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Thermal nonlinearity can produce oscillatory instability in optical microspheres.
strate this instability and analyze the conditions needed to observe this regime.

good agreement with the results of numerical simulation.
thermal oscillations are suppressed owing to an interaction of thermal and Kerr nonlinearities.

We experimentally demon-
The observed behavior is in
In pure fused silica with low optical absorption the
We also de-

scribe experimentally observed slow and irreversible thermo-optical processes in microspheres. © 2005 Op-

tical Society of America
OCIS codes: 190.3100, 190.4870, 190.1450.

1. INTRODUCTION

Optical microspheres with whispering gallery modes
(WGMs) of total internal reflection’ as well as their novel
toroidal derivatives®® uniquely combine submillimeter
size with small volume-of-field localization (V
~ 10%cm?®) and a very high quality factor. Even for
such relatively linear material as fused silica, this combi-
nation provides the low threshold of optical bistability.*
The threshold scales as V.4/Q? (Q is an optical quality
factor), and bistability can easily be seen at microwatts of
optical power in fused-silica microspheres. This nonlin-
ear effect may be either useful or undesirable, depending
on application. In addition to fast Kerr nonlinearity, op-
tical microspheres reveal slow thermal nonlinearity. Un-
der the Kerr nonlinearity we understand the summary ef-
fect of cubic nonlinearities—electronic, strictional, and
lattice unharmonicities, which are inseparable in many
cases. Thermal nonlinearity results from a heating of
mode volume by the power absorbed in a microsphere ow-
ing to nonzero optical losses. The value of thermal non-
linearity is not constant but depends on the rate of inter-
nal optical field intensity variations and therefore on the
history and the rate of changes of difference between the
resonator’s eigenfrequency and input laser frequency.
Generally speaking, thermal nonlinearity can be de-
scribed by two characteristic times. The first describes
thermal relaxation of the mode volume in the bulk of the
microsphere, and the second is associated with the ther-
mal relaxation of the microsphere as a whole.? In the
same paper an interesting regime of oscillatory instability
was observed. A similar example of the instability is pre-
sented in Fig. 1, which represents the nonlinear resonant
curve as seen on the oscilloscope in experiments. Tenta-
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tive explanation of this phenomenon, which was proposed
in the aforementioned article,? required either two non-
linear mechanisms with different signs or two excited
modes in the resonator. It is known, however, that the
relaxation-type nonlinearity can produce oscillatory in-
stability even in a single-mode resonator.® The first at-
tempt to explain the oscillatory instabilities in micro-
spheres with this approach was made by Belokopytov.”
However, the quantitative estimates were significantly
different from the experimental results.

Surprisingly, oscillatory and chaotic regimes that were
sporadically observed in our early experiments were not
observed in later experiments with microspheres in our
group and were not observed in other laboratories after-
wards. The obvious reason, as we recently realized was
that in subsequent research the experiments were done
with high-purity glasses in which the predominant
mechanism of loss in the visible and near IR band was
scattering and not absorption. Progress in our resonator
fabrication technique allowed us® to reach the fundamen-
tal limit of @ ~ 10'° at A = 0.63 um. As the theoretical
analysis below shows, if the absorption is small enough
for the thermal-relaxation nonlinearity to be equal to the
instant Kerr one, the competition of the two effects pre-
vents the observation of the oscillatory instability. When
we returned to fabrication of microspheres using the
original, higher-absorption silica, we were able to repro-
duce the effect and study it in more detail.

2. OPTICAL NONLINEARITY IN
MICROSPHERES

The wave equation for the electric field E; in a sphere in
first-order approximation has the following form:

© 2005 Optical Society of America
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Fig. 1. Nonlinear resonance and oscillatory instability in optical
microsphere observed in the experiment. Horizontal axis corre-
sponds to detuning from the resonant frequency; vertical, output
intensity.
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where e(r) is a linear dielectric constant of the medium
(equal to the squared refractive index n? inside the
sphere and unity outside) and § = §, + &, + &, describes
total losses (@ = w/26), taking into account internal ab-
sorption (8,), internal and external scattering (5,), and
coupling losses (5,). The right part of the equation de-
scribes additional polarization due to the pumping and
nonlinear effects, P, = x,E,. Optical absorption of the
energy stored in the mode of the resonator leads to a gen-
eration of heat. Owing to thermal dependence a change
of temperature leads to a change of refractive index pro-
portionally to the temperature shift: 6 = T(r) —
Since the eigenfrequencies of the microsphere depend on
the refractive index, this leads to the thermal nonlinear-
ity. Taking into account the instant Kerr and this ther-
mal nonlinearity we can express y as follows:

€
Xo = 5 B0+ X3 (w)EZ, 2
o

where B = (1/n)(dn/dT) is the thermal dependence coef-
ficient of refractive index. Using rotation wave approxi-
mation

E(r, t) = a(t)Eq(r)exp(iwt), 3)

where E((r) describes the normalized field distribution of
a chosen eigenmode of the unperturbed lossless micro-
sphere,

f |Eo|2dr = 1, 4)

and a(¢) is a slowly varying amplitude, we multiply the
wave equation by Ej(r) and integrate over the entire vol-
ume to obtain the first nonlinear differential equation for
our analysis:
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Here Aw = w — wg is the detuning of the pumping laser
frequency from the unperturbed resonance eigenfre-
quency wg, W is the laser power, O is the average heating
over the volume of the mode

6= f (T = To)|Eo(r)|*dr, (6)

and Vg is determined by the following simple formula:

Vi = f|Eo(r)|4dr. @)

The definition of effective volume [Eq. (7)] is very useful
and appears in the same form not only for the
nonlinearity-related problems but also in analysis of
scattering.® It is not difficult to understand; to find the
effective volume one should average the intensity distri-
bution over this distribution, hence the fourth power [see
Eq. (4)]. This definition is more formal and is often more
convenient than the alternative one: [|E,|%dv

= |Eo|2Vestm » especially for complex modes with many
maxima. For the most localized TE,,; mode in micro-
spheres Vg = 2V, = 3.9R"™6(\/n)"8, where R is a mi-
crosphere’s radius.

3. THERMAL EFFECT

To calculate the effect of thermal nonlinearity we start
with the equation of thermal diffusion:

aT oC
— — DAT = |E|2, 8)
at 47Cp

where D = \*(pC) ! is thermal diffusivity, \* is thermal
conductivity, p is material density, C is a specific heat ca-
pacity of the material of the resonator, «, is the part of
the extinction coefficient corresponding to absorption, and
c¢ is the speed of light. Note that another component of
losses—scattering—does not influence thermal nonlinear-
ity. |E|? = I(¢)|Ey|%, where I(¢) = |a(¢)|? is intensity,
varying slowly as compared with the optical relaxation
time of the mode

1dI w(

-—— < —.
I dt Q
The energy density in the mode is £&(t) = I(t)n*/47wV .
The relaxation of the mode volume in the infinite media
of microsphere may be found in spectral form, as follows:

na,c 1(Q)G(q
T, r) — Jj
477Cp (2m)* Dq? + iQ
X exp(iQt + iqr)dQdq, 9)
where
G(q) = f |Eo|? exp(—iqr)dr. (10)

The vector q here is the wave vector for the Fourier ther-
mal waves in the medium, and () is the frequency of
waves. In this approach thermal nonlinearity of the sec-
ond kind, which is connected to the thermal relaxation of
the microsphere itself, is lost. For a more rigorous analy-
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sis, the decomposition into series of eigenfunctions, tak-
ing into account the boundary conditions, should be used.
It is appropriate to note here that, for the microsphere
100 um in diameter, the effective volume of the mode is
nearly 3 orders of magnitude smaller than the total vol-
ume of the sphere; that is why the effects associated with
the relaxation of the whole microsphere are significantly
slower.’

We are interested in the value O(¢), which is the aver-
age temperature difference over the volume of the mode:

o(t)

f (T = To)|Eo(r)|*dr

na,e 1 ff 1(Q)|G(q)|?

exp(1Qt)dqd)
47Cp (27)* Dq? + iQ

1
= —f O(Q)exp(iQt)dQ). (11)
21

We can formally obtain the following equation for ©({):

na,c
i00(Q) + §,0(Q) = ———I(Q 12
iQ0(Q) $0(Q) 4wcpveﬁ(), (12)
where
D G@|> dq |7
54(Q) = — - Q. (13)
Ver| J g2 + iQ/D (2m)3

Equation (13) is hard to use and evaluate. However, in
the range of frequencies where §()) depends weakly on
(), a reasonable estimate may be obtained in most cases
directly from (8): A6 ~ —26/b2, where b is the half-
thickness of the mode in the direction of the largest field
gradient, which is the radial direction for the micro-
sphere. Hence,

5y = 2D/b2, (14)
and the second differential equation for analysis is

d0 na,c
— + 5,0

= ———a(®)% 15
Jt 47TCpVeff|a( )| ( )

The value 1/5, has physical meaning of the characteristic
thermal relaxation time. Equations (5) and (13) lead to
the nonlinear system of differential equations:

u+ du—[Aw + uu? + v?) + 0807 = 0,

U+ 6+ [Aw + u(u? + v?) + w,BOJu = F,
. V50
0+ 6,0 = —(u? + v?), (16)
o

where the complex amplitude a(¢) from Eq. (5) was re-
placed by the sum of real quadrature components:

a(t) = u(t) + iv(t) amn

and
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The system of Eqgs. (16) describes the dynamic behavior of
a microresonator, taking into account nonlinear thermal
effect and Kerr nonlinearity. The stationary solution of
Eq. (16) is determined by the following cubic equation for
the internal intensity I, = |a,|? = u? + v%:

(62 + [Aw + (u + VI, — F2=0. (19

This equation describes the classical hysteretic response
of the nonlinear resonator with two stable branches and
one unstable branch. Intensity is maximal not at the
resonance frequency but for the detuning Aw = —(u
+ w1, produced by both Kerr and thermal effects. Non-
linear effects are pronounced, and hysteresis is observ-
able if this detuning is significantly larger than the half-

width 6 of the linear resonant curve. Thermal
nonlinearity dominates if v > u, that is,
na,Bc
xo = ——— > x¥. (20)
8m2Cpd,

However, this equation is not enough to describe the be-
havior of the resonator for time intervals smaller than
1/6,. Before going into analysis of dynamics of the sys-
tem we must compare the absolute values of thermal and
Kerr effects in microspheres. In fused silica p
= 2.2g/em®, C = 6.7 X 10% erg/(gK), (erg = 1077 J), \*
= 1.4 X 10°erglcmsK), D = 9.5 X 103 ecm?s, B=1
X 107°K !, For the fundamental TE,,; mode in a mi-
crosphere of medium size (index ¢ = 27nR/N = 1000,
wavelength N\ = 0.63 um, n = 1.46, radius R = 70 um),
radial width of the mode b = 0.84R¢ " %® = 0.6 um. In
this way we obtain from Eq. (14) 6, = 5 X 10s™!. Fun-
damental absorption in fused silica for visible and near IR
may be described!? as

dB
a, = 1.1 X 1073 — |exp
km

56 um
A

) (21)

which leads to a, =4 X 10°®cm™!. This ultimately
small absorption leads to y, = 4 X 10 ¥ esu, which is
nearly 1 order of magnitude smaller than electronic y®’
= 5 X 10 ®esu. However, the laboratory fused silica
has impurities, leading to a, = 6 X 10™*cm™! corre-
sponding to @ = 27n/ax = 3 X 108, observed in early
experiments, and y, = 6 X 10 '* esu will be more than 1
order larger than the Kerr nonlinearity. Therefore below
we analyze two cases separately: the appearance of os-
cillatory instability due to thermal nonlinearity alone and
what happens with this instability when the Kerr’s non-
linearity appears.

4. NONLINEAR REGIMES

Dynamic behavior of the phase trajectories may be de-
scribed by linearized equations obtained from Eq. (16) for
the new set of small parameters

E=u—uy, n=v-—-vy, (=0 — 06, (22)
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in the vicinity of equilibrium states (u, vy, O¢):
£= —(8— 2uuguo)é + (A, + 2u08) 7 + WP,
7= (A, + 2uu)é — (8 + 2uugvo)n — woBugl,
v, v,

{=2—ugé+ 2
wop wg

von — 4¢, (23)

where A, = Aw + (v + w)l, is the stationary nonlinear
detuning from resonance. The solutions of Eqgs. (23) are
determined by the roots of the characteristic equation:

N+ (26 + SN2+ [(m + v)(Bu + w2
+ 20w(2u + )y + Aw? + 62 + 268,]\
+ 6,[3(um + )23 + 4Aw(u + ), + Aw? + 62]
=0. (24

From this algebraic equation, one may find the areas of
stability for the system [Eq. (16)] using a Routh—Hurwitz
criterion.”! The number of positive roots, leading to in-
stabilities, is determined by the number of sign changes
in the sequence of Ty =aq, T;=a;, T:Ty = (asa;
— a3)Ty, az, where a,, a;, ay, and ay are the coeffi-
cients in the polynomial in A [Eq. (24)] (ag = 1, a1 = 26
+ &y, etc.). Because e, and a; are positive, the behav-
ior of the system is determined by the sequence of roots of
the two other terms Ty and aj:

I3 = —[200 = (Aw? — 3862 X [3(n + »)] 7,
Irg = {—Aw(2u + v — v5,/26) + [Aw*(n — v5426)?
— (84 89)%(n + V)Bu + v — v3,/8)]"%
X [(w+ v)Bu +v—v5,/8)] " (25)

The first pair gives the borders of an unstable region of
hysteretic resonance curve, which is not observable. The
second pair shows the possibility of thermal oscillations,
which are the main interest of this paper. These oscilla-

I(a.u.)

T(Aw,I)<0

0 -10 8 5 ” 2 0 Ao/d
Fig. 2. Areas of stability for nonlinear resonance with relax-
ational nonlinearity. Dark-gray area marks the area of optical
bistability; two stable states of output power are possible at
given detuning. Dotted curve marks unstable state. Light-
gray area shows the area of possible relaxational oscillations that
can be observed on the dashed part of the nonlinear resonance
curve.
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Fig. 3. Numerical simulation of WGM nonlinear optical reso-
nance in microspheres with thermal nonlinearity: hysteretic re-
sponse curve. In both optical and numerical experiments, the
oscillatory behavior was observed on both branches of response
curves.

tions are possible if the interval determined by the second
pair lies outside the borders determined by the first pair
(Fig. 2).

The solutions [Eq. (25)] are greatly simplified in strong
nonlinear regimes when vl,, ul,, |[Aw| > 8, §,. In this
case the zeros are given by three asymptotic straight
lines: Tisi(p + v) = —Aw/3, I,39(pm+ v) = 1Ipg (e
+ v) = —Aw, Ir99(3u + v — v6,/6) = —Aw. The sec-
ond asymptote coincides also with the asymptote for the
maximum internal intensity I, for the nonlinear reso-
nance curve. Thermal oscillations are possible only
when I'pgo > 1,39, ie., v> 2ud/8y:

Bn4 a(l aa
— =4 X 10— esu, (26)

X(3) <
8w2Cp as as,

which means that the Kerr nonlinearity suppresses ther-
mal oscillations in pure fused silica, where quality factor
is determined mostly through scattering and «, < as.
Here asy = o, + a,, = 27n/\Q describes total losses in
the microsphere, which include not only internal absorp-
tion but internal scattering and losses on surface inhomo-
geneities and in adsorbed surface layers, as well as addi-
tional losses due to the optical coupler. Substituting the
value of ® = 5 X 10" esu into Eq. (26) we obtain that
the thermal oscillations are possible if @, > 0.13Q.

5. NUMERICAL MODELING

The numerical modeling of the dynamical behavior of the
system described by Eqgs. (16) was carried out in the MAT-
LAB package for the experimentally determined, realistic
set of parameters of microspheres. The Runge—Kutta
method of fourth and fifth order was used. The obtained
results of numerical modeling are in complete accordance
with analytical calculations and are in agreement with
observed experimental response curves. As clearly seen
in Fig. 3 the oscillatory instability is observed on one of
the slopes of the nonlinear resonant curve for a specific
set of parameters.

Stable focus-type equilibrium state in the interval de-
termined by zeroes of T, loses stability, and the soft



Fomin et al.

Andronov—Hopf bifurcation!'? with the ultimate cycle is
formed (Fig. 4). For numerical and analytical evalua-
tions the following parameters, the same as for Fig. 2,
were used: input power 150 uW and microsphere diam-
eter 100 um, with TE WGM having [ — m = 20; the
modes of this order were typically excited in our experi-
ments with limited laser scan range. Numerical experi-
ments have also shown that when the Kerr nonlinearity
obeys the condition in Eq. (26) the oscillations are not ob-
served and the ultimate cycle turns into stable focus
again. In experiments, however, the thermal oscillations
dynamics sometimes resembled chaos. This behavior
may be explained, as numerical modeling confirms, if the
model of two or more neighboring optical modes is ap-
plied. In real microspheres each mode is a doublet owing
to internal backscattering, which leads to the coexistence
of two counterpropagating modes.'® In this system the
orbital cycle can become unstable (Fig. 5).

6. EXPERIMENTAL OBSERVATION OF THE
OSCILLATIONS

In Fig. 6 one can see the scheme of the experimental
setup. To observe the oscillations, we used small 2R
= 25-160 um fused-silica microspheres with quality fac-
tors of about @ = 107—10%, manufactured with the
hydrogen—oxygen miniature torch. To avoid degradation
of the @ factor owing to adsorption of atmospheric water,
we placed microspheres upon fabrication into the special

6(K) s
1.5+

1.4+

134

-1000
0

ufau.) 1000
2000 0

Fig. 4. Numerical simulation of WGM nonlinear optical reso-
nance in microspheres with thermal nonlinearity—phase dia-

gram.

003~ O(K)
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Fig. 5. Numerical simulation of chaotic regime in microsphere
with thermal nonlinearity and two close optical modes.
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Fig. 6. Scheme of the experimental setup.
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Fig. 7. Thermal nonlinearity and oscillations in the micro-
sphere 82.5 um in diameter. The picture represents thermal os-
cillations on the fraction of the slope of the nonlinear resonant
curve shown in Fig. 8.

chamber where all measurements were carried out. The
chamber was filled with dry, clean nitrogen. WGMs were
excited in microspheres with a prism coupler with a
He—Ne laser (A = 0.63 um) with a piezodriven front mir-
ror. Laser frequency could be tuned within the range of
approximately 0.7 GHz. The laser’s maximum output
power was ~540 uW. To measure the quality factor, we
decreased the power fed into the microspheres with neu-
tral glass filters to weaken thermal and Kerr nonlineari-
ties.

A nichrome (nickel-chrome alloy) filament heater was
placed near the resonator and used for coarse tuning of
resonator eigenfrequency in the range of ~30 GHz.
Narrow-range laser frequency sweeping (in the range of
700 MHz) was carried out through application of the
ramp voltage to the piezoactuator of the laser mirror.
This voltage produced a sweeping of the light frequency
and allowed us to observe the resonant curves on the
screen of the oscilloscope. The signal from the detector
was observed with a digital oscilloscope and could be
sampled with an analog-to-digital converter computer
board.

In this research the intentional search and observation
of the oscillations in the WGM was carried out. Instead
of using the pure fiber-grade glasses similar to those used
in the majority of recent experiments, we fabricated the
microspheres using the original technical grade (96%)
silica, which had increased absorption and yielded pro-
nounced thermal nonlinearity of the WGMs. Low grade
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of this silica was confirmed by a reduced melting tempera-
ture and by its increased luminance in a molten state.

Figure 8 depicts the thermorefractive oscillations ob-
served in the microsphere with a diameter of 82.5 um,
which had the smallest effective mode volume among the
several tested spheres. This picture presents the super-
imposed resonant curves obtained by a scanning of the la-
ser frequency in two opposite directions in the vicinity of
a WGM. For this, a triangular ramp voltage was applied
to the piezoactuator of the laser mirror. The hysteretic
feature due to nonlinearity can be easily observed, as well
as the thermal oscillations on the slope of the nonlinear
resonant curve. The curve is slightly tilted owing to the
high-pass filter used in the setup to get rid of the constant
offset. The oscillating mode has indices [ = 27Rn/\
= 600,/ — m = 6 = 2, as calculated from the observa-
tions of the WGM belt. This belt is caused by a scatter-
ing of light by the surface roughness and the dust of the
microsphere. Oscillations were observed with 540 uW of
pump power, as measured before the objective lens pre-
ceding the chamber with the microsphere. The results of
observation are presented in Figs. 7 and 8. The mea-
sured @ factor of the mode, inferred at reduced pump
power in the linear regime, was 7 X 108. The oscilla-
tions observed with the sweep turned off were close to the
harmonic ones with a dominating spectral peak at 26
kHz, accompanied by numerous smaller harmonics and
the background of a continuous spectrum.

In the microsphere with a diameter of 90 um maximal
coupling provided for 30% of 540 uW of pump power to be
dissipated by the WGM. The oscillations were observed
down to 20 uW (4%) of coupling and disappeared when
coupling was reduced (through an increase of the prism
gap) to ~10 uW of optical power going into the micro-
sphere. They also disappear with a decrease of the @ fac-
tor (which may happen owing to a gradual contamination
of the microsphere surface) and with a decrease of the gap
between the microsphere and the prism coupler (a de-
crease of loaded @). A characteristic frequency of these
oscillations was 7 kHz, with harmonics at 14 and 21 kHz.
The spectrum was continuous, and the width of these har-
monics was of the order of several kilohertz. All of these
effects were reproducible in our numerical model with ap-

I{au.)

25 -

i - | " [
0 0.01 0.02 0.03

1
Time (s)

Fig. 8. Thermal nonlinearity and oscillations in the micro-
sphere 82.5 um in diameter. Sweep rate is 2.9 GHz/s.
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Fig. 9. Nonstationary thermal effects and bifurcations in the
microsphere with the diameter 90 um, @ = 108. The oscillating
area is to the top of the curve. Several accompanying peaks in
the picture to the left are moving “down the resonant curve” and
disappear later, as seen on the picture to the right.

proximately the same set of parameters as in experiment.
We identify this oscillatory behavior mainly as the result
of nonstationary and chaotic effects in the system with
more than one optical mode (usually doublets) in presence
of thermal nonlinearity. This possibility was confirmed
by numerical simulations (see Section 5). Direct quanti-
tative comparison, however, was not possible owing to
some uncertainty in the estimate of the actual power ab-
sorbed in the resonator and the value of the coefficient of
absorption, which could not be measured directly in our
experiments, as the quality factor provides only the value
of the sum of internal scattering, absorption, and surface
losses.

The onset of oscillations in this resonator was preceded
by a specific nonstationary process. This process
emerges every time the nonlinearity is strong and power
consumption in a mode is sufficiently high. The process
can be observed when the frequency sweep is on, and one
can see the dynamically refreshing resonant curve on the
screen of the oscilloscope. Typical parameters accompa-
nying the onset of the process are ~100 uW of power con-
sumption in the mode, @ = 108, and a nonlinearity-
induced widening of the resonant curve above 100 MHz.
The process itself looks like a splitting of the WGM or, in
other words, an emergence of satellite resonant frequen-
cies that change dynamically and irreversibly. Initially,
the ordinary highly nonlinear resonant curve can be seen
on the screen. Then from the point of the greatest energy
consumption the second peak emerges, then another.
These peaks are moving “down the resonant curve”; there
can be several such moving peaks. Sometimes the oscil-
lations emerge with one of these peaks, and the oscillat-
ing area also moves “down the slope” until it stabilizes on
the slope of the resonant curve. This sequence is repre-
sented on the following series in Fig. 9, where one can see
the superimposed resonant curves obtained by a scanning
of the laser frequency in two opposite directions in the vi-
cinity of the WGM. The entire process takes a few min-
utes or less; the time scale depends on the optical pump
power.

We have observed inconclusive evidence of small but
significant irreversible changes of the mode-quality fac-
tors in the case of the oscillatory process under consider-
ation. These changes also lead to a degradation of oscil-
lations when a certain power threshold is reached. When
the oscillations were observed and digitized without the
frequency sweep, they disappeared within 15 s, and when
the frequency sweep was restored we found three new
modes (triplet) in place of the original mode. After a few
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minutes oscillations were resurrected, and these three
modes merged into a single nonlinear mode, but its @ fac-
tor dropped significantly (about 2—5 times). We may sug-
gest that the process of oscillation causes some degrada-
tion of material. The absorption of optical power may be
not homogeneous inside the contaminated fused silica but
connected with small loss centers. Large thermal pulsa-
tions of these heated centers with relatively high fre-
quency could produce defects in the material of the micro-
sphere analogous to “hole burning” that lead to increased
losses owing to additional scattering. These local defects
may partially “heal” after some time. Collapse and chan-
neling of WGM owing to self-focusing produced by ther-
mal nonlinearity again accompanied by large local heat-
ing and appearance of defects may be also considered.
The described nonstationary and irreversible effects have
also been observed in experiments with other micro-
spheres. However, detailed study of the phenomena
should be the subject of separate experiments that go be-
yond the scope of the current paper.

7. CONCLUSION

We have presented the theoretical analysis of the effects
in microspheres associated with concurrence of Kerr and
thermal nonlinearities. The main features of the experi-
mentally observed oscillations are well captured by the
analysis and are in agreement with the presented experi-
mental results.

We observed experimentally and described qualita-
tively and quantitatively an interesting effect of thermal
oscillations and bifurcations in optical microspheres as
well as unusual irreversible processes at microwatt level
of optical power. These effects, which may be undesir-
able in future applications of microspheres, generally dis-
appear if modern high-grade quality materials are used.
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