Nonstationary Wavelets Related to the Walsh Functions

Yuri A. Farkov, Evgeny A. Rodionov
Department of Mathematics, Russian State Geological Prospecting University, Moscow, Russia
Email: farkov@list.ru

Received March 29, 2012; revised April 25, 2012; accepted May 2, 2012

Abstract

Using the Walsh-Fourier transform, we give a construction of compactly supported nonstationary dyadic wavelets on the positive half-line. The masks of these wavelets are the Walsh polynomials defined by finite sets of parameters. Application to compression of fractal functions are also discussed.

Keywords: Walsh Functions; Nonstationary Dyadic Wavelets; Fractal Functions; Adapted Multiresolution Analysis

1. Introduction

As usual, let $\square_{+}=[0,+\infty)$ be the positive half-line, $\square_{+}=\{0,1,2, \cdots\}$ be the set of all nonnegative integers, and let $\square=\{1,2, \cdots\}$ be the set of all positive integers. The first examples of orthogonal wavelets on \square_{+}related to the Walsh functions and the corresponding wavelets on the Cantor dyadic group have been constructed in [1]; then, in [2] and [3], a multifractal structure of this wavelets is observed and conditions for wavelets to generate an unconditional basis in L^{q}-spaces for all $1<q<\infty$ have been found. These investigations are continued in [4-10] where among other subjects the algorithms to construct orthogonal and biorthogonal wavelets associated with the generalized Walsh functions are studied. In the present paper, using the Walsh-Fourier transform, we construct nonstationary dyadic wavelets on \square_{+}(cf. [11-13], [14, Ch.8]).

Let us denote by $[x]$ the integer part of x. For every $x \in \square_{+}$, we set

$$
x_{j}=\left[2^{j} x\right](\bmod 2), x_{-j}=\left[2^{1-j} x\right](\bmod 2), j \in \square,
$$

where $x_{j}, x_{-j} \in\{0,1\}$. Then

$$
x=\sum_{j<0} x_{j} 2^{-j-1}+\sum_{j>0} x_{j} 2^{-j}
$$

The dyadic addition on \square_{+}is defined as follows

$$
x \oplus y=\sum_{j<0}\left|x_{j}-y_{j}\right| 2^{-j-1}+\sum_{j<0}\left|x_{j}-y_{j}\right| 2^{-j} .
$$

Further, we introduce the notations

$$
\chi(x, \omega)=(-1)^{\sigma(x, \omega)}, \sigma(x, \omega)=\sum_{j=1}^{\infty} x_{j} \omega_{-j}+x_{-j} \omega_{j},
$$

where $x, \omega \in \square_{+}$. Then the Walsh function w_{k} of order k is $w_{k}(x)=\chi(x, k)$ (see, e.g., [15]).

The Walsh-Fourier transform of every function f that belongs to $L^{1}\left(\square_{+}\right) \cap L^{2}\left(\square_{+}\right)$is defined by

$$
\hat{f}(\omega)=\int_{0}^{\infty} f(x) \chi(x, \omega) \mathrm{d} x, \quad \omega \in \square_{+} .
$$

and extent to the whole space $L^{2}\left(\square_{+}\right)$in a standard way. The intervals

$$
\Delta_{k}^{(n)}=\left[k 2^{-n},(k+1) 2^{-n}\right), \quad k \in \square_{+},
$$

are called the dyadic intervals of range n. The dyadic topology on \square_{+}is generated by the collection of dyadic intervals. A subset E of \square_{+}which is compact in the dyadic topology will be called W-compact.

For any $j \in \square_{+}$we define φ_{j} and ψ_{j} by the following algorithm:

Step 1. For each $j \in \square$ choose $n_{j} \in \square$, and $b_{k}^{(j)} \in \square$, $k=0,1 \cdots, 2^{n_{j}}-1$, such that

$$
\begin{equation*}
b_{0}^{(j)}=1,\left|b_{k}^{(j)}\right|^{2}+\left|b_{k+2^{n_{j}-1}}^{(j)}\right|^{2}=1 \tag{1}
\end{equation*}
$$

for all $k=0,1, \cdots, 2^{n_{j}-1}-1$.
Step 2. Define the masks

$$
\begin{equation*}
m_{0}^{(j)}(\omega)=\frac{1}{2} \sum_{k=0}^{2^{n_{j}}-1} c_{k}^{(j)} w_{k}(\omega) \tag{2}
\end{equation*}
$$

with the coefficients

$$
c_{k}^{(j)}=\frac{1}{2^{n_{j}-1}} \sum_{l=0}^{2^{n_{j}}-1} b_{l}^{(j)} w_{l}\left(2^{-n_{j}} k\right), k=0,1, \cdots, 2^{n_{j}}-1
$$

so that $m_{0}^{(j)}(\omega)=b_{l}^{(j)}$ for all $\omega \in \Delta_{l}^{(j)} \quad$ (cf. [15, Sect. 9.7]).

Step 3. For each $j \in \square_{+}$put

$$
\begin{equation*}
\hat{\varphi}_{j}(\omega)=2^{-j / 2} \prod_{l=j+1}^{\infty} m_{0}^{(l)}\left(2^{-l} \omega\right) \tag{3}
\end{equation*}
$$

so that

$$
\begin{equation*}
\varphi_{j}(x)=\frac{1}{\sqrt{2}} \sum_{k=0}^{2^{n_{j}+1}} c_{k}^{(j+1)} \varphi_{j+1}\left(x \oplus 2^{-j-1} k\right) \tag{4}
\end{equation*}
$$

Step 4. Define ψ_{j} by the formula

$$
\begin{equation*}
\psi_{j}(x)=\frac{1}{\sqrt{2}} \sum_{k=0}^{2^{n_{j}+1}-1}(-1)^{k+1} c_{k \oplus 1}^{(j+1)} \varphi_{j+1}\left(x \oplus \frac{k}{2^{j+1}}\right) \tag{5}
\end{equation*}
$$

Further, let us define subspaces $\left\{V_{j}\right\}$ and $\left\{W_{j}\right\}$ in $L^{2}\left(\square_{+}\right)$as follows

$$
\begin{aligned}
& V_{j}=\overline{\operatorname{span}\left\{\varphi_{j, k}: k \in \square_{+}\right\}}, \\
& W_{j}=\overline{\operatorname{span}\left\{\psi_{j, k}: k \in \square_{+}\right\}}
\end{aligned}
$$

for all $j \in \square_{+}$.
We say that a polynomial m satisfies the modified Cohen condition if there exists a W-compact subset E of \square_{+}such that

$$
\operatorname{int} E \ni 0, \mu(E)=1, E \equiv[0,1)\left(\bmod \square_{+}\right)
$$

and

$$
\begin{equation*}
\inf _{j \in \square} \inf _{\omega \in E}\left|m\left(2^{-j} \omega\right)\right|>0 \tag{6}
\end{equation*}
$$

Theorem. Suppose that the masks $m_{0}^{(n)}$ satisfy the modified Cohen condition with a subset E and there exists $j_{0} \in \square$ such that

$$
\begin{equation*}
m_{0}^{(n)}(\omega)=1 \text { for all } \omega \in\left[0,2^{-j_{0}}\right), \quad n \in \square \tag{7}
\end{equation*}
$$

Then for any $j \in \square_{+}$the following properties hold:
a) $\varphi_{j}, \psi_{j} \in L^{2}\left(\square_{+}\right)$and $\operatorname{supp} \varphi_{j} \subset[0,1]$;
b) $\left\{\varphi_{j, k}: k \in \square_{+}\right\}$and $\left\{\psi_{j, k}: k \in \square_{+}\right\}$are orthonormal basis in V_{j} and W_{j}, respectively;
c) $V_{j} \subset V_{j+1}, \quad V_{j} \oplus W_{j}=V_{j+1}$.

Moreover, we have

$$
\overline{\bigcup_{j=0}^{\infty} V_{j}}=L^{2}\left(\square_{+}\right)
$$

Corollary. The system

$$
\left\{\varphi_{0}(\cdot \oplus k): k \in \square_{+}\right\} \cup\left\{\psi_{j, k}: j, k \in \square_{+}\right\}
$$

is an orthonormal basis in $L^{2}\left(\square_{+}\right)$.
We prove this theorem in the next section. Then using the notion of an adapted multiresolution analysis suggested by Sendov [12], we discuss an application of the nonstationary dyadic wavelets to compression of the Weierstrass function and the Swartz function.

2. Proof of the Theorem

At first we prove the orthonormality of $\left\{\varphi_{j, k}\right\}_{k \in \square_{+}}$. In view of

$$
\left\langle\varphi_{j, 0}, \varphi_{j, n}\right\rangle=\left\langle\hat{\varphi}_{j, 0}, \hat{\varphi}_{j, n}\right\rangle=\int_{0}^{\infty}\left|\hat{\varphi}_{j}(\omega)\right|^{2} w_{n}\left(2^{-j} \omega\right) \mathrm{d} \omega
$$

let us show that

$$
\int_{0}^{\infty}\left|\varphi_{j}(\omega)\right|^{2} w_{n}\left(2^{-j} \omega\right) \mathrm{d} \omega=\delta_{0, n}, \quad n \in \square_{+}
$$

Denote by $\mathbf{1}_{E}$ the characteristic function of E. For each j we define

$$
\hat{\varphi}_{j}^{(s)}(\omega)=2^{-j / 2} \prod_{l=j+1}^{s} m_{0}^{(l)}\left(2^{-l} \omega\right) \mathbf{1}_{E}\left(2^{-s} \omega\right)
$$

for $s=j+1, j+2, \cdots$ Since $0 \in \operatorname{int} E$ and, for all $j \in \square_{+}$, $m_{0}^{(j)}(\omega)=1$ in some neighbourhood of zero, we obtain from Equation (3)

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \hat{\varphi}_{j}^{(k)}(\omega)=\hat{\varphi}_{j}(\omega) \text { for all } \omega \in \square_{+} \tag{8}
\end{equation*}
$$

Let

$$
I_{j}^{(k)}[n]:=\int_{0}^{\infty}\left|\hat{\varphi}_{j}^{(k)}(\omega)\right|^{2} w_{n}\left(2^{-j} \omega\right) \mathrm{d} \omega
$$

where $k>j, \quad n \in \square_{+}$. Letting $\zeta=2^{-s} \omega$, we have

$$
\begin{aligned}
I_{j}^{(s)}[k] & =2^{s-j} \int_{E} \prod_{l=j+1}^{s}\left|m_{0}^{(l)}\left(2^{s-l} \zeta\right)\right|^{2} w_{k}\left(2^{s-j} \zeta\right) \mathrm{d} \zeta \\
& =2^{s-j} \int_{0}^{1}\left|m_{0}^{(k)}(\zeta)\right|^{2} \prod_{l=j+1}^{s-1}\left|m_{0}^{(l)}\left(2^{s-l} \zeta\right)\right|^{2} w_{k}\left(2^{s-j}\right) \mathrm{d} \zeta \\
& =2^{s-j} \int_{0}^{1 / 2}\left(\left|m_{0}^{(k)}(\zeta)\right|^{2}+\left|m_{0}^{(k)}(\zeta+1 / 2)\right|^{2}\right) \\
& \times \prod_{l=j+1}^{s-1}\left|m_{0}^{(l)}\left(2^{s-l} \zeta\right)\right|^{2} w_{k}\left(2^{s-j} \zeta\right) \mathrm{d} \zeta
\end{aligned}
$$

that yields $I_{j}^{(s)}[k]=I_{j}^{(s-1)}[k]$. By induction, we obtain

$$
I_{j}^{(s)}[k]=I_{j}^{(s-1)}[k]=\cdots=I_{j}^{(j+1)}[k]=\delta_{0, k}
$$

According to Equation (8), by Fatou's lemma, we have
$\int_{0}^{\infty}\left|\hat{\varphi}_{j}(\omega)\right|^{2} \mathrm{~d} \omega \leq \lim _{s \rightarrow \infty} \int_{0}^{\infty}\left|\hat{\varphi}_{j}^{(s)}(\omega)\right|^{2} \mathrm{~d} \omega=\lim _{s \rightarrow \infty} I_{j}^{(s)}[0]=1$. (9)
Consequently, $\varphi_{j} \in L^{2}\left(\square_{+}\right)$and, in view of Equation (5), $\psi_{j} \in L^{2}\left(\square_{+}\right)$. It is known that if $\hat{f} \in L^{1}\left(\square_{+}\right)$ is constant on dyadic intervals of range n, then $\operatorname{supp} f \subset\left[0,2^{n}\right]$ (see $[16$, Sect. 6.2]). Therefore, each function $\hat{\varphi}_{j}$ is constant on $[k, k+1), k \in \square_{+}$, which implies $\operatorname{supp} \varphi_{j} \subset[0,1]$.

In view of Equation (7), there exists $j_{0} \in \square$ such that

$$
m_{0}^{(j)}\left(2^{-j} \omega\right)=1 \text { for all } j>j_{0}, \omega \in E
$$

Hence, for $\omega \in E$,

$$
\hat{\varphi}_{j}(\omega)=2^{-j / 2} \prod_{l=j+1}^{j_{0}} m_{0}^{(l)}\left(2^{-l} \omega\right)
$$

It follows from Equation (6) that for some $c_{1}>0$

$$
\left|m_{0}^{(j)}\left(2^{-j} \omega\right)\right| \geq c_{1} \quad \text { for } \quad j \in \square, \omega \in E .
$$

Since

$$
c_{1}^{j-j_{0}}\left|\hat{\varphi}_{j}(\omega)\right| \mid \geq 2^{-j / 2} \mathbf{1}_{E}(\omega), \quad \omega \in \square_{+} .
$$

We have

$$
\left|\hat{\varphi}_{j}^{(s)}(\omega)\right| \leq c_{1}^{j-j_{0}} \prod_{l=j+1}^{s}\left|m_{0}^{(l)}\left(2^{-l} \omega\right)\right|\left|\hat{\varphi}_{j}\left(2^{-s} \omega\right)\right| .
$$

or, taking into account Equation (3),

$$
\left|\hat{\varphi}_{j}^{(s)}(\omega)\right|\left|\leq c_{1}^{j-j_{0}}\right| \hat{\varphi}_{j}(\omega) \mid, \quad \omega \in \square_{+}
$$

for $s>j, j \in \square_{+}$.
Applying the dominated convergence theorem we obtain

$$
\begin{aligned}
& \int_{0}^{\infty}\left|\hat{\varphi}_{j}(\omega)\right|^{2} w_{k}\left(2^{-j} \omega\right) \mathrm{d} \omega \\
& =\lim _{s \rightarrow \infty} \int_{0}^{\infty}\left|\hat{\varphi}_{j}^{(s)}(\omega)\right|^{2} w_{k}\left(2^{-j} \omega\right) \mathrm{d} \omega \\
& =\delta_{0, k}
\end{aligned}
$$

which means that $\left\{\varphi_{j, k}\right\}_{k \in \square_{+}}$is an orthonormal system.
Now, let us prove an orthonormality of $\left\{\psi_{j, k}\right\}_{k \in \mathbb{D}_{+}}$.
For any $k \in \square_{+}$denote $d_{k}^{(j)}=(-1)^{k+1} c_{k \oplus 1}^{(j)}$. Then

$$
\begin{equation*}
j, k(x)=\frac{1}{\sqrt{2}} \sum_{l \in \mathbb{\square}_{+}} \mathrm{d}_{l \oplus 2 k}^{(j+1)} \varphi_{j+1, l}(x) . \tag{10}
\end{equation*}
$$

Since

$$
\psi \sum_{l \in \square_{+}} \mathrm{d}_{l}^{(j)} \mathrm{d}_{l \oplus 2 k}^{(j)}=2 \delta_{0, k},
$$

We have

$$
\begin{aligned}
\left\langle\psi_{j, k}, \psi_{j, k^{\prime}}\right\rangle & =\frac{1}{2} \sum_{l, s \in \square_{+}} \mathrm{d}_{l \oplus 2 k}^{(j+1)} \mathrm{d}_{s \oplus 2 k^{\prime}}^{(j+1)}\left\langle\varphi_{j+1, l}, \varphi_{j+1, s}\right\rangle \\
& =\delta_{k, k^{\prime}} .
\end{aligned}
$$

Then from Equation (10)

$$
\begin{equation*}
V_{j} \subset V_{j+1}, \quad W_{j} \subset V_{j+1} \tag{11}
\end{equation*}
$$

Let us define

$$
m_{1}^{(j)}(\omega):=\frac{1}{2} \sum_{k=0}^{2^{n_{j}}-1} \mathrm{~d}_{k}^{(j)} w_{k}(\omega)
$$

Denote $\omega^{\prime}=2^{-j-1} \omega$. Under the unitarity of the matrices

$$
\left(\begin{array}{ll}
m_{0}^{(j)}\left(\omega^{\prime}\right) & m_{0}^{(j)}\left(\omega^{\prime}+1 / 2\right) \\
m_{1}^{(j)}\left(\omega^{\prime}\right) & m_{1}^{(j)}\left(\omega^{\prime}+1 / 2\right)
\end{array}\right)
$$

We can write

$$
\begin{aligned}
& \hat{\varphi}_{j+1}(\omega)=\hat{\varphi}_{j+1}(\omega) \\
& \times\left\{\left[\left|m_{0}^{(j+1)}\left(\omega^{\prime}\right)\right|^{2}+\left|m_{1}^{(j+1)}\left(\omega^{\prime}\right)\right|^{2}\right]\right. \\
& +\left[m_{0}^{(j+1)}\left(\omega^{\prime}\right) \overline{m_{0}^{(j+1)}\left(\omega^{\prime}+1 / 2\right)}\right. \\
& \left.\left.+m_{1}^{(j+1)}\left(\omega^{\prime}\right) \overline{m_{1}^{(j+1)}\left(\omega^{\prime}+1 / 2\right)}\right]\right\} \\
& =\left[\overline{m_{0}^{(j+1)}\left(\omega^{\prime}\right)}+\overline{m_{0}^{(j+1)}\left(\omega^{\prime}+1 / 2\right)}\right] \\
& \times m_{0}^{(j+1)}\left(\omega^{\prime}\right) \hat{\varphi}_{j+1}(\omega) \\
& +\left[\overline{m_{1}^{(j+1)}\left(\omega^{\prime}\right)}+\overline{m_{1}^{(j+1)}\left(\omega^{\prime}+1 / 2\right)}\right] \\
& \times m_{1}^{(j+1)}\left(\omega^{\prime}\right) \hat{\varphi}_{j+1}(\omega) \\
& =\sqrt{2} \sum_{l \in \mathbb{I}_{+}} \bar{c}_{2 l}^{(j+1)} w_{2 l}\left(2^{-j-1} \omega\right) \hat{\varphi}_{j}(\omega) \\
& +\sqrt{2} \sum_{l \in \square_{+}} \bar{d}_{2 l}^{(j+1)} w_{2 l}\left(2^{-j-1} \omega\right) \hat{\psi}_{j}(\omega) .
\end{aligned}
$$

Using the inverse Fourier-Walsh transform, we have

$$
\varphi_{j+1}(x)=\sqrt{2} \sum_{l \in \square_{+}}\left(\bar{C}_{2 l}^{(j+1)} \varphi_{j, l}(x)+\overline{\mathrm{d}}_{2 l}^{(j+1)} \psi_{j, l}(x)\right)
$$

or,

$$
\varphi_{j+1, k}(x)=\sqrt{2} \sum_{l \in \mathbb{\square}_{+}}\left(\bar{c}_{k \oplus 2 l}^{(j+1)} \varphi_{j, l}(x)+\overline{\mathrm{d}}_{k \oplus 2 l}^{(j+1)} \psi_{j, l}(x)\right) .
$$

With Equation (11) it yields $\quad V_{j} \oplus W_{j}=V_{j+1}$
To conclude the proof it remains to show that

$$
\begin{equation*}
\overline{\bigcup_{j=0}^{\infty} V_{j}}=L_{2}\left(\square_{+}\right) . \tag{12}
\end{equation*}
$$

Note, that by Equation (7) for any $\omega \in \square_{+}$there exist $j \in \square_{+}$such that $\hat{\varphi}_{j}(\omega)=2^{-j / 2}$ and, consequently,

$$
\begin{equation*}
\bigcup_{j=0}^{\infty} \operatorname{supp} \hat{\varphi}_{j}=\square_{+} . \tag{13}
\end{equation*}
$$

For any $x \in \square_{+}$the subspace $\overline{\bigcup_{j=0}^{\infty} V_{j}}$ is invariant with respect to the shift $f(\cdot) \mapsto f(\cdot \oplus x)$. Actually, an arbitrary $x \in \square_{+}$can be approximated by fractions $2^{-j} l$, with arbitrary large j. Besides, each V_{j} is invariant with respect to the shifts $2^{-j} l$. By Equation (4) it is clear that $V_{j} \subset V_{j+1}$.

Let $f \in \bigcup_{j=0}^{\infty} V_{j}$. There exist j_{1} such that $f \in V_{j_{1}}$ and hence $f\left(\cdot \oplus 2^{-j} l\right) \in V_{j}$ for all $j \geq j_{1}$. The continuity of $\|f(\cdot \oplus x)\|$ implies that $f(\cdot \oplus x) \in \bigcup_{j=0}^{\infty} V_{j}$. If $g \in \overline{\bigcup_{j=0}^{\infty} V_{j}}$, then approximating g with f from $\bigcup_{j=0}^{\infty} V_{j}$ and using the invariance of a norm with respect to the shift, we obtain $g(\cdot \oplus x) \in \overline{\bigcup_{j=0}^{\infty} V_{j}}$.

Denote by $\left(\overline{\bigcup_{j=0}^{\infty} V_{j}}\right)^{\wedge}$ the set of all \hat{f} such that $f \in \bigcup_{j=0}^{\infty} V_{j}$. By the Weiner's theorem we can write $\left(\overline{\bigcup_{j=0}^{\infty} V_{j}}\right)^{\wedge}=L_{2}(\Omega)$, for some measurable $\Omega \subset \square_{+}$. It is clearly that $\bigcup_{j=0}^{\infty} \operatorname{supp} \hat{\varphi}_{j} \subset \Omega$ and, in view of Equation (13), we have $\Omega=\square_{+}$. Hence, the Equation (12) holds. The theorem is proved.

3. Numerical Experiments

For any $N \in \square$, let $\Delta_{j}(N):=\left[0,(2 N-1) 2^{-j}\right], \quad j \in \square_{+}$. According to [12] an adapted multiresolution analysis (AMRA) of rank N in $L^{2}(\square)$ is a collection of closed subspaces $V_{j} \subset L^{2}(\square), \quad j \in \square_{+}$, which satisfies the following conditions:

1) $V_{j} \subset V_{j+1}$ for all $j \in \square_{+}$;
2) $\overline{\bigcup_{j=0}^{\infty} V_{j}}=L^{2}(\square)$;
3) For every $j \in \square_{+}$there is a function φ_{j} in $L^{2}(\square)$ with a finite support $\Delta_{j}(N)$ such that $\left\{\varphi_{j}\left(\cdot-k 2^{-j}\right): k \in \square\right\}$ is an orthonormal basis of V_{j};
4) For every $j \in \square_{+}$there exists a filter

$$
\mathbf{c}(j)=\left\{c_{k}(j)\right\}_{k=0}^{2 N-1}
$$

such that

$$
\begin{equation*}
\varphi_{j-1}(x)=\sum_{k=0}^{2 N-1} c_{k}(j) \varphi_{j}\left(x-k 2^{-j}\right), \quad j \in \square \tag{14}
\end{equation*}
$$

The sequence $\left\{\varphi_{j}\right\}$ from condition (4) is called a scaling sequence for given an AMRA. The corresponding a wavelet sequence $\left\{\psi_{j}\right\}$ can be defined by

$$
\begin{equation*}
\psi_{j-1}(x)=\sum_{k=0}^{2 N-1}(-1)^{k} c_{2 N-k-1}(j) \varphi_{j}\left(x-k 2^{-j}\right) \tag{15}
\end{equation*}
$$

Denote by W_{j} the orthogonal complement of V_{j-1} in V_{j}. It is known that, under some conditions, the system $\left\{\psi_{j}\left(\cdot-k 2^{-j}\right): k \in \square\right\}$ is an orthonormal basis of W_{j} (for more details, see, e.g., [14, Sect. 8.1]). Moreover, if f_{A} denotes the projection of a function $f \in L^{2}(\square)$ on the subset $A \subset L^{2}(\square)$, then

$$
\|f\|^{2}=\left\|f_{V_{0}}\right\|^{2}+\sum_{j=0}^{\infty}\left\|f_{W_{j}}\right\|^{2}
$$

and

$$
\begin{equation*}
\left\|f_{V_{j}}\right\|^{2}=\left\|f_{V_{j-1}}\right\|^{2}+\left\|f_{W_{j-1}}\right\|^{2} . \tag{16}
\end{equation*}
$$

Let us denote

$$
h_{k}(j)=c_{k}(j) / \sqrt{2}
$$

where $\left\|F_{m, k}\right\|$ is a $2 N \times 2 N$ symmetric matrix.
Problem 1 has a solution since U_{N} is a compact. But, as noted in [12], the numerical solution of this problem is not trivial even for $N=2$.

Concerning the standard Haar and Daubechies (with 4 coefficients) discrete transforms see, e.g., [17]; we will denote them as SWTH and SWTD, respectively. We write NSWTH for the simplest case of a multiresolution analysis of rank 1 which is considered in [12, Sect. 3] (see also [13]). The nonstationary Daubechies discrete wavelet transform which corresponds an AMRA of rank N are defined in [12] and we will use the symbol NSWTDN to denote this transform (see NSWTD1 and NSWTD2 in the tables below).

Method A associated with one of the mentioned above discrete wavelet transforms (cf. [17, Chap.7]) consists of the following steps:

Step 1. Apply the discrete wavelet transform j times to an input array $\mathbf{A}(j)$ and get the sequence

$$
\mathbf{A}(0), \mathbf{D}(0), \mathbf{D}(1), \cdots, \mathbf{D}(j-1)
$$

Step 2. Allocate a certain percentage of the wavelet coefficients with lagest absolute value (we choose 10\%) and nullify the remaining coefficients.

Step 3. Apply the inverse wavelet transform to the modified arrays of the wavelet coefficients.

Step 4. Calculate $\|\mathbf{A}(j)-\tilde{\mathbf{A}}(j)\|_{2}$, where $\mathbf{A}(j)$ is a reconstructed array.

In Method B the second step is replaced on the uniform quantization and the forth step is replaced on the calculation of the entropy of a vector, obtained in the third step.

We recall that $\mathbf{y}=\left\{y_{1}, \cdots, y_{m}\right\}$ is a vector uniform quantization for given vector $\mathbf{x}=\left(x_{1}, \cdots, x_{m}\right)$, if

$$
y_{j}=\left\{\begin{array}{l}
0,\left|x_{j}\right|<\Delta \\
\Delta\left[\frac{x_{j}}{\Delta}\right]+\operatorname{sign}\left(x_{j}\right) \frac{\Delta}{2},\left|x_{j}\right| \geq \Delta
\end{array}\right.
$$

where Δ is the length of the quantization interval.
The value Δ will be calculated by

$$
\Delta=\left(\max _{1 \leq j \leq m} x_{j}-\min _{1 \leq j \leq m} x_{j}\right) / 50 .
$$

The Shannon entropy of \mathbf{x} is defined by the formula

$$
H(\mathbf{x})=-\sum_{j=1}^{m} p_{j} \log _{2}\left(p_{j}\right)
$$

where p_{j} is frequency of the value x_{j}.
Let us consider a similar approach associated with the following problem:

Problem 2. Let $N=2^{n-1}$. Denote by $U_{N}^{(2)}$ the set of
all points $u=\left(u_{0}, u_{1}, \cdots, u_{2 N-1}\right) \in \square^{2 N}$ such that

$$
\left(u_{l}\right)^{2}+\left(u_{l+N}\right)^{2}=1, l=0,1, \cdots, N-1 .
$$

For every $u \in U_{N}^{(2)}$ we define

$$
c_{k}(u)=\frac{1}{N} \sum_{j=0}^{2 N-1} u_{j} w_{j}(k /(2 N))
$$

for $k=0,1, \cdots, 2 N-1$. Find a point u^{*} for which

$$
\begin{align*}
& \sum_{m, k=0}^{2 N-1} c_{m}\left(u^{*}\right) c_{k}\left(u^{*}\right) F_{m, k} \\
& =\sup _{u \in U_{N}^{(2)}}\left\{\sum_{m, k=0}^{2 N-1} c_{m}(u) c_{k}(u) F_{m, k}\right\}, \tag{19}
\end{align*}
$$

where $\left\|F_{m, k}\right\|$ is a $2 N \times 2 N$ symmetric matrix.
Given an array $\mathbf{A}(j)=\left\{a_{j, 0}, a_{j, 1} \cdots, a_{j, 2^{j}-1}\right\}$, we define the matrix $\left\|F_{m, k}\right\|$ in Problem 1 and Problem 2 by

$$
F_{m, k}=\sum_{s \in \square} a_{j, 2 s+m} a_{j, 2 s+m}
$$

and

$$
F_{m, k}=\sum_{s \in \square_{+}} a_{j, 2 s \oplus m} a_{j, 2 s \oplus m}
$$

respectively. Here $a_{j, s}=0$ for $s \notin\left\{0,1, \cdots, 2^{j}-1\right\}$. Suppose that u^{*} is a solution of Equation (19). Then the direct and inverse nonstationary discrete dyadic wavelet transforms are defined by

$$
\begin{aligned}
& a_{j-1, k}=\sum_{l \in \square_{+}} h_{l \oplus 2 k}^{(j)} a_{j, l}, \quad d_{j-1, k}=\sum_{l \in \square_{+}} g_{l \oplus 2 k}^{(j)} a_{j, l}, \\
& a_{j, l}=\sum_{k \in \square_{+}} h_{l \oplus 2 k}^{(j)} a_{j-1, l}+g_{l \oplus 2 k}^{(j)} d_{j-1, l},
\end{aligned}
$$

where $h_{k}^{(j)}=c_{k}\left(u^{*}\right) / \sqrt{2}$ and $g_{k}^{(j)}=(-1)^{k} h_{1 \oplus k}^{(j)}$. We

Table 1. Values of the square error corresponding to Method A.

	SWTH	NSWTH	NSWTL1	SWTD	NSWTD1	NSWTD2	NSWTL2
\mathcal{S}	0.166547	0.123983	0.123980	0.248311	0.167071	0.128120	0.122886
$\mathcal{W}_{0.9,3}$	15.823238	14.802541	14.802635	14.290849	14.807025	14.275246	14.022471
$\mathcal{W}_{0.9,5}$	16.813738	15.932313	15.932307	15.378600	15.171461	14.782221	15.130797
$\mathcal{W}_{0.9,7}$	15.887306	13.631379	13.631383	15.595433	16.649683	12.724437	12.674001

Table 2. Values of the entropy obtained by Method B.

	SWTH	NSWTH	NSWTL1	SWTD	NSWTD1	NSWTD2	NSWTL2
\mathcal{S}	0.320865	0.327626	0.310639	0.863949	0.299818	0.304681	0.241210
$\mathcal{W}_{0.9,3}$	4.486757	3.810555	3.772764	4.152313	3.822598	3.525294	3.466450
$\mathcal{W}_{0.9,5}$	4.688737	3.874187	3.848227	4.224801	4.106692	3.766994	3.700762
$\mathcal{W}_{0.97}$	4.392570	3.371864	3.344916	4.001358	4.435942	3.232151	3.197167

denote these discrete transforms as NSWTL1 if $N=1$ and as NSWTL2 if $N=2$.

Let us recall that the Weierstrass function is defined as

$$
\mathcal{W}_{\alpha, \beta}(x)=\sum_{n=1}^{\infty} \alpha^{n} \cos \left(\beta^{n} \pi x\right), 0<\alpha<1, \beta \geq \frac{1}{\alpha}
$$

and the Swartz function is defined as

$$
\mathcal{S}(x)=\sum_{n=1}^{\infty} \frac{h\left(2^{n} x\right)}{4^{n}}
$$

where $h(x)=[x]-\sqrt{x-[x]}$. We will consider arrays $\mathbf{A}(8)$ with elements $a_{8, k}=\mathcal{W}_{\alpha, \beta}(k / 128)$ or $a_{8, k}=$ $\mathcal{S}(k / 256), \quad k=0, \cdots, 255$. Then we use the Matlab function fminsearch to solve the optimization problems in Equations (18) and (19). The results of these numerical experiments are presented in Tables 1 and 2. We see that in several cases the introduced nonstationary dyadic wavelets have an advantage over the classical Haar and Daubechies wavelets.

REFERENCES

[1] W. C. Lang, "Orthogonal Wavelets on the Cantor Dyadic Group," SIAM Journal on Mathematical Analysis, Vol. 27, No. 1, 1996, pp. 305-312. doi:10.1137/S0036141093248049
[2] W. C. Lang, "Wavelet Analysis on the Cantor Dyadic Group," Houston Journal of Mathematics, Vol. 24, No. 3, 1998, pp. 533-544.
[3] W. C. Lang, "Fractal Multiwavelets Related to the Cantor Dyadic Group," International Journal of Mathematics and Mathematical Sciences, Vol. 21, No. 2, 1998, pp. 307-317. doi:10.1155/S0161171298000428
[4] Y. A. Farkov, "Orthogonal Wavelets with Compact Support on Locally Compact Abelian Groups," Izvestiya: Mathematics, Vol. 69, No. 3, 2005, pp. 623-650. doi:10.1070/IM2005v069n03ABEH000540
[5] Y. A. Farkov, "Wavelets and Frames in Walsh Analysis," In: M. del Valle, Ed., Wavelets: Classification, Theory and Applications, Chapter 11, Nova Science Publishers, New York, 2012, pp. 267-304.
[6] Y. A. Farkov and E. A. Rodionov, "Estimates of the

Smoothness of Dyadic Orthogonal Wavelets of Daubechies Type," Mathematical Notes, Vol. 82, No. 6, 2007, pp. 407-421. doi:10.1134/S0001434609090144
[7] Y. A. Farkov, A. Yu. Maksimov and S. A. Stroganov, "On Biorthogonal Wavelets Related to the Walsh Functions," International Journal of Wavelets, Multiresolution and Information Processing, Vol. 9, No. 3, 2011, pp. 485499. doi:10.1142/S0219691311004195
[8] Y. A. Farkov and E. A. Rodionov, "Algorithms for Wavelet Construction on Vilenkin Groups," P-Adic Numbers, Ultrametric Analysis, and Applications, Vol. 3, No. 3, 2011, pp. 181-195. doi:10.1134/S2070046611030022
[9] Y. A. Farkov, "Periodic Wavelets on the p-Adic Vilenkin Group," P-Adic Numbers, Ultrametric Analysis, and Applications, Vol. 3, No. 4, 2011, pp. 281-287. doi:10.1134/S2070046611040030
[10] Y. A. Farkov and M. E. Borisov, "Periodic Dyadic Wavelets and Coding of Fractal Functions," Russian Mathematics (Izvestiya VUZ. Matematika), No. 9, 2012, pp. 5465.
[11] I. Y. Novikov, "On the Construction of Nonstationary Orthonormal Infinitely Differentiable Compactly Supported Wavelets," Proceedings of the 12th International Association for Pattern Recognition, Jerusalem, 9-13 October 1994, pp. 214-215. doi:10.1109/ICPR.1994.577164
[12] B. Sendov, "Adapted Multiresolution Analysis," Proceedings of Alexits Memorial Conference Functions, Series, Operators, Budapest, 9-14 August 1999, pp. 23-38.
[13] B. Sendov, "Adaptive Multiresolution Analysis on the Dyadic Topological Group," Journal of Approximation Theory, Vol. 96, No. 2, 1998, pp. 21-45. doi:10.1006/jath. 1998.3234
[14] I. Y. Novikov, V. Y. Protasov and M. A. Skopina, "Wavelet Theory," American Mathematical Society, Providence, 2011.
[15] F. Schipp, W. R. Wade and P. Simon, "Walsh Series: An Introduction to Dyadic Harmonic Analysis," Adam Hilger, Bristol, 1990.
[16] B. I. Golubov, A. V. Efimov and V. A. Skvortsov, "Walsh Series and Transforms," Kluwer, Dordrecht, 1991.
[17] S. Welstead, "Fractal and Wavelet Image Compression Techniques," SPIE Optical Engineering Press, Bellingham, 2002.

