities.

Keisler’s “infinitesimal 
microscope” allows one 
to zoom in infinitely. A 
monad is defined to be a 
set of all numbers infi-
nitely close to one 
another (this is not 
definable in first-order 
logic). This is sort of a 
microcosm of the stan-
dard real numbers. (Note 
that this differs dramati-
cally from Leibniz’ use 
of the word “monad.”)

Sarah’s conception is 
similar to Leibniz’, at 
least with respect to the 
number line: “. . . even 
in that tiny infinitely 
small space [between 
0.999. . . and 1] you can 
still cut that into infinity 
too and put numbers in 
there,” and this “would 
look exactly like the big 
number line except they 
wouldn’t be called the 
same numbers.”

I found no reference to 
rationality of infinites-
imal numbers by 
Leibniz.

Rational and irrational 
infinitesimals exist.

There exist rational 
numbers in every small 
space, including infini-
tesimally small spaces.

The purpose of infinites-
imals is to provide a 
method for doing 
calculus.

The purpose is to 
produce a rigorous 
model for analysis that 
uses infinitesimals.

The purpose of infinites-
imals is sense making, 
not some additional 
functional purpose.

Gradually discarded in 
the 19th century in favor 
of the limit-based 
formulation of the stan-
dard real numbers.

Established in 1961 
(Robinson) as logically 
equivalent to the stan-
dard real numbers.

She refers to her concep-
tions as her own strange 
way of thinking.

Figure 2. A summary of the similarities among Leibniz’ system,  
the system of nonstandard analysis, and Sarah’s conceptions.
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students long before they learn about series and convergence, so students may 
generate misconceptions as they try to make sense of the number. Certainly some of 
these misconceptions will not lead to a belief in infinitesimals, such as the “heuristic 
dynamic” conception (Sierpinska, 1987). For a student who believes that 0.999. . . 
“never reaches” 1, the process of adding 9s is never completed, never encapsulated 
(Dubinsky et al., 2005). This conception, which is quite common among students, 
should not lend itself to a belief in numbers that are infinitely small.

However, Sarah does not seem to be making sense of the notation in this way. 
She is treating the number 0.999. . . as being infinitely close to 1. Rather than 
treating the “. . .” as an unfinished process, she understands it as a completed object, 
one upon which we can then act by putting other digits beyond it to generate objects 
such as 0.000. . .01. This view is just as reasonable of a way of making sense of the 
notation as the standard way, which would have students believe that “0.999. . .” is 
just another way of writing “1.” The “0.999. . .” notation may thus be quite sugges-
tive for students, lending itself to the creation of new objects.

A second implication of this case study is that nonstandard conceptions can help 
to explain why students have certain beliefs about how to learn mathematics. One 
corollary of the view that students learn by accommodating perturbations is that 
students do not simply learn the mathematics that they are taught. If an idea from 
the classroom conflicts with a student’s prior knowledge, then sometimes the class-
room idea may be rejected or merely overlaid upon the underlying conceptions in 
some superficial way. But if the prior knowledge is nonstandard, and is unperturb-
able, then this rejection or overlaying of classroom mathematics might happen again 
and again, becoming a regular mode of operating in the classroom for the student. 
This may cause the belief that mathematics is something that does not really make 
sense, but which one memorizes to get good grades.

Being aware of the issues of nonstandard conceptions may help a teacher success-
fully address them in the classroom. By discussing issues of infinity with his 
students, a teacher could introduce the idea of infinitesimals and the standard real 
numbers as two different viable routes outlined by history—an example of how 
mathematics is influenced by human history. He could indicate that in this class it 
is necessary to choose some set of rules and that they will choose the standard route, 
but this route is not chosen because the other route is incorrect. By directly 
addressing the issue in this way, students with nonstandard conceptions may be able 
to learn the standard system without continually encountering contradictions.

A third implication of the existence of a student’s nonstandard conceptions of 
infinitesimals adds a new dimension to the conversation about the relationships 
between historical thinking and student thinking. Why do Sarah’s conceptions 
reflect those of mathematicians whose ideas she has not seen, and which are not 
part of the standard curriculum?

The idea of nonstandard conceptions suggests that the reason for these parallels 
is that the construction of Sarah’s knowledge is governed by mechanisms for cogni-
tive consistency, and that these mechanisms are related to the mechanisms for 
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publicly establishing mathematical consistency. Radical constructivism claims that 
there are mechanisms for cognitive consistency at work that govern the construction 
of student knowledge. Because inconsistencies in a schema allow for perturbations, 
cognition is a locally self-regulating system. Thinking can be thought of as a game 
with rules, and these rules govern the construction of consistent cognitive  
structures. “Consistency, in maintaining semantic links and in avoiding contradic-
tions, is an indispensable condition of what I would call our ‘rational game’ ” (von 
Glasersfeld, 1990, p. 25).

Just as there are internal mechanisms for cognitive consistency, there are also 
sociomathematical rules and mechanisms for publicly establishing mathematical 
consistency, namely, proofs. So mathematics, too, can be thought of as a system 
with rules for establishing consistency, although these rules and practices change 
over time (Lakatos, 1976). Sarah’s structure, the formation of which was governed 
by mechanisms for cognitive consistency, is strikingly similar to a nonstandard 
mathematical structure, the formation of which was governed by the public rules 
for mathematical consistency.

This raises a broader question: What is the relationship between the internal 
cognitive rules that govern the construction of (locally) consistent sets of concep-
tions and our external sociomathematical rules that govern the construction of 
consistent mathematics? Is it that our culture’s criteria for mathematical consistency 
and coherence are an externalization of our innate internal cognitive criteria for the 
consistency and coherence of constructed knowledge? Or is it perhaps that our 
personal cognitive mechanisms for constructing consistent knowledge are an inter-
nalization of the criteria for mathematical consistency (more generally, an inter-
nalization of the norms of consistency in our discursive social practices)? Or, 
perhaps our internal cognitive mechanisms and our public mathematical rules influ-
ence one another in complex and iterative ways.

This question is not a new one, and our further attempts to answer it should be 
informed by the more general debate in educational psychology whether individuals’ 
patterns of thinking have consistent structures from which sociocultural structures 
derive (e.g., Chomsky, 1967), whether sociocultural structures inform individuals’ 
patterns of thinking (e.g., Hutchins, 1993; Vygotsky, 1962), or whether there is a 
complex interaction between the two (e.g., Piaget & Garcia, 1983/1989).

Piaget and Garcia’s approach may be particularly promising. Unlike this study, 
it is not specifically focused on the relationship between the cognitive and historical 
mechanisms by which consistency is maintained. Rather, it focuses on several 
common mechanisms by which new conceptions are made from old ones. Piaget 
and Garcia’s goal was to show that “the mechanisms mediating transitions from 
one historical period to the next are analogous to those mediating the transition 
from one psychogenetic stage to the next” (1983/1989, p. 28). By focusing in future 
work on the ways that students such as Sarah progress from one psychogenetic 
stage to the next, we could use Piaget and Garcia’s work to discern more about why 
the ideas of a modern student could so closely resemble those of a 17th-century 
mathematician.
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Several simpler areas of future inquiry also present themselves based on this 
article. Certainly one area is to look for other examples of nonstandard student 
conceptions of infinite and infinitesimal numbers. For instance, Skolem’s nonstan-
dard model of arithmetic contains actually infinite numbers. The Tennis Ball problem 
and Ping-Pong® Ball problem (Dubinsky et al., 2005; Mamolo & Zaskis, 2008) may 
provide rich and promising contexts for investigations into whether students find 
appeal in such a nonstandard model in their understandings of infinity.

Another area for further research is to see whether students who believe in 
infinitesimals are able to build a system of calculus using these conceptions as a 
basis. There is no evidence that a student such as Sarah is connecting her concep-
tions about infinitesimals to calculus concepts such as derivatives. Could these 
connections be made and supported for such a student? Conversely, are students 
who have a robust understanding of derivatives and integrals involving images of 
infinitesimal slopes and sums of infinitesimally wide rectangles more inclined to 
think of the number line using infinitesimals?

These lines of inquiry are important for one to understand the implications of 
this research for the teaching of calculus and higher mathematics. For example, 
textbooks that take an infinitesimal approach to calculus (e.g., Henle & Kleinberg, 
1979; Keisler, 1986) might provide a rigorous conceptual base for students such as 
Sarah. Such books avoid the perennially difficult idea of limits, but may instead 
require students to learn difficult ideas in mathematical logic.

By recognizing that some student conceptions that appear to be misconceptions 
are in fact nonstandard conceptions, we can see meaningful connections between 
cognitive structures and mathematical structures of the present and past that other-
wise would have been overlooked. In this case, this adds a new dimension to our 
understanding of student ideas about infinity and the real numbers, and provides a 
lens for interpreting the import of those ideas.
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