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Non-Stationary Brain Source Separation for

Multi-Class Motor Imagery
Cédric Gouy-Pailler, Marco Congedo, Clemens Brunner, Christian Jutten, Fellow, IEEE, and Gert Pfurtscheller

Abstract—This article describes a method to recover task-
related brain sources in the context of multi-class Brain-
Computer Interfaces (BCIs) based on non-invasive electroen-
cephalography (EEG). We extend the method Joint Approximate
Diagonalization (JAD) for spatial filtering using a maximum
likelihood framework. This generic formulation (1) bridges the
gap between the Common Spatial Patterns (CSP) and Blind
Source Separation (BSS) of non-stationary sources, and (2) leads
to a neurophysiologically adapted version of JAD, accounting for
the successive activations/deactivations of brain sources during
motor imagery trials.

Using dataset 2a of BCI Competition IV (2008) in which
nine subjects were involved in a four-class two-session motor-
imagery (MI) based BCI experiment, a quantitative evaluation
of our extension is provided by comparing its performance
against JAD and CSP in the case of cross-validation as well
as session-to-session transfer. Whereas JAD, as already proposed
in other works, does not prove to be significantly better than
classical one-versus-rest CSP, our extension is shown to perform
significantly better than CSP for cross-validated and session-to-
session performance. The extension of JAD introduced in this
paper yields among the best session-to-session transfer results
presented so far for this particular dataset, thus it appears of
great interest for real-life BCIs.

Index Terms—Brain-Computer Interfaces, Multi-class motor
imagery, joint approximate diagonalization.

I. INTRODUCTION

T
HE aim of non-invasive Brain-Computer Interfaces (BCI)

is to establish a direct communication pathway between

human intentions and electronic devices [1]. In a medical

context, BCIs are conceived to provide people suffering from

severe motor disabilities with a tool to rehabilitate communica-

tion and movement [2], [3]. They entail central nervous system

Copyright (c) 2008 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

Manuscript received February 4, 2009; revised June 4, 2009. Asterisk

indicates corresponding author.

C. Gouy-Pailler and M. Congedo are with the Department Images-Signal
(DIS), Grenoble Images, Speech, Signal and Control Laboratory (GIPSA-lab),
Grenoble 38031, France.

C. Jutten is with the Department Images-Signal (DIS), Grenoble Images,
Speech, Signal and Control Laboratory (GIPSA-lab), Grenoble 38031, France.
He is also a senior member of the Institut Universitaire de France, 75005 Paris,
France.

C. Brunner and G. Pfurtscheller are with the Institute for Knowledge
Discovery, BCI-Lab, Graz University of Technology, 8010 Graz, Austria.

This Research has been partially supported by the French National Research
Agency (ANR) within the National Network for Software Technologies
(RNTL), project Open-ViBE, Grant ANR05RNTL01601, by the European
COST Action B27 “Electric Neuronal Oscillations and Cognition”. During
the period of the research the first author has been supported by the French
Ministry of Defense (DGA), the second author has been partially supported
by Nova Tech EEG, Inc., Knoxville, TN.

activity to be measured, usually by electroencephalography

(EEG), and then converted into an appropriate device com-

mand. Although not every intent of the user can be decoded

due to the complexity of the brain, a small subset of mental

tasks are sufficiently known from a neurophysiological point

of view to be extracted and mapped onto commands. A well-

known principle consists in using the somatotopical organiza-

tion of the motor cortical areas [4]. When subjects are asked to

imagine movements of different parts of their body, spatially

localized brain activity arises, and this can be associated to

commands [5]. The low Signal-to-Noise Ratio (SNR) and

low spatial resolution of the recorded data jeopardize the

interpretation of the electric brain activity, yielding inaccurate

control of the systems. BCIs also have to cope with inter-

individual variability, enforcing the parameters of the methods

to be adapted to each subject.

To reduce the impact of such obstacles, a crucial part of the

EEG processing consists in transforming the signals acquired

from a large and equivocal array of sensors into a small

number of components focused on task-related brain activity.

Such a step is called spatial filtering. The most widely used

algorithm for this purpose is the Common Spatial Pattern

(CSP), which was introduced in the BCI community in the

context of a two-class MI paradigm [6]. In several comparative

studies CSP has been found superior to competitive spatial

filters [7]. Given the covariance matrices of two different tasks

(for example left hand and right hand MI), CSP computes

linear spatial filters maximizing the variance difference be-

tween the two classes. Many enhancements are still in progress

to improve CSP. For instance, the local, sparse and spectral

versions of the CSP algorithm have been proposed and proved

useful in some cases to increase classification rates [8], [9],

[10] (see [11] for a review of the different CSP principles).

Another promising approach to extract unequivocal sig-

nals from an array of EEG sensors resides in Blind Source

Separation (BSS) [12]. Generally speaking BSS problems

relate to situations when an array of sensors is measuring

a linear mixture of unobserved sources. The issue of recov-

ering sources from the acquired signals has been attacked

by incorporating various assumptions about the generating

processes and/or mixing transformation. For example in [12],

Independent Component Analysis (ICA) was introduced using

two key assumptions; first, a linear relation links generating

and observed signals and second, the sources are statistically

mutually independent and non-Gaussian. Even if the non-

Gaussianity assumption proved useful to remove ocular ar-

tifacts from EEG signals [13], other approaches based on

time-lagged decorrelation [14] or non-stationarity appeared



2

profitable for some natural signals [15], [16], [17].

As reviewed in [15], non-stationary source separation is

a suitable framework for analyzing EEG data. It relies

on rigorous theoretical work [18] and practical as well as

computationally-efficient algorithms. In [18], [19], the authors

showed that a generic non-stationarity assumption is suffi-

cient to tackle the blind problem of separating non-stationary

linearly mixed sources. They also showed in a maximum

likelihood framework that second-order statistics (SOS) are

sufficient in the case of non-stationary Gaussian sources, while

higher-order statistics (HOS) have to be considered when

non-Gaussianity is assumed (see [15] for more details on

those different assumptions). As initially shown by [18], BSS

of non-stationary sources based on SOS amounts to a Joint

Approximate Diagonalization (JAD) problem. Considered as

a natural extension of CSP to multi-class paradigms, a specific

JAD algorithm was used by [20] in the context of BCIs to find

efficient task-related spatial filters. The connection between

this approach and BSS has been pointed out in [21], where

JAD was proved to outperform one-versus-rest CSP.

Two shortcomings of the works devoted to JAD in the

context of BCI are addressed in this paper. First, we elucidate

the connections between JAD and BSS of non-stationary

sources in a maximum likelihood framework. This formula-

tion leads to a new neurophysiologically-adapted JAD for-

mulation, which aims at taking into account the successive

activation/deactivation of sources during MI trials. Second,

we use a BCI dataset in which nine subjects are involved

in a four-class two-session MI experiment to compare our

extension against JAD and CSP using cross-validation as

well as session-to-session conditions [22]. Whereas the cross-

validated performance of JAD methods have already been

assessed and compared to one-versus-rest CSP performance

in [20], [21], the robustness of the JAD methods have not yet

been evaluated for session-to-session transfer.

The rest of this paper is organized as follows. In section II,

we elucidate the links between brain source assumptions and

corresponding models and obtain source separation in terms of

JAD of a set of covariance matrices. The multi-class MI BCI

experiment is described in section III. The BCI-related points

of the method are detailed in section IV. Results are then

presented and discussed in sections V and VI, respectively.

II. NON-STATIONARY BRAIN SOURCE EXTRACTION

A. Non-Stationary Brain Sources

A random one-dimensional signal x(t) is said to be station-

ary up to the second order if and only if the two following

conditions are fulfilled: 1) its expectation E[x] is independent

of time and 2) its autocorrelation function E[x(t1)x(t2)] only

depends on the time difference t2 − t1. Insomuch, there is a

wide range of signals that can be considered as non-stationary.

For example, if the variance of a random signal alternatively

takes two different values, the signal is non-stationary. Such

kinds of signals are common in speech processing. When a

speaker is switching between silence and active speech, in

first approximation the resulting variance of the signal exhibits

high and low variance periods. Even if brain signal dynamics

are much more complicated than the previous elementary

situation, such nonconstant variance profiles (depending on the

observation time scale) can be observed in MI experiments

from an inter-task as well as an intra-trial point of view.

Generally speaking non-stationarity among real signals always

depends on the observation time scale because statistical

properties are estimated using fixed-length time windows.

In the BCI context based on MI, we define a “source” to be

a cluster of aligned and synchronously activated/deactivated

neurons. Neurophysiological studies have shown that the ac-

tivation of motor cortex displays a somatotopically specific

organization [23]. Thus, sources responsible for different types

of MI, e. g., right hand versus left hand, can be considered

as spatially distinct. Second, as shown in [24], event-related

desynchronization and synchronization (ERD/ERS) exhibit

some kinds of diversities during a specific MI task. For exam-

ple when a subject is performing MI a diffuse mu (8–13 Hz)

desynchronization is observed, which is often temporally dis-

tinct from a high-SNR beta rebound (13–30 Hz). Therefore,

two particular kinds of source diversity may be exploited using

the non-stationary source separation framework:

• inter-task diversity: brain sources involved in different

types of MI are spatially distinct. Thus we observe

sources in different spatial locations for each task of the

experiment;

• intra-trial diversity: as specific trials of MI consist

in successive activations/deactivations of distinct brain

sources localized in different areas, namely the Sup-

plementary Motor Area (SMA) and the primary motor

cortex, we can also expect a non-stationary variance

profile of each source within a single trial.

The first kind of diversity has been extensively exploited in

the case of JAD or CSP. Following the framework proposed

in [15], [25], [26], the purpose of this work is to propose a

method that can exploit also the second kind of diversity.

B. Block Gaussian Likelihood Separation

We consider the random processes x(t) ∈ R
N to represent

the EEG time courses, recorded at N sensors. We assume,

without loss of generality, that the EEG data can be first

transformed using a data-independent linear algorithm. This

pre-processing transformation denoted T yields x̃(t) ∈ R
N .

For example, as we are dealing with MI tasks, signals may be

filtered in some frequency bands, namely mu or beta. Second,

we want to find a spatial transformation of x̃(t) helping

inferring the intention c of the user (also called a class in

machine learning) among a set of M predefined mental tasks

c ∈ C = {c1, . . . , cM}. The signals resulting from the spatial

transformation of x̃(t) should yield an increased classification

accuracy compared to directly using x̃(t).
According to the physical properties of the brain [27], [28],

[15], we assume that brain sources are linearly related to x(t).
Brain sources s(t) ∈ R

L (L is the number of selected sources)

and EEG measurements on the scalp x(t) are thus linked by

s(t) = WT
x(t), (1)

where WT ∈ R
L×N represents the spatial filtering for

recovering sources from observations. As the pre-processing
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T is linear, it is equivalent to write the relation (1) for pre-

processed signals, leading to s̃(t) = WT
x̃(t). In the following,

W ∈ R
N×L will be referred to as a set of spatial filters, each

column of W stands for the coefficients to be applied to each

sensor to recover a specific source. In the context of a BCI

experiment, the EEG data will be considered as an interval

[0, T ] and the key assumption about the non-stationary models

of sources is the following:

Assumption The interval [0, T ] is divided into

K subintervals T1, . . . , TK on which the variance

of each source is constant over the subinterval.

Note that depending on the kind of non-stationarity that will

be used, subintervals could represent whole trial tasks or

subdivision of trials, i.e., the following framework will be

used to model both inter-task and intra-trial diversities. When

only inter-task diversity is used, K will be the number of

trials; whereas K is the number of trials times the number of

subdivisions in one trial when intra-trial diversity is used. In

both case we can express source diversity by equations

∀k ∈ [1 . .K] Σs̃,k = diag(σ2
1,k, · · · , σ2

L,k), (2)

where Σs̃,k denotes the covariance matrix of s̃(t) on subinter-

val Tk and ∀l ∈ [1 . . L], σl,k ∈ R
+.

A last assumption posits that the sources are temporally

independent Gaussian processes. We stress that these are only

working assumptions, sufficiently simple to be rigorously de-

rived into an algorithm and sufficiently complex for recovering

sources from sensor measurements [19]. Basically, it means

that only second order statistics will be used even if higher

order statistics do not vanish, thus the method works also for

non-Gaussian sources.

Using the previous assumptions, the probability density of

the sources can be written as s̃(t) = [s1(t), . . . , sL(t)]T on

subinterval Tk such that

∀l ∈ [1 . . L] s̃l(t) ∼ N (0, σ2
l,k), (3)

where N (.) denotes a normal probability density func-

tion. We define the empirical covariance matrix Σ̂x̃,k =
1

#Tk

∑

t∈Tk
x̃(t)x̃(t)T and pk = #Tk

∑

k
#Tk

is the proportion

of time points #Tk in interval Tk among the total number of

time points considered. The likelihood objective as expressed

in [19] is (see appendix for details)

C⋆
ML =

K
∑

k=1

pkKL(WT Σ̂x̃,kW ‖ diag(WT Σ̂x̃,kW )). (4)

Note that the measure KL(R ‖ diag(R)), which is the

Kullback-Leibler divergence between R and the diagonal ma-

trix having the same diagonal as R, is a measure of deviation

from diagonality. Thus if we define off(R) = KL(R ‖
diag(R)), the criterion in (4) can be interpreted as a joint

diagonalization criterion:

C⋆
ML =

K
∑

k=1

pkoff(WT Σ̂x̃,kW ). (5)

It follows that the problem of recovering the non-stationary

sources responsible for some observed signals is: given a

set of covariance matrices C = {Σ̂x̃,k}k=[1 . . K], find a joint

diagonalizer W−T such that for each k

WT Σ̂x̃,kW = Dk, (6)

where each Dk is as close to diagonal form as possible. An

implementation of an efficient algorithm to minimize (5) is

provided by the authors as an open-source CRAN package1.

In [29] we find a useful necessary condition to be fulfilled

to find the approximate diagonalizer.

Identifiability Principle For each pair of posi-

tions (m, n) of the diagonal matrices, there exists

a k such that Dkm
6= Dkn

. In other words, the di-

agonalization set must provide a source of diversity

between source m and source n along interval k.

In the context of non-stationary brain source extraction, the

different activation/deactivation profile of sources would be

sufficient to recover brain sources.

C. Common Spatial Patterns (CSP)

The idea of CSP [30], [6] for two-class problems is to find

the most discriminative spatial filters w ∈ R
N which optimize

the Rayleigh quotient

{min,max}
w

T Σx̃,c1
w

w
T (Σx̃,c1

+ Σx̃,c2
)w

,

where Σx̃,c1
and Σx̃,c2

are the covariances matrix of the

data belonging to class c1 and c2, respectively. We use the

notation {min,max} to express the fact that we are equally

interested in maximizing or minimizing the previous quotient.

The solution of this optimization problem yields an ensemble

of eigenvalues, each of them accounts for the explaining

variance of the corresponding eigenvector. This problem is

equivalent to finding a matrix W and a diagonal matrix D

such that:
{

WT Σx̃,c1
W = D

WT Σx̃,c2
W = I − D

, (7)

which is solved by generalized eigenvalue decomposition.

One can approximately formulate this optimization problem

in terms of a non-diagonality criterion:

CCSP2
=

∑

ci∈{c1,c2}

off(WT Σ̂x̃,ci
W ) . (8)

For two-class paradigms, CSP is nothing but a method

aiming at exploiting the non-stationary sources related to two

different classes. Whereas CSP for two-class paradigms is

solved by an exact joint diagonalization of two matrices, JAD

makes use of an approximate optimization method, which is

nothing but the extension of joint diagonalization to more than

two matrices. Nevertheless, JAD is considered to be more

robust to estimation errors of covariance matrices, while such

errors lead to wrong results with CSP [15], [29].

For multi-class paradigms, an extension has been proposed

in [30], [8]. The simple idea is to decompose the M -class

problem into a set of M binary problems. To that end, each

1jointDiag (http://cran.r-project.org/web/packages/jointDiag/index.html) is
an R package, which provides an implementation of Pham’s algorithm as
well as other efficient joint approximate diagonalization algorithms.
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problem consists of discriminating one class against the mean

of the other ones. In terms of the diagonalization criterion,

this can be formulated such that for each class i ∈ [1 . .M ]
we have

{

WT
i Σ̂x̃,ci

Wi = Di

WT
i

(

∑

j 6=i Σ̂x̃,cj

)

Wi = I − Di

. (9)

In terms of JAD, the diagonalization criterion to be min-

imized is ∀i ∈ [1 . .M ], Ci
CSPM

= off(WT Σ̂x̃,ci
W ) +

off(WT
∑

j 6=i Σ̂x̃,cj
W ).

D. Non-Stationary Source Extraction and JAD

First proposed in [20] and extended in [21], JAD proved

useful to find efficient spatial filters in the context of multi-

class MI BCIs. We can formulate JAD using the general

framework of non-stationary source extraction. The idea is to

consider that the variances of the sources are constant over the

task interval and the variance of the sources differs from task

to task. That is why the JAD of M class-conditional sample

covariance matrices yields generating sources. Formally, as

explained in [21], the set of covariance matrices to be jointly

diagonalized is

C = {Σ̂x̃,ci
}i=[1 . . M ]. (10)

In terms of the non-diagonality criterion, this can be rewritten

as

CJAD =

M
∑

i=1

off(WT Σ̂x̃,ci
W ). (11)

This model is neurophysiologically plausible because it

assumes diversity of the brain sources related to the MI of

different body parts. The somatotopical organization of the

motor area supports this hypothesis. However, the limits of this

model consist in considering that the brain sources responsible

for MI must be constantly activated/deactivated during a whole

trial of a few seconds.

E. Extension of JAD: MSJAD

As aforementioned, the general JAD method as proposed

in [20], [21] may be extended to take into account the activa-

tion/deactivation profile of brain sources during the whole trial.

A concrete example is the beta rebound. This phenomenon

starts at the end of the MI task, but its spatial location and high

absolute power is often used to discriminate between different

MI tasks. As motor tasks are known to be a succession of

activations/deactivations in different brain areas, it can be

assumed that sources related to a mental task realization

can be activated/deactivated with different energies across the

task. Joint diagonalization covariance matrices computed using

successive time windows will help recovering task-related

sources according to the identifiability principle. The set of

covariance matrices that is considered is thus

C = {Σ̂x̃,ci,Ij
}i=[1 . . M ],j=[1 . . J], (12)

where {Ij}j=[1 . . J] is a partition of the task interval. Once

again in terms of the non-diagonality criterion, we can write

the cost function as

CJAD =

M
∑

i=1

J
∑

j=1

off(WT Σ̂x̃,ci,Ij
W ). (13)

This method yields the joint approximate diagonalization

of M · J covariance matrices. We call this method Multi-

Segment Joint Approximate Diagonalization (MSJAD) from

now onwards. Note that either inter-task or intra-trial diver-

sities would now suffice to recover MI-related brain sources.

For the purpose of this paper, a simple and natural interval

partitioning has been used; each trial interval of the training

set is partitioned into four subintervals of equal length The

number of subintervals has been chosen to cover the whole MI

task with 1 s non-overlapping windows, from the beginning of

imagery to one second after the end of the task. Reference [18]

provides a very efficient algorithm to solve the optimization

problem of equation (4), which can be seen as a JAD. Its

description is out of the scope of this article.

III. SUBJECTS AND EXPERIMENTAL PARADIGM

We consider dataset 2a from BCI Competition IV (2008).

We here only remind the crucial parts of the paradigm (detailed

description can be found on the competition website2). Nine

subjects were involved in a BCI experiment consisting of four-

class MI tasks. Two sessions on different days were recorded

for each subject, each session consisted of 288 trials (72 trials

of each task). The paradigm is illustrated in Figure 1b.

EEG was acquired at 22 Ag/AgCl electrodes (with inter-

electrode distances of 3.5 cm). The setup is depicted in

Figure 1a. Monopolar derivations were used throughout all

recordings where the left mastoid served as reference and the

right mastoid as ground. The signals were sampled at 250 Hz

and bandpass-filtered between 0.5 and 100 Hz. An additional

50 Hz notch filter was enabled to suppress line noise.

Although a visual inspection of the raw EEG data was

performed by an expert, no trials were removed from the

subsequent analysis in this study in order to evaluate the

robustness and sensitivity to outliers and artifacts of each

method. The fraction of artifacteous trials over all subjects was

rather low anyway, namely 7.5 % on average (median value of

6.1 %).

IV. METHODS

The performance of our framework is assessed using two

evaluation methods: cross-validation and session-to-session

transfer. We begin by describing the overall method in the

case of cross-validation [7]. Figure 2 gives an overview of the

processing flow. It details the different operations performed

during the training and testing step and elucidates the param-

eters transferred between these two steps (dashed lines in the

figure).

For each subject and each session the EEG signals were

filtered with a fifth-order Butterworth filter with 5 and 35 Hz

cut-off frequencies. First of all, the set of trials is partitioned

2Dataset 2a from http://ida.first.fraunhofer.de/projects/bci/competition_iv/.
The results were announced on November 2008 and the competition started
on July 2008.
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0 1 2 3 4 5 6 7 8 Time [s]

Beep Beep

Fixation
cross

Cue

Motor imagery Break

(a) Paradigm

C4CzC3

Fz

Pz

(b) Montage

Fig. 1. Timing scheme of the BCI paradigm (a) and electrode setup of the 22 channels with inter-electrode distances of 3.5 cm. Some locations corresponding
to the international 10-20 system are labeled (b).

into a training and a test set. The total number of trials

available for one session of each subject is 72 for each class

(right hand, left hand, foot and tongue). The training set is

randomly chosen among the whole dataset (1 × 20 cross-

validation). Its size varies between 10 and 60 trials of each

task. Thus the total training set size within each session varies

from 40 to 240 trials. For each method, the set of covariance

matrices is computed using only the training set, and the

spatial filter is computed. For JAD and MSJAD this procedure

results in a set of N potential spatial filters. We then use an

Information Theoretic Feature Extraction procedure [21] to

rank the spatial filters and select the L = 8 best of them.

In the case of CSP, the procedure yields a set of M × N

spatial filters resulting from M CSP algorithms. As the

eigenvalues are ranked according to their importance for

explaining variances, we are able to easily select a certain

number of components for separating one class among the

others. As a matter of fair comparison with JAD algorithms

and according to previous studies, we selected the best two

spatial filters of each CSP decomposition. This results in a

total of L = 8 spatial filters. Once the set of spatial filters has

been determined, they are applied to the training and test sets,

yielding estimated sources ˆ̃
s(t). Three seconds of each trial of

the training and test sets are then extracted, from t = 4 s to

t = 7 s, covering the whole imagery period. This interval is

decomposed into one-second segments with 80 % overlap be-

tween two successive segments. For each one-second segment

of data features are computed by extracting spectral powers

in 15 equally spaced narrow bands of 2 Hz between 5 and

35 Hz. For each segment this results in a 120-dimensional

feature vector. The feature vector of the training set is used

to train a regularized multinomial regression (generalization

of the logistic regression to multi-class problems) [31]. Note

that the classifier has been successfully used in much more

drastic ill-posed situations in which no over-fitting had been

observed [31]. The regularization parameter was set to 0.3.

Lastly, we try to infer the class of each segment of each trial

of the test set. The output of the classifier is the probability

that the segment belongs to a certain class. We attribute to

each segment the class yielding the highest probability. This

procedure is repeated 20 times for each partitioning size. The

global label of a test trial is chosen as the class for which the

maximum probability is observed (integrating over the set of

successive segments).

In the case of session-to-session transfer, the procedure is

greatly simplified. We use the spatial filters and classifier

learned with one session and test using the second session.

The procedure is therefore applied only once. This evaluation

method is of the greatest interest for real BCI applications. A

BCI would indeed be user-friendly if the training time needed

to use the system is reduced to a few minutes on the first day

of use. But this implies robustness of the spatial filters and

classifier obtained on the first day.

Training step Test step

Band-pass filter

5-35 Hz
Band-pass filter

5-35 Hz

Linear spatial

filters

computations

Linear

projection

Linear

projection

Sources selection

Features

extraction

Features

extraction

Classifier

training
Classification

c

W

x̃(t)

W

x̃(t)

ˆ̃s(t) = W
T x̃(t)

ˆ̃s(t)

x̃(t)

ˆ̃s(t) = W
T x̃(t)

Fig. 2. Overview of the processing method in the case of cross-validated
performance evaluation. The broad lines linking some elements between the
training and testing steps represent an exchange of information. The spatial
filters are computed using the training set, a certain number of them is selected
and then reported into the test step to project the data. See the text for details
about the notation.

V. RESULTS

A. Cross-Validated Results

In order to evaluate any significant difference between the

mean performance of CSP, JAD and MSJAD, we first perform

an analysis of variance [32]. Our repeated measure design

involves two within-subjects factors: SESSION is a two-level

factor and METHOD is a three-level factor. In order to simplify

the analysis the training set size has been discarded from the

analysis of variance and only the performances for training set

sizes of 60 trials per task are considered. In the following, we

will see that this simplification does not influence the results
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because the rankings of methods are not dependent on the

training set size. Our experimental design consists also of one

random factor: SUBJECT (reasons why it is random can be

found in [33]). The dependent variable PERF is the cross-

validation performance, which is the average of 20 randomized

repetitions. The analysis of variance is summarized in Table I.

df F p

SESSION (1,8) 0.94 0.360
METHOD (2,16) 5.99 0.011
METHOD × SESSION (2,16) 1.16 0.339

TABLE I
SUMMARY OF THE ANALYSIS OF VARIANCE FOR THE CROSS-VALIDATED

PERFORMANCE. THE SUCCESSIVE ROWS INDICATES THE INFLUENCE ON

THE LINEAR MODEL OF THE DIFFERENT VARIABLES CONSIDERED. THE

TRAINING SET SIZE IS SET TO 60 TRIALS PER TASKS.

A significant main effect of METHOD appears (F (2, 16) =
5.99, p = 0.011), whereas no SESSION main effect or

METHOD × SESSION interaction are observed. These results

show that there is no significant differences between the two

sessions, thus no training effect of the subjects can be claimed.

It is also important that no METHOD × SESSION effect is

found because a significant effect would suggest that the main

effect of METHOD is not consistent across sessions. A post-hoc

analysis was performed to test all pairwise differences between

the mean performances of the three methods (JAD vs. CSP,

MSJAD vs. CSP and MSJAD vs. JAD). We used Tukey

contrasts to adjust p-values due to multiple comparisons. We

observe a significant difference of means between MSJAD and

CSP (t(17) = 2.867, p = 0.027). No significant difference of

mean is observed neither between JAD and CSP nor between

MSJAD and JAD (p = 0.120 and p = 0.726).

Table II presents the cross-validated performance obtained

for each subject and each session. The performance score is

averaged between 20 repetitions for the larger training set

size (60 trials per task) given by the best model. The third

column of the table gives the corresponding best method.

Performances are substantially heterogeneous among subject,

ranging from 48.1 % for subject 6 session 1 to 87.5 % for

subject 3 session 2. A summary of the cross-validated perfor-

mances is presented in Table III. The mean value presented

in this table is the average among the performances of each

subject for a specific method (training set size is 60 trials

per task), the third column of the table also indicates the

corresponding standard deviation.

Figure 3 shows a detailed view of the performance of the

different algorithms as a function of the training set size. The

results of two representative subjects are presented here. For

some subjects, all methods appear to be quite comparable

and differences are slight, whereas for some others, important

differences exist among methods, e. g., in subject 3 session 2,

where a difference of almost 20 % of classification accuracy is

observed. This figure shows that for most subjects the training

set size can be reasonably reduced to 20 or 40 trials for each

class without any significant loss of performance. We also

want to emphasize that the ranking of the methods is not

Accuracy (%) Best method

S1 ses1 72.2 JAD
ses2 77.2 MSJAD

S2 ses1 62.7 CSP
ses2 59.3 JAD

S3 ses1 85.4 JAD
ses2 87.5 JAD

S4 ses1 76.0 MSJAD
ses2 70.5 JAD

S5 ses1 75.0 MSJAD
ses2 80.6 MSJAD

S6 ses1 48.1 CSP
ses2 55.3 MSJAD

S7 ses1 58.1 MSJAD
ses2 55.7 MSJAD

S8 ses1 81.7 JAD
ses2 77.9 MSJAD

S9 ses1 72.6 JAD
ses2 79.1 JAD

TABLE II
CLASSIFICATION RATES FOR EACH SESSION (SES1 OR SES2) AND EACH

SUBJECT (S1 TO S9) GIVEN BY THE BEST MODEL. TRAINING SET SIZE IS

60 TRIALS PER TASK.

Mean [%] Std Dev.

JAD 68.73 13.06
CSP 65.90 9.92

MSJAD 69.76 10.63

TABLE III
SUMMARY OF THE CROSS-VALIDATED PERFORMANCES FOR EACH

METHOD. TRAINING SET SIZE IS SET TO 60 TRIALS PER TASK.

influenced by the training size.

B. Session-to-Session Transfer

As in the case of cross-validation, we performed an analysis

of variance to assess any significant superiority of a method

over the others. The model considered is the same as the one

presented in the cross-validated case. Results are presented in

Table IV. This table shows that no significant main effects

of factor SESSION and of interaction SESSION × METHOD

are observed. On the contrary, we observe a significant main

effect of METHOD (F (2, 16) = 5.81, p = 0.011).
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Fig. 3. The cross-validated performance of subjects 3 and 7 during session
2 are presented in this figure. The classification accuracy is plotted versus the
training set size for the three methods compared in this paper.
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df F p

SESSION (1,8) 2.45 0.156
METHOD (2,16) 5.80 0.013
METHOD × SESSION (2,16) 0.11 0.89

TABLE IV
SUMMARY OF THE ANALYSIS OF VARIANCE FOR THE

SESSION-TO-SESSION TRANSFER PERFORMANCE.

We performed a post-hoc analysis to identify the significant

differences of means [34]. A significant difference appears

between MSJAD and CSP (t(17) = 2.981, p = 0.022). No

significant difference can be found between MSJAD and JAD

but a marginal difference is observed between JAD and CSP

(t(17) = 2.545, p = 0.052). These results further corroborate

the fact that MSJAD performed better than CSP in this multi-

class MI experiment for both the cross-validated and session-

to-session results.

Figure 4 presents a detailed view of the performance of each

subject for each method and each session. This figure presents

the classification accuracy obtained by considering session 1

(session 2) for training and session 2 (session 1) for testing.

The performances of a specific subject during session 1 and 2

for a specific method are linked by a straight line. This clearly

shows a high heterogeneity between subjects. Table V shows

the average performance of each method across subjects and

sessions.

Mean [%] Std Deviation

JAD 63.3 13.48
CSP 60.5 11.09

MSJAD 63.8 12.28

TABLE V
SUMMARY OF THE SESSION-TO-SESSION TRANSFER PERFORMANCES FOR

EACH METHOD CONSIDERED IN THIS PAPER. EACH SCORE IS THE

AVERAGE ACROSS 18 SESSIONS.

C. Comparison with BCI Competition IV (2008)

The dataset used in this paper was proposed during BCI

Competition IV. The goal of this competition was to evaluate

algorithms for session-to-session transfer between the first

and the last session (session 1 was used as training set and

session 2 was used as evaluation set). Even if the competitors

were clearly asked to remove the artifacts present in the

dataset, we can fairly compare the results of the competition

with our algorithm by using exclusively session-to-session

transfer from session 1 to session 2 and using the same cri-

terion, namely the kappa score as defined in [35]. The results

are summarized in table VI. Results obtained by the best

three competitors as well as results obtained by the algorithms

presented in this paper are reported. The robust measure used

here confirms the results obtained in this paper for cross-

validation as well as session-to-session transfer performance.

It also shows that our MSJAD algorithm, even if results could

be improved by first removing artifacts, behave fairly well

compared to the results obtained by the best competitors.

We indeed see that MSJAD as well as the winner of the

competition proved the best method for 4 out of 9 subjects.

Nevertheless MSJAD would have been ranked third especially

because of subjects S7 and S9.

1
st

2
nd

3
rd JAD CSP MSJAD

S1 0.68 0.69 0.38 0.65 0.52 0.66
S2 0.42 0.34 0.18 0.40 0.39 0.42
S3 0.75 0.71 0.48 0.77 0.67 0.77
S4 0.48 0.44 0.33 0.50 0.50 0.51
S5 0.40 0.16 0.07 0.44 0.49 0.50
S6 0.27 0.21 0.14 0.19 0.18 0.21
S7 0.77 0.66 0.29 0.25 0.26 0.30
S8 0.75 0.73 0.49 0.72 0.57 0.69
S9 0.61 0.69 0.44 0.50 0.40 0.46

Mean 0.57 0.52 0.31 0.49 0.41 0.50

TABLE VI
KAPPA SCORES OBTAINED BY THE THREE BEST COMPETITORS AS WELL

AS THE THREE METHODS PRESENTED IN THIS PAPER.

D. Does Intra-Trial Diversity add information?

As pointed out by [29], the inclusion of new matrices to

a diagonalization set could be sufficient to improve results.

Therefore, to be sure that the improvements observed with

MSJAD were not the results of an increase of the number of

matrices, we performed the same computations as presented

with MSJAD, but we broke the time structure of each trial: in

MSJAD, each of the 16 covariance matrices of the diagonal-

ization set corresponded to a specific task and a determined

time segment, both ranging from one to four. The trial time

structure was broken by randomizing the segments indexes

before averaging such that the four covariance matrices related

to each task do not correspond to a specific time segment

position in the trial anymore. Thus in this method the 16

covariance matrices only exploit the inter-task diversity but

not the intra-trial diversity. As expected, performance appeared

comparable to JAD in both cross-validation and session-to-

session transfer (66.8 and 62.1 %, respectively). This demon-

strates that inclusion of intra-trial diversity is indeed the key

factor allowing improvement in MI BCI classification rate.

VI. DISCUSSION AND CONCLUSION

The method proposed in this paper yields among the best

session-to-session results for this particular dataset, as com-

pared to [36] as well as the BCI Competition IV. It is also no-

table that the difference between cross-validated and session-

to-session performance is very low. This is of great interest

for real-life BCI systems because it means that parameters set

using a first day of training can be used with an acceptable

classification accuracy during the following days. We also

showed in the cross-validation results that the training set

can be considerably reduced without any significant decrease

of classification rates. This is a valuable result for real-life

BCI systems. People could therefore be able to use the BCI

system with a reduced training time. Results are globally

satisfying given the fact that subjects were untrained (see [37]

for an extended study about naive BCI users). Nevertheless,

the results presented in this paper suggest that the intrinsic

subject ability to control a BCI is much more crucial than the
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Fig. 4. Session-to-session performance details. The performances of a method for session 1 and 2 are linked by a straight line.

training effect. We did not observe any significant effect of the

session factor, however our training session may not be long

enough to accumulate long-term training effects.

The computational load of the three methods compared

in this paper is approximately the same. Each of them is

able to instantaneously compute spatial filters given a set of

covariance matrices of reasonable dimensions (up to N = 200
remains reasonable). We also noticed that the inclusion of

more matrices in the training set does not significantly increase

the JAD computational time. Although we did not go into

the details of the JAD algorithm used throughout this paper,

an important characteristic of this algorithm is that it is

deterministic. It means that if you run the algorithm two times

with the same data the result will be the same. As mentioned

by [38] this is not the case with all ICA algorithms.

a) Relation to previous works: Two preceding papers

analyzed in detail the application of ICA algorithms for a

subset of this particular dataset [38], [36] (subject S8 was not

present in these analysis). In [38], different commonly used

ICA algorithms were compared to CSP. The best results were

attained by CSP with a score of about 65 % in the cross-

validation case and about 61.5 % in the session-to-session

transfer case. When we remove subject S8 from the analysis,

MSJAD is shown to outperform results from [38] with scores

of 68.5 % and 62.8 % for cross-validation and session-to-

session transfer respectively.

On the other hand, results presented in [36] using Infomax

ICA remains better than the results of this paper. These results

have been obtained with the help of an extensive and com-

putationally demanding sequential floating forward selection

algorithm (SFFS) considering 1364 features. Yet, even if cross-

validation results were largely improved, especially because of

Infomax results (about 75 % of classification rate), session-to-

session transfer results did not outperform results given in [38]

(about 61.5 %). Our work is also closely related to [21]. In this

article, connections between CSP and ICA were made and

JAD was compared to multi-class CSP in an MI-based BCI

experiment involving three subjects. Performance was com-

pared in cross-validation only and showed a clear superiority

of JAD over multi-class CSP. This result was not so clear with

our dataset. Even if JAD performed marginally better than

CSP for session-to-session performance, no significant results

were observed between the two methods for cross-validation

performance.

b) Multi-Class Spatial Filtering: More generally, we

once again proved that linear spatial filtering is of great interest

to improve BCI classification rates. Up to now, most BCI

experiments have considered two-class paradigms because of

a lack of appropriate algorithms to process and classify data.

Our paper provides a natural generalization of CSP to multi-

class paradigms. We think that it could help considering

multi-class paradigms in real-life BCI experiments. Not only

does our framework provide efficient ways to find efficient

spatial filters, but it also provides well-based theoretical links

between source assumptions and algorithms. Insomuch, future

works about linear non-stationary source extraction could be

facilitated by exhibiting other kinds of diversities in the data.

A straightforward way to extend our framework would be to

incorporate precise frequency information about the generating

processes, thus exploiting spectral source profile diversities in

addition to inter-class and non-stationarity [15].

c) Conclusion and Future Directions: In summary, we

presented here an efficient framework for increasing classi-

fication rates of multi-class BCI paradigms. By formulating

CSP by JAD in a maximum likelihood context for separating

linear mixtures of non-stationary sources, we bridged the gap

between the family of CSP algorithms and BSS. The sepa-

ration of non-stationary source separation is well grounded

on Pham’s and Cardoso’s theoretical work, and the algorithm

provided by Pham is computationally efficient, in particular

much more efficient than most ICA-based source separation

methods [15]. The general framework exposed here leads to a

new method to make use of successive activation/deactivation

of brain sources. The results showed that the new method

proposed in this paper outperforms the commonly used CSP

algorithm. We showed that the CSP by JAD can be formulated

in terms of non-stationary source separation and linked the

underlying assumptions in terms of neurophysiological phe-

nomena.
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APPENDIX

We here remind the main theoretical aspects of non-

stationary source separation given in [18], [19]. Using the mu-

tual independence hypothesis, we can write the log probability

density of s̃(t) as

−
1

2

L
∑

l=1

s̃2
l (t)

σ2
l,k

+ log(2πσ2
l,k) = −

1

2
tr

(

Σ−1
s̃,ks̃(t)s̃(t)

T
)

−
1

2
logdet (2πΣs̃,k) .(14)

The probability density of x̃(t), px̃(x̃) is related to the one

of s̃(t), ps̃(s̃) by px̃(x̃) = |detW |ps̃(W
T
x̃). Therefore, the

maximum likelihood criterion is

CML =
1

#Tk

∑

t∈Tk

1

2
tr(Σ−1

s̃,kWT
x̃(t)x̃(t)T W ) +

+logdet(2πΣs̃,k) + log|detW−T |, (15)

where #Tk stands for the number of time points in the

subinterval Tk. Defining the matrices Σx̃,k = W−T Σs̃,kW−1

and Σ̂x̃,k = 1
#Tk

∑

t∈Tk
x̃(t)x̃(t)T , namely the model-based

and data-based covariance matrices, and integrating the infor-

mation over all subintervals, the maximum likelihood can be

rewritten:

CML =
1

2

K
∑

k=1

pk[tr(Σ−1
x̃,kΣ̂x̃,k)−logdet(Σ−1

x̃,kΣ̂x̃,k)−N ]+const,

(16)

where pk = #Tk
∑

k
#Tk

. The expression of the Kullback-Leibler

divergence for two zero mean N -variate densities of respective

covariance matrices R1 and R2 is known to be KL(R1 ‖
R2) = 1

2 [tr(R−1
2 R1) − logdet(R−1

2 R1) − N ]. The Kullback-

Leibler divergence is invariant under invertible transformation,

thus KL(Σ̂x̃,k ‖ Σx̃,k) = KL(WT Σ̂x̃,kW ‖ Σs̃,k). The

expression of the maximum likelihood becomes then:

CML =

K
∑

k=1

pkKL(WT Σ̂x̃,kW ‖ Σs̃,k) + const. (17)

Lastly, we can use a key property of the Kullback-Leibler di-

vergence, which relates a positive matrix R with any diagonal

matrix Σ by the Pythagorean decomposition KL(R ‖ Σ) =
KL(R ‖ diag(R)) + KL(diag(R) ‖ Σ). From this relation, we

learn that the closest diagonal matrix to R is Σ = diag(R).
Equation (17) is minimized with respect to {Σs̃,k}k∈[1 . . K] by

choosing Σs̃,k = diag(WT Σ̂x̃,kW ).
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