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ABSTRACT 

Using the Walsh-Fourier transform, we give a construction of compactly supported nonstationary dyadic wavelets on 
the positive half-line. The masks of these wavelets are the Walsh polynomials defined by finite sets of parameters. Ap-
plication to compression of fractal functions are also discussed. 
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1. Introduction The Walsh-Fourier transform of every function f  
that belongs to   1 2L L    is defined by 

As usual, let  be the positive half-line, 
 be the set of all nonnegative integers, 

and let  be the set of all positive integers. 
The first examples of orthogonal wavelets on 

 0,  


 2,
0,1,2, 

1,
  re-

lated to the Walsh functions and the corresponding 
wavelets on the Cantor dyadic group have been con-
structed in [1]; then, in [2] and [3], a multifractal struc-
ture of this wavelets is observed and conditions for 
wavelets to generate an unconditional basis in -spaces 
for all  have been found. These investigations 
are continued in [4-10] where among other subjects the 
algorithms to construct orthogonal and biorthogonal 
wavelets associated with the generalized Walsh functions 
are studied. In the present paper, using the Walsh-Fourier 
transform, we construct nonstationary dyadic wavelets on 

 (cf. [11-13], [14, Ch.8]).  

qL
1 q  



     
0

ˆ , df f x x x   


,   . 

and extent to the whole space  in a standard 
way. The intervals 

 2L 

    2 , 1 2n n n
k k k    , , k 

are called the dyadic intervals of range . The dyadic 
topology on 

n

  is generated by the collection of dy-
adic intervals. A subset  of   which is compact in 
the dyadic topology will be called W-compact. 

E

For any j   we define j  and j  by the fol-
lowing algorithm: 

Step 1. For each j choose , and jn   j
kb  , 

0,1 ,2 1jn
k   , such that 



Let us denote by x      
1

22
x the integer part of . For 

every , we set x 
0 2

1, 1n j

j j j
k k

b b b 


   12 mod 2 , 2 mod 2 ,j j
j jx x x x j

         , 

where . Then   , 0,j jx x  1
1

0 0

2 2j j
j j

j j

x x x  

 

   . 

The dyadic addition on   is defined as follows 
1

0 0

2 2j j
j j j j

j j

x y x y x y  

 

      . 

Further, we introduce the notations 

       ,

1

, 1 ,,
x

j j j
j

x x x
 

jx    


 


     , 

where ,x  
 kw x 

. Then the Walsh function  of order 
 is  (see, e.g., [15]). 

kw
k  ,x k
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for all 
1

0,1, , 2 1.jn
k

   
Step 2. Define the masks 
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with the coefficients 
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1    , 

so that      
0

j j
lm b   for all  j

l  (cf. [15, Sect. 
9.7]). 

Step 3. For each j   put 

    /2
0

1

ˆ 2 lj
j

l j

m 2 l  




 

   ,        (3) 
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Step 4. Define j  by the formula 
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Denote by E1  the characteristic function of . For 

each  we define 
E

j

 .   (5) 
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ˆ ( ) 2 2 2
s

s lj l
j E

l j

m s   

 

  1Further, let us define subspaces  jV  and  jW  in 
as follows 2L 

  


for 1, 2,s j j     Since 0 i  and, for all nt E j  , 

0
    1j m   in some neighbourhood of zero, we obtain 

from Equation (3) 

 ,span :j j kV k   , 

 ,span :j j kW k       ( )ˆ ˆlim k
j j

k
   


  for all   .     (8) 

for all . j 
Let We say that a polynomial  satisfies the modified 

Cohen condition if there exists a W-compact subset  
of  such that  

m
E
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 Theorem. Suppose that the masks  satisfy the 
modified Cohen condition with a subset  and there 
exists  such that 

 
0
nm
E

0j 
   0 1nm    for all 00, 2 j   , .    (7) n

Then for any  the following properties hold: j 
2 that yields        1s s

j jI k I k
   s s

. By induction, we obtain a)  and ,j j L    supp [0,1]j  ; 

b)  and are orthonormal 
basis in 

 , :j k k   , :j k k  
jV  and jW , respectively; 

       1 1
0, .j

j j jI k I k I k k      

According to Equation (8), by Fatou’s lemma, we have c) 1j jV V , 1j j jV W V .  

         
2 2

0 0
ˆ ˆd lim d lim 0 1s s

j j j
s s

I     
 

 
Moreover, we have .    (9) 

 2

0 jj
V L




 . 

Corollary. The system 

    0 ,· : : ,j kk k j k       

Consequently,  2
j L   and, in view of Equa-

tion (5),  2
j L  . It is known that if  1f̂ L   

is constant on dyadic intervals of range , then n
supp f 0, 2n   

ˆ
 (see [16, Sect. 6.2]). Therefore, each 

function j  is constant on ,  , 1k k  k  , which 
implies  supp 0,1is an orthonormal basis in  2L  . 

j

In view of Equation (7), there exists 
. 

We prove this theorem in the next section. Then using 
the notion of an adapted multiresolution analysis sug- 
gested by Sendov [12], we discuss an application of the 
nonstationary dyadic wavelets to compression of the 
Weierstrass function and the Swartz function. 

0j   such 
that 

   0 2j jm  1  for all , 0j j E . 

Hence, for E , 

     
0

/2
0
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ˆ 2 2
j

lj l
j
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  . 2. Proof of the Theorem 

At first we prove the orthonormality of  ,j k k



. In 

view of It follows from Equation (6) that for some  1 0c 
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or, taking into account Equation (3), 
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for s j , . j 
Applying the dominated convergence theorem we ob-
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Using the inverse Fourier-Walsh transform, we have 
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1 2 , 22 dj j

j l j l l
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which means that  is an orthonormal system.  ,j k k




Now, let us prove an orthonormality of  ,j k k
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With Equation (11) it yields  
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To conclude the proof it remains to show that 
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 For any x   the subspace 

0 jj
V



  is invariant 

with respect to the shift    f f x  . Actually, an  
Then from Equation (10)  arbitrary x   can be approximated by fractions 

2 j l , with arbitrary large . Besides, each j jV  is in-
variant with respect to the shifts 2 j l . By Equation (4) 
it is clear that 1j jVV  . 

1j jV V  , 1j jW V  .            (11) 
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Denote 12 j    . Under the unitarity of the ma-
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We can write 

Let 
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 V . There exist  such that 1j 1j
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and hence  · 2 j
jf l V   for all . The conti-  1j j
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f x V



  . If ·f x  implies that 

0j jg V



 , then approximating g  with f  from  
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V



  and using the invariance of a norm with re-  

spect to the shift, we obtain   0
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g x V



  . 
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Denote by  0 jj
V







   the set of all f̂  such that  
and 
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k
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 . By the Weiner’s theorem we can write  For a given array  
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, 2 1
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  , for some measurable   . It 

the direct non-stationary discrete wavelet transform 
is clearly that  and, in view of Equa-  

0
ˆsupp jj



 

  1, 2 , 1, 2 ,, j k l k j l j k l k
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  j l  , 
tion (13), we have  . Hence, the Equation (12) 
holds. The theorem is proved. 

 

maps it into  

   11,0 1,1 1,2 1
1 , , jj j j

j a a a    
 A   3. Numerical Experiments 

For any , let N     : 0, 2 1 2 j
j N N      , j  . 

According to [12] an adapted multiresolution analysis 
(AMRA) of rank  in N  2L  is a collection of closed 
subspaces j ,   j 2V L , which satisfies the fol- 
lowing conditions: 

and 

   11,0 1,1 1,2 1
1 , , jj j j

j a a a    
 D  . 

The inverse transform is defined as follows 
1) 1j jV V   for all j  ;    , 2 1, 2 1,j l l k j l l k j
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 ; 2) 

and reconstructs  jA  by  and  1j A   1j D . 
According to [12] in order to choose the filter  jc  to  

3) For every  there is a function j  j  in 
 with a finite support  such that  2L


 j N

  · 2 :j
j k k maximize 

1

2

jVf 
 in Equation (16), we must solve the    is an orthonormal basis of jV ; 

4) For every  there exists a filter j  following problem. 
Problem 1. Let  1

NU be the subset of the 2N-dimen- 
sional Euclidean space 2N , which consists of the points 

 10 1 2, , , Nu u u u    satisfying the conditions 
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The sequence  j  from condition (4) is called a 
scaling sequence for given an AMRA. The correspond-
ing a wavelet sequence  j  can be defined by 

for 0,1 , 1l N  . Find a point  for which *u
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2 1 2 1
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1 2
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k .   (15) 
where ,m kF  is a 2 2N N  symmetric matrix. 

Problem 1 has a solution since NU  is a compact. But, 
as noted in [12], the numerical solution of this problem is 
not trivial even for 2N  . 

Denote by jW  the orthogonal complement of 1jV   
in jV . It is known that, under some conditions, the sys-  

tem  is an orthonormal basis of    j · 2 :j k k   Concerning the standard Haar and Daubechies (with 4 
coefficients) discrete transforms see, e.g., [17]; we will 
denote them as SWTH and SWTD, respectively. We 
write NSWTH for the simplest case of a multiresolution 
analysis of rank 1 which is considered in [12, Sect. 3] 
(see also [13]). The nonstationary Daubechies discrete 
wavelet transform which corresponds an AMRA of rank 

 are defined in [12] and we will use the symbol 
NSWTDN to denote this transform (see NSWTD1 and 
NSWTD2 in the tables below). 

N

jW  (for more details, see, e.g., [14, Sect. 8.1]). More-
over, if Af  denotes the projection of a function 

 on the subset , then 2f L   2A L

0

22 
2

0
jV W

j

f f f


   

and 

1

2 2

j j jV V Wf f f


 
1

2


.         (16) 

Method A associated with one of the mentioned above 
discrete wavelet transforms (cf. [17, Chap.7]) consists of 
the following steps: 

Let us denote 

    2k kh j c j  
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1

all points   2
0 1 2 1, , , N

Nu u u u  

2 2

 such that Step 1. Apply the discrete wavelet transform  
times to an input array  and get the sequence 

j
 jA     1, 0,1, , 1.l l Nu u l N     

       0 0 , 1 ,, , j D DA D  . 
For every  2

Nu U  we define 
Step 2. Allocate a certain percentage of the wavelet 

coefficients with lagest absolute value (we choose 10%) 
and nullify the remaining coefficients. 

    
2 1
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1
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N

k j j
j

c u u w k N
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Step 3. Apply the inverse wavelet transform to the 
modified arrays of the wavelet coefficients. 

for 0,1, , 2 1k N 

2 1N
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Step 4. Calculate    
2

 j jA A , where  j  is 
a reconstructed array

A
. 



In Method B the second step is replaced on the uni-
form quantization and the forth step is replaced on the 
calculation of the entropy of a vector, obtained in the 
third step. where ,m kF  is a 2 2N N  symmetric matrix. 

We recall that  1, , my yy   is a vector uniform 
quantization for given vector  1, , mx xx , if 

Given an array , we de-   j aA  ,0 ,1 ,2 1
, , jj j j
a a




fine the matrix ,m kF  in Problem 1 and Problem 2 by 
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  , where  is the length of the quantization interval. 
The value  will be calculated by 

respectively. Here , 0j sa   for . Sup- 
pose that  is a solution of Equation (19). Then the 
direct and inverse nonstationary discrete dyadic wavelet 
transforms are defined by 

 0,1, , 2 1js 
*u 11

max min 50.j j
j mj m

x x
  

    

The Shannon entropy of  is defined by the formula x
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where jp  is frequency of the value jx .    
, 2 1, 2

j j
j l l k j l l k j
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a h a g d
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, 
Let us consider a similar approach associated with the 

following problem: 
where  *j   and    

11
kj j

k kg h   . We 2k kh c uProblem 2. Let . Denote by 12nN   2
NU  the set of  

 
Table 1. Values of the square error corresponding to Method A. 

 SWTH NSWTH NSWTL1 SWTD NSWTD1 NSWTD2 NSWTL2 

  0.166547 0.123983 0.123980 0.248311 0.167071 0.128120 0.122886 

0.9,3  15.823238 14.802541 14.802635 14.290849 14.807025 14.275246 14.022471 

0.9,5  16.813738 15.932313 15.932307 15.378600 15.171461 14.782221 15.130797 

0.9,7  15.887306 13.631379 13.631383 15.595433 16.649683 12.724437 12.674001  

 
Table 2. Values of the entropy obtained by Method B. 

 SWTH NSWTH NSWTL1 SWTD NSWTD1 NSWTD2 NSWTL2 

  0.320865 0.327626 0.310639 0.863949 0.299818 0.304681 0.241210 

0.9,3  4.486757 3.810555 3.772764 4.152313 3.822598 3.525294 3.466450 

0.9,5  4.688737 3.874187 3.848227 4.224801 4.106692 3.766994 3.700762 

0.9,7  4.392570 3.371864 3.344916 4.001358 4.435942 3.232151 3.197167 
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denote these discrete transforms as NSWTL1 if 1N   
and as NSWTL2 if . 2N 

Let us recall that the Weierstrass function is defined as 

   ,
1

1
cos π , 0 1,n n

n

x x     






    , 

and the Swartz function is defined as 

 
 

1

2

4

n

n
n

h x
x





  , 

where      h x x x x   . We will consider arrays 
 with elements a8,k =(8)A , 128k   or a8,k = 

 256k , . Then we use the Matlab 
function fminsearch to solve the optimization problems 
in Equations (18) and (19). The results of these numerical 
experiments are presented in Tables 1 and 2. We see that 
in several cases the introduced nonstationary dyadic 
wavelets have an advantage over the classical Haar and 
Daubechies wavelets. 

0, , 255k  
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