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Abstract—The supersonic stage of interaction (where the rate of expansion of the contact region is
no less than the speed of compression waves) between a Timoshenko-type spherical shell (indenter)
and an elastic half-space (foundation) is studied. The expansion of the desired functions in series in
Legendre polynomials and their derivatives are used to construct a system of resolving equations.
An analytical-numerical algorithm for solving this system is developed. A similar problem was
considered in [1], where the original problem was replaced by a problem with a periodic system of
indenters.
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1. STATEMENT OF THE PROBLEM

At the initial time, a thin linearly elastic Timoshenko-type spherical shell (indenter), moving with an
initial speed V0 under the action of an external resultant force Re directed along the axis of symmetry of
the indenter, comes in contact with a homogeneous isotropic linearly elastic half-space. The vectors of
the initial velocity and external force are directed normally to the unperturbed surface of the half-space.
Initially, the shell and the half-space are in undeformed states.

The motion of the indenter is considered in a spherical coordinate system r0, θ, ϑ̃ with the origin of
the radius vector r0 coinciding with the center of mass O0 of the shell. To describe the motion of the
half-space, we use a cylindrical coordinate system z, r1, ϑ̃ with origin at a point O1 lying on its boundary
and the axis z passing through the point O0 and directed into the interior of the half-space (Fig. 1).

All variables and parameters are reduced to dimensionless form (a prime indicates a dimensionless
quantity, the quantities with index k =1 correspond to the half-space, and the quantities with index k =0
correspond to the shell):
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Fig. 1.
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αα = κααR (α = θ, ϑ).

Here R is the shell radius, c1k and c2k are the speeds of propagation of the compression and shear waves,
ϕ and ψ are the scalar and vector potentials of elastic displacements of the half-space, σαβ are the stress
tensor components of the half-space, ρk is the density, b(τ) is the radius of the contract region, t is the
time, h is the shell thickness, λk and μk are the Lamé elastic constants, wk and uk are the normal and
tangential displacements, p is the normal contact stress, m0 is the shell mass, Ra is the resultant contact
force, Tαα, T̃αα, Mαα, and καα are the nonzero components of the tensors of tangential tractions, their
components, bending moments, and curvature variation, and Q is the shear force. In what follows, the
primes are omitted everywhere.

The axially symmetric motion of the half-space is described by the well-known relations of elasticity
(from now on, a dot over a symbol denotes a derivative with respect to the dimensionless time τ ) which
contain the equations of motion
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the relations between the displacements and potentials
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and the relations between the stress tensor and displacement components
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The corresponding relations for the shell contain [2] the equations of motion

γ2ü0 =
∂Tθθ

∂θ
+ (Tθθ − Tϑϑ) cot θ + Q,

γ2ẅ0 = −Tθθ − Tϑϑ +
∂Q

∂θ
+ Q cot θ +

p

h
,

γ2aχ̈ =
∂Mθθ

∂θ
− (Mϑϑ − Mθθ) cot θ − Q,

(1.4)

the geometric relations

εθθ =
∂u0

∂θ
+ w0, εϑϑ = u0 cot θ + w0, β = χ − ξ, −ξ =

∂w0

∂θ
− u0,

κθθ =
∂χ

∂θ
− ∂u0

∂θ
− w0, κϑϑ = cot θ(χ − u0) − w0,

(1.5)

and the physical relations

T̃ϑϑ = εϑϑ + α0εθθ, T̃θθ = εθθ + α0εϑϑ,

Mθθ = a(κθθ + α0κϑϑ), Mϑϑ = a(κϑϑ + α0κθθ),

Tθθ = T̃θθ − Mθθ, Tϑϑ = T̃ϑϑ − Mϑϑ, Q = β0k
2β, k2 = 5

6 .

(1.6)

Here εθθ and εϑϑ are the nonzero components of the strain tensor and χ is the angle of rotation of the
fiber that is normal to the shell midsurface.

These relations are supplemented with the equation of motion of the shell as a rigid body

m0üc = Re + Ra, Ra(τ) = 2πγ̃

b(τ)∫
0

p(r, τ)r dr, (1.7)

where uc is the penetration depth of the shell as a rigid body.
The initial conditions in the problem under study are
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∣∣
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∣∣
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ẇ
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= V0 cos θ, ϕ
∣∣
τ=0

= 0, ϕ̇
∣∣
τ=0

= 0, ψ
∣∣
τ=0

= 0, ψ̇
∣∣
τ=0

= 0.
(1.8)

There are no perturbations at the infinitely remote point of the half-space.
The linearization of the boundary conditions consists in referring them to the undeformed boundary

surfaces and taking account of the smallness of the contact region. Assuming that the contact occurs
under the free slip conditions (there is no friction between the interacting surfaces) and, outside the
interaction region, the half-space and shell surfaces are free from stresses, we obtain the following
conditions:

σzz

∣∣
z=0

= γ̃p (|r| ≤ b(τ)), σzz

∣∣
z=0

= 0 (|r| > b(τ)),

σzϑ

∣∣
z=0

= 0 (r ∈ (−∞,∞)), w1 = (w0 + 1) cos θ − 1 ≈ w0 (|r| ≤ b(τ)). (1.9)

Neglecting the deformation of the indenter and half-space free surfaces, we see that the contact
region is a circle of radius

b(τ) =
√

uc(2 − uc). (1.10)

Relations (1.1)–(1.10) form a closed initial boundary-value problem.

2. SYSTEM OF RESOLVING EQUATIONS
We restrict ourselves to the initial (supersonic) stage of interaction at which, because of the indenter

convexity, the rate of expansion of the contact region is no less than the speed of compression waves in
the elastic medium [3]. Therefore, the displacements of the indenter and half-space boundary surfaces
stay within the contact region. In this case, we have the following integral representation of the contact
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stress as a two-dimensional convolution, with respect to time and the radius, of the derivative of the
influence function Γ for a half-space with the speed of the normal displacement of the shell [3]:

p = γ̃−1ẇ ∗∗
0 Γ̇. (2.1)

Taking account of the axial symmetry of the problem, we rewrite (2.1) as

p(r, τ) =
1
γ

[p1(r, τ) + p2(r, τ) + p3(r, τ)], p1(r, τ) = −ẇ0H(τ)H[b(τ) − r],
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for r > 0 and the form

ϑr1(0, ρ, τ) =
2

η4ρ3
[3τ2 − (2η2 − 1)ρ2], ϑr2(0, ρ, τ) = − 2

η4ρ3
(3τ2 − η2ρ2),

ϑs(0, ρ, τ) =
(η2 − 2)2

η4
δ(τ − ρ).

(2.5)

for r = 0.
In the last relations, H(x) is the Heaviside unit-step function, F (δ,m), E(δ,m), K(m), and E(m)

are the incomplete and complete elliptic integrals of the first and second kind [4].
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With this approach, the system of resolving equations contains relations (2.1) and (1.4)–(1.10). To
solve this system, we expand the desired functions in the Legendre polynomials Pn(cos θ) and their
derivatives:∥∥∥∥∥∥∥∥∥

w0(θ, τ)

p(θ, τ)

ϑ(θ, θ∗, τ − t)

∥∥∥∥∥∥∥∥∥
=

∞∑
n=0

∥∥∥∥∥∥∥∥∥

w0n(τ)

pn(τ)

ϑn(θ∗, τ − t)

∥∥∥∥∥∥∥∥∥
Pn(cos θ),

∥∥∥∥∥∥
u0(θ, τ)

χ(θ, τ)

∥∥∥∥∥∥ =
∞∑

n=0

∥∥∥∥∥∥
u0n(τ)

χn(τ)

∥∥∥∥∥∥
dPn(cos θ)

dθ
. (2.6)

Here and henceforth, we take account of the smallness of the angle θ and use the approximate relations
r ≈ sin θ and ρ ≈ sin θ∗.

Substituting the series (2.6) into (1.5) and (1.6) and then into (1.4), we obtain the following infinite
system of integro-differential equations for the coefficients of these series:

γ2Ün = LnUn + Pn (n = 0, 1, 2, . . .),

Ln = ‖Lijn‖3×3, Un = ‖u0n, w0n, χn‖T , hγ̃Pn =

∥∥∥∥∥0,
3∑

i=1

pin, 0

∥∥∥∥∥
T

, (2.7)

L11n = (1 + a)[(1 − α0) − n(n + 1)] − β0k
2, L12 = (1 + α0)(1 + a) + β0k

2,

L13n = a[α0 − 1 + n(n + 1)] + β0k
2, L21n = n(n + 1)[(1 + a)(1 + α0) + β0k

2],

L22n = −[2(1 + α0)(1 + a) + β0k
2n(n + 1)], L23n = −n(n + 1)[(α0 + 1)a + β0k

2],

L32n = −2 − a−1β0k
2, L31n = −L33n = n(n + 1) − 1 + α0 + a−1β0k

2.

(2.8)

In this case, the coefficients of the series expansions of the contact stress components take the form

p1n(τ) = − 2n + 1
2

H(τ)
∞∑

k=0

ẇ0k(τ)

b(τ)∫
0

Pk(cos θ)Pn(cos θ) sin θ dθ,

p2n(τ) =
2n + 1

2

∞∑
k=0

τ∫
0

ẇ0k(t)Pk(cos b(t)) dt

π∫
0

ϑ(θ, b(t), τ − t)Pn(cos θ) sin θ dθ,

p3n(τ) = − 2n + 1
2

∞∑
k=0

τ∫
0

ẇ0k(t) dt

b(t)∫
0

dPk(cos θ∗)
dθ∗

dθ∗

π∫
0

ϑ(θ, θ∗, τ − t)Pn(cos θ) sin θ dθ.

(2.9)

It follows from formulas (2.3) and (2.4) that p2n(τ) and p3n(τ) contain integrals with nonintegrable
singularities of order −1 and −3 and integrable singularities of order −1/2.

Taking (2.6) into account, we write the equation of motion of the shell as a rigid body in the form

m0üc = Re + π

3∑
i=1

∞∑
n=0

pin(τ)

b(τ)∫
0

Pn(cos θ) sin(2θ) dθ. (2.10)

3. METHOD AND ALGORITHM OF SOLUTION

To solve the system of Eqs. (2.7)–(2.10), we use the modified fourth-order Runge–Kutta method and
the principle of truncation of an infinite system of equations [5].

We replace the series (2.6) by finite sums with the upper summation limit equal to N . We reduce
the system of Eqs. (2.7)–(2.10) to a first-order system and obtain a system of 6(N + 1) + 2 ordinary
differential equations supplemented with the algebraic equation (1.10). The first 6(N + 1) equations can
be represented in matrix form with block structure:

γ2Ẇ = MW + Q, (3.1)
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W = ‖W0,W1, . . . ,WN‖T , Wn = ‖u0n, w0n, χn, ũ0n, w̃0n, χ̃n‖T

ũ0n = u̇0n, w̃0n = ẇ0n, χ̃0n = χ̇0n,

Q = ‖Q0,Q1, . . . ,QN‖T , Qn =
1
hγ̃

∥∥∥∥∥0, 0, 0, 0,
3∑

i=1

pin, 0

∥∥∥∥∥
T

,

M =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

M0

M1 0

·

·

0 ·

MN

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

, Mn = ‖Mijn‖6×6 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

| 1 0 0

0 | 0 1 0

| 0 0 1

− − − | − − −

L11n L12n L13n |

L21n L22n L23n | 0

L31n L32n L33n |

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

We supplement them with the system of equations of motion of the shell as a rigid body, which follows
from (2.10):

u̇c = ũc, ˙̃uc =
1

m0

[
Re + π

3∑
i=1

N∑
n=0

pin(τ)

b(τ)∫
0

Pn(cos θ) sin(2θ) dθ

]
(3.2)

and with an equation for determining the contact region radius (1.10).
The fifth equation in system (3.1) in each block with number n is an integro-differential equation,

because its right-hand side contains unknown functions w̃0n(τ) = ẇ0n(τ) in the integrand (see (2.9)).
Then the right-hand side contains all N + 1 functions w̃0n(τ), n = 0, 1, . . . , N , and hence, the system
can be solved simultaneously for all 6(N + 1) + 3 equations.

The modified method is different from the classical one in that, along with the use of the classical
scheme [5], it is necessary to construct and use quadrature formulas to calculate the integrals in the
integro-differential equations of system (3.1), (3.2). In the construction of the quadrature formulas, we
use the explicit representation for the Legendre polynomials [4]:

Pn(x) = 2−n

[n/2]∑
m=0

(−1)m
(2n − 2m)!

m!(n − m)!(n − 2m)!
xn−2m. (3.3)

The time coordinate τ is associated with discrete time moments τm = δmm, where δm is the time
increment. The desired coefficients of the series of the displacements and their speeds, the radius of
the contact region, the penetration depth of the indenter as a rigid body and the rate of penetration
are replaced by their discrete analogues, i.e., the values at discrete time moments: u0nm = u0n(τm),
w0nm = w0n(τm), χnm = χn(τm), ũ0nm = ũ0n(τm), w̃0nm = w̃0n(τm), χ̃nm = χ̃n(τm), bm = b(τm),
ucm = uc(τm), and ũcm = ũc(τm).

The quadrature formulas for the integrals appearing on the right-hand sides of Eqs. (3.1) and (3.2)
are constructed with the use of representation (3.3), the method of weight coefficients, and the canonical
regularization [6] for the obtained finite values of the singular integrals (see (2.3) and (2.4)):

p1nm = p1n(τm) ≈ − 2n + 1
2

N∑
k=0

ẇ0km2−n−k

[k/2]∑
m3=0

[n/2]∑
m2=0

(−1)m2+m3
(2k − 2m3)!

m3!(k − m3)!(k − 2m3)!

× (2n − 2m2)!
m2!(n − m2)!(n − 2m2)!

[
1 − (cos bm)k+n−2(m2+m3)+1)

k + n − 2(m2 + m3) + 1

]
,

p2nm = p2n(τm) ≈ 2n + 1
2

N∑
k=0

m−1∑
i=0

ẇ0kiPk(cos bi)
i∑

j=1

Pn(cos θj) sin θj
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× [δm{ω1j(bi)f1(θj , bi, τ − ti) + ω3j(bi)f2(θj, bi, τ − ti)}
+ ω̃i{ω1j(bi)f3(θj, bi, τ − ti) + δlf4(θj , bi, τ − ti)}],

p3nm = p2n(τm) ≈ − 2n + 1
2

N∑
k=0

m−1∑
i=0

ẇ0ki

m1∑
i1=1

[Pk(cos θ∗i1) − Pk(cos θ∗i1−1)]
i∑

j=1

Pn(cos θj) sin θj

× [δm{ω1j(θ∗i1)f1(θj, θ∗i1 , τ − ti) + ω3j(θ∗i1)f2(θj , θ∗i1 , τ − ti)}
+ ω̃i{ω1j(θ∗i1)f3(θj , θ∗i1 , τ − ti) + δlf4(θj, θ∗i1 , τ − ti)}],

δl =
π

l
, δm1 =

bi

m1
, θj = jδl, ti = iδm, τm = mδm, θ∗i1 = i1δm1 ,

f1(θj , x, τ − ti) =
2∑

q=1

ϑrq1(θj, x, τ − ti), f2(θj, x, τ − ti) =
2∑

q=1

ϑrq2(θj , x, τ − ti),

f3(θj , x, τ − ti) =
2∑

q=1

ϑrq3(θj, x, τ − ti), f4(θj, x, τ − ti) = ϑs(θj, x, τ − ti).

The weight coefficients are expressed as

ωn1j =

θj∫
θj−1

dθ

(sin θ − x)n1
, n1 = 1, 3, ω̃i =

ti+1∫
ti

dt

τm − t
.

The system of Eqs. (3.1), (3.2), (1.10) is supplemented with the initial conditions

Wn(0) =

{
‖0, 0, 0, 0, 0, 0‖T if n �= 1,
‖0, 0, 0, V0 , V0, 0‖T if n = 1,

, uc(0) = 0, ũc = V0, b(0) = 0. (3.4)

The proposed calculation algorithm was implemented within the Delphi environment. The val-
ues of the total elliptic integrals were calculated by using their approximation by polynomials
(|ε(m)| ≤ 2 × 10−8, 0 ≤ m < 1, m1 = 1 − m):

K(m) = [a0 + a1m1 + · · · + a4m
4
1] + [b0 + b1m1 + · · · + b4m

4
1] ln

1
m1

+ ε(m),

E(m) = [1 + a1m1 + · · · + a4m
4
1] + [b1m1 + · · · + b4m

4
1] ln

1
m1

+ ε(m).

The values of the coefficients of these approximations are given in [4]. The incomplete elliptic integrals
were calculated by the Simpson method [5].

4. EXAMPLE
As an example, we consider the problem with the following values of the dimensionless parameters

(the shell and half-space materials are the same): m0 = 0.62832, h = 0.05, V0 = 0.01, Re = 0.1,
γ2 = 1, λ/μ = 2, and γ̃ = 1. Figures 2–5 display the graphs of the time variation of the contact
region radius b(τ) and its derivative ḃ(τ), the normal contact stress p(τ) at the frontal point, and the
displacement of the indenter as a rigid body uc(τ). Figures 6 and 7 show the normal displacements w0(θ)
and the normal contact stress p(θ) against the angle θ at the final time instant of the supersonic stage
of interaction τ = 0.076. In the calculations, we retained four terms of the series expansions in the
Legendre polynomials and their derivatives, because retaining a greater number of terms did not improve
the results significantly.

CONCLUSION
The use of the superposition principle has allowed us to obtain the resolving system of functional

equations for the coefficients of the series expansion of the shell displacements, the indenter penetration

MECHANICS OF SOLIDS Vol. 46 No. 2 2011



246 MIKHAILOVA, FEDOTENKOV

Fig. 2. Fig. 3.

Fig. 4. Fig. 5.

Fig. 6. Fig. 7.
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depth, and the radius of the contact region. At each discrete time instant, we have determined the
distribution of the contact pressure over the interaction domain by using specially developed quadrature
formulas, which take account of the nonintegrable and integrable singularities of the kernels of the
integral representations.
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