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Abstract. We propose a stochastic model for a memristive system by 
generalizing known approaches and experimental results. We validate our 
theoretical model by experiments carried out on a memristive device based 
on Au/Ta/ZrO2(Y)/Ta2O5/TiN/Ti multilayer structure. In the framework 
of the proposed model we obtain the exact analytic expressions for stationary 
and nonstationary solutions. We analyze the equilibrium and non-equilibrium 
steady-state distributions of the internal state variable of the memristive system 
and study the influence of fluctuations on the resistive switching, including the 
relaxation time to the steady-state. The relaxation time shows a nonmonotonic 
dependence, with a minimum, on the intensity of the fluctuations. This paves 
the way for using the intensity of fluctuations as a control parameter for 
switching dynamics in memristive devices.
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1. Introduction

Memristors are elements of electric circuits able to change resistance depending on the 
applied electrical stimulation. These devices attract nowadays great attention as one of 
the most prospective candidates for next-generation nonvolatile random access mem-
ory. This is due to its excellent size scalability down to nanometers, fast switching, low 
power, and simple structure [1–14]. Within the context of nanotechnologies, produc-
tion of nanostructures by diffusion is a subject largely investigated [15–17]. Meanwhile, 
the observed stochasticity in many experiments has emerged as an important inherent 
property of memristors. Intrinsic stochasticity appears as significant fluctuations in 
values of cycle-to-cycle resistance levels and lack of predictability in response to the 
driving electric pulses leading to insufficient read margin between the programmed 
resistance states. This fact has been perceived across a range of nonvolatile memory 
technologies such as phase-change memory [18, 19], resistive random access memory 
[20, 21], electrochemical metallization memory [22], conductive bridge random access 
memory [23], and among oxide-based memristive materials [9, 24–26]. On the other 
hand, the non-deterministic behavior of circuit elements is the common feature of 
nanoelectronics and gives the ground for the newly established field of study named 
as stochastic electronics [27, 28]. With extensive miniaturization, the circuit elements 
are increasingly diverting away from their deterministic behavior and the fluctuation 
level, which in classical theory has been considered as a small disturbing factor, cannot 
be neglected at nanoscales [29]. This stochastic operation highly mimics the biologi-
cal medium within the brain. Therefore, using memristor as a basic element of future 
neural computers looks to be even more promising [9, 30–35]. This paper is dedicated 
to the investigation of the basic model for stochasticity of memristors and thereby it 
provides the ground for understanding how the intrinsic fluctuations can represent a 
drawback or a benefit for emerging applications.
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By stochasticity of a memristive system we mean the inherent fluctuations in struc-
ture, chemistry, physical values and switching times, which can occur over multiple 
lengths and time scales during the switching events. For investigating the properties 
of this stochasticity and understanding how it influences the system it is important to 
construct the appropriate theoretical model [36]. This model should catch the funda-
mental balance laws that govern memristor behavior and include information about 
stochastic properties. Our aim is the introduction of a simple model based on the 
generalization of the known ones. There are different theoretical models of memris-
tive systems proposed in the literature. They can be ordered in four main approaches: 
dynamical, microstructural, thermodynamical and stochastic. Below we select only 
those allowing the description of stochasticity and show that all the stochastic models 
can be reduced to the same foundations, which can be specified as the model of the 
overdamped Brownian motion on the field of force.

The dynamical approach is based on rather simple dynamic equations that catch the 
key physical properties of memristor behavior. The models used in [2, 37–41] and the 
model of conductive filament (CF) growth in [42] can be attributed to this approach. 
These models usually involve at least two equations: one is the Ohmic-type relationship 
between voltage and current and the second is a first-order differential equation for a 
state variable. The stochasticity is not taken into account by dynamic models, while it 
appears in the system due to many reasons including uncertainty of the model itself. 
The uncertainty of the model arises because in the dynamic approach one uses only 
the basic properties of the memristive system for the model construction and omits 
some other details. The selected basic properties are mainly defined by the choice of 
the internal state variable which is not observed from external electrical behavior [40]. 
There are models of memristive systems described by different state variables such as 
the doping ratio [40], the width of doping region [39], the concentration of vacancies 
in the gap region [43], the thickness of CF [42], the tunneling barrier width [44] etc.

The microstructural approach provides more accurate models for all physical pro-
cesses taking place at the microlevel [45–47]. While the dynamic approach provides 
a practical fit of an abstract mathematical formulation with generalized experimental 
data of switching processes, the microstructure models aimed at precisely meeting the 
physical dynamics of fabricated devices. In this case, the mathematical complexity 
growths considerably, the model includes a large number of various differential equa-
tions and allows only numerical simulation. However, the simulated values sometimes 
provide only qualitative fit to the experimental data [47]. Indeed, the microstructural 
model may require dozens of extra physical parameters for simulation and each one 
can contain some error. As a result, considerable uncertainty in description remains. 
In addition, due to the increased complexity of this approach, the resulting model does 
not allow the efficient application of analytical methods for analysis of the system and 
lead to the long computational procedures.

The thermodynamic models include fluctuations in a natural way. In this approach, 
the state of a memristive system like in the dynamical approach can be described by an 
internal state variable, the system parameter, the representative or configurational coor-
dinate, etc. The system tends to the state with the minimal value of a thermodynamic 
potential, e.g. free energy F  as a function of the internal state variable. According to 
[48], the free energy of a memristive system may have three local minima separated by 
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energy barriers. The thermodynamic system can change the locally stable state under the 
action of fluctuations and due to variation of external parameters (e.g. external electric 
field). At the equilibrium, the thermodynamic models provide well defined Boltzmann 
probability distribution of the internal state variable W (x) = A exp(−F(x)/kT ), where 
A is a normalization factor. The evolution of nonequilibrium system is often described 
by the Fokker–Planck equation (FPE) for the probability distribution of the state vari-
able in the field of thermodynamic force, defined by the profile of the free energy [48, 49].  
The FPE, which takes fluctuations into account, describes the nonlinear relaxation 
from the initial nonequilibrium distribution towards that of equilibrium. If there is a 
constant flow, the system can relax to a nonequilibrium steady state (NESS) [50–52].

In the framework of the stochastic approach, the mathematical models involve the 
random force. Similar to the dynamic approach the stochastic models are based on at least 
two equations: an Ohmic-type relationship and a first-order differential equation with a 
noise source [28, 53, 54]. The stochastic part of the model—the first order Langevin 
equation—is known as the model of overdamped Browninan motion in the field of force 
[55]. If, instead of a separate Brownian particle, we consider an ensemble of particles, 
where each one moves randomly and independently according to the Langevin equation, 
we can introduce the average concentration of particles per unit space [26, 56, 57]. The 
appropriate equation for the concentration of particles (or the probability density, if the 
normalization holds true) is the FPE. Therefore the first order Langevin equation and 
the FPE are equivalent in the sense they both describe the same dynamics of Brownian 
particles but with different approaches: the statistical analysis of the random trajectory 
of the particle or the spatio-temporal behavior of the probability density of the particles 
[55]. Therefore the thermodynamic and stochastic approaches have a common base and 
can be considered as variations of the same basic mathematical model.

Thus, the fluctuations are taken into account in an explicit way only in stochastic 
and thermodynamics models. Though the various stochastic and thermodynamic mod-
els are already proposed elsewhere, a deeper investigation of the stochastic behavior of 
the memristive system is still necessary. It is important to investigate these models not 
only with numerical simulations, as in complex cases, but also analytically, as in simple 
but effective cases. As a rule, the exact analytical solutions of simple effective models 
give rise to deep insight into the physics of the observed phenomena.

Also it is important to study what is the equilibrium, or steady-state, of the memris-
tive system for a set of external parameters, and analyze the related time characteristics 
such as the relaxation time to the steady-state, the transition time to another equilib-
rium state and the lifetime of metastable states under the influence of noise. The statis-
tics of switching times and the appropriate probability distributions were investigated 
in [26, 28, 44, 56–59], and some common properties for the mean switching time values 
were revealed for different systems investigated. However, these studies, besides their 
importance, are not sufficient to understand if the main working states of the memris-
tor, that are the high resistance state (HRS) and low resistance state (LRS), appear as 
equilibrium, nonequilibrium steady, metastable or unstable states. In case they are (or 
one of them) metastable or unstable, then what is the steady state? Is it an equilibrium 
state or NESS? 

On the other hand, nowadays there are many known examples, where the interplay 
of nonlinearity and fluctuations can change the properties of a stochastic system in a 
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counter-intuitive way, in classical and quantum physics [60–72]. Furthermore, internal 
and external noise can play a positive role in switching dynamics of memristors. In fact, 
in [53] it was shown that internal noise helps to increase the contrast ratio between low 
and high resistance states, and in [73] the authors experimentally observed, in a mem-
ristor system, a phenomenon similar to stochastic resonance [74–76] with a beneficial 
role of noise in resistive switching. In particular, they studied the effect of external noise 
on the resistive switching of a memristor system and found an optimal noise amplitude 
that maximizes the contrast between HRS and LRS. However, basic stochastic prop-
erties, such as the stationary and non-stationary distribution of diffusing particles in 
memristors, the relaxation or the transition time, have not been investigated.

In this paper, we introduce a stochastic model of a memristor, based on a gener-
alization of known approaches and experimental results. By solving numerically the 
FPE under periodic voltage driving we get the I − V  characteristic for our theoretical 
model in one-dimensional case. We validate our theoretical I − V  characteristic by 
an experiment reported here with a newly engineered memristive device based on the 
Au/Ta/ZrO2(Y)/Ta2O5/TiN/Ti multilayer structure and by experiments shown in [77] 
and references therein. The agreement between the theoretical and experimental I − V  
characteristics is quite good and shows that the model is able to reproduce the main 
fundamental properties of memristive system: the hysteresis of I − V  characteristic 
and its dependence on the frequency of the driving signal. Our theoretical approach 
is similar to that proposed in [26, 54, 56, 59]. However, we study our model not only 
numerically but also analytically, obtaining the exact analytical expressions for non-
equilibrium distributions in the one-dimensional case, for two types of boundary con-
ditions. The exact analytical solutions obtained are an effective tool to analyze the 
transient dynamics of the memristors and at the same time provide a way to improve 
the theoretical techniques to investigate the memristor devices in a vast area of param-
eters and conditions. We analyze the influence of fluctuations and other parameters 
on the relaxation time to the steady-states. We find that the relaxation time shows a 
non-monotonic dependence on the intensity of the fluctuations. For particular forms of 
potential profiles, that describe the structure of the dielectric material, the relaxation 
time can be reduced.

2. Description of the generalized stochastic model

The main physical parameter describing the state of a memristor is its resistance. Among 
a wide variety of resistive-switching memory devices implemented with different mat-
erials, a significant part is based on the formation and destruction of the CF in a thin 
dielectric film by applying an external voltage. The stochasticity of the memristors is 
manly attributed to this process [6, 24, 28]. The process of CF formation and destruc-
tion is based on a random hopping of the metal ions or dielectric structural defects 
(oxygen vacancies), which are positively charged, between the trapping sites within 
the structure of dielectric material. Let us call these ions or vacancies as diffusing par-
ticles. This diffusion process leads eventually to the formation or destruction of CF, 
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depending on the direction of the external electric field, which defines the average drift 
direction. A conducting path is thus formed through the areas where the concentration 
of the particles is high enough. Following [54] we describe the motion of these particles 
by a Langevin equation

η
dx

dt
= −

∂U(x,V )

∂x
+ ξ(t), (1)

where x is the coordinate of a particle, η is the coefficient of viscosity, U(x,V ) is the 
potential profile defining the regular force acting on the particles which depends on 
the voltage V  of the electrodes of the memristor, and ξ(t) is a white Gaussian noise 
with the usual statistical properties 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t+ τ〉 = 2θδ(τ), where δ(τ) is 
the delta function and 2θ is the noise intensity. When the fluctuations have only ther-
mal nature, the intensity is proportional to the temperature θ = ηkBT , where T is the 
temeperature and kB is the Boltzmann constant, according to the Sutherland–Einstein 
relation. The average concentration of randomly walking particles as a function of time 
and space coordinate is used as internal state parameter defining the state of the mem-
ristor. Following [56, 57, 59], for simplicity of analysis, we consider the one-dimensional 
model, which can be generalized to three-dimensional if necessary. Let the top electrode 
(TE) be positioned at x  =  0 and the bottom electrode (BE) at x  =  L. The uncertainty 
provided by the model itself and the inevitable uncertainties in the calculation of mac-
rophysical parameters (such as electrical and thermal conductivity of the mat erial, 
viscosity, variations in activation energies for defect and electron transport, etc), inac-
curate control of the structure and boundary conditions, imprecise control of the initial 
conditions (such as the initial concentration of the defects, the inhomogeneity of the 
initial states, etc) and the presence of thermal fluctuations are described by the sto-
chastic force ξ(t) (see equation (1)), whose intensity is proportional to the temper ature 
in the presence of only thermal fluctuations.

The potential profile U(x,V ) for hopping particles is represented by the potential 
wells separated by the barriers (see figure 1). The height of the barriers is the activation 
energy Ea, which must be provided to the hopping particle to surmount the barrier and 
move to the neighboring well in a random direction. Besides the periodic component 
Φ(x) of the function U(x), the external field provides the slope F of the potential profile 
directed to one or another electrode depending on the polarity of the applied voltage as 
it is shown in figures 1(a)–(c)

U(x,V ) = Φ(x)− Fx, (2)

where F = qV/εL, q is the charge of the particle and ǫ is the dielectric constant.
Special conditions for the potential appear near the electrodes. Using various elec-

trode materials, we can modify the energy properties of the interface that influence the 
shape of the potential profile near the boundaries at x  =  0 and x  =  L. The role of these 
changes can be important as it can influence the resistance values in LRS and HRS as 
well as the properties of the switching dynamics [78, 79]. Usually, TE has a low and eas-
ily oxidizable work function (WF) and BE has a higher WF. In general, it can be taken 
into consideration by an additional potential well with the depth Et near the TE and 
the potential barrier with the height Eb near BE, as shown in the figures 1(d)–(f). In this 
paper we consider only two special cases, when Et = Eb = Ea and when Eb → ∞ under 
Et = Ea. The latter case corresponds to a BE consisting of an ideally inert material.

https://doi.org/10.1088/1742-5468/ab684a
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The Langevin equation (1) corresponds to the following Fokker–Planck equa-
tion (FPE) for the concentration of particles n(x, t)

∂n

∂t
=

1

η

∂

∂x

[

∂U(x,V )

∂x
n

]

+D
∂2n

∂x2
, (3)

where D = θ/η2 is the diffusion coefficient. Further in the paper, we will consider 
η = 1. The Brownian diffusion in tilted periodic potential (2), described by equa-
tion (3), can be replaced by the diffusion in the flat tilted potential U1 without bar-
riers [55, 80–84, 86]

U1(x,V ) = −veffx, (4)

with the effective drift and diffusion coefficients veff and Deff , respectively. As a result, 
equation (3) for the coarse-grained concentration of particles n1(x,t) takes the following 
form

∂

∂t
n1(x, t) =

∂

∂x

[

n1(x, t)
∂U1(x,V )

∂x

]

+Deff

∂2

∂x2
n1(x, t) (5)

and the exact expressions for the effective drift and diffusion coefficients, valid for arbi-
trary values of F = qV/εL and θ, are the following [82, 83]

veff =
ℓ

T1(x0, x0 + ℓ)
, (6)

Deff =
ℓ
2

2

∆T2(x0, x0 + ℓ)

[T1(x0, x0 + ℓ)]3
, (7)

where ℓ is the period of the periodic component Φ(x) of the potential (2), T1 is the 
mean first passage time (FPT) of the particle through the boundary x0 + ℓ, when it 
starts from the point x0, and ∆T2 is the variance of this FPT. If for any value of exter-
nal volt age V  we can consider that the resulting energy of activation is much greater 
than the intensity of fluctuations, E ≈ Ea − Fℓ/2 ≫ θ, then we can use the following 
approximate expressions for (6) and (7)

veff =
2ℓ

τkr
sinh

Fℓ

2θ
, (8)

Deff =
ℓ
2

τkr
cosh

Fℓ

2θ
, (9)

where τkr is the Kramers time

τkr = τ0 exp
Ea

θ
. (10)

Here Ea is the activation energy for zero bias and τ0(θ) is defined by the specific shape 
of the periodic potential Φ(x). For thermal fluctuations, θ = kBT , the expressions (8) 
and (9) satisfy the following relation [87]

Deff = θ
d

dF
veff . (11)

https://doi.org/10.1088/1742-5468/ab684a
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The approximate expressions for effective drift and diffusion coefficients (8) and (9) pro-
vide a monotonic dependence on the parameters θ and F and were obtained under some 
specific assumption about the shape of the periodic potential profile Φ(x). Namely, the 
width of the barriers is about the width of the wells and the top of each barrier is in 
the middle between two nearby wells for any value of F. The real shape of the potential 
profile is defined by the specific structure of the dielectric material and can be different. 
It was shown in [82–85] that the functions Deff(θ) and Deff(F ) can be nonmonotonic for 
some particular shapes of potential wells and barriers. For example, these functions will 
have a maximum if the potential profile Φ(x) has wide wells and narrow barriers or vice 
versa, as it is shown in the inset (a) and (b) of figure 2. A similar potential profile can 
be created by inserting rows of metallic nanoparticles into the dielectric layer [88]. This 
nonmonotonicity with a maximum is a signature of the phenomenon of acceleration of 
diffusion in subcritically tilted periodic potentials [82, 84, 85]. To take it into account, 
we should use the exact expressions for the effective drift and diffusion coefficients (6) 
and (7).

The complete memristor model, in addition to the drift-diffusion equation (5) and 
Ohmic type relationship, should also include the equations that connect the coarse-
grained concentration of the defects n1(x,t) with the resistance R, taking into account 
that the current I flowing between the electrodes heats the material locally and there-
fore contributes to the increase of the noise intensity. It can also be taken into account 
that the electric field inside the memristor can be distorted since there are areas with 
different conductivity depending on the n1(x,t) distribution. Therefore, in a general case 
one can consider the potential field as a function of a greater number of parameters 

Figure 1. View of the potential profile U(x,V ) defining the regular force acting 
on diffusing particles under zero external bias V = 0 ((a), (d)), positive V > 0 
corresponding to ON set ((b), (e)) and negative V < 0 corresponding to OFF set 
((c), (f)). The view of potential profile taking into account the influence of the TE 
and BE materials (d)–(f) in a general case.

https://doi.org/10.1088/1742-5468/ab684a
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U1(x,V , I,n1) obeying the additional equations and then the FPE (5) can become non-
linear in n1. Note that the drift term in equation (5) can be represented as the following 
sum

∂

∂x

[

∂U1(x,V , I,n1)

∂x
n1

]

=
∂U1(x,V , I,n1)

∂x

∂n1

∂x
+

∂2U1(x,V , I,n1)

∂x2
n1. (12)

The influence of Joule heating was investigated numerically in [26, 45–47] for the three- 
dimensional case. The case U1 = U1(x,n1) was investigated in [56] for one-dimensional 
case with the assumption that the second term in (12) can be neglected. This is true 
when U1(x) is a linear function. The Joule heating effect was not considered in [56]. In 
the present paper we consider the most simple case, when Joule heating and nonlin-
ear effects are not taken into account. The specific form of R(n1) is not crucial for the 
model considered here and depends on the properties of specific materials. Further we 
consider the case when a low value of n1 leads to high resistance and vice versa [89]. Let 
this dependence be strongly nonlinear and threshold-like: the resistance is drastically 
reduced when n1 becomes greater than a threshold value n1 = nth. In this simplified 
case, the total resistance of the memristor can be calculated as follows [2]

Rm = RON

w(t)

L
+ROFF

(

1−
w(t)

L

)

, (13)

where w (t ) is the size of the doped region, Rm is the memristor resistance and RON is 
the low value of the resistance, when the concentration of defects exceeds the threshold 
level n1(x, t) > nth and ROFF is the high value of resistance, when n1(x, t) < nth (see 
figure 3).

Note that equation (5) is the same drift-diffusion equation that describes the move-
ment of particles in a memristive system mentioned in [59], in which its one-dimen-
sional solution is investigated. In [26], we can find the three-dimensional version of this 
equation which is solved only numerically. In [56] equation (5) is considered nonlinear, 
when U1(x,V ) = U1(x,V ,n1), but the second term in the expansion (12) is neglected. 
In this case FPE (5) is treated as a generalized Burgers’ equation. In the next section, 
we compare the I − V  characteristic obtained in the proposed simple one-dimensional 
linear model with the experimental one.

3. Comparison with experiment

To validate the stochastic model of a memristive device described in the previous sec-
tion, we verify the fundamental properties of resistive switching such as the I − V  
characteristic and its dependence on the driving frequency. The experimental mem-
ristive device used for validation was fabricated on the basis of a newly engineered 
Au/Ta/ZrO2(Y)/Ta2O5/TiN/Ti multilayer structure, which is described in more details 
in [90]. I − V  sweep measurements were carried out at room temperature in atmo-
spheric conditions by using the Agilent B1500A semiconductor device analyzer. The 
measured I − V  characteristics are presented in figure 4 by color lines, where the colors 
correspond to the different cycles.
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The sweeping period is 4s and sweeping amplitude is 3 V. The sign of bias on the 
device corresponds to the potential of the Au electrode relative to the grounded TiN/
Ti electrode. The experimental memristive device demonstrates typical bipolar switch-
ing of anionic type related to reconstruction and destruction of the CF composed of 
oxygen vacancies [91]. The SET process at positive bias corresponds to the transition 
from HRS to LRS. The backward transition at negative bias is denoted as the RESET 
process in figure 4.

The results of numerical solution of equations (4), (5), (8)–(10) and (13) are shown 
by the black line in figure 4. For the model test we use the following parameters: the 
dimensionless activation energy in the equations (8)–(10) is Ea/θ = 23, which becomes 
Ea  =  0.6 eV at room temperature, when fluctuations have the thermal nature θ = kBT . 
This is in agreement with recent measurements of activation energy based on the anal-
ysis of flicker noise generated by a memristive device [92]. The maximum dimensionless 
variation of activation energy corresponding to the maximal value of the sweeping volt-
age V = 2.2 V is ∆E/θ = 4.23. The other parameter values are ℓ2/τ0 = 6 · 10

−13
cm

2
s
−1 

and L  =  10 nm (the length of the structure). The sweeping period is 4s and the sweeping 
amplitute 2.2 V. For modeling we used the following boundary conditions

n1(0, t) = N1, n1(L, t) = N2, (14)

where 0 and L are the coordinates of the TE and BE made of different materials. For 
the relative concentration of defects at the boundaries, we consider N1 = 100% for the 
easily oxidizable TiN/Ti electrode and N2 = 25% for the opposite electrode, which 
assumes that its ability to provide defects is 4 times lower. Such an assumption may 
be appropriate for a BE consisting of non-ideal inert material. In the case of an ideal 
inert mat erial we should use at the BE the reflective boundary conditions, which could 

Figure 2. Effective diffusion coefficient as a function of dimensionless fluctuation 
intensity θ/Ea for potential profile (c) shown in the inset with the value a = 0.8ℓ. 
Inset: examples of tilted periodic potentials for which the acceleration of diffusion 
can be observed. Ea is the activation energy or the barrier height at V = 0.
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be more appropriate for Au in the case of high material purity. The threshold value of 
the concentration for resistance switching is nth = 50%.

Comparing the experimental and simulated results shown in the figure 4 we can 
see that our theoretical model describes the experiment with a quite good qualitatively 
agreement and captures the key fundamental properties of the real I − V  characteris-
tic. There is a hysteresis on the characteristic I − V  and its area and shape correspond 
to that observed in the experiment. During the SET process, the sharp switching from 
HRS to LRS appears at approximately the same voltage, that is around 2 V. The SET 
value of the current is different because the current through the experimental sample is 
limited by the compliance current Ic = 300 µA. The equations introduced in section 2 
do not model the circuits for current restriction at the SET regime. Therefore the value 
of the resistance in LRS reached in the model is less comparable to that in the experi-
ment. Additional conditions that model the limitation of the current can be added to 
our model, if necessary, while it is not crucial for the model verification.

In the RESET regime we can see that the switching process from LRS to HRS 
starts approximately at the same value of driving voltage V = −1.1 V, but the model 
switches to the HRS state slightly faster. This difference may be due to the particular 
choice of boundary conditions. The conditions (14), used for the test of the model, allow 
to reduce the concentration of defects at V < 0 by two ways: by inverse flow of the 
defects back to the TE located at x  =  0 and through the BE boundary at x  =  L, which 
works as the sink of defects, when n1(L, t) > N2. If we consider the reflecting boundary 
condition at x  =  L, suitable for an ideally inert material of the electrode, the disper-
sion of the defects through the electrode will become impossible and we will observe a 
slowing down of the switching process. On the other hand, in the literature we can find 
the experimental data with I − V  characteristics that show a faster RESET process 

Figure 3. Diagram with the equivalent electric circuit of the memristor model.
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appropriate to the result of the above simulation with boundary conditions (14) (see, 
for example, [93]).

The precise modeling of particular experimental processes is not the main topic of 
this paper. Our aim is to demonstrate that our simple model is able to reproduce the 
main features of real memristive devices. Another fundamental property is the shrink-
ing of the hysteresis loop with increasing driving frequency [77]. This basic property 
is captured by the proposed model, as we can see from figure 5, where the theor etical 
I − V  characteristic, with the same parameters but for different values of driving fre-
quencies, is shown. This dependence of hysteresis of the I − V  characteristic on the 
driving frequency is in agreement with experimental results shown in [77] and refer-
ences therein. A more detailed fitting of the proposed model to specific experiments is 
the subject of forthcoming work.

In the next section, we show that the proposed model is not only able to capture the 
key properties of real memristive systems, but allows us to obtain the exact analytical 
solutions, which implies the qualitative and quantitative improvement of the theor-
etical techniques to analyze such systems in different physical conditions.

4. Exact solution and analysis

The stationary solution nst(x) of the FPE (5) obeys the following equation

Figure 4. I − V  characteristic of the memristive device. Color lines: experimental, 
measured on the device based on Au/Ta/ZrO2(Y)/Ta2O5/TiN/Ti structure 
(different colors correspond to different switching cycles). Black line: theoretical, 
based on numerical solution of equations (4), (5), (8)–(10) and (13) with boundary 
conditions (14). Voltage sweeping period is 4s. Other parameters used for numerical 
solution: Ea/θ = 23, ∆E/θ = 4.23, ℓ2/τ0 = 6 · 10

−13
cm

2
s
−1, L  =  10 nm, N1 = 100%, 

N2 = 25%, and nth = 50%.
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[

∂

∂x

∂U1(x,V )

∂x
+Deff

∂2

∂x2

]

nst(x) = 0. (15)

For the linear potential profile (2) the equation (15) reads

Deff

d2
nst(x)

dx2
− veff

dnst(x)

dx
= 0. (16)

Taking the boundary conditions (14) one may obtain the following stationary solution 
(shown in figure 6(a))

nst(x) =
N2 −N1

exp
(

veffL

Deff

)

− 1

[

exp

(

veffx

Deff

)

− 1

]

+N1. (17)

As we mentioned before, if the BE is made of inert material with a very high WF, 
it can be modeled as a reflecting boundary, that is an infinitely high barrier, for the 
defects at the point x  =  L. Replacing boundary conditions (14) with the following ones 
(18)

nst(0) = N1, Gst(L) = veffnst(L)−Deff

dnst(x)

dx

∣

∣

∣

∣

x=L

= 0, (18)

where Gst(L) is the stationary flux of the diffusing defects at the point x  =  L, we can 
repeat the whole procedure and obtain the following equilibrium concentration which 
is shown in figure 6(b)

nst(x) = N1 exp

(

veffx

Deff

)

. (19)

We can see that for reflecting boundary conditions (18), the variations of nst(L) with 
external bias F is much wider than that obtained with the boundary conditions (14). 
This means that the amplitude of the resistive switching between LRS and HRS will be 
greater when the BE material is inert. The same conclusion was realized in [78] based 
on experimental results. An exponential dependence of the resistance value from the 
maximum reset voltage has been experimentally observed also in memristive devices 
with inert BE [79]. The concentration (19) corresponds to the equilibrium state of the 
system described by (5), while the concentration (17) appears in the NESS because 
there is the constant flow of defects between the electrodes in this steady state.

Now we can find the nonstationary solution of equation (5). This allows us to see 
how the concentration of defects evolves with time as one changes external voltage, 
noise intensity, effective diffusion coefficient and other parameters, such as the temper-
ature. As a consequence, the relaxation processes can speed up or delay. Let us consider 
first the boundary conditions (14) and write the general solution n1(x,t) of equation (5) 
as a sum of two terms

n1(x, t) = nst(x) + nnst(x, t), (20)

where nst(x) is the stationary part (17) satisfying the boundary conditions (14) and 
nnst(x, t) is the nonstationary part with zero boundary conditions

nnst(0, t) = nnst(L, t) = 0.

https://doi.org/10.1088/1742-5468/ab684a
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Taking the non-stationary part as a function with separable variables

nnst(x, t) = T (t)S(x), (21)

we transform equation (5) into the following form

S(x)
dT (t)

dt
= −T (t)veff

dS(x)

dx
+ T (t)Deff

d2
S(x)

dx2
. (22)

Now, by grouping terms with spatial and temporal variables, we finally obtain the 
equations for the functions S(x) and T (t)

dT (t)

dt
= CT (t), (23)

d2
S(x)

dx2
−

veff

Deff

dS(x)

dx
−

C

Deff

S(x) = 0, (24)

where C is an arbitrary constant, which should be negative or equal to zero to make 
solution (23) bounded

T (t) = C1e
Ct. (25)

Linear and homogeneous equation (24) has two characteristic roots λ1,2

λ1,2 =
1

2





veff

Deff

±

√

(

veff

Deff

)2

+ 4
C

Deff



 . (26)

Since the constant C is negative or equal to zero, the characteristic roots λ1,2 may be 
either real or complex. For the real ones, the solutions of the equation (24) are

Figure 5. Theoretical I − V  characteristic for different driving frequencies: black 
is for f   =  0.25 Hz, the same frequency as for the black plot in figure 4, Green—2f , 
Red—3f , and Blue—4f . The other parametrs of the model are equal to those used 
for figure 4.
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3S(x) = C2 exp





x

2





veff

Deff

+

√

(

veff

Deff

)2

+
4C

Deff









+ C3 exp





x

2





veff

Deff

−

√

(

veff

Deff

)2

+
4C

Deff







,C < 0

S(x) = C4 + C5 exp

(

veffx

Deff

)

,C = 0.

 (27)

However, in this case, according to the boundary conditions S(0) = S(L) = 0 all arbi-
trary constants C2,C3,C4,C5, are equal to zero. Thus, the constant C should be chosen 
in such a way that the characteristic roots λ1,2 are complex

λ1,2 = a± ib, (28)

Figure 6. Steady-state concentration nst(x) for different values of bias V  and 
diffusion coefficient Deff  equal to two different values D1 and D2 such that D2 < D1: 
(a) for boundary conditions (14); (b) for boundary conditions (18) corresponding to 
the ideally inert material of the BE.
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where

a =
veff

2Deff

, (29)

b =
1

2

√

−

(

veff

Deff

)2

− 4
C

Deff

, (30)

and, because the solution S (x ) should be real, we consider the constraint C3 = C
∗

2
 for 

the complex coefficients C2 and C3 of equation (27). With this choice of the constants 
C,C2,C3, we obtain the following solution of the equation (24)

S(x) = eax
[

Ĉ2 sin(bx) + Ĉ3 cos(bx)
]

,
 (31)

where Ĉ2 and Ĉ3 are new real unkown constants. Finally, using boundary conditions

S(0) = Ĉ3 = 0, S(L) = Ĉ2 sin(bL) = 0, (32)

one can find the equation for the constant C

L

2

√

−

(

veff

Deff

)2

− 4
C

Deff

= πn. (33)

Therefore, the set of possible values of the constant C is the following

C(n) =
Deff

4

(

−

4(πn)2

L2
−

(

veff

Deff

)2
)

< 0, n = 0, 1, 2, ... (34)

As a result, according to equations (23) and (31) the nonstationary solution may be 
written as follows

nnst(x, t) =
∞
∑

n=0

C1(n)e
C(n)teaxĈ2(n) sin

(

πnx

L

)

.

 (35)

Denoting the product of C1(n) and Ĉ2(n) as a new constant C0(n), we finally obtain

nnst(x, t) = exp

(

veffx

2Deff

)

∞
∑

n=0

C0(n) exp [C(n)t] sin
(

πnx

L

)

,

 (36)

where the set of arbitrary constants C0(n) is defined by the initial conditions

C0(n) =
2

L

L
∫

0

exp

(

−

veffx

2Deff

)

nnst(x, 0) sin
(

πnx

L

)

dx. (37)

Equations (36)–(37) are the exact nonstationary solution of FPE (5) with the bound-
ary conditions (14). Figure 7(a) shows the nonstationary concentration of the defects 
n1(x,t) for different times during the set process under V > 0 and constant, when the 
system is switched from HRS to LRS. The area of the doped region, initially located 
only close to TE, it grows and reaches steady state, in which the doped region fills 
almost all the area from TE to BE. According to equation (13) it corresponds to the 

https://doi.org/10.1088/1742-5468/ab684a


Nonstationary distributions and relaxation times in a stochastic model of memristor

17https://doi.org/10.1088/1742-5468/ab684a

J
. S

ta
t. M

e
c
h
. (2

0
2
0

) 0
2
4
0
0
3

switching of the resistance value from HRS to LRS. The growth process of the doped 
region is qualitatively similar to the drift-diffusion model introduced in [59], but in 
our case we do not need to introduce any additional constrains in the equations of the 
model, the so-called window functions (see also [39–41]). The nonstationary concentra-
tion (36) naturally evolves towards the stationary one under the action of regular and 
random forces.

The nonstationary concentration n1(x,t) for the reflecting boundary conditions (18) 
can be obtained with the same theoretical procedure starting from equation (20), with 
the first term given by equation (19). Similarly to the equation (36) the nonstationary 
term reads

nnst(x, t) = exp

(

veffx

Deff

)

∞
∑

n=0

C0(n) exp (C(n)t) sin b(n)x (38)

with differences only in the equations for the constants C, a and b. From the boundary 
conditions (18) it follows

S(0) = 0, (39)

veffS(L)−Deff

dS(x)

dx

∣

∣

∣

∣

x=L

= 0. (40)

Consequently, instead of equation (32) we get

Ĉ3(n) = 0, (41)

Ĉ2(n)

[(

veff

Deff

− a

)

sin(bL)− b cos(bL)

]

= 0. (42)

Taking into account equations (29) and (30), the expression (42) leads to the following 
transcendental equation for a and b

tan(bL) =
b

a
, (43)

which has no analytic solution but can be solved numerically or graphically. The plot 
of nonstationary concentration of particles n1(x,t) for reflecting boundary (18) is shown 
in figure 7(b) for different times during the set process under V > 0, when the system 
is switched from HRS to LRS.

For the understanding of switching variability of resistance values in LRS and HRS 
it is important to compare the switching time observed in experiment with the relax-
ation time of the defects concentration towards the stationary state. In other words, for 
the complete analysis it is necessary to understand if the system under observation has 
reached the stationary state or it remains far from equilibrium. Now, the information 
about the relaxation time τ  towards the steady-state concentration, under the bound-
ary conditions (14), can be easily extracted from equation (34). Indeed, for every space 
coordinate x the function nnst(x, t) tends to zero with time as a sum of exponentials. 
The slowest one of them corresponds to the rate C(1)
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Deff

4

(

4π2

L2
+

(

veff

Deff

)2
)

. (44)

Thus, the relaxation time reads

τ =
−1

C(1)
=

(

2L

veff

)

2Deff/veffL

1 + π2 (2Deff/veffL)
2
. (45)

The relaxation time (45) as a function of the bias voltage is shown in figure 8 for two 
values of fluctuation intensity. In accordance with known theoretical and experimental 
results [28, 58, 59], this dependence is close to the Arrhenius law, which is shown by 
dashed lines in figure 8. The exact expression τ(V ) deviates from the Arrhenius law for 
small voltages, when the switching times become large.

Figure 7. Evolution of nonstationary concentrations (36) and (38) from initial 
state to the steady-state ON under V > 0 and constant, for times multiple of 
relaxation time τ : (a) for boundary conditions (14); (b) for boundary conditions 
(18) corresponding to the ideally inert material of the BE.
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Figure 8. Relaxation time as a function of bias voltage for two values of noise 
intensity θ1 (curve 1) and θ2 (curve 2), with θ1 > θ2. Dashed straight lines represent 
the Arrhenius law.

Figure 9. Relaxation time as a function of dimensionless noise intensity θ/Ea for 
potential profile with equal widths of barriers and wells a = b = 0.5ℓ, where Ea is 
activation energy at V = 0 (solid line). Relaxation time for potential profile with 
the wide wells a = 0.8ℓ and narrow barriers b = 0.2ℓ shown in the inset in figure 2(c) 
(dashed line). Inset: the same relaxation time as a function of dimensionless noise 
intensity but for large values of θ/Ea.

https://doi.org/10.1088/1742-5468/ab684a


Nonstationary distributions and relaxation times in a stochastic model of memristor

20https://doi.org/10.1088/1742-5468/ab684a

J
. S

ta
t. M

e
c
h
. (2

0
2
0

) 0
2
4
0
0
3

The relaxation time (45) as a function of fluctuations intensity is shown in figure 9. 
The origin of fluctuations can be either thermal or from an external source. For exam-
ple, the latter can be caused by a voltage driving noise added into the system. In a 
general case τ(θ) is a nonmonotonic function (see the inset in figure 9). The range in 
which τ  decreases with the intensity of the fluctuations θ < Ea

 is the most interesting 
from practical point of view, since it provides the possibility of accelerating the relax-
ation process through noise. As can seen from the inset of figure 9 there is an optimal 
value of the noise intensity so that the relaxation time is minimal.

In the case of use of the dielectric structures, with the special shapes of potential 
barriers and wells allowing the acceleration of diffusion (that is the nonmonotonic 
behavior of Deff(θ) shown in figure 2), the relaxation time will become shorter. In par-
ticular, the curve with dashed line refers to a periodic potential profile with wide wells 
a = 0.8ℓ and narrow barriers b = 0.2ℓ, while the solid line curve refers to a periodic 
potential profile with a  =  b  =  0.5. Therefore, the choice of a particular potential profile 
gives rise to a further possibility of accelerating the relaxation process.

5. Conclusions

We have proposed a simple stochastic model for memristive systems. The model is 
validated experimentally and its ability to reproduce some fundamental properties of 
resistive switching such as the hysteresis of the I − V  characteristic and its dependence 
on the driving frequency is confirmed.

The proposed model takes fluctuation into account and allows us to obtain the exact 
analytic solutions for the concentration of defects, considered as an internal parameter 
of the system. This model paves the way to improve the theoretical techniques to 
deeper investigate the switching dynamics of the memristor devices. The steady states 
of the model systems are shown to be of equilibrium or nonequilibrium depending on 
the boundary conditions, which in turn depend on the materials of the electrodes. The 
nonstationary function obtained n1(x,t) provides a simplified description of transient 
processes within the memristive system, under arbitrary values of noise intensity, driv-
ing voltage and other parameters.

The relaxation time to the stationary state is obtained in analytic form and it has 
a nonmonotonic dependence on the intensity of the fluctuations for a certain set of val-
ues of the external parameters. There is an optimal intensity of external noise so that 
the relaxation time is minimal. Some specific shapes of potential profiles, that describe 
the internal structure of the memristive material, have been shown to accelerate the 
relaxation process. This paves the way to the use of noise as a control parameter for 
switching dynamics, and provides insight on the interplay between the properties of the 
dielectric structure and the switching times of the memristive devices.
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