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ABSTRACT

A particular aspect of the nonstationary nature of intermittent rainfall is investigated. It manifests itself in

the fact that the average rain rate varies with the distance to the surrounding dry areas. The authors call this

fundamental link between the rainfall intensity and the rainfall occurrence process the ‘‘dry drift.’’ Using

high-resolution radar rain-rate maps and disdrometer data, they show how the dry drift affects the structure

and the variability of intermittent rainfall fields. They provide a rigorous geostatistical framework to describe it

and propose an extension of the concept to more general quantities like the (rain)drop size distribution.

1. Introduction

Space–time variability of rainfall is an important source

of uncertainty that must be properly taken into account.

A distinctive feature of rainfall variability at the meso-

gamma and mesobeta scales (i.e., from 1 to 200 km) is

intermittency (Kundu and Siddani 2011; Schleiss et al.

2011). Intermittency limits the available water resources

in time and space and directly affects the environment

and the ecosystems (e.g., Porporato and Rodriguez-

Iturbe 2004; Mandapaka et al. 2009).

A variety of approaches have been proposed to deal

with intermittency in rainfall models. Using a multi-

fractal framework, Over and Gupta (1994) suggested to

represent dry and rainy regions using a special random

cascade known as a bmodel. Albeit useful, the bmodel

turned out to be too simplistic to fully describe the dis-

tribution and the space–time structure of rainfall in-

termittency (Schmitt et al. 1998). Since then, and despite

several decades of research and numerous alternatives

(e.g., Olsson 1998; Schmitt et al. 1998; de Montera et al.

2009; Gires et al. 2013), the correct representation of

intermittency within the multifractal framework still

remains an open question.

In the geostatistical framework proposed by Barancourt

et al. (1992), intermittency is represented by a rainfall

occurrence process IR 2 f0, 1g, defined as

IR(x, t)5

�
1 if R(x, t). 0

0 if R(x, t)5 0
, (1)

where R(x, t) (mmh21) represents the instantaneous

rain rate at location x 2R
2 and time t 2R. The approach

is very popular and widely used in practical applications

involving rainfall interpolation, simulation, and disag-

gregation (e.g., Kumar and Foufoula-Georgiou 1993;

Syed et al. 2003; De Oliveira 2004; Berrocal et al. 2008).

To model their structure using variograms, IR and

R are usually assumed to be second-order or intrinsically

stationary. In particular, the expected rain rateE[R(x, t)]

at location x and time t is assumed to be constant or

linear in x and t. Proving or refuting second-order (or

intrinsic) stationarity is a very difficult problem in gen-

eral, especially for cases where there is only a single

available realization. The key problem with stationarity,

however, is that it leads to a counterintuitive represen-

tation of rainfall in which the average rain rate is in-

dependent from the occurrence process. In particular,

it contradicts the fact that rain rates may decrease when

approaching a dry area/period (e.g., Emmanuel et al.

2012). Interestingly, Barancourt et al. (1992) devote a

full section to this problem, analyzing what they call the
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‘‘inner drift.’’ They conclude, however, that the inner

drift is ‘‘moderate’’ (for the considered dataset) and that

IR and R can be assumed independent. This is a strong

assumption that is not supported by the results pre-

sented in this study.

Following a similar approach, Braud et al. (1994) ana-

lyzed the spatial distribution of rain-rate values inside

t-thresholded rainy areas (i.e., areas with rain rates larger

than a given threshold t). Their study showed that the

average rain rate (at time t) at a given location x inside a t-

thresholded rainy area A(t, t) depends on the distance d

(x) from x to the boundary of A(t, t). This dependency is

represented using so-called internal moving trend func-

tions (MTFs) and approximated using a spherical func-

tion. In their study, Braud et al. (1994) present MTFs as

a useful tool for estimating mean areal rain rates but do

not investigate how these trends affect the spatial struc-

ture (i.e., the sample variogram) of a rainfall field.

In this article, we revisit the concept of moving trend

functions proposed by Braud et al. (1994) for the special

case t5 0, that is, the case where the average rain rate is

a function of the distance to the closest dry area (here-

inafter referred to as the ‘‘dry drift’’). We provide a new

and rigorous geostatistical framework for this concept

and show why it is more appropriate to define it for log-

transformed rain rates rather than in the linear space.

Possible extensions of the concept to other quantities

like the (rain)drop size distribution (DSD) are also

proposed. The results show that dry drifts constitute an

important (yet not the only) source of nonstationarity

and that they significantly affect the structure and the

space–time variability of rainfall.

This article is structured as follows. Section 2 describes

the data used for the analysis. Section 3 introduces the

concept of dry drift for two-dimensional rain-rate fields

and discusses some of its characteristics. Section 4 de-

scribes the equivalents for time series and space–time

data and extends the concept tomore general quantities.

In section 5, we highlight the importance of dry drifts for

structural analysis, remote sensing, and stochastic rain-

fall simulation by providing different examples of ap-

plications. Section 6 summarizes the main ideas and

provides some perspectives for future work.

2. Data

The results presented in this paper are based on the

analysis of radar rain-rate maps and disdrometer time

series. A brief description of these data is given below.

a. Radar rain-rate maps

The data used for the spatial analysis of intermittent

rainfall fields were provided by the Swiss Federal Office

ofMeteorology (MeteoSwiss). They consist of Cartesian

radar rain-rate maps with a spatial resolution of 1 3

1 km2 and a temporal resolution of 5min (2.5min since

2012). Each map was obtained by combining the mea-

surements of 3 C-band weather radars scanning at var-

ious elevations, correcting for the main sources of errors

(ground clutter, beam shielding, and vertical variability)

according to a procedure described in Germann et al.

(2006). To ensure that the data were reliable, the anal-

ysis was restricted to a small area of size 803 100 km2 in

the northeast of Geneva (Fig. 1), for which the data are

FIG. 1. Topographic map of Switzerland with the selected area of study (black rectangle) and

the location of the 3 C-band MeteoSwiss weather radars (red dots).
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believed to be of good quality. The rain/no-rain in-

formation needed to define the rainfall occurrence

process was directly retrieved from the rain-rate maps.

Because it is relatively easy to distinguish between dry

and rainy regions using weather radar, the false dry and

rain detection rates over the considered area are as-

sumed to be negligible.

b. Disdrometer time series

To analyze the temporal variability of intermittent

rainfall (including the raindrop size distribution and

associated bulk variables), data from seven optical dis-

drometers of type Parsivel (L€offler-Mang and Joss 2000)

were used. These disdrometers were part of the Hy-

drological Cycle inMediterraneanExperiment (HyMeX;

www.hymex.org) and were deployed at six different lo-

cations in Ard�eche, France (Fig. 2). Each disdrometer

collected DSD time series at the point scale with a tem-

poral resolution of 30 s. All DSD spectra were processed,

filtered, and quality controlled following a procedure

proposed by Jaffrain et al. (2011). All solid and mixed-

phased precipitation types, as well as other non-

meteorological signals (e.g., spiders and insects), were

removed. The rain amounts derived from the DSD time

series were in excellent agreement with nearby tipping

rain gauges (bias of less than 10%).

3. Spatial dry drifts

This section is devoted to the description of the dry

drift. For conciseness, the concept will only be described

in detail for two-dimensional rain-rate fields. For the

one-dimensional counterpart, the complete space–time

formulation and extensions to other DSD-related quan-

tities, the reader is referred to section 4.

Following the approach proposed by Barancourt

et al. (1992), we separate the dry regions from the

rainy ones and focus on strictly positive rain-rate val-

ues (R . 0). Because positive rain-rate values have

a skeweddistribution, close to a lognormal, it is preferable

FIG. 2. Location and illustration of the seven optical disdrometers (red dots) deployed during the HyMeX in

Ard�eche, France.
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to work with the log-transformed rain-rate values (Journel

1980):

~R(x)5 log10[R(x)] . (2)

Log-transformed rain-rate values have a more sym-

metrical distribution (i.e., closer to a Gaussian distri-

bution) and are therefore better suited for structural

analysis. Working in the log space also makes it easier to

add/remove possible trends without having to threshold

negative rain-rate values. In addition to these two ad-

vantages, the log transform also helps in ‘‘stabilizing’’

the variance of the rain-rate field (see section 3b). An

example of a log-transformed radar rain-rate map is

given in Fig. 3.

a. The dry drift function

For consistency, we assume that the log-transformed

rain-rate field ~R can be seen as a random function in space

and that its (unknown) expectation m ~R
(x)5E[ ~R(x)] is

well-defined at each rainy location x. Consequently, the

rainfall intensity process can be decomposed and repre-

sented as the sum of a deterministic trend function m ~R

and a stochastic component R+, defined as

~R(x)5m ~R
(x)1R+(x) , (3)

where E[R+(x)] 5 0 for all x. In other words, there is

a functionm ~R
that represents the general rain-rate trend

over the domain and a centered residual stochastic

process R+ that describes random structured variations

around this trend. Themajor challenge in this procedure

is to find an adequate model for m ~R
(using only a single

realization ofR). Because this is very difficult in general,

it is often assumed that ~R is second-order stationary and

that m ~R
is constant over the entire domain.

The approach proposed in this article is different: in-

stead of analyzing the rain-rate process with respect to

its spatial coordinates, we start by projecting it onto

a smaller, one-dimensional distance space. This distance

space is generated by the rainfall occurrence process IR
and the Euclidean distance d(x) between a rainy location

x and the closest surrounding dry region in the domain:

d :fx 2 R
2 j IR(x)5 1g1R

1 , (4)

d(x)5 min
y2V

fkx2 ykg, and (5)

V5 fy 2 R
2 j IR(y)5 0g , (6)

where f�g indicates a set and k�k represents the Euclid-

ean norm in R
2. The motivation behind this approach is

the assumption that the expected rain rate m ~R
(x) is

easier to describe as a function of d(x) rather than x:

m ~R
(x)5 f [d(x)] , (7)

where f: R1
1 R is called the dry drift. Using high-

resolution radar data, it is possible to estimate and pa-

rameterize the function f for different events and different

types of precipitation (see section 3c for more details).

Figure 4 illustrates the typical characteristics of a

dry drift function: the drift is minimum at d 5 0 and

FIG. 3. Best radar estimation of the log-transformed rain rate

(mmh21) at the ground level for a convective storm on 1 Aug 2012

at 1915 UTC. Dry regions are represented in white. For more de-

tails on this product, see section 2a.

FIG. 4. Estimated isotropic spatial dry drift corresponding to the

rain-rate map shown in Fig. 3. The dashed red line represents the

fitted piecewise linear dry drift model given in Eq. (8). The class

width is 1 km.
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increases with d until it reaches a maximum value M 5

f(dM). For larger distances, the expected rain-rate value

stays relatively constant. In other words, there is a dis-

tance dM (7.5 km in this particular case) after which the

effect of the dry regions on the average rain rate can be

neglected. We call this distance the ‘‘maximum distance

of influence.’’ Based on the analysis of 14 stratiform and

14 convective rain events of various duration between

2009 and 2011, the authors found that most dry drifts

(for log-transformed rain rates) exhibit a similar be-

havior and can be modeled using a piecewise linear

function of d:

f (d)5

�
m01m1d if d# d

M

M else
and (8)

d
M
5

M2m0

m1

, (9)

where the interceptm0 2 R (nondimensional), the slope

m1 . 0 (km21), and the magnitude M . m0 (non-

dimensional) of the dry drift depend on the selected

event and the rainfall type. It is important to point out

that the linear dry drift model proposed above only

provides the best fit on average (for all the considered

events). Other functional forms (e.g., a spherical or an

exponential function) may also be considered depend-

ing on the considered case.

b. The detrended rain rate

Note that the dry drift is a rather peculiar and unusual

trend. It is defined with respect to the rainfall occurrence

field (which is a stochastic process), and is therefore,

strictly speaking, itself a random field. Conditionally on

the occurrence process, the dry drift is, however, fully

deterministic. Once it is known, it can be removed to

produce the detrended rain-rate field R+:

R+(x)5 ~R(x)2 f [d(x)] . (10)

By definition, R+ captures all random variations of ~R

around the dry drift. Its expectation is constant and

equal to zero at any location in the domain. Its variance

(and higher-order moments) may, however, still depend

on the distance d to the closest dry region. To address

this issue, the authors computed the 10%, 25%, 50%,

75%, and 90% quantiles of ~R for each distance class d.

The latter are shown in the form of box plots in the top

panel of Fig. 5. For comparison, the bottom panel shows

the same quantiles but without the initial log transform.

One can see that the variability of R strongly varies with

d. The log transform reduces this heteroscedasticity

and helps to stabilize the variance (and higher-order

moments) of ~R. Additional analyses for different events

confirm this ‘‘variance stabilization’’ property of the log

transform. In view of these results, the authors chose to

neglect higher-order dry drifts (i.e., drifts in variances

and higher-order moments).

c. Sample estimate of the isotropic dry drift

In the following, we briefly describe how the dry drift

can be estimated from a given sample rain-rate field. For

simplicity, only radar rain-rate maps will be considered.

Other cases (e.g., rain gauge networks) for which the

distance d(x) to the closest dry area is more difficult to

determine (depending on the density of the network)

will not be addressed. Note also that because dry drifts

can extend over several kilometers in space, the sam-

pling domain must be sufficiently large. As a rule of

thumb, the domain size should not be smaller than 303

30 km2 and should contain at least 15–20 dry pixels and

200–300 rainy pixels (preferably at various distances from

the dry areas).

FIG. 5. Estimated isotropic spatial dry drift (black dots) in (top)

the log space and (bottom) the linear space for the radar rain-rate

map shown in Fig. 3. The box plots represent the 10%, 25%, 50%,

75%, and 90% quantiles for each class of distance. The dashed red

line represents the fitted dry drift model shown in Fig. 4. The class

width is 1 km.
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For radar rain-rate maps, the dry drift f(d) for a given

distance d can be estimated using the following estimate:

f̂ (d)5
1

n
d

�
x
i
2S

d

~R(xi) and (11)

S
d
5 fx

i
j I

R
(x

i
)5 1 and jd(x

i
)2 dj# «g , (12)

where nd denotes the number of elements in Sd and

« . 0 is a small tolerance on the distance to the closest

dry area. The assumption behind Eq. (11) is that, for

each distance d, ~R restricted to fx 2 R
2 j d(x) 5 dg is an

ergodic random function.

Note that to estimate the dry drift, onemust be able to

correctly determine the distance d(xi) from any rainy

location xi to the closest surrounding dry region. For

most pixels, this is straightforward because the closest

dry region lies inside the domain of interest. For pixels

closer to the border, however, there is always a risk that

the closest dry region may be located outside the con-

sidered domain. To avoid biased dry drift estimates, it

is necessary to identify and to remove all these pixels.

More specifically, one must remove all rainy pixels for

which the distance to the border is smaller than the dis-

tance to the closest dry pixel in the domain.

Using the piecewise linear dry drift model in Eq. (8)

and the dry drift estimation method provided above, the

authors computed and fitted the dry drift parameters

m0, m1, M, and dM (using least squares) for each time

step of the 14 stratiform and 14 convective rain events

between 2009 and 2011. The average estimated values of

m0, m1, M, and dM for each precipitation type are given

in Table 1. Comparing the values in Table 1, one can see

that the maximum distance of influence dM (5.4 km on

average) is almost identical during stratiform and con-

vective events. The interceptm0 and the slopem1, on the

other hand, slightly depend on the rainfall type. The

parameter that depends the most on the type of rainfall

is clearly the magnitude M of the dry drift. It is larger

during convective events and significantly varies from

one event to another.

If, for any reason, the dry drift cannot be estimated

properly from the sample (e.g., because there are not

enough sample values per distance class to reliably es-

timate the average rain rate), then the average values

of m0, m1, M, and dM provided in Table 1 can be used

as a climatological parameterization for the dry drift.

A slightly better approach is to use the climatological

values ofm0 and dM and to estimate the values ofM and

m1 for the considered sample:

M̂5
1

n+d
M

�
x
i
2S+

dM

~R(x
i
) , (13)

cm15
M̂2m0

dM
, and (14)

S+d
M
5 fxi j IR(xi)5 1 and d(xi)$ dMg , (15)

where n+dM represents the number of elements in the

set S+dM . This has the advantage of providing dry drift

functions for which the magnitude M of the dry drift

(i.e., the average rain rate far from the dry regions) is

consistent with the average rain rate in the sample.

d. Spatial anisotropy

Like variograms, dry drifts can be either isotropic or

anisotropic. In the isotropic case, the average rain rate

solely depends on the Euclidean distance d(x) from x to

the nearest dry region. In the anisotropic case, the av-

erage rain rate depends both on the distance and on the

direction to the nearest dry region:

m ~R
(x)5 g[h(x)] , (16)

where g:R2
1R is the anisotropic dry drift function and

h(x) 2 R
2 represents the vector from x to the nearest dry

region in the domain. If the dry drift is isotropic, we have

g[h(x)]5 f [kh(x)k] " h(x) 2 R
2. For a visual illustration

of an anisotropic dry drift, see Fig. 6. It is worth men-

tioning that, unlike variograms, dry drifts are not nec-

essarily symmetric (as shown in Fig. 6). It can therefore

be difficult to find good and simplemathematical models

to represent them. In general, and unless there is clear

evidence suggesting otherwise, the simpler isotropic dry

drift model should be preferred over the anisotropic one

because it has fewer parameters and can be estimated

more easily from the data. Its parameters are also easier

to interpret. There are, however, some special cases where

the use of a more complicated anisotropic dry drift may

be justified. Squall lines and frontal systems, for exam-

ple, are characterized by strong rain-rate gradients at the

front andmuch weaker gradients on the other side of the

TABLE 1. The 2.5% quantile (q2.5), mean, and 97.5% quantile

(q97.5) of m0, m1, M, and dM for 14 stratiform and 14 convective

events in Switzerland during 2009 and 2011. The dry drift model

was fitted every 5min (e.g., there are 12 different values ofm0,m1,

M, and dM for each hour of rainfall).

Stratiform Convective

Parameter q2.5 Mean q97.5 q2.5 Mean q97.5

m0 (-) 21.78 21.33 20.80 21.74 21.14 20.26

m1 (km
21) 0.03 0.21 0.57 0.08 0.38 0.99

M (-) 21.04 20.19 0.97 20.56 0.91 2.90

dM (km) 3.1 5.4 24.7 3.2 5.4 14.8
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system. They might therefore exhibit a strongly aniso-

tropic dry drift. Orographic enhancement of precip-

itationmay also lead to anisotropy. Inmost of the analyzed

cases, however, the isotropic dry drift adequately de-

scribed the general trend in the data.

4. Other types of dry drifts

a. Temporal dry drift

In the following, we briefly describe the equivalent of

the dry drift for intermittent rainfall time series. The

approach is essentially similar to the two-dimensional

dry drifts, except that the spatial coordinates x 2 R
2

are replaced by a single time coordinate t 2 R. The re-

parameterization of the rainfall intensity process is not

based on the Euclidean distance but on the time t to the

closest dry period:

t:R1R
1 , (17)

t(t)5 min
u2V

fjt2 ujg , (18)

V5 fu 2 R j I
R
(u)5 0g, and (19)

m ~R
(t)5 f [t(t)] . (20)

An example of a temporal dry drift is shown in Fig. 7.

One can see that spatial and temporal dry drifts have

very similar shapes and intensities. This is not a co-

incidence and can be explained using Taylor’s hypoth-

esis of frozen turbulence (e.g., Taylor 1938; Gupta and

Waymire 1990; Fabry 1996). Consider a space–time rainfall

field R(x, t) with constant storm movement velocity

vector v 2 R
2. If R(x, t) is slowly evolving in time, any

time series R(x0, t) (at a particular location x0) can be

approximately converted into a one-dimensional range

profile in the direction of v:

R(x0, t)’R(x02 vdt, t2 dt) " t 2 R, " dt 2 R .

(21)

On average, this is a reasonable approximation for dt

values up to 620–30min (Li et al. 2009). For larger

values of dt, the relation progressively breaks down

because of changes in the storm movement and because

of the temporal evolution of R. Obviously, the same ap-

proximation applies (and is even better) for the rainfall

occurrence process IR:

IR(x0, t)’ IR(x02 vdt, t2 dt) " t 2 R, " dt 2 R .

(22)

One of the consequences of this relationship in space

and time is that the distance d(x0) (along v) from x0 at

time t to the closest dry region will be approximately

equal to the time t(t2 dt) from t2 dt to the closest time

period at location x0 2 vdt. This is what creates the link

between the dry drift in time and the dry drift in space

(at least along v). Note that by comparing the distance of

influence dM of the spatial dry drift with the time of in-

fluence tM of the temporal dry drift, it is possible to

estimate the average storm movement velocity. In the

present case (i.e., Fig. 7), dM 5 7.5 km and tM 5 20min,

and the average storm movement velocity is approxi-

mately 22.5 kmh21 (which is consistent with the ‘‘true’’

value derived from the radar rain-rate maps). Note also

that if there is no advection, the temporal and spatial dry

drifts can still be linked through a so-called time regu-

larization parameter (e.g., Lepioufle et al. 2012).

FIG. 6. Estimated anisotropic dry drift for the rain-rate map

shown in Fig. 3. One can see that the dry drift is stronger (i.e., it

increases faster) in the northwest direction than in the south, east,

and northeast directions.

FIG. 7. Estimated isotropic temporal dry drift for the domain

shown in Fig. 3 and the rain event on 1Aug 2012, between 1600 and

2359 UTC. The dashed red line represents the fitted piecewise

linear dry drift model. The class width is 2.5min.
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Similarly to isotropic and anisotropic spatial dry drifts,

we distinguish between symmetric and asymmetric tem-

poral dry drifts. In the symmetric case, the dry drift solely

depends on the time t to the closest dry period. In the

asymmetric case, the dry drift depends both on the time

and on the relative position (before/after) of the closest

dry period:

m ~R
(t)5 g[D(t)] , (23)

where g: R1 R and D(t) 2 R represents the (oriented)

time from t to the closest dry period. For a visual illus-

tration of this concept, see Fig. 8. In this figure, we can

see that the temporal dry drift for negative values of D

(i.e., when the closest dry period lies in the past) is

slightly weaker (m1 5 20.05 and M 5 0.58) than the

temporal dry drift for positive values of D (m15 0.07 and

M 5 0.66). The difference is, however, very small, and it

is reasonable to assume a symmetric model as shown in

Fig. 7.

b. Space–time dry drift

The strong relation between the spatial and the tem-

poral dry drift mentioned in the previous section can

also be used to formulate more general space–time dry

drifts. In this case, the dry drift f: R2
1 R becomes a

function of the distance to the closest dry region and of

the time to the closest dry period, as shown in Fig. 9. The

simplest possible space–time dry drift model corre-

sponding to this case is obtained by taking the minimum

between the isotropic dry drift in space and the sym-

metric dry drift in time:

m ~R
(d, t)5min

�
m01m1 �min

�
d,
d
M

t
M

t

�
,M

�
, (24)

where m0, m1, and M are given in Eq. (8). This is, how-

ever, not the only possible way of modeling a space–time

FIG. 8. Estimated asymmetric temporal dry drift for the domain

shown in Fig. 3 and the rain event on 1Aug 2012, between 1600 and

2359 UTC. The dashed red line represents the fitted piecewise

linear dry drift models. Negative time lagsmean that the closest dry

period lies in the past. Positive time lags correspond to situations

where the closest time period is ahead. The class width is 2.5min.

FIG. 9. (left) Estimated isotropic space–time dry drift corresponding to the event shown in Fig. 3 and (right)

corresponding fitted dry drift model given in Eq. (24).
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dry drift. Further extensions and generalizations (e.g.,

including spatial anisotropy and/or temporal asymme-

try) can be considered but will not be detailed here.

c. Dry drifts for DSD-related quantities

The DSD is a very general and detailed statistical

description of the microstructure of rainfall. Its purpose

is to efficiently summarize (using probability theory and

statistics) the huge amount of information about the

drops contained in a given volume of air. In its tradi-

tional definition, the DSD describes the expected num-

ber of drops with equivolume spherical drop diameters

between D and D 1 dD per unit volume (m3) of air:

N(D, x, t)5Nt(x, t) � n(D, x, t) , (25)

where Nt(x, t) (m
23) represents the drop concentration

at location x and time t and n(D, x, t) (mm21) is a

probability density function that describes the size dis-

tribution of the drop diameters at location x and time t.

Knowledge of the DSD is very useful in practical ap-

plications because it allows one to derive (through nu-

merical integration) most quantities of interest related

to rainfall. The average drop diameter, the kinetic en-

ergy, the rain rate, and the liquid water content are all

weighted moments of the DSD. Assuming a drop size–

shape relationship (e.g., Andsager et al. 1999; Beard et al.

2010), the DSD also allows one to derive most quantities

of interest in remote sensing like the radar reflectivity, the

specific attenuation, and the differential phase shift.

Like the rain rate, the DSD is influenced by sur-

rounding dry regions and should not be considered in-

dependent from the rainfall occurrence process IR (e.g.,

Schleiss et al. 2012, 635–636). In this section, we show

that it is possible to extend the concept of dry drifts

(explained previously for rain-rate values) to the DSD

and to all other quantities expressed as weighted mo-

ments of the DSD. The major difference compared with

the rain rate is that the DSD can be affected by two

different types of dry drifts: 1) a dry drift on the drop

concentration Nt and 2) a dry drift on the size distribu-

tion n. Most of the time, both the drop concentration and

the average drop size decrease when approaching a dry

region. The rates and magnitudes of these two drifts are,

however, very different. Typically, the dry drift on Nt is

much stronger than the dry drift on n. The fact that Nt

and n can have different dry drifts has important con-

sequences and means, for example, that DSD-related

quantities like the average drop diameter, the rain rate,

and the radar reflectivity (which all depend differently

on the DSD) will be affected by different dry drifts. The

mass weighted mean drop diameter, for example, solely

depends on the size distribution n and will be completely

insensitive to dry drifts in Nt. The rain rate on the other

hand, depends both on Nt and on n and will be affected

by a combination of both dry drifts. The radar reflec-

tivity is also affected by both dry drifts but, because it is

a higher-order moment of the average drop diameter

than the rain rate, it will bemore sensitive to dry drifts in

n. This can have several important consequences and

means, in particular that the Z–R relationship changes

with respect to d (see section 5 for more details).

To illustrate the concept of dry drift for DSD-related

quantities, the authors analyzed DSD time series col-

lected by a network of disdrometers deployed in the

region ofArd�eche, France (see section 2b). The network

is neither big enough nor dense enough to analyze the

spatial dry drifts of DSD-related quantities, but it can be

used to study the dry drifts in the time domain. In this

case, the large number of instruments is only used to

check the consistency of the results and to verify that

they are not dependent on the location of the sensor. An

example of a measured DSD time series is shown in

the top panel of Fig. 10. The collected DSD spectra were

used to derive the drop concentration Nt (m
23), the

mass-weighted mean drop diameter Dm (mm) (which is

independent ofNt and will be used as a proxy for the size

distribution n), and the rain rate R (mmh21):

Nt 5

ðD
max

D
min

N(D, t) dD , (26)

Dm(t)5

ðD
max

D
min

N(D, t)D4 dD

ðD
max

D
min

N(D, t)D3 dD

, and (27)

R(t)5
6p

104

ðD
max

D
min

D3y(D)N(D, t) dD , (28)

where y(D) (m s21) represents the average terminal

fall speed of a drop with equivolume spherical diameter

D (mm) (e.g., Beard 1976).

The temporal dry drifts affecting ~Nt 5 log10(Nt), Dm,

and ~R are shown in Fig. 11. Note that because there were

relatively few data, the dry drifts shown in this figure

were estimated using a 3-min class width instead of the

original 30-s resolution. The average value of ~N varies

from 2.2 at t 5 30 s to 2.9 at t 5 80min and stays rela-

tively constant afterward. The average value of the

mass-weighted mean drop diameter Dm varies from

0.9mm at t 5 30 s to 1.5mm at t 5 105min. The drift

affecting Nt is therefore about twice as strong (in lin-

ear space) as the dry drift affecting Dm. The ‘‘time of
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influence’’ tM is, however, slightly larger forDm than for
fNt. Because it depends both on Nt and on Dm, the dry

drift affecting ~R is a combination between the dry drift

of ~Nt and of Dm. Note also that the time of influence is

slightly larger than in Fig. 7.

5. Importance of dry drifts

In this section, we present some examples and appli-

cations that highlight the importance of dry drifts in

rainfall analysis, modeling, and remote sensing.

a. Importance for structural analysis

One of the most important consequences of the dry

drift is the fact that the expected rain rate varies (non-

linearly) in space and time. The rainfall intensity process

R (or equivalently, ~R) is therefore neither second-order

nor intrinsically stationary. If the drift is strong enough,

it might affect the sample variogram of R (respectively,
~R). This can lead to a serious misinterpretation of the

spatial and temporal correlation structure and the vari-

ability of the rainfall intensity field (Starks and Fang

FIG. 10. (top to bottom) Measured DSD time series for a rain

event on the 25–26 October 2012 and corresponding values of
~Nt 5 log10(Nt), Dm, and ~R5 log10(R). The temporal resolution

is 30 s.

FIG. 11. Estimated (temporal) dry drifts of ~Nt 5 log10(Nt), Dm,

and ~R5 log10(R) for the rain event shown in Fig. 10. The dashed

red lines represent the fitted dry drift models. The class width

is 3min.
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1982). In some particular cases, the sample variogram

may exhibit unexpected features, like a strong decrease

at larger distance lags. These decreases cannot be ex-

plained using the traditional geostatistical framework,

but they can be understood easily within the dry drift

formalism. The decrease of the semivariance at larger

distance lags simply results from the action of the dry

drift and a particular geometrical disposition of dry

areas within the domain.

A better and mathematically more correct approach

in the presence of a nonlinear drift is to 1) start by es-

timating the dry drift f(d), 2) remove it, and 3) compute

the sample variogram of the detrended process R+ (see

section 3b). The spatial structure and variability of the

rainfall field is then described through the combination

of a deterministic part (i.e., the dry drift) and the var-

iogram of the detrended rain-rate process. To illustrate

the difference, the authors computed the sample vario-

grams corresponding to the radar rain-rate map shown

in Fig. 3, before and after removal of the dry drift. The

two obtained sample variograms are shown in Fig. 12.

One can see that the sample variogram of the detrended

rain-rate process has a well-defined sill and range. It is

easier to interpret and to model than the sample vario-

gram computed from the initial rain-rate map. By

comparing the two variograms, one can also notice that

the dry drift explains about 50% of the total spatial

variability of the considered rain-rate field (in log

space). In other words, both the shape and the vari-

ability of the rainfall field are strongly determined by

the dry drift. For more details about this subject, see

section 5b.

In the following, a new way of modeling an inter-

mittent rainfall field that extends the approach proposed

by Barancourt et al. (1992) is proposed. In this newmodel,

three different components are necessary to describe the

spatial structure and variability of an intermittent rain-

rate field:

1) the spatial distribution and structure of the rainfall

occurrence process, described by the percentage p0
of dry regions and the variogram gIR

(h) of IR (which

can be assumed second-order stationary);

2) a deterministic rainfall trend defined by the dry drift

function f(d) and the location of the dry areas in the

considered domain; and

3) the spatial structure of the rain-rate field after re-

moval of the dry drift, described by the variogram

g
~R
+(h) of R+.

b. Explained variability

In the following, we propose an objective way of

quantifying the importance of the dry drift function in

structural analysis of rain-rate fields. The method con-

sists of comparing the sample variance of the log-

transformed rain-rate field ~R with the sample variance of

the new rain-rate field R+ obtained after removal of the

dry drift:

r5 12 (ŝ2
R+ /ŝ

2
~R
) , (29)

where ŝ2
~R
and ŝ2

R+ are the sample variances of ~R andR+.

Because it involves the ratio of these two quantities, r

measures the percentage of total variability that is ex-

plained by the dry drift. If r5 1, the dry drift ‘‘explains’’

the entire variability of the rain-rate field. If r 5 0, the

dry drift explains nothing. Systematic analysis of 14

stratiform and 14 convective events shows that, on av-

erage, the isotropic two-dimensional dry drift model

explains 31.7% of the total variability of stratiform

events and 37.4% of the total variability of convective

events (at 5-min temporal resolution and for log-

transformed rain-rate values). These percentages even

go up to 45% for stratiform and 52% for convective

events if an anisotropic dry drift is considered (see sec-

tion 3d). These are nonnegligible values and mean that

the dry drift plays an important role in structuring in-

termittent rainfall fields. For some individual time steps

with large numbers of dry regions, the isotropic dry drift

explained more than 80% of the total variability. In-

terestingly, the amount of explained variability grows

with decreasing temporal resolution. For 1-h aggregated

radar rain-rate maps (with a spatial resolution of 1 3

1 km2), the average explained variability for the iso-

tropic dry drift was 59% for stratiform events and 69%

for convective events. This can be explained by the fact

that rain-rate fields at lower temporal resolutions are

smoother and therefore better described by the dry drift.

However, because the number of dry regions decreases

FIG. 12. Isotropic sample variograms of log-transformed rain

rates (for the radar rain-ratemap shown in Fig. 3) before (dots) and

after (crosses) removal of the dry drift. The dashed red line rep-

resents a fitted spherical variogram model.
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with lower temporal resolutions (i.e., there are fewer

and fewer dry areas), it also becomes more difficult to

reliably estimate the dry drift over small domains.

c. Probability distribution of average rain rate

Another important and interesting aspect of the dry

drift is the fact that the shape and size of a rainy area,

together with the dry drift function f(d), fully determine

the probability distribution function (pdf) of the average

rain rate m ~R
. For some basic geometrical shapes, it is

even possible to obtain analytical expressions for the

pdf. To illustrate this, let us consider two simple cases:

1) a continuous rainy period of total duration equal to

T and 2) a circular rain cell with diameter D. For more

generality, we assume that T/2. tM and D/2.dM,

where tM and dM represent the maximum time (re-

spectively distance) of influence of the dry drift.

1) CASE 1: CONTINUOUS RAINY PERIOD

OF DURATION T

For a continuous rainy period of duration T, the

probability distribution of t (i.e., the time to the closest

dry period) is given by

P[t# u]5

8
>>>>><
>>>>>:

0 if u# 0

2

T
if 0, u,

T

2
.

1 if u$
T

2

(30)

Combining this equation with the expression for a sym-

metric piecewise linear dry drift leads to

P[m ~R
#m]5

8
>>>>><
>>>>>:

0 if m,m0

2

T

�
m2m0

m1

�
if m0 ,m,M

1 if m$M

. (31)

The average value ofm ~R
for a continuous rainy period of

duration T is therefore given by

m ~R
5

tM
T

(M1m0)1 (T2 2t
M
)M5M2

tM
T

(M2m0) .

(32)

2) CASE 2: CIRCULAR RAIN CELL

OF DIAMETER D

For a circular rain cell of diameterD, the pdf of d (i.e.,

the distance to the closest dry region) is given by

P[d# u]5

8
>>>>>>>>>>><
>>>>>>>>>>>:

0 if u# 0

12

D

2
2 u

� �2

D

2

� �2
if 0, u,

D

2

1 if u$
D

2

.
(33)

Simplifying this expression and combining it with the

equation for an isotropic piecewise linear dry drift

leads to

P[m ~R
#m]5

8
>>>>><
>>>>>:

0 if m,m0

12

�
12

2(m2m0)

m1D

�2
if m0,m,M

1 if m$M

.

(34)

Furthermore, themean value ofm ~R
inside the rain cell is

given by

m ~R
5M

(D2 2dM)2

D2
1

4

D2

ðd
M

0
(m01m1u)(D2 2u) du ,

(35)

which, after integration and simplification, leads to

m ~R
5M2 4

dM
D

(M2m0)

1 4

�
dM
D

�2�
M2m0 1m1

D

2
2

2m1dM
3

�
. (36)

Such simple calculations nicely illustrate how the dry

drift can be used to predict average areal/temporal rain

rates depending on the shape and the size of a given rain

cell/period.

d. Variability of the Z–R relationship

It is well known that weather radars do not directly

measure the rain rateR (which is the quantity of interest

in most applications) but the reflectivity Z (mm6m23),

which depends on the DSD. Transformations that allow

one to estimate R given Z are called Z–R relationships.

The most common Z–R relationship is a simple power

law (Marshall and Palmer 1948):

Z5 aRb, (37)

where a and b are two parameters that depend on the

time, the location, and the type of rainfall. In fact, the

1200 JOURNAL OF HYDROMETEOROLOGY VOLUME 15



optimal values of a and b strongly depend on the drop

size distribution (which is usually unknown in practical

applications). A common solution to this problem is to

rely on climatological relationships and to estimate a

and b using large datasets of different rain events that

are supposed to be representative of the local climatol-

ogy. For example, Marshall et al. (1955) suggested

Z5 200R1:6 . (38)

The problem with climatological Z–R relationships is

that they only represent the average relationship be-

tween Z and R. As a result, rain rates derived using this

technique can be strongly biased. In addition to this

well-known problem, it is worth mentioning that be-

causeR andZ are affected differently by the dry drifts in

the DSD (see section 4c), the average Z–R relationship

also changes with the distance d to the closest dry region:

Z5 a(d)Rb(d) . (39)

Unfortunately, this effect is very difficult to observe and

to quantify in two-dimensional rain-rate fields: it re-

quires large and dense sets of spatial DSD measure-

ments that are not available so far. Its existence can,

however, be illustrated using simple DSD time series.

Figure 13 shows the temporal dry drift that affects the

Z–R relationship as a function of the time t to the closest

dry period. One can see that the values of a and b (ob-

tained by fitting the Z–R relationship for each class of t)

clearly increase with t until they reach a maximum of

a5 210 and b 5 1.50 at t 5 30min. In other words, one

needs to wait about 30min after the start of an event

until the Z–R relationship can be considered ‘‘stable.’’

This corresponds, assuming an average stormmovement

velocity of 20 kmh21, to approximately 10 km in space.

This is a nonnegligible distance and means that it might

be necessary to reconsider the way the Z–R relationship

is applied close to dry regions.

e. Rainfall simulation

Stochastic simulation is a very powerful tool to quantify

the uncertainties associated with spatial and temporal var-

iability of rainfall. Simulated rain-rate fields are free from

any measurement noise and errors and can therefore be

used to investigate various issues related to rainfall scaling

and error propagation in hydrologic and climatic models.

Simulation also offers the advantage of reproducibility, that

is, the fact that many similar and statistically homogeneous

alternative realizations of a given rain event can be gener-

ated.This is a clear advantageoverdirect observationswhere

each event is unique and can only be observed once. The

goal of this section is not to provide an exhaustive review of

the many different rainfall simulators and rainfall simulation

techniques that have been proposed in the literature, but to

highlight the importance of dry drifts for rainfall simulation.

Figure 14 shows two simulated intermittent rain-rate

fields, without (top panel) and with (bottom panel) dry

drift. Both fields have the same intermittency, average

rain rate, and standard deviation. They were generated

using the following procedure: first, the sequential in-

dicator algorithm was used to generate an indicator field

with a spherical variogram (nugget 5 0, sill 5 0.24, and

range 5 24 km). The outcome of this simulation was

then used to define the dry and the rainy areas in the

domain. Second, a Gaussian field with zero mean and a

standard deviation of 1.3 was generated using sequential

Gaussian simulation (for the rain locations only) and

another spherical variogram (nugget5 0, sill 5 1.7, and

range5 12 km). In the first case (top panel), no dry drift

was applied. A simple exponential transform was ap-

plied to obtain the final lognormal rain-rate distribution.

In the second case (bottom panel), an additional dry

drift was added before back transformation.

One can see that in the first simulation (without dry

drift), the occurrence and intensity process are indepen-

dent. The average rain rate is not influenced by sur-

rounding dry regions. Transitions between dry and rainy

regions can be arbitrarily steep. In the second field (with

dry drift), the average rain rate depends on the location of

the dry areas. On average, there is a smoother transition

between dry and rainy regions. Both the spatial structure

and the rain-rate distribution inside the rainy areas are

believed to be more realistic.

6. Summary and perspectives

In this article, we revisited an important aspect of the

nonstationary nature of intermittent rainfall fields, that

FIG. 13. Climatological estimates of the prefactor a (black cir-

cles) and exponent b (red triangles) in the Z–R relationship as

a function of the time to the closest dry period. The parameters

a and b have been estimated using theDSD time series collected by

the seven disdrometers in Ard�eche, France. The black (red) dotted

line represents the dry drift for the a (b) parameter.
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is, the fact that the average rain rate varies with the

distance/time to the closest surrounding dry region/

period. We called this fundamental link between rain-

fall intensity and occurrence the dry drift. The existence,

shape, and characteristics of dry drifts in space and time

were illustrated using radar and disdrometer data. Be-

cause of the large skewness and the heteroscedasticity of

rain rates, the authors proposed to estimate and model

dry drifts in the log space rather than in the linear pa-

rameter space.

The analysis of 14 stratiform and 14 convective events

showed that dry drifts constitute a very general feature

and can be found both in stratiform and convective rain

events (with different parameter values). On average,

the isotropic two-dimensional dry drift model explained

about 35%of the total variability (in the log space and at

5-min temporal resolution) of an intermittent rainfall

field and significantly affected its sample variogram.

Several interesting questions and issues were raised

in this paper. Some of them have profound implica-

tions and will have to be investigated more thoroughly

in future studies. The first issue concerns the existence

and shape of the dry drift for different rainfall types

and climatologies. It was shown that a piecewise linear

dry drift model (corresponding to an exponential

increase/decrease in linear space) provides a fair fit

for both stratiform and convective rain events in

Switzerland. The linear model is based on empirical

observations rather than physical considerations. To

what extent this model is transferable to other coun-

tries and climatologies still needs to be investigated.

The fact that similar dry drift functions (although in

the temporal domain) were observed for data collected

in the south of France, however, increases our confi-

dence in the linear dry drift model and strengthens our

belief that dry drifts are not specific to radar data col-

lected in Switzerland.

The second issue concerns the estimation of the dry

drift from sample rain-rate fields. A critical point in this

procedure appears to be the ability to estimate the dis-

tance d(x) from x to the closest dry region in the domain.

This is rather straightforward with radar data but more

problematic using rain gauge networks (Braud et al.

1994). In rain gauge networks, the distance to the closest

dry region cannot be determined accurately (depending

on the density of the network). Hence, Eq. (11) cannot

be used to estimate the dry drift. This is a clear limita-

tion in practical applications where the dry drift needs

to be estimated and parameterized from rain gauge

measurements.

The third issue that requires more detailed inves-

tigations is the question of scale and the dependency

of dry drifts to spatial and temporal resolution. Some

preliminary results presented in section 5b show that

the variability explained by dry drifts increases at

lower spatial and temporal resolutions. This can be

explained by the ‘‘smoothing effect,’’ that is, the fact

that the average variability of rainfall decreases with

scale (both in space and in time). However, the exact

magnitude and rate of this effect still need to be

quantified.

The fourth issue that needs to be investigated is the

question of whether the detrended rain-rate field R+

(after removal of the dry drift) can be considered

second-order stationary or not. Clearly, the dry drift is

not the only source of nonstationarity in rainfall. Other

drifts, caused, for example, by orographic effects, coast

FIG. 14. Example of a simulated rain-rate field (top) without and

(bottom) with dry drift.
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lines, or seasonal/daily variations in precipitation patterns,

may also play an important role. Finding an appropriate

mathematical framework that allows one to take into

account (and combine) all these different sources of

nonstationarity at different scales is a difficult problem

that still needs to be investigated.

Finally, another important finding of this paper is the

fact that the (rain)drop size distribution (DSD) is af-

fected by two different dry drifts: one for the drop

concentration and another for the size distribution. The

fact that these two drifts are not equal and greatly vary

from one event to another is very interesting. The au-

thors believe that it may be possible to use these dif-

ferential drifts in the DSD to retrieve some important

information about the different microphysical processes

at work (e.g., collisional growth or breakup). Future work

will mainly focus on these aspects and on their conse-

quences for remote sensing applications.
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