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Several kinds of phase-shift equivalent one-boson-exchange potential (OBEP) including 

velocity-dependent term are constructed so as to reproduce the two-nucleon data. Here we 

propose an "extended Green's method" to treat the velocity-dependent tensor potential. Nu­

clear matter and neutron matter properties are calculated for our nonstatic OBEP. The 

phase-shift equivalent OBEP's, however, give different nuclear matter properties owing to the 

difference of the softness of core potential and the retardation. The retardation strengthens 

the tensor-to-central ratio of OBEP in the triplet even state, and reduces the nuclear matter 

binding energy per particle by 2.6~5.0 MeV with a decrease in density by 0.05~0.08 fm- 1• 

However, the retarded effect on neutron matter is relatively small. 

§ I. Introduction 

The retardation is an important part of the nonstatic effects of meson theoret­

ical nucleon-nucleon potentials. Since many-nucleon systems are susceptible to the 

off-energy-shell elements of the potentials coming from the retardation, the retarded 

effects in these systems are expected to be more important than that in two-nucleon 

systems. By this reason, the retarded effects in nuclear structure studies are of 

great interest. 

In previous papers 1>. 2> (hereafter referred to as I and II, respectively), we 

attempted to construct the nonstatic OBEP with retardation in r-space for the 

sake of future applications to finite nuclei, and to elucidate the retarded effect on 

nuclear matter. Strictly speaking, the treatment of nonstatic effects in these anal­

yses were, however, insufficient because the velocity-dependent tensor term of the 

OBEP was disregarded. 

The aim of this paper is to reconstruct the OBEP including the velocity­

dependent tensor part and to examine the properties of both nuclear and neutron 

matters for this OBEP. 

The velocity-dependent tensor potential complicates the treatment of the 

Schrodinger equation in an usual manner. But if we use the "extended Green's 

method", 3> it is possible to handle the problem easily in the same way as the 

velocity-independent case. 
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Nonstatic One-Boson-Exchange Potential with Retardation 1985 

As is seen in the later part of this paper, some improvements in the meson 

parameters of OBEP to fit the experimental data are resulted by the inclusion 

of the velocity-dependent tensor potential. The retarded effect on saturation prop­

erties of nuclear matter, by which the binding energy and saturation density are 

reduced as was clarified in II, tends to be enhanced by this nonstatic tensor term. 

Besides, the analysis of neutron matter shows that the retarded effect in this 

system is relatively small in spite of its high density. 

In § 2, brief discussion of the r-space OBEP and the phenomenological treat­

ment of the core region are given. Several kinds of OBEP including the velocity­

dependent tensor term are constructed so as to fit the experimental two-nucleon 

data. In § 3, by the applications of these OBEP's to the nuclear matter and 

neutron matter, the retarded effects in both systems are investigated. 

§ 2. Analysis of two-nucleon systems with the retarded OBEP 

2.1. Potential 

The derivation of the r-space OBEP with retardation was shown in I. The 

detailed forms from the exchange of the scalar, pseudoscalar and vector mesons 

are summarized in the Appendix. 

For the definition of the nucleon-meson coupling constants, we show the inter­

action Lagrangian densities: 

L.' = v4rrg.(/JcjHj/8
)' (2·la) 

L/ = ../ 4rr{gpiflir5</}(,6cP) + ~: iflir5r "a "¢(P)}, (2 ·lb) 

L.' = ../ 4rr {g.(/Jir "¢¢" c•) + fn:. ¢6 ""¢¢~·,;}, (2·1c) 

(2· 2) 

where mi (i=p, v) are meson masses. 

The general form of r-space potential IS represented as 

(2·3) 

where 5 12 Is the usual tensor operator and 

(2·4) 

The function Ui of our OBEP consists of two parts: 

Ui = Vi+ Wi , i = ( C, T, LS, W, LL), (2·5) 

where Vi and Wi are the usual Yukawa and the retarded potentials, respectively. 

The detailed forms of Vi and Wi are given in the Appendix. 

Since the nuclear interaction in the core region seems to be beyond the 
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1986 T. Obinata and A1. "Vada 

applicability of the OBE model, we introduce the phenomenological core potential 

Vcare and a cutoff function Fi (r) to suppress the contribution of Eq. (2 · 3), 

F;(r) = {1-exp[- (r/i7cut) 2]}"', i= (C, T, LS, W, LL). (2· 6) 

The phenomenological core potential consists of the repulsive central and attractive 

LS terms!) The repulsive core 1s introduced to reproduce the S state phase 

shifts, and the attractive LS core to improve the 3 PJ state phase shifts. 

Vcore = VZore (r) + Yc~~e (r) (L · S). 

The following three types are assumed for Ycare· 

1) OBEH; hard core plus LS core: 

V c ( ) _ {oo; r<rc , 
core r -

0; r>rc, 

Vz!e(r) =- VLs exp[- (r/7Jd 2
]. 

2) OBEG; the Gaussian soft core plus the Thomas type LS core: 

Vc~re(r) = Va exp[- (r/7J0 ) 2], 

V LS (r) = _1_. _.!_ .lYc~r"ir) 
care Mz r or 

3) OBEV; velocity-dependent core plus LS core: 

VZore(r) = {p2r/J(r) +r/J(r)p2} / ]1.1, ¢(r) =¢P exp[- (r/1Jp) 2], 

Vza~e(r) = -11Ls exp[- (r/'lJLs) 2]. 

2.2. Inclusion of the velocity-dependent tensor potential 

(2 -7) 

(2-8) 

(2·9) 

(2·10) 

(2 ·11) 

(2·12) 

(2·13) 

The tensor potentials of the OBEP's from the pseudoscalar meson and vector 

meson (tensor coupling) depend partly on the velocity as is shown in the Appendix. 

We will attempt to construct the net OBEP including these velocity-dependent 

tensor potentials in addition to the other nonstatic terms. This task is easily 

performed by the "extended Green's method".') 

We assume the following potential form: 

where U(r) stands for the velocity-independent potential. The coupled equation 

with the potential (2 ·14) is written in matrix form as 

(2 -15) 

where 

(2-16) 
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Nonstatic One-Boson-Exchange Potential with Retardation 1987 

J-l_ 2(J-1) a - ·- ----
2J+1 ' 

J+l_ 2(J+2) a ----------
2J+1 ' 

aND = ?_{.l_(.J3 l) ' 
2J+1 

(2 ·18) 

AJ±l = (1 + 2¢c (r) - 2aJ± 1¢r (r)) (!_±l) (~ + 1 ±: l) + MUJ±l, (2 ·19) 
r 

Here, UJ±l denotes the effective potential for the L = J ± 1 state, and Ur is the 

tensor potential of U(r). The differential operator Dr appeared in nondiagonal 

part of the left-hand side of Eq. (2 ·15) obstructs straightforward application of 

the "Green's method". 

The diagonalization of the left-hand side of Eq. (2 ·15) is performed by a 

unitary matrix as 

R = ( cos {} sin {}). 

-sin {} cos {} 
(2. 21) 

The diagonalization is obtained when cos {} = ,/ (J + 1) j2J + 1 and sin {} = ,/ Jj2f~-I. 

Then we obtain a new coupled equation as follows: 

(2. 22) 

where 

(2. 23) 

VJ+l=- M _____ { J+ 1 UJ+l+ J UJ'+'l~ 12 J(J+ 1 )ur} 
- 1+2¢J±l 2J+1 - 2J+1 (2J+1Y 

_(d¢!~J_c!_rY + _ 2¢J±l .p~ 2J 

(1 + 2¢J±1) 2 1 + 2¢J±! r 2 ' 

(2·24) 

(2· 25) 

¢J+I =¢c(r) -4¢r(r), ¢J-J =¢c(r) +2¢r(r). (2. 26) 

The solutions of Eq. (2· 22), fJ and gJ are related to the original wave 

functions, uJ and wJ as 
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1988 T. Obinata and M. Wada 

( uJ) = /~cJ+~)/2J+ 1 - ~ J!2J +1) (fJ/~~-+-2¢J-l)· 
WJ \~Jj2J+1 ~(J+1)j2J+1 gJj~1+2¢J+I 

(2. 27) 

It is to be noticed that a condition as 1 + 2¢J±J =FO must be guaranteed for an 

application of the "extended Green's method". 

2.3. Fits to two-nucleon data 

In this subsection, we will search for the parameters of the net OBEP that 

reproduce the scattering phase shifts, the two-nucleon low energy parameters and 

the deuteron properties. 

In addition to the exchange of well-established rr, r;, oJ and p mesons, two 

hypothetical scalar mesons (}0 (I, J" = 0, o+) and (}1 (1, 0 1
) are introduced. (}1 meson 

ensure the state-independency of central core potential. The detailed discussion 

on the meson parameters was made in I, provided that the isovector-scalar meson 

was called o instead of iJ1 used in this paper. 

The reduction parameter ). = 0.5 is multiplied by the nonstatic terms of order 

p 2 j M 2• The cutoff radius in Eq. (2 · 6) is taken as YJcut = 0.36 fm for OBEH and 

Table I. Potential parameters of the r-space OBEP's. Inner potential parameters are common 

to both (R) and (NR). For the potential names, refer to the text. Meson masses are 

fixed as m,=139MeY, m,=549MeY, m6 0 =550MeY, m6 1 =770MeY, m.=784MeY and 

mp=765 Me Y for all kinds of potential. 

OBEG I OBEG OBEG 
(R)-SC ' (NR)-SC I (R)-LC 

-- -.. 

Meson const 

g/ 

g.' 

g~, 

g~l 

g.' 

gp' 

13.5 

2.0 

8.88 

2.396 

18.0 

0.93 

1. 57 

,l 0. 5 

Ylcut (fm) 0. 36 

Central core 

r,(fm) 

YJa (fm) 

Va(GeY) 

Y}p(fm) 

¢p 

r-----
1

, 13.5 

2.0 

9.0 

j_ 

0.36 

2.8 

2.14 

17.0 

1.0 

1. 85 

0.5 

0.36 

LS core 

Y}LS (fm) 

VLS(GeY) 

Thomas term 

13.5 

2.0 

8. 75 

2.805 

13.5 

0.9 

1.5 

0.5 

0.36 

OBEG i OBEY 

I (NR)-LC -~) 

0.58 

0.65 

13.5 

2.0 

9.14 

2. 77 

13.0 

1. 05 

1. 65 

0.5 

0. :l6 

13.5 

2.0 

7.33 

1. 53 

17.0 

0.88 

1. 38 

0.5 

0.5 

I 
I 

! 
I 

I 

0.6 

1.1 

Thomas term T 
0.6 

-0.65 

OBEY 
(NR) 

-

13.5 

2.0 

7.98 

1. 52 

16.9 

0.93 

1.5 

0.5 

0.5 

I 
--

I 

I 
OBEH OBEH 

(R) (NR) 

l--
13.5 

2.0 

8.12 

3.39 

16.0 

1.0 

1. 63 

0.5 

0.36 

0.36 

0.45 

-2.0 

13.5 

2.0 

8.4 

3.305 

15.1 

1.2 

1. 76 

0.5 

0.36 
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~Nonstatic One-Boson-Exchange Potential with Retardation 1989 

OBEG and 'llcut = 0.5 fm for OBEV. The exponents ni are fixed as 5 for i = C, 

T, LS and 6 for i = 1V, LL. 

Essentially free parameters of our OBEP are g~"' g~, 9w2, g/, (f/g)P, m 6, and 

m 6 , in addition to the inner potential parameters. The parameters obtained from 

the search are listed in Table I. 

The four kinds of OBEP are considered here, viz., the OBEH, OBEV and 

two kinds of OBEG with small core radius (OBEG-SC) and large core radius 

(OBEG-LC). We use henceforce the abbreviations (R) and (NR) for the poten­

tials with and without retardation, respectively. For instance, the OBEG with 

retardation a11d small core radius is referred to as OBEG (R) -SC. 

As is seen in Table I, the coupling constant of w meson for (NR) is smaller 

than that for (R), and conversely in the case of u0 meson, the coupling constant 

for (NR) is larger than that for (R). These tendencies are due to the attractive 

character of retarded effect of the OBEP on nucleon-nucleon scattering. 51 

Since the retarded effects of n and 'lJ meson exchange are small, the n-N 

and 'lj-N coupling constants for (R) and (NR) are taken as a common value. 

In the case of p meson, both 9r2 and (f/g)r for (R) are smaller than those for 

(NR). This change of the coupling constant is effective to strengthen the tensor 

part of (R) in the triplet even state. As compared with the results in I, the 

coupling constants of u0 , u1 and w mesons are slightly reduced, but that of p meson 

is made somewhat larger one by inclusion of the velocity-dependent tensor terms. 

However, g~, and 9w2 are somewhat larger than those of the OBEP's by other 

(MeV) 

600 

400 

200 

-200 

-400 

-600 

I 
I 
I 3Uc 
I 
I 
I 
I 
I 

Fig. l. The central and tensor potentials in 

the 'Estate for the cases of OBEG(R)-SC 

(solid curves) and OBEG (NR) -SC (dashed 

curves). 

authors. 

(i) Potentials 

Characteristics of the OBEP are 

almost the same as those obtained in I. 

In Fig. 1, the central and tensor poten­

tials in the triplet even ('E) state for the 

case of OBEG-SC are shown. The tensor­

to-central ratio Ur/Uc of (R) in the 3 E 

state is larger than that of (NR) in the 

intermediate region as in Fig. 1. This 

is due to the smaller p-N coupling con­

stant for (R) than that for (NR), and 

is an important character of the retarded 

effects for nuclear matter calculations. 

Yet the OBEV is the smoothest, the 

features of all the OBEP's are almost the 

same as one another, except for a small 

reformation in the core region. For each 

type of core potential, the difference be­

tween (R) and (NR) is relatively large 
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1990 T. Obinata and JYJ. 1Vada 

on the potentials in the intermediate region, especially on the quadratic LS and 

L 2 potentials. 

Both potentials (R) and (NR) are typical examples of phase shift equivalent 

potentials that differ from each other in the potential shapes. 

(ii) Scattering phase shifts 

Hereafter, we treat OBEG(R)-SC as our standard soft core potential because 

of considering the off-energy-shell property and yielding proper nuclear matter 

binding energy. We use the expression OBEG instead of OBEG-SC unless other­

wise noticed. The phase shifts calculated from OBEG are exhibited in Figs. 2, 3 

and 4 (other potentials give somewhat the same results). An overall fit is fairly 

good. The error bars in figures are the experimental values given by Arndt, 

MacGregor and Wright.") 

The retardation gives large additional attraction, mainly in the 1S 0 and 3S1 

states as shown in Figs. 2 and 3, in which dash-dotted curves are obtained by 

omitting the retardation in OBEG (R). This tendency is qualitatively in agreement 

with that of P-space calculations.")' n 

Effects of tensor potential in the 3S1 state are shown in Fig. 3 by dotted 

curves. Static tensor potential omitted velocity-dependent terms gives a large at­

tractive contribution. However, effects of velocity-dependent tensor terms are re­

pulsive. 

(deg) 

60 

40 

20 

0 

-20 

(deg) 

10 

5 

0 

100 

------:J: 
--~...:.r---
~ D 

.... ~ 2 

E(MeV) 

100 200 300 

Or--+--1~00~---2~00 ______ 300~--

'" E(MeV) 

~I~, 
-I-....... P, I -20 

-40 
(deg) 

-r- ................ 
..._ -........ _ 

0.-----1T00~---2~00r- ____ 30T0~ 

- 5 ~--~-~~~:f 
-10 l 

(deg) 

Fig. 2. The 1£ and 10 phase shifts calculated from OBEG(R) (solid curves) and OBEG(NR) 

(dashed curves). The dash-dotted curve represents the result when omitting the retarded 

part of OBEG(R). 
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Nonstatic One-Boson-Exchange Potential with Retardation 1991 

(deg) I 

00 \'\' 

60 :r \ 

\ \~'Rstatic tensor force 

40 \ \ vel.dep. tensor term 

\ ', 
' .\ ', 
', . ' ', 

20 ',,',,f·" ~ ',,',,, 
' . ..... 
' ' ........... 
' " ..... ', , £(MeVJ 

100 
0 

-20 

(deg) 

40 

20 

-------
302/~ I 

~ 30 

0 ~ -r---=x- 3 --::;=- E 

"-!. 100 200 300 (MeV) 

-20 

-40 

(deg) 

30 

20 

10 

-~I 30 

-...r~r--~---
--L 

E, 
I 

~-=-=-~..: ______ _ 
O 00 200 300 £(MeV) 

Fig. 3. The same as in Fig. 2 but for the 'E phase shifts. The arrows indicate the contribu­

tions from both static and velocity-dependent tensor terms of OBEG(R) -SC. 

(deg) 

20 

(deg) 

2 

100 200 300 
0.------.------.------.~-

- 1 

-2 

-3 

(deg) 

Fig. 4. The same as in Fig. 2 but for the 30 phase shifts. 
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1992 T. Obinata and ,~f. 1Vada 

As compared with I, appreciable improvements to the 3S1 + 3D 1 and 3PJ states 

are achieved by inclusion of velocity-dependent tensor terms and phenomenological 

LS core potential. However, the 3 P 0 phase shift at lower energies is still larger 

than the experimental one. The discrepancies, especially in the 3P 2, 21 at high 

energies are yet remained. 

The l-quantity is defined as 

2 ('o/h- oiexp) 2 

X = I: A ~ exp-- ' 
phase kJ 0 i 

where the o/11 are the theoretical phase shifts, the oicxp experimental phase shifts 

and the Aoiexp errors assigned to o/xp. Here we use the Livermore analysis at 

25, 50, 95, 142, 210 and 330 MeV (86 pieces of data) as the oiexp. 
The l values of OBEG are 6.5 and 6.4 for (R) and (NR), respectively, 

compared to 14.3 and 15.0 obtained by OBEG without velocity-dependent tensor 

terms. This improvement in data fit seems due to the velocity-dependent tensor 

terms and phenomenological LS core potential. 

(iii) Lmv energy parameters and deuteron properties 

The low energy parameters and deuteron properties calculated from four kinds 

Table II. Low energy parameters and deuteron properties. For the singlet state, values in 

P·P scattering are shown. The quantities contained within parentheses are values from 

the same OEEP's without the Coulomb force. 

OEEG(R)-SC 

OBEG(NR)-SC 

OBEG(R)-LC 

OBEG(NR)-LC 

OEEV(R) 

OEEV(NR) 

OBEH(R) 

ODEH(NR) 

Exp 

I 1re (fm) _I_ ~a(fm) ! 're (fm) 1 'a (fm) I Ed (MeV) I Qd (fm') I PD (%) 

2.61 -7.7-1-- 1.801_!_5_;1--2.2~3;-1 0.276:;-1- ;~ 

:; ;;: : ~; ~; 1. 8191 ' '" 2. 2266 I o 2631 1. 18 
2. 59 -7.54 

(2. 65) ( -16. 9) 

2. 62 -7.70 
(2. 69) ( -17. 4) 

2. 57 -7.67 
(2. 64) ( ~ 17. 5) 

2. 61 -7.67 
(2. 68) ( -17. 3) 

2. 61 -7.76 
(2. 69) ( -17. 5) 

2. 65 -7.75 
(2. 74) ( -17. 2) 

2. 794a) I -7. 8z:Ja) 
±0. 015 ±0. 01 

( 2.84) (-17.0) 
±0.03 I ±1 

1. 782 

1. 792 

1. 791 

1. 808 

1. 791 

1. 794 

1. 750b) 

±0.005 

5.47 2.2223 0.2736 5.06 

5.44 2.2250 0.2620 4.21 

5.46 2.2219 0.2662 4.22 

5.45 2.2232 0. 2611 4.00 

5.46 2.2273 0. 2711 4. 75 

5.42 2.2245 0.2538 3.65 

5. 411b) 2. 2245C) I 0. 278bl 
±0. 005 ±0. 0002 1 ±0. 008 

I 

a) H. P. Noyes and R M. Lipinski, Phys. Rev. C4 (1971), 995, 

b) E. Lommon and R. Wilson, Phys. Rev. C9 (1974), 1329. 

c) R. Wilson, The nucleon-nucleon interaction (Interscience Publishers, Wiley, N. Y. and London, 

1963). 
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Nonstatic One-Boson-Exchange Potential with Retardation 1993 

of OBEP are shown in Table II. All kinds of potential give nearly the same 

values, however, (R) give a large quadrupole moment and large D-state probability 

in comparison with those from (NR). It indicates the strong tensor potential of 

(R) in the 3 E state. 

§ 3. Nuclear matter and neutron matter 

3.1. Calculational method 

Our calculational method 1s based on the P-space formalism of the Brueckner 

theory by Harada, Tamagaki and Tanaka. 81 For detail of this method, we described 

in II. Here we give merely some comments. The Bethe-Goldstone equation is 

written as 

(monoiGimono) =(monolvlmono) 

+ SSdmldnl(monolvlmlnl) Q (mlnliGimono), 
e (1:, m1, n1) 

(3 ·1) 

e(J:, m~> n1) = 1: ~ E1 (ml) ~ EJ (nl), (3· 2) 

where 1: is the starting energy and E 1 is the single particle energy for which the 

potential energy is neglected according to the hole line expansion. 91 The potential 

energy 1s g1ven as 

Uo(mo) = I; (munoiGimuno~nomo). 
lnol<kF 

The total energy per particle is 

E 

A 

(3. 3) 

(3 ·4) 

where T(m 0 ) is the nonrelativistic kinetic energy. The binding energy denotes 

the absolute value of the total energy. 

The defect wave function FzS{STJ and the wound integral tdfzST) for each partial 

wave are represented in momentum space as follows: 

F\JST) (k k . P) = kQ (k, P) GffzST) (k, ko; P) (3 . S) 
z z ' o' e (1:' k, P) ' 

tc/fzST) (ko; P) = ~~ 3 
(2J + 1) (27' (n ~ 1) + 1) roo dkiFz\{ST) (k, ko; P)l'' (3. 6) 

k=(m~n)/2, P=(m+n)/2, (3·7) 

where n = 2 for nuclear matter and n = 1 for neutron matter, k and lr0 are relativf' 

momentum of the two nucleons in intermediate and initial states, respectively, 

and P is the c.m. momentum. 

3.2. Nuclear matter jJroperties 

Saturation curves for each kind of soft core OBEP are shown 111 Fig. 5(a). 
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1994 T. Obinata and 1'11. TVada 

Partial wave contributions for OBEG-SC are exhibited in Fig. 5(b) and Table III. 

Binding energies per particle at saturation densities are listed in Table IV. 

The large discrepancy of the saturation points between OBEG-SC and OBEY 

(-15.6MeV(1.64fm- 1 ) to -24.2MeV (1.83fm- 1)) is completely duetothe dif-

li::--'1T'.4"-----'-i1."'6 __ .....:1.:r.a~-~2.0 kF 
I I I '(fm-l) 

-15 

-20 

-25 

£/A 
(MeV) 

• 
• 

(a) 

(R) 

(NR) 

P. EIA (MeV) 

10 

- 10 

-20 

-30 

Fig. 5. Saturation curves in case of (R) and (NR) are shown in (a). Partial wave contribu­

tions from OBEG(R)-SC (solid curves) and OBEG(NR)-SC (dashed curves) are shown 

in (b). The dots · show the value from p-space OBEP. 111 

Table III. Partial wave contributions to the potential energy (MeV/A) at kF=l.6fm· 1 for 

each kind of soft core OBEP. 

I OBEG(R) ' OBEG(NR) 
-SC . -SC 

i I 

1So 

1p1 

ID, 

'S1 

'D1 

'D, 

'D, 
'Po 

'P, 

'P, 

~-~-~-- ~---~-

-21.64 -20.84 

6.09 

-4.37 

-22.35 

2.46 

-6.94 

0.20 

-5.22 

18. 12 

-1:1.79 
- ~-- i ___________ _ 

Pot. energy 

Kin. energy 

Bind. energy 

-47. 4:o 

31.85 

15.58 

6.90 

-4.78 

-25.61 

2.46 

-7.51 

0.18 

-4.95 

18.25 

-13.69 

-49.60 

31.85 

17.75 

OBEG(R) 
-LC 

-22.88 

6.14 

-4.30 

-2::3.80 

2.49 

-6.89 

0.21 

-5.45 

18.36 

-13.38 

-49.49 

31.85 

17.65 

OB~p~NR) I OBEV(R) i OBEV(NR; 

~---------- --

-22.24 

6.71 

-4.75 

-26.36 

2.52 

-7.50 

0.18 

-5. :o5 

18.26 

-14.27 

-52.80 

31.85 

20.95 

-22.91 

5.09 

--:o. 86 

-26.09 

2.66 

-6.70 

0.14 

-4.57 

19.::38 

-15.13 

-52.00 

31.85 

21.15 

-22.57 

5.34 

-4.27 

-26.49 

2.79 

-7.28 

0.13 

-4.77 

19.41 

-Hi.05 

-53.77 

31.85 

21.92 
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Nonstatic One-Boson-Exchange Potential with Retardation 1995 

Table IV. Saturation properties for each kind of OBEP. 

Potential Density in kF (fm-1) Bind. energy (MeV/ A) 
-------------------------··--

OBEG(R)-SC 1. 64 15.6 

OBEG (NR) -SC 1. 70 18.:? 

OBEG(R)-LC 1. 75 18.4 

OBEG(NR)-LC 1. 83 23.4 

OBEV(R) 1. 78 21.7 

OBEV(NR) 1. 83 24.2 

ference in the softness of core potential and the weakness of tensor potential. 101 

The results predicted by OBEG (R) -SC are considerably better than those given 

by other potentials, and in relatively good agreement with those obtained £rom the 

P-space calculation by Holinde et al. uJ Both OBEG-LC and OBEV produce the 

overbinding. Thus they seem to be an inappropriate potential. 

The binding energy and saturation density produced by (R) are small com­

pared with those by (NR) due to the large D-state probability. This tendency is 

qualitatively independent of the type of core potential. 

It is easily seen that the difference of the binding energies between (R) and 

(NR) arises mainly from the 3S1 +'D1 states sensitively reflected the difference 

of tensor-to-central ratios between (R) and (NR). Also the effect of retardation 

seems to be rather enhanced by inclusion of the velocity-dependent tensor terms 

(MeV) 

1.2 

-10 

-20 
• ...._. I ----,--

............... I -...... __ I 
--....._ 

-30 

Fig. 6. Solid curves indicate partial wave contribu­

tions from OBEG(R). Dashed curves and clash­

dotted curves show the results from OBEG (R) 

omitting all tensor potentials and OBEG (R) 

omitting only the velocity-dependent tensor terms, 

respectively. 

in comparison with II. 

Each effect omitting the tensor 

potential and only the velocity-depen­

dent tensor terms is shown in Fig. 6 

by dotted line. The contribution of 

the static tensor potential is attractive 

and large for the 3S1 +'D1 and 'D, 

states, while a net contribution for 

the 3PJ states is very small. The 

velocity-dependent tensor terms con­

tribute repulsively to the 3S 1 +'D1 

states. The tendencies above men­

tioned are similar to that of phase 

shifts. 

In Table V, wound integrals 

Jcj!18 T) of some selected states and the 

total wound integral /C are listed for 

!?F = 1.65 fm \ !?0 = 0.57 !?p and P = 0.3 

!?p. The value of /Cg1o) is proportional 

to the probability of the excitation 
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1996 T. Obinata and Jlvf. vVada 

Table V. Wound integrals tdf,STl and the total wound integral Kat ''F=l.65 frn- 1 , ko=0.57kF 

and P=0.3kF for each kind of OBEP. 

JC (001) 
00 

K(I10) 
00 

11:'(110) 
02 

I 

K(Oll) 
11 

IC (Ill) 
11 

I 
total K 

---,-~ 

OBEG(R)-SC 0.0158 0.0170 0. 0:)46 0.0053 0.0113 0.0902 

OBEG(NR)-SC 0.0218 0.0184 0.0204 0.0060 0.0109 0.0844 

OBEG(R)-LC 0.0036 0.0029 0.0341 0.0046 0.0104 0.0606 

OBEG(NR)-LC 0.0083 0.0044 0.0231 0.0051 0.0100 0.0563 

OBEV(R) 0.0060 0.0065 0.0220 0.0049 0.0100 0.0534 

OBEV(NR) 0.0074 0.0079 0.0203 0.0050 0. 0100 0.0550 

from the hole state ( <kF) to the particle state (>kF) through the tensor 

interaction. The larger value of (R) than that of (NR), thus, indicates the strong 

tensor potential of (R) in the 3E state. In the case of OBEV, the total wound 

integral /C is small reflecting smoothness of OBEV in short-range regions. 

3.3. Neutron matter properties 

To explain the structure of neutron star, it Is necessary to construct the 

equation of state that is applicable to a wide range of density.12l Corresponding 

to the increasing density with depth of a neutron star, various phases of matter 

form the concentric structure of star. Due to the small wound integral and the 

convergence of the pair expansion, the Brueckner theory is considered to be ap­

plicable to a density region p = 0.5 X 10 14 ~6.0 X 1014 (g/ cm3) in which there exists 

dense neutron gas with a small fraction of proton and electron. 

In this subsection, we calculate the properties of neutron matter in this dense 

neutron gas region by employing the Brueckner theory with our OBEP's, in order 

to see the potential feature in the short-range region in T = 1 state. 

The total energy per particle and partial wave contribution from OBEP versus 

density are shown in Fig. 7. The results from OBEG (R) are in good agreement 

with those from the p-space OBEP by Bleuler et al. 13l The OBEV is slightly 

repulsive for higher densities, yet the differences among three kinds of OBEP 

with different cores are rather small compared with those of nuclear matter. Be­

sides, the difference between (R) and (NR) are also small, which differs from 

the situation of nuclear matter. It should be noticed that the 3P 2 state is strongly 

attractive at higher densities, which allows us to expect the 3P 2 superfluidity of 

neutron n1atter. 14l 

Total wound integrals /C for /;cp=2.5 fm-\ k0 =0.57/;cF and P=0.3 kF are 0.1099, 

0.0671 and 0.0753 for OBEG (R) -SC, OBEG (R) -LC and OBEV (R), respectively. 

In spite of its high density, the values of wound integral of neutron matter are 

small. This is due to the lack of 3S1 + 3D 1 states which have brought the large 

wound integral /Cg1o) to the case of nuclear matter. The wound integral of 

OBEV is larger than that of OBEG-LC contrary to the case of nuclear matter, 

;vhich indicates the growth of velocity-dependent core in the high density region. 
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Nonstatic One-Boson-Exchange Potential with Retardation 

EIN (MeV) 
60 

• : P-space OBEP 13l 

OBEG(R)-SC 

OBEG(NR)- SC 

OBEV(R) 

OBEV(NR) 

50 

rj 
40 

p : Normal Nuclear Density /1 
0 

2.86• 1014 (g·cm-3
) ;1'/ 

30 

20 

10 

1.0 

0.6 

.'/ 
(a) •'/ 

~-~ 

'/'/'/' 

'?'~ 

1.9 p0 4.5 

p ( x 10 14 g·cm-3 ) 

2.5 

8.8 

(MeV) 

80 
• : P-space OBEP ••l 
- OBEG(R)-SC 

60 ---- OBEG(NR)-SC 

40 

- 20 

-40 

-60 
(b) 

1997 

Fig. 7. Energy (a) and partial wave contributions (!~3) (b) versus density curves obtained 

from our OBEP's (p=0.565Xl014kp'). P.E/N indicates the total potential energy per 

particle and 3Ep/5 is the kinetic energy. 

§ 4. Concluding remarks 

In this paper, nonstatic r-space OBEP's that include the retardation and the 

velocity-dependent tensor terms in addition to the other nonstatic terms of order 

up to p 2 / M 2 are constructed. The "extended Green's method" is found to be 

useful to treat easily the potential with velocity-dependent tensor terms. 

We may conclude that the retarded effect of the OBEP in many-nucleon 

system plays a more important role than that in two-nucleon system. Then the 

nuclear potential with retardation should be employed in calculations of the finite 

nuclei. Accordingly, it is of interest to elucidate the retarded effect in three­

and four-nucleon systems by using our OBEP's. 

In spite of the limitation for treatment of nonstatic effects in coordinate space, 

our r-space OBEP's seem to be one of the most accurate and reliable potentials. 

The results predicted by our r-space OBEP with retardation on two-nucleon and 

many-nucleon systems are qualitatively in agreement with those clarified by the 

P-space OBEP. 

However, in order to discuss accurately the absolute values of the retarded 

effects and relativistic effects in nuclear systems, it is appropriate to treat these 

problems throughout in momentum space. Such problems are in progress for the 

subject of our work. 
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Appendix 

We exhibit our nonstatic OBEP obtained in I. The OBEP is constructed by 

the usual Yukawa potential Vi and the retarded potential Wi, where i = C, T, LS, 

W and LL. Here we use the following abbreviations: 

E=e-x, Y=e-"/x, X=(1/x+1/x2)Y, Z=(1+3/x+3/x')Y, 

fl':f(x) +f(x)fl 2 = Cflz'+flr")f(x). 

1) Scalar meson 

Wc=msgs'[(ms'/81\P) (E-2Y)- (1/4M 2) (fl1
2 +fl/)E], 

1VLL= -msg/(m//2l'IP)X. 

2) Pseudoscalar meson*) (Gp= (mp/21v1)gp) 

V 0 =mPG/(u1 • u 2 ) /3 · [ (1-m//8M 2) Y- (3mP2/81'vf2) (X+ 2Z/ x 2) 

+ (3/4M 2) (fl/+fl/) (Y+X)], 

Vr= mPGP2 (1/3) [ (1- m//8lvf2) Z + (3/ 41\P) (fl/ + fl /) Z], 

Vw= -mPG/(mP'/2lt12)Z/x2
, 

VLL =mPG/(ui · u,) /3 · (m// M 2
) Zjx 2

, 

(A1·1) 

(A1· 2) 

(A1· 3) 

(A1· 4) 

(A2·1) 

(A2· 2) 

(A2·3) 

(A2·4) 

We=- mpGp2(u 1 • u 2)/3 · [(m/ /8M')(E- 2Y)- (1/ 4M')(fl/ + fl /)EJ, (A2 · 5) 

Wr= -mpG/(1/3) [ (mp'/8M') (E + Y)- (1/ 4M') (fl/+ fl/) (E + Y + 2Z)], 

(A2·6) 

(A2·7) 

*l We express only the pseudoscalar coupling case for simplicity. 
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Nonstatic One-Boson-Exchange Potential with Retardation 1999 

WLL=mPG/(o- 1 ·o-2)/3· (m//M2) (X/2-Z/x2). (A2·8) 

3) Vector meson (vector coupling) 

Ve=m.g/[ (1 + m//2M2) Y + Co-1 · o-2) (m/j61J1 2) Y- (1/21\;f") (17 7
2+17/) Y], 

(A3·1) 

VT= -m.g/(m,"/121\;f") Z, 

VLs= -m.g/(3mv"/2l'tP)X, 

We= -m.g/[(m,"/8M2) (E-2Y)- (1/41\P) (17/+l7r 2)E], 

WLL =m.g/(m,"j21\12)X. 

4) Vector meson (mixing coupling) 

Vc=m.g.f. (m./ M) [Y + 2(o-1 · 0"2) /3· Y], 

VT= -m.g.f.(m./3M)Z, 

VLS= -m.g.f.(4m./M)X. 

5) Vector meson (tensor coupling) 

Ve=m.f,"(o-I · o-2) /3 · [ (2+5m//8M2) Y- (3m//81\12 ) (X+ 2Zjx2 ) 

- (1/4M2) (f71
2+17r2) (Y -3X)] +m.f,"(m,"/4M2) Y, 

VT= -m.f.'[ (1/3+ mv"/24M') Z+ (1/12M') (17/ +17/) Z], 

VLs= -m.f/(3m//2M2)X, 

Vw=m.f/(3m. 2/2M2 ) Zjx 2
, 

We= -m.f,"(o-1 ·o-2) /3· [ (m//4M2) (E-5Y -6X -12Zjx2) 

- (1/2M2) (171
2+17/) (E-3Y -6X) ], 

(A3·2) 

(A3·3) 

(A3·4) 

(A3·5) 

(A4·1) 

(A4·2) 

(A4·3) 

(A5·1) 

(A5·2) 

(A5·3) 

(A5·4) 

(A5·5) 

WT=m.f.'[ (m.2/24M2) (E+ Y)- (1/12M') (17/+17/) (E+ Y +2Z)], 

(A5·6) 

Ww= -m.f/(m.'/M2)Zjx2, 

WLL=m.f/(o-J·o-2)/3· (m//M') (X-2Zjx2). 
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