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Abstract— Entropy and information are crucial notions in
stochastic communication systems. However, they have arguably
not been as central in control theory, which has a rich tradition
of non-random models and techniques. This tutorial session
aims to describe the key elements of certain non-probabilistic
entropy and information concepts for state estimation and
control. In this paper, which comprises the first half of
the session, the focus is on a recently developed theory of
nonstochastic information. Motivated by worst-case estimation
and control, this framework allows non-statistical analogues of
mutual independence, Markovness, information, and directed
information to be rigorously defined. This yields powerful
information-theoretic tools for finding fundamental bounds in
zero-error communication and worst-case control systems.

In the second half of this session, notions of entropy for
deterministic nonlinear control systems are described, based
on dynamical systems theory. These notions lead to characteri-
sations of minimal feedback data rates for set-invariance. Taken
together, the concepts discussed in this session give deterministic
control theorists a way to use information and entropy ideas,
without having to adopt a stochastic formulation.

I. INTRODUCTION

Information is a difficult concept to generally define

without vagueness. However, in 1948 the electrical engineer

Claude Shannon [1] gave a mathematically precise definition

for random variables (rv’s) in a probability space. Shannon

was interested in the problem of reliable communication over

a noisy channel. Assuming that the data and noise sources in

the system could be modelled as rv’s, he proposed statistical

indices of entropy, i.e. the a priori uncertainty in an rv, and

the mutual information shared by two correlated rv’s, in units

of bits.

These indices exhibit properties that are natural to expect

from any reasonable measure of uncertainty and information.

However, it is the operational relevance of Shannon’s con-

cepts that has given them a huge impact in communications.

If the goal in a communication system is to make the

probability of a decoding error negligible, then the entropy

rate of a stationary stochastic process coincides with the

lowest possible compressed bit-rate, while the the maximum

mutual information rate across a channel, in bits per sam-

ple, coincides with the highest block-coding rate. Prior to

Shannon’s work, the belief among engineers was that small

decoding error probabilities could be achieved only with

large signal-to-noise (SNR) ratios in the physical channel.

By thinking in terms of bits and codes, Shannon showed
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that arbitrarily small error probabilities could be achieved,

even at low SNR.

Information theory is now the basis of modern digital

communications, and has also percolated into many other

areas, including computer science [2], system identification

[3], [4] and medicine [5]. In the context of control and state

estimation, minimum entropy and maximum information

have been proposed as design criteria for control and estima-

tion [4], [6], [7]. In addition, information-theoretic methods

have been exploited, under various models for the noise

in the channel and plant, to find minimum communication

rates for estimating or stabilising the states of a linear-time

invariant (LTI) plant, [8], [9], [10] and to study fundamental

limitations for disturbance rejection in control [11], [12],

[13], [14]. Inspired by [1], in 1958 Kolmogorov and Sinai

formulated an analogous, measure-theoretic definition of

entropy rate for an open-loop dynamical system evolving

on an invariant measure space. With some surprise, it was

discovered that systems with purely deterministic dynamics

could have nonzero entropy rates, similar to stationary ran-

dom processes [15].

A. Information in Control

Despite these advances, information theory has not played

as central a role in control as it has in communications. One

reason for this is its probabilistic model of uncertainty. In

communications, statistical models make sense for several

good reasons. Firstly, most communication systems consist

of some mix of electronic, electromagnetic and photonic

devices, and the dominant disturbances in these domains -

e.g. thermal and shot noise, fading - arise from physical

laws that yield well-defined distributions. Furthermore, in

everyday communications, each telephone call and data

byte may not be crucially important or expensive, and so

performance usually needs to be guaranteed only on average,

over many uses of the system.

In contrast, automatic control is frequently used in safety-

or mission-critical applications, where performance, safety

or regulatory bounds must be guaranteed every time an

often expensive plant is used, not just on average; e.g. in

aircraft, automobiles and critical infrastructure. Moreover, as

control systems frequently contain mechanical or chemical

components, the dominant disturbances do not always arise

from electronic or photonic circuit noise, and so may not

obey probability distributions based on physics. Even if some

circuit noise is present, control systems typically operate

with bit- or sample periods T several orders of magnitude

longer than modern communication systems. At these slower
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scales, the variance of thermal or shot noise (∝ T ) after

filtering is often negligible compared to the corresponding

signal power (∝ T 2). For these reasons, control theory often

treats uncertainties and disturbances as unknown variables

and signals without any probabilistic structure, and measures

performance in a worst-case sense over all admissible distur-

bances with specified bounds on magnitude, power or energy.

Another factor that has impeded the application of stan-

dard information theory to networked control is the presence

of feedback. Feedback is the core idea in control theory,

and its vital role in maintaining performance and stability

in the face of disturbances has been well-understood for

over a century. However, although feedback is a feature of

many practical communication protocols, it has not been a

major focus in information theory. This is partly because

for stationary memoryless channels, the ordinary capacity

C is completely insensitive to the availability of feedback

from the receiver back to the transmitter [16], [17]. More

importantly, the correct formulation of a stochastic channel

with feedback was lacking until Massey’s 1990 paper [17],

in which he remarked ‘it is hardly a wonder that information

theory has had problems dealing with feedback’.

B. Aim

Networked control combines both the disciplines of com-

munications and control, and its rapid emergence in recent

years raises the important question of how to define opera-

tionally meaningful analogues of concepts like independence,

Markovnessand information for systems with worst-case

objectives. These concepts are powerful aids in stochastic

settings, and it would be useful to be able to apply them

in some form to nonstochastic problems, without having to

impose a probability space.

This tutorial paper provides an overview of a recent

framework [18], [19] that gives nonstochastic analogues for

mutual information and underlying concepts in terms of

the ranges of the variables in question, rather than their

probability distributions. Knowledge of classical information

theory is not necessary to understand this construction. It

turns out that many of the basic bricks in it already exist in

various guises, but in discrete, stochastic settings – e.g. the

qualitative independence of [20], the common information el-

ements of [21], and the ergodic decomposition and connected

components of [22], [23]. Importantly, these notions are

essentially independent of the assumed probability measures,

apart from their supports. By excising all their stochastic

elements, cementing them together, and adapting them for

continuous-valued variables, a useful information-theoretic

framework is obtained for analysing noisy systems under

worst-case or zero-error objectives. While other definitions of

information without probability exist and also possess natural

properties [24], [25], their operational relevance for finding

performance limitations in such systems is unclear.

C. Structure

In the next section, the uncertain variable framework

is described, followed by a description of nonstochastic

information in sec. III. These ideas then lead to definitions

of nonstochastic conditional and directed information in sec.

IV. In secs. V and VI, the uses of nonstochastic information

and directed information in analysing zero-error communi-

cations and state estimation or control via noisy channels are

discussed. The paper then ends with a discussion of several

open problems. Formal statements of results are avoided, but

where possible sketches of proofs are provided.

Throughout this paper, set cardinality is denoted by | · |,
with the value ∞ permitted, and all logarithms are to the base

2. With a small abuse of terminology, the cardinality of the

range of a variable X will just be called the cardinality of

the variable X .

II. UNCERTAIN VARIABLES, UNRELATEDNESS,

AND MARKOV CHAINS

In this section, the uncertain variable (uv) framework of

[18] is described, and seen to yield nonstochastic analogues

of probabilistic concepts such as independence, conditional

independence, and Markovness. These analogues are weaker

than their stochastic counterparts, since they depend only on

the ranges of the variables in question. On the other hand,

this suits situations where statistical models of uncertainty

are unjustified or unavailable.

A. Uncertain Variables

The key idea in the uv framework is to keep the probability

convention of regarding an unknown variable of interest as a

mapping X from some underlying sample space Ω to a set X

of interest. When an experiment is run, a specific sample ω ∈
Ω is selected, yielding a realisation X(ω), denoted by lower-

case x ∈X. For instance, in a dynamic system each possible

ω ∈ Ω may be identified with a particular combination of

initial states and exogenous noise signals, and x = X(ω) may

be the realised state or output. The sample ω itself may

not be observed. As in probability theory, the dependence

on ω will usually be suppressed for conciseness, so that a

statement such as X ∈ K may be taken to mean X(ω) ∈
K, unless stated otherwise. Unlike in probability theory, no

measure is imposed on Ω, nor is it necessary to assume some

σ -algebra ⊂ 2Ω of valid ω-sets.1

The mapping X : Ω → X is called an uncertain variable

(uv). Similar to the case of a random variable (rv), this

mapping may not be known. However, its range is known,

and some realisation x = X(ω) is seen. Given another uv Y

taking values in Y, write

JXK := {X(ω) : ω ∈ Ω}, (1)

JX ,Y K := {(X(ω),Y (ω)) : ω ∈ Ω} ⊆ JXK× JY K, (2)

JY |xK := {Y (ω) : X(ω) = x,ω ∈ Ω} . (3)

Call JXK the marginal range of X , JX ,Y K, the joint range of X

and Y , and JY |xK the conditional range of Y given (or range

conditional on) X = x, In the absence of a joint distribution,

1In a probability space with uncountable Ω, the restriction to a σ -algebra
strictly smaller than the power set is required in order to avoid paradoxes
when a σ -additive measure is imposed - see [26].



the joint range fully characterises the relationship between X

and Y . In particular, (1) and (3) can each be produced from

the two-dimensional set (2), by projection onto the horizontal

x-axis, or intersection with a vertical line at x followed by

projection onto the vertical y-axis, respectively.

Conversely, the marginal range (1) and conditional ranges

(3) together fully determine the joint range (2), i.e.

JX ,Y K =
⋃

x∈JXK

JY |xK×{x}. (4)

This is similar to the way that joint probability distributions

are determined by the conditional and marginal ones.

B. Unrelatedness

The next step is to define a nonstochastic analogue of

statistical independence. Call two uv’s X and Y mutually

unrelated if their joint range coincides with the Cartesian

product of the marginal ones, i.e.

JX ,Y K = JXK× JY K, (5)

denoted X ⊥ Y ; otherwise, call them mutually related. This

directly parallels mutual independence in probability theory,

with distributions replaced by ranges, and multiplication, by

a Cartesian product. However, it is an essentially weaker

notion. This is because the joint distribution of independent

rv’s always has support in the form of a Cartesian product,

but conversely, a joint support that takes Cartesian product

form does not entail a joint probability density or mass

function in product form.2

In some situations, it is more convenient to think in terms

of conditional ranges. It can be shown that unrelatedness3 as

defined in (5) is equivalent to the property that

JX |yK = JXK, ∀y ∈ JY K. (6)

In other words, a realisation of one uv does not affect the

range of values that the other can take. Note that when Ω is

discrete, unrelatedness is equivalent to the mappings X and

Y inducing qualitatively independent [20] partitions of Ω.

The discussion above easily extends to handle more than

two uv’s. A finite collection X1,X2, . . . ,Xn of uv’s is said to

be unrelated if

JX1, . . . ,XnK = JX1K×·· ·× JXnK, (7)

or equivalently if

JXi|X1:i−1K = JXiK, ∀i ∈ [2 : n]. (8)

An infinite collection X1,X2, . . . of uv’s is called unrelated if

every finite subcollection Xi1 , . . . ,Xin is mutually unrelated.

2Of course the range of an rv and the support of its distribution are not
exactly identical, but coincide up to a zero-probability set.

3For conciseness the adjective ‘mutual’ will often be dropped.

C. Markovness without Probability

In probability theory, a sequence of three or more rv’s is

said to be Markovian if the conditional distribution of any

rv given all previous ones depends only on the previous rv.

This notion can also be extended quite directly to uv’s, by

replacing distributions with ranges.

First consider a sequence X ,Y,Z of three uv’s. This is said

to form a Markov uncertainty chain, denoted X ↔Y ↔ Z, if

JX |y,zK = JX |yK, ∀(y,z) ∈ JY,ZK, (9)

i.e. the conditional range of X given a realisation (y,z)
depends only y. It can be shown that this is exactly equivalent

to the condition

JX ,Z|yK = JX |yK× JZ|yK, ∀y ∈ JY K, (10)

i.e. X ,Z are conditionally unrelated given Y , denoted X ⊥
Z|Y . In this form it is clear that the Markovness is preserved

if the sequence is reversed by swapping X and Z; hence the

double-headed arrows.

Now consider a general sequence X1, . . . ,Xn of n ≥ 3 uv’s.

This sequence is said to form a Markov uncertainty chain

X1 ↔ X2 ↔ ·· · ↔ Xn if

X1:k−1 ⊥ Xk+1|Xk, ∀k ∈ [2 : n−1]. (11)

i.e. the conditional range of Xk+1 given past realisations

depends only on the most recent one. It can be shown that

this is equivalent to the reversal-invariant property

X1:k−1 ⊥ Xk+1:n|Xk, ∀k ∈ [2 : n−1],

i.e. the future and past of the sequence are conditionally

unrelated given the present. The definition (11) can easily

be extended to semi-infinite sequences, i.e. with n → ∞.

As a final definition, a sequence X1,X2 . . . of uv’s is said

to be a conditional Markov uncertainty chain given W if

X1:k−1 ⊥ Xk+1|(Xk,W ), k = 2,3, . . . .

III. NONSTOCHASTIC INFORMATION

It is now shown that the framework described above can be

used to measure the amount of information I∗[X ;Y ] common

to two uncertain variables (uv’s) X and Y . This construction

allows information-theoretic tools to be used to analyse

problems without statistical structure, as discussed later in

this paper.

Before commencing, it is worth remarking that Shannon

defines mutual information as the reduction in the entropy

of one variable after the other variable is observed. In [24],

[25], the same philosophy was followed to define some

non-probabilistic indices of information, but with entropy

replaced by the Hartley entropy (log-cardinality) for dis-

crete variables [27], and the 0th order Rényi differential

entropy (log-Lebesgue-measure) for continuous ones [28].

The nonstochastic information proposed here does not follow

this approach, but instead directly measures how much both

variables share, as described below.
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A. Taxicab Connectedness and Nonstochastic Information

Before nonstochastic information is defined, certain

coordinate-geometrical properties of the joint range JX ,Y K
must be defined. Call two points (x,y) and (x′,y′) ∈ JX ,Y K
taxicab connected (x,y) ! (x′,y′) if ∃ a finite sequence

((xi,yi))
n
i=1 of points in JX ,Y K, beginning in (x1,y1) = (x,y)

and ending in (xn,yn) = (x′,y′), such that ∀i ∈ [2 : n], either

xi = xi−1 or yi = yi−1, i.e each point in the sequence shares

at least one coordinate with its predecessor.4

As ! is evidently transitive and symmetric, it is an equiv-

alence relation on JX ,Y K, and hence induces equivalence

classes. Call the collection of equivalence classes induced by

! the taxicab partition T [X ;Y ] of JX ,Y K. Nonstochastic

information is then defined as

I∗[X ;Y ] := log |T [X ;Y ]| ∈ [0,∞]. (12)

It is important to note that I∗[X ;Y ] is not generally the

same as mutual information with a uniform probability dis-

tribution on JX ,Y K. Nor is it the same as mutual information

infimised or supremised over all joint distributions with

support on or in JX ,Y K (which would in any case yield an

infimum = 0, and a supremum = ∞).

As such, it may not be immediately obvious why (12)

should be treated as a measure of information. In summary,

it turns out that each label of a taxicab partition-set is a

realisation of the maximal common variable [23] Z∗, or

equivalently the common information element [21], for X and

Y . In other words I∗[X ;Y ], which equals the log-cardinality

of Z∗, directly enumerates the maximum number of bits on

which X and Y can always agree. In contrast, it has long

been known that mutual information does not correspond to

an actual variable common to X and Y (see e.g. [22]), even

though for pedagogical reasons it is often depicted as an

intersection of two sets in a Venn diagram.

The notion of a (maximal) common variable is described

next.

4The name arises because the sequence yields a path in JX ,YK with only
vertical or horizontal segments, like a taxi in a grid of streets. This usage
comes from metric analysis.

B. Maximal Common Variables

Suppose two agents observe realisations of X and Y

separately and want to agree on some value, which is

to be produced by each agent applying a function to its

observation. That is, the first agent applies a function f

to the realisation x, and the other agent a function g to

y, so that f (x) = g(y) for all possible (x,y) pairs. Then

Z := f (X) = g(Y ) is a common variable on the value of

which they are guaranteed to agree; if they cannot agree on

anything unambigously, then Z is a constant.

It turns out that for any pair of variables X ,Y , there exists

a common variable Z∗ ≡ f∗(X) ≡ g∗(Y ) that is maximal in

the sense that any other common variable Z = f (X) = g(Y )
can be deduced from Z∗, i.e. there is a mapping Z∗ 7→ Z.5

Thus Z∗ has the maximum number - possibly infinite - of

distinct values over all common variables.

However, the log-cardinality of the maximal common

variable is not very attractive as a definition of information,

since it involves a maximisation over auxiliary functions f

and g. Fortunately, maximal common variables coincide (up

to isomorphism) with the labels of the taxicab partition-sets,

which are defined directly in terms of the range JX ,Y K. This

equivalence was proved in [23], for discrete rv’s and in terms

of the connected components of a discrete bipartite graph

rather than taxicab partitions. It is useful to go through the

argument in terms of uv’s and taxicab sequences.

1) Equivalence Between Taxicab Partition and Maximal

Common UV’s: Observe that any two points (x,y) and

(x′,y′) in the same taxicab partition set must give the same

realisation f∗(x) ≡ g∗(y) = f∗(x
′) ≡ g∗(y

′) of the maximal

common variable Z∗. To see this, first note that by definition

there is a taxicab sequence ((xi,yi))
n
i=1 connecting one point

with the other, and let z∗ := f∗(x) ≡ g∗(y). Going from

(x1,y1) := (x,y) to (x2,y2), it must hold that either x2 = x1,

implying that g∗(y2)≡ f∗(x2) = f∗(x1)≡ z∗, or that y2 = y1,

meaning that f∗(x2) ≡ g∗(y2) = g∗(y1) ≡ z∗. Proceeding by

induction until (xn,yn) := (x′,y′), it follows that the common

value f∗(x
′)≡ g∗(y

′) is also equal to z∗. In other words, the

label of the taxicab partition set determines the value of the

maximal common uv.

Now it is shown that the active taxicab partition set

containing a realisation of (X ,Y ) can be determined from

a realisation of X or Y alone. Call the taxicab partition sets

Ti, with label i running over some set6, and let Tx
i denote

the projections of Ti onto the x-axis. Clearly {Tx
i }i covers

JXK. Moreover none of the projected sets overlap; if for some

i 6= j there is an x0 ∈ Tx
i ∩Tx

j , then there would have to be

a point in Ti and another in T j with identical x-coordinate

x0, immediately implying a taxicab sequence from Ti to T j,

which is impossible. In other words, the projection of the

taxicab partition of the joint range JX ,Y K onto the x-axis is

itself a partition, of the marginal range JXK, and in particular

x ∈ Tx
z iff (x,y) ∈ Tz. Now define a uv Z by the rule Z = z

5This is because the space of variables forms a lattice [21].
6If the label set is uncountable, then each label is chosen as a represen-

tative point selected from the taxicab partition set.



iff X ∈ Tx
z . As this occurs iff (X ,Y ) ∈ Tz, the label Z of the

active taxicab partition-set is fully determined by X .

However, these arguments also hold for projections onto

the y-axis, meaning that the label Z of the taxicab partition-

set is also fully determined as a function of Y . In other words,

Z is common to X and Y . Recall from above that the value

of any common uv is fully determined by the label of the

taxicab partition set. By definition, this label Z is then a

maximal common uv, as desired.

C. Equivalent View of I∗ via Overlap Partitions

Analogous to probability theory, it often easier to work

with conditional rather than joint ranges, e.g. when dealing

with Markov chains. Let

JX |Y K := {JX |yK : y ∈ JY K} (13)

be the family of conditional ranges of X given Y . Note this

is an unordered family, with no repeated elements. That is,

given a set B ∈ JX |Y K, the number and specific values y ∈
JY K that yield JX |yK= B cannot be determined. Nonetheless,

it turns out that knowing JX |Y K is enough to find I∗[X ;Y ].
This contrasts sharply with mutual information I[X ;Y ], which

cannot be determined from knowledge of each conditional

distribution of rv X given Y = y.

As in subsection III-A, a notion of connectedness is first

needed. Two points x,x′ ∈ JXK are called JX |Y K-overlap-

connected, concisely denoted x ∼ x′, if ∃ a finite sequence

of successively overlapping sets in JX |Y K going from one to

the other. In other words, ∃B1, . . . ,Bn ∈ JX |Y K s.t.

• x ∈ B1 and x′ ∈ Bn

• Bi−1 ∩Bi 6= /0, ∀i ∈ [2 : n].

It is easy to see that JX |Y K-overlap connectedness is

symmetric and transitive, i.e. ∼ is an equivalence relation

on JXK, induced by JX |Y K. The overlap partition JX |Y K∗ of

JXK is then defined as the family of equivalence classes.

It turns out that for any uv’s X ,Y ,

I∗[X ;Y ] = log2 |JX |Y K∗| . (14)

The proof of this equation may be found in [18].7 In

summary, the proof shows that for any two points (x,y) and

(x′,y′) ∈ JX ,Y K,

x ∼ x′ ⇔ (x,y)! (x′,y′). (15)

This allows a bijection to be set up between the sets of the

taxicab partition T [X ;Y ] and the sets of the overlap partition

JX |Y K∗, which then implies that they have equal cardinality.

In terms of the maximal common uv Z∗ ≡ f∗(X) ≡ g∗(Y ),
the partition JX |Y K∗ gives the level sets of f∗, while JY |XK∗
gives the level sets of g∗.

7However, note that in [18] nonstochastic information was defined by
(14), and then shown to be equivalent to (12).

D. History

Some historical comments are appropriate to close this

section. As mentioned above and in the Introduction, many

of the notions discussed in this section have existed in the

literature under different names, in the context of random

variables. The notion of a discrete, maximal common rv [23]

was first introduced in [21], where it was called a common

information element. When constrained to discrete variables,

the taxicab partition is the same as the ergodic decomposition

of [22] and the connected components of [23]; in the last-

mentioned paper the equivalence to maximal common rv’s is

proved. Furthermore, for rv’s the sets of the overlap partition

correspond to the communicating classes of [22]; however

this earlier notion is specified not in terms of conditional

support sets, but rather in terms of taxicab connectedness, i.e.

by using (15) as a definition. For possibly continuous-valued

rv’s, there is also the related notion of common knowledge

[29] from economics, which yields the smallest measurable

set, in an intersected σ -algebra on Ω, that contains the (not

generally measurable) pre-images of a taxicab partition-set.

In the first three of the articles mentioned above, joint

probability mass functions were imposed on the variables

in order to use Shannon’s discrete entropy functional. For

instance in [21], a lattice metric was defined in terms of

marginal and joint entropies. The entropy of the labels of

the ergodic decomposition of [22] defines the Gács-Körner

common information8, also called zero-error information

[23].

In contrast, nonstochastic information in the uv framework

corresponds to the Hartley entropy (log-cardinality) of the

taxicab partition or ergodic decomposition, or equivalently

of the maximal common uv. In the next subsection, some

basic properties of I∗ are discussed.

E. Properties of I∗

Mutual information obeys several key properties, such as

nonnegativity, symmetry, monotonicity, and the data process-

ing inequality for Markov chains, which are usually proved

by decomposing it into a linear combination of joint and

marginal entropies and then applying function inequalities.

Similar properties can be proved rather more directly for the

nonstochastic information I∗[X ;Y ], even though it does not

enjoy a similar decomposition.

To begin, note that the nonnegativity of I∗[X ;Y ] is obvious,

from the definition (12). Similarly, the symmetry between X

and Y is also clear from the definition of taxicab connected-

ness, by which

(x,y)! (x′,y′) ∈ JX ,Y K ⇐⇒ (y,x)! (y′,x′) ∈ JY,XK.
Monotonicity states that for any uv’s W,X ,Y ,

I∗[X ;Y,W ]≥ I∗[X ;Y ]. (16)

This is obviously a very desirable property for any informa-

tion index, since it states that the information gained about X

8‘Common information’ is a common phrase; in addition to the two
usages above, there is a Wyner common information, which is somewhat
different.



from Y cannot decrease if Y is augmented with extra data W .

It can be proved very directly via the equivalence to maximal

common uv’s. The maximal common uv Z∗ = f∗(X)≡ g∗(Y )
is clearly also a common uv for X and (Y,W ), but possibly

submaximal since it ignores W . Thus the cardinality of Z∗

cannot be greater than that of the maximal common uv for

X and (Y,W ), implying (16).

Finally, the uv version of the data processing inequality

states that for any Markov uncertainty chain W ↔ X ↔ Y ,

I∗[W ;Y ]≤ I∗[X ;Y ], (17)

i.e. inner uv pairs in the chain share more information than

outer ones. This is a natural property, since each link in the

chain inserts unrelated noise, in a sense. It is proved by first

using monotonicity and the overlap partition characterisation

of I∗ to write

I∗[Y ;W ]
(16)

≤ I∗[Y ;X ,W ]
(14)
= log |JY |X ,W K∗|. (18)

By Markovness (9), JY |x,wK= JY |xK, ∀(x,w)∈ JX ,W K. Thus

the conditional range family JY |X ,W K = JY |XK, from which

it follows that JY |X ,W K∗ = JY |XK∗. Substituting this into the

RHS of (18) completes the proof.

IV. NONSTOCHASTIC CONDITIONAL AND

DIRECTED INFORMATION

In information theory, conditional mutual information

measures how much information two random variables (rv’s)

share on average, on top of a third rv that is available to both.

It forms part of the (Marko-Massey) directed information,

which has been shown to characterise the ordinary capac-

ity of channels with perfect feedback, and has also been

proposed as a quantifier of causality between two random

processes [30], [31].

In this section, nonstochastic versions of conditional and

directed information are described. These have applications

in scenarios where joint probability distributions do not exist

or are hard to estimate, but where ranges or support sets are

known with high confidence.

To begin, for any uv’s X ,Y and any realisation w of a uv

W , let T [X ;Y |w] denote the taxicab partition (see subsection

III-A) of the conditional joint range JX ,Y |wK, given W = w

(3). Then define the nonstochastic conditional information

of X and Y given W to be the minimum log-cardinality of

T [X ;Y |w]

I∗[X ;Y |W ] := min
w∈JWK

log |T [X ;Y |w]| . (19)

This functional has a simple interpretation: if two agents are

given data W and then each observe uv’s X and Y privately,

then 2I∗[X ;Y |W ] is the cardinality of the maximal common uv

Z that is new with respect to what they were both given. This

is explained below.

A. Meaning of Nonstochastic Conditional Information

In mathematical terms, if Z denotes the set of all uv’s

Z ⊥W such that Z ≡ f (X ,W )≡ g(Y,W ), then

max
Z∈Z

log |JZK|= I∗[X ;Y |W ] (20)
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Fig. 2. Example of conditional joint ranges JX ,Y |wK, with conditional
taxicab partitions and corresponding Z values as indicated.

The proof proceeds as follows.

Let w∗ ∈ Argminw∈JWK |T [X ;Y |w]|, so that I∗[X ;Y |W ] =
log |T [X ;Y |W = w∗]|, by (19). It is first shown that the left-

hand side (LHS) of (20) can never exceed the right-hand

side (RHS). The argument is by contradiction. Suppose that

∃Z ∈ Z with log |JZK| > I∗[X ;Y |W ]. As Z ⊥ W , it follows

that

|JZ|w∗K|= |JZK|> |T [X ;Y |w∗]| .

However the first term here, which gives the number of

distinct values that the common variable f (X ,w∗) = g(Y,w∗)
can take, must must be bounded above by the third term,

which is the number of elements in the taxicab partition of

the conditional joint range JX ,Y |w∗K. This is a contradiction,

so we must have log |JZK| ≤ I∗[X ;Y |W ], ∀ uv’s Z ∈ Z .

It remains to construct Z ∈ Z that attains the RHS of

(20). Let n := minw∈JWK |T [X ;Y |w]|. For each w ∈ JW K,

let Zw = f ′(X ,w) = g′(Y,w) denote a maximal common

variable between X and Y , given W = w. Note that this

common variable takes |T [X ;Y |w]| ≥ n distinct values. With-

out loss of generality, suppose that Zw takes integer values

in [1 : |T [X ;Y |w]|]. Now define the uv Z := min{ZW ,n}.

Evidently

Z ≡ min{ f ′(X ,W ),n} ≡ min{g′(X ,W ),n}, (21)

i.e. Z is a common uv for (X ,W ) and (Y,W ). Further-

more {Zw|w ∈ JW K} always contains the integers 1, . . . ,n ≡
minw∈JWK |T [X ;Y |w]|. Thus ∀w ∈ JW K,

JZ|wK = [1 : min{|JZwK| ,n}] = [1 : n] = JZK,

implying that Z is unrelated with W . Thus Z ∈ Z

and from the second equality above has cardinality n ≡
minw∈JWK |T [X ;Y |w]|, as required.

B. Properties of Nonstochastic Conditional Information

Nonstochastic conditional information shares four impor-

tant properties with its stochastic analogue.

• Nonnegativity: I∗[X ;Y |W ]≥ 0.

• Symmetry: I∗[X ;Y |W ] = I∗[Y ;X |W ]
• Monotonicity: I∗[X ;Y |W ]≤ I∗[X ;Y,Z|W ].



• Data Processing Inequality: If X ↔ Y ↔ Z|W is any

conditional Markov uncertainty chain given W , then

I∗[X ;Z|W ]≤ I∗[X ;Y |W ].

The proofs of these properties are omitted, since they

follow almost the same lines as for unconditional I∗.

C. Nonstochastic Directed Information

In a probabilistic setting, the Marko-Massey directed in-

formation [17] between two sequences of rv’s is defined as

I[X0:n → Y0:n] :=
n

∑
k=0

I[X0:k;Yk|Y0:k−1], (22)

where the conditional mutual information I[X ;Y |Z] =
H[X |Z]−H[X |Y,Z]. It is a relatively recent concept, which

sprang from attempts to understand feedback in communica-

tion systems and quantify causality, and is not the same as

the mutual information I[X0:n;Y0:n].
With a notion of nonstochastic conditional information in

place, it is possible to construct a parallel of (22). Let X0:n

and Y0:n be two sequences of uv’s, of the same length n+1.

Then the nonstochastic directed information is defined as

I∗[X0:n → Y0:n] :=
n

∑
k=0

I∗[X0:k;Yk|Y0:k−1]. (23)

It turns out that this concept precisely characterises the

zero-error capacity of a channel in the presence of perfect,

one-step delayed feedback - see subsection V-C. There is also

a related interpretation as a measure of influence in causal

systems. This is described as follows.

Suppose we treat X0:n and Y0:n as time sequences of uv’s

associated with some unknown causal system, and wish

to quantify how well these sequences can be treated as

‘input’ and ’output’ respectively. As the system structure is

unknown, the putative output Yk may generally depend on all

past outputs Y0:k−1, as well as all inputs X0:k up to present

time.

The nonstochastic information I∗[X0:n;Y0:n] is useless here,

since it is symmetric, and insensitive to reorderings of time.

However, recall that the nonstochastic conditional infor-

mation I∗[X0:k;Yk|Y0:k−1] (19) corresponds to the maximal

common uv Zk that is common to (X0:k,Y0:k−1) and Y0:k

but unrelated with the past Y0:k−1 (20). In other words, it

measures how much new information can be stated about the

outputs up to time k, by the inputs and the past outputs. As

Zk is unrelated with past Y0:k−1, it is consequently unrelated

with Z0:k−1, which is a function of Y0:k−1. Thus the sum on

the RHS of (23) coincides precisely with the log-cardinality

of Z0:n, and captures how much can be stated about the output

process as a causal function of the inputs and past outputs.

It is maximised when Yk is a deterministic, causal function

of the inputs and past outputs.

V. NOISY COMMUNICATION CHANNELS

In this section, it is discussed how the uncertain vari-

able (uv) framework and nonstochastic information con-

cepts above give intrinsic characterisations of certain zero-

error coding capacity concepts for communication channels.

In particular, the zero-error capacity C0 of a memoryless

channel coincides with the highest rate of nonstochastic

information (12) across it, while the zero-error capacity with

feedback C0f coincides with the highest rate of nonstochastic

directed information (23).

Before these results can be given, signals and channels

must be appropriately defined in the uv framework.

A. Signals and Channels

A little care is needed to define uncertain signals and

systems that exist on the semi-infinite discrete-time axis Z≥0.

Let X∞ be the space of all X-valued, discrete-time sequences

x = (xk)
∞
k=0. Similar to the way that discrete-time random

processes are defined, let an uncertain signal X be a mapping

from the sample space Ω to X
∞.9 Confining this mapping to

any time t ∈Z≥0 yields a uv Xt . As with uv’s, the dependence

on ω ∈ Ω will not usually be indicated.Also note that JXK is

a subset of the function space X .

The next step is to define a suitable notion of an uncertain

channel. In communications theory, discrete stochastic chan-

nels are often defined in terms of conditional probabilities

of outputs given inputs, e.g. the binary symmetric channel,

with the channel noise remaining implicit. On the other

hand, for analog channels the usual custom is to indicate

the channel noise explicitly, e.g. the additive white Gaussian

noise channel. In [18], [19], the former approach was adapted

to define uncertain channels in terms of conditional ranges.

However, it turns out to be simpler to take the second

approach, and treat channel noise as an explicit object. In

particular, the mutual unrelatedness between messages and

channels when feedback is present becomes easier to capture.

So let a stationary memoryless uncertain channel (SMUC)

be defined by

a) an unrelated, identically spread (uis) noise signal V =
(Vk)

∞
k=0 on a space V, i.e.

JVk|v0:k−1K = JVkK = V, ∀v0:k−1 ∈ V
k,k ∈ Z≥0; (24)

b) input and output spaces X,Y, and a transition function

τ : X×V→ Y.

A family of pairs of input-output signals that are com-

patible with the channel also needs to be defined. This

depends on the problem being studied. At one extreme,

the transmitter may have one-step delayed perfect feedback

from the channel receiver. For this case, define an associated

family Gf of all uncertain input-output signal pairs (X ,Y ) s.t.

∀k ∈ Z≥0,

• Yk = τ(Xk,Vk),
• and X0:k ⊥Vk

This last condition expresses the fact that the current channel

noise is unrelated to all channel inputs up to now, but may

influence a future input through the feedback.

At the other extreme, the transmitter may have no feedback

whatsoever. In this case, tighten the last condition so that

X ⊥V , i.e. observations of X and V at any finite number of

9A smaller range X ⊂ X
∞ would be required if power, run-length or

other dynamic constraints must be imposed on realisations of X .
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times (not necessarily identical times, or equal in number)

are unrelated. This yields the smaller family Gnf ⊂ Gf.

B. Zero Error Communication without Feedback

The aim in a zero-error communication system is to

transmit any message M that can take up to µ ≥ 1 distinct

values as a sequence of n inputs, so that after receiving the n

uncertain channel outputs, the message M can be reproduced

exactly. Evidently, a code is required to convert M to a

sequence of inputs. More formally, let a zero-error code

without feedback be defined by

• a block length n ∈ Z≥1;

• a message cardinality µ ≥ 1;

• and an encoder mapping γ : [1 : µ] → X
n, s.t. for any

message M ⊥V taking µ distinct values m1, . . . ,mµ and

a channel input sequence given by X0:n−1 = γ(i) if M =
mi, it holds that

|JM|y0:n−1K|= 1, ∀y0:n−1 ∈ JY0:n−1K.

Note that the last condition is equivalent to the existence of a

decoder at the receiver that always takes Y0:n−1 7→ M, despite

channel noise.

The rate of the code is defined as (log µ)/n. The zero-error

capacity C0 of the channel is then defined as the highest rate

of all zero-error block codes,

C0 := sup
n,µ∈Z≥1,γ

log µ

n
= lim

n→∞
sup

µ∈Z≥1,γ

log2 µ

n
, (25)

where the limit follows from subadditivity. Note that the

zero-error rate is typically much smaller than the ordinary

capacity C, which is defined by allowing a small probability

of decoding error that approaches 0. Insisting on exactly no

decoding errors seems like a small difference, but in fact

introduces significant conservatism.

The definition (25) is operational, i.e. in terms of the

highest zero-error code rate. However, by using nonstochastic

information, it can be shown that C0 has an intrinsic charac-

terisation, as the highest nonstochastic information rate that

is possible across a channel:

C0 = sup
n≥1,(X ,Y )∈Gnf

I∗[X0:n−1;Y0:n−1]

n

= lim
n→∞

sup
(X ,Y )∈Gn f

I∗[X0:n−1;Y0:n]

n
. (26)

This is a partial analogue of Shannon’s channel coding

theorem, which characterises the ordinary channel capacity

C as the largest mutual information rate I[X0:n−1;Y0:n−1]/n
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across a stochastic memoryless channel [1], maximised over

all input sequence distributions compatible with the channel.

However, Shannon’s expression can be further simplified to

a ‘single-letter’ supremum of I[X ;Y ] over the distribution

of a single input, thanks to certain convenient properties of

mutual information. For discrete channels this reduces the

computation of C to solving a finite-dimensional optimisa-

tion.

Such a single-letter characterisation is not possible in (26).

Nonetheless, it is a powerful theoretical aid in the analysis

of problems such as uniform state estimation via noisy

channels, as discussed in section VI. For discrete channels,

the computation of C0 as defined in (25) is a very difficult

combinatorial problem, with formulas available in few cases

[32]. There is a possibility that (26) may give alternative

approaches for estimating or bounding C0, but this is not

explored here.

The reader is referred to [18] for a proof of (26) in terms of

overlap partitions. It should also be noted that in [23], C0 for

a stochastic discrete memoryless channel was characterised

as the largest Shannon entropy rate of the maximal common

rv for X0:n−1 and Y0:n−1. The result above is similar, except

that the setting is nonstochastic and the Shannon entropy is

replaced with the Hartley entropy, i.e. log-cardinality, of the

maximal common uv.

C. Zero Error Communication with Perfect Feedback

In this subsection, zero-error communication is studied

under the assumption that the transmitter is told the exact

channel outputs, with a one-step delay. As mentioned in

the Introduction, the ordinary capacity C of a stochastic

memoryless channel does not change when such feedback is

allowed. However, this is not so for the zero-error capacity.

Similar to before, define a zero-error code with perfect

feedback by

• a block length n ∈ Z≥1;

• a message cardinality µ ∈ Z≥1;

• and a sequence γ0:n−1 of encoder functions s.t. for any

message M ⊥V taking values m1, . . . ,mµ , and any input

and output signals satisfying Xk = γk(i,Y0:k−1) if M =mi,

|JM|y0:n−1K|= 1, ∀y0:n−1 ∈ JY0:n−1K.

As before, the code rate is defined by (log µ)/n. The zero-

error feedback capacity C0f is defined as the highest feedback



coding rate that yields no decoding errors, i.e.

C0f := sup
n,µ∈Z≥1,γ0:n−1

log2 µ

n
= lim

n→∞
sup

µ∈Z≥1,γ0:n−1

log2 µ

n
. (27)

In other words, it is the growth rate of the maximum

cardinality of sets of feedback coding functions that can be

unambiguously determined from channel outputs [16].

The definition above is an operational one. However, it

turns out to have an information-theoretic characterisation as

the maximum nonstochastic directed information rate across

the channel [19]:

C0f = sup
n∈Z≥1,(X ,Y )∈G

I∗[X0:n−1 → Y0:n−1]

n

= lim
n→∞

sup
(X ,Y )∈G

I∗[X0:n−1 → Y0:n−1]

n
, (28)

where I∗[· → ·] is the nonstochastic directed information

(19). This parallels the characterisation in [33], [34] of the

ordinary feedback capacity Cf of stochastic channels with

memory as the maximum rate of Marko-Massey directed

information (22) across the channel, Although the uncertain

channel here is memoryless, it is possible to extend (28) to

channels with memory; this will be reported elsewhere.

Note that unlike in the stochastic framework, for a mem-

oryless channel C0f may be strictly larger than the zero-

error capacity without feedback C0. Counter-intuitively, for

discrete memoryless channels C0f is an easier object to

study than C0, and can be obtained through an auxiliary,

finite-dimensional optimisation [16]. However, this optimi-

sation problem has no information-theoretic interpretation,

and arises from a coding analysis. This coding analysis has

recently been extended to find zero-error feedback capacity

formulas for certain classes of channels with memory. The

formula (28) may well allow C0f to be determined for

other channels, but its main use at present is in allowing

C0f to be thought of as an information-theoretic object.

This lets information-theoretic tools to be applied to certain

nonstochastic feedback problems, as described in the next

section.

VI. LTI PLANTS AND NOISY CHANNELS

In this section, I∗ is used to study the problems of

uniformly estimating or stabilising the state of a linear time-

invariant (LTI) plant via a stationary memoryless uncertain

channel (SMUC). First, some related work is discussed.

In the case where the channel is an errorless digital

bit-pipe, the ‘data rate theorem’ states that the estimation

errors or states can be bounded or taken to zero iff R > H,

where R is the average channel bit-rate and H is the sum

of the log-magnitudes of the unstable eigenvalues of the

plant dynamical matrix. This tight condition holds with no

noise, stochastic plant noise, or bounded plant disturbances,

and under different notions of convergence or stability, e.g.

uniform, in rth moment or almost surely (a.s.) [35], [36],

[37], [38], [39], [40], [9]. The stochastic formulations use

differential entropy to prove necessity, while deterministic

ones typically employ volume-partitioning arguments.
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However, with channel noise, the controller or estimator

does not necessarily know what the encoder sent, and this

unified criterion splits into multiple ones. Depending on the

notion of stability on the states or estimation errors, the

assumptions on initial states and plant noise, the channel

model and the availability of explicit channel feedback, the

data rate R in the inequality must replaced with either the

ordinary capacity C [41], [10], [42], the anytime capacity

Cany [43], or the zero-error capacities C0f,C0 with and

without feedback [44]. In other words, with noisy channels

no single figure of merit is appropriate for all situations.

For the purposes of this section, the results of [44]

are immediately relevant. In that article, the problem of

almost surely (a.s.) uniformly estimating or stabilising the

states of an LTI plant via a noisy memoryless channel was

studied. The channel and initial plant state were modelled

stochastically, but the disturbances entering the plant were

treated as bounded unknowns without statistical structure.

When the plant disturbances are nulled, it is known that

C > H is a tight condition to be able to ensure a.s. bounded

errors or states [10]. However, when plant disturbances are

allowed, then the criterion changes to become C0 > H for

a.s. uniform state estimation and C0f > H for a.s. uniform

stabilisation, even when the disturbance bound is arbitrarily

small As C0 ≤ C0f are usually much smaller than C, these

are typically more restrictive conditions. The reason is that

nonstochastic disturbances do not average out in the long

run. Therefore it becomes crucial for no decoding errors to

occur in the channel, not just for their average probability

to be arbitrarily small. These important results were proved

using volume-partitioning arguments and a law of large

numbers that exploited the random initial state and channel.

No information theory was applied.

In this section, neither the initial state, plant noise or the

noisy channel are modelled stochastically. As a consequence,

probability and laws of large numbers cannot be employed in

the analysis. Nonetheless, analogous bounds can be obtained

with the aid of nonstochastic information theory.

A. Uniform State Estimation

Proofs of the results in this subsection can be found in

[18]. First the problem of state estimation for a disturbance-

free LTI plant is considered.

1) Disturbance-Free Plant: The components of the sys-

tem are:

• A noiseless LTI plant with zero input and uncertain

initial state:

Xk+1 = AXk, Yk = GXk, X0 a uv, ∀k ∈ Z≥0.



• A coder that maps Y0:k to Sk at each time k.

• A stationary memoryless uncertain channel with inputs

Sk, outputs Qk and channel noise terms Zk.

• An estimator that maps the past symbols Q0:k−1 to an

estimate X̂k.

Consider the objective of uniform ρ-exponential conver-

gence from an ℓ-ball. I.e. given ρ, ℓ > 0, construct a coder-

estimator s.t. for any uv X0 with range JX0K ⊆ Bℓ(0),

lim
k→∞

sup
ω∈Ω

ρ−k‖Xk − X̂k‖= 0.

Assume the following:

DF1: A has one or more eigenvalues with magnitude > ρ .

DF2: (G,A) is observable.10

DF3: X0 ⊥ Z

Under these assumptions, it is shown in [18] that if

uniform ρ-exponential convergence is achieved from some

ℓ-ball, then

C0 ≥ ∑
|λi|≥ρ

log

(

|λi|

ρ

)

. (29)

Conversely, if (29) holds strictly, then for any ℓ > 0, a coder-

estimator that achieves uniform ρ-exponential convergence

from Bℓ(0) can be constructed.

The proof of sufficiency relies on constructing a coder-

estimator, given a channel that satisfies (29) strictly. First,

the plant is down-sampled, and then a zero-error code with

sufficiently long block-length is applied, so as to convert the

erroneous channel into an errorless one with average bit rate

arbitrarily close to C0. This reduces the proof of sufficiency

to an application of the ‘data rate theorem’, without requiring

any of the concepts presented here.

The proof of necessity is more complex. With no channel

noise, the basic idea is to analyse the growth rate of state

uncertainty volumes. In [10], [44], this technique is extended

to discrete stochastic channels to prove a.s. convergence

and boundedness. Importantly, treating the initial state and

channel noise as random variables allows a strong law of

large numbers to be applied.

Unfortunately, no laws of large numbers hold for the

uncertain variables (uv’s) of this paper. Nonetheless, it turns

out that (29) can still be proved in the uv framework, by using

the nonstochastic information-theoretic characterisation of C0

in terms of I∗ (26). The proof, which is relatively direct,

considers uncertainty diameters not volumes, and exploits

properties of I∗ such as monotonicity and data processing.

It is illuminating to go through a sketch of the necessity

argument, restricted here to scalar plants; the reader is

referred to [18] for the complete proof.

a) Necessity Argument - Scalar Case: First, pick arbi-

trarily large t ∈Z≥1 and small ε ∈
(

0,1− ρ
|λ |

)

. Divide [−ℓ,ℓ]

into

κ :=

⌊∣

∣

∣

∣

(1− ε)λ

ρ

∣

∣

∣

∣

t⌋

≥ 1

10This can be relaxed to requiring observability of the modes with
eigenvalue magnitudes ≥ ρ .

equal intervals of length 2ℓ/κ . Now, inside each interval

construct a centred subinterval I(s) of shorter length ℓ/κ .

Define the subinterval family

H := {I(s) : s = 1, . . . ,κ}, (30)

noting that subintervals ∈ H are separated by a gap ≥ ℓ/κ .

Now, consider an initial state uv X0 with range JX0K =
⋃

H∈H H ⊂ [−ℓ,ℓ].
Let Ek := Xk − X̂k denote the estimation error. By hypoth-

esis, ∃φ > 0 s.t.

φρk ≥ supJ|Ek|K ≥ 0.5diamJEkK (31)

≥ 0.5diamJEk|q0:k−1K (32)

= 0.5diam
r

λ kX0 −ηk (q0:k−1) |q0:k−1

z

= 0.5diamJλ kX0|q0:k−1K (33)

= 0.5|λ |kdiamJX0|q0:k−1K, (34)

where (31) arises from the fact that the diameter of a real

set is at most twice the maximum magnitude of an element,

(32) from the fact that conditioning can only reduce a set,

and (33) from the invariance of set-diameter to translations.

Next it is shown that for large t, no two sets in H (30) can

be JX0|Q0:t−1K-overlap-connected. Suppose in contradiction

that ∃H ∈H that is JX0|Q0:t−1K-overlap-connected with an-

other set in H . This would imply that there is a conditional

range JX0|q0:t−1K containing both a point u ∈ H and a point

v in some H′ ∈ H \{H}. Consequently,

|u− v| ≤ diamJX0|q0:t−1K
(34)

≤
2φρ t

|λ |t
. (35)

However, recall that any two sets ∈ H are separated by a

distance of at least ℓ/κ . So

|u− v| ≥
l

κ
=

ℓ
⌊

((1− ε)|λ |/ρ)t
⌋

≥
ℓ

((1− ε)|λ |/ρ)t =
lρ t

|(1− ε)λ |t
.

The RHS of this would exceed the RHS of (35) when t is suf-

ficiently large that
(

1
1−ε

)t
> 2φ/ℓ, yielding a contradiction.

So for large enough t, no two sets of H are JX0|Q0:t−1K-

overlap-connected. Consequently,

2I∗[X0;Q0:t−1] ≡ |JX0|Q0:t−1K∗| ≥ |H |

=

⌊∣

∣

∣

∣

(1− ε)λ

ρ

∣

∣

∣

∣

t⌋

≥ 0.5

∣

∣

∣

∣

(1− ε)λ

ρ

∣

∣

∣

∣

t

, (36)

since ⌊x⌋ > x/2, for every x ≥ 1. However, X0 ↔ S0:t−1 ↔
Q0:t−1 is a Markov uncertainty chain, so

I∗[X0;Q0:t−1]≤ I∗[S0:t−1;Q0:t−1]≤ tC0.

Substitute this last inequality into the LHS of (36), take

logarithms and divide by t to get

C0 ≥ log2(1− ε)+ log2 |λ/ρ|−1/t.
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Letting t → ∞ yields

C0 ≥ log2(1− ε)+ log2 |λ/ρ|.

As ε can be made arbitrarily small, this completes the

necessity argument for the scalar case.

2) Plant with Disturbances: Now suppose that process

and measurement noise is present, i.e.

Xk+1 = AXk +Vk, Yk = GXk +Wk,

where X0 is a uv and V,W are uncertain signals. The

coder, channel and estimator remain the same. With plant

noise present convergence of the estimation errors to zero is

impossible, so the objective is relaxed to attaining uniformly

bounded estimation errors beginning from an ℓ-ball. I.e.

given ℓ > 0, construct a coder-estimator s.t. for any initial

state X0 with JX0K ⊆ Bℓ(0),

sup
k∈Z≥0,ω∈Ω

‖Xk − X̂k‖< ∞.

Impose the following assumptions:

D1: A has one or more eigenvalues with magnitude > 1.

D2: (G,A) is observable.11

D3: JVkK and JWkK are uniformly bounded over k.

D4: X0,V,W and Z are mutually unrelated.

D5: The zero-noise sequence pair (v,w)= (0,0) is valid,

i.e. (0,0) ∈ JV,W K.

Under these conditions,if uniformly bounded estimation er-

rors are achieved from some ℓ-ball, then

C0 ≥ ∑
|λi|≥1

log2 |λi|. (37)

Conversely, if (37) holds strictly, then for any ℓ > 0, a coder-

estimator that achieves uniformly bounded estimation errors

from Bℓ(0) can be constructed.

B. Uniform Stabilisation via Noisy Channels

In this section, the analogous problem of controlling an

LTI plant via a noisy channel is addressed. As before, the

case of plants without disturbances is first addressed.

11This can be relaxed to observability of the modes with eigenvalue
magnitudes ≥ 1.

1) Disturbance-Free Plant: Now suppose that the plant is

given by

Xk+1 = AXk +BUk, Yk = GXk,

where X0 is a uv. The coder and channel are as before, but

the estimator is replaced by a controller that maps the past

channel output sequence Q0:k−1 to a plant input Uk. The

objective is uniform ρ-exponential stability on an ℓ-ball. I.e.

given ρ, ℓ > 0, the aim is to construct a coder-controller s.t.

for any uv X0 with range JX0K ⊆ Bℓ(0),

lim
k→∞

sup
ω∈Ω

ρ−k‖Xk‖= 0.

Make the following assumptions:

DFC1:A has one or more eigenvalues with magnitude > ρ .

DFC2:(G,A) is observable and (A,B) is controllable.

DFC3:X0 ⊥ Z

It can then be shown that if uniform ρ-exponential stability

is achieved on some ℓ-ball, then

C0f ≥ ∑
|λi|≥ρ

log

(

|λi|

ρ

)

. (38)

Conversely, if (38) holds strictly, then for any ℓ > 0, a coder-

controller that achieves uniform ρ-exponential stability on

Bℓ(0) can be constructed [19].

2) Plants with Disturbances: Now suppose the plant is

given by

Xk+1 = AXk +BUk +Vk, Yk = GXk +Wk,

where X0 is a uv and V,W are process and observation noise

signals. The coder, channel and controller remain the same,

but the objective is now to achieve uniformly bounded states

beginning from an ℓ-ball. In other words, given ℓ > 0, the

aim is to construct a coder-controller s.t. for any initial state

X0 with JX0K ⊆ Bl(0),

sup
k∈Z≥0,ω∈Ω

‖Xk‖< ∞.

Impose the following assumptions

DC1: A has one or more eigenvalues with magnitude ≥ 1.

DC2: (G,A) is observable and (A,B) is controllable.

DC3: JVkK and JWkK are uniformly bounded over k.

DC4: X0,V,W and Z are mutually unrelated.

DC5: The zero-noise sequence pair (v,w)= (0,0) is valid,

i.e. (0,0) ∈ JV,W K.

It can be shown that if uniformly bounded estimation errors

are achieved from some ℓ-ball, then

C0 f ≥ ∑
|λi|≥1

log2 |λi|. (39)

Conversely, if (39) holds strictly, then for any ℓ > 0, a coder-

controller that achieves uniformly bounded states from Bℓ(0)
can be constructed.



VII. FUTURE DIRECTIONS

This paper discussed a recent nonstochastic theory of

information, and its application to the analysis of certain

problems in zero-error communications and uniform estima-

tion and control. This theory is far from mature, and there

are numerous challenges and open problems. Three of the

major ones are listed below.

• How can this framework be adapted to handle distur-

bances with bounds on energy or average power over

time, rather than on magnitudes?

• The systems considered here consist of two agents,

i.e. transmitter and receiver, coder and controller, etc.

However, taxicab connectedness can be extended to

three or more variables. Could a corresponding triple or

n-tuple information help to analyse systems with three

or more agents?

• Can the characterisations of zero-error capacity and

zero-error feedback capacity in terms of I∗ and directed

I∗ be exploited to estimate them for various channels of

interest, perhaps using Monte Carlo methods?
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[20] A. Rényi, Foundations of Probability. Holden-Day, 1970.
[21] C. E. Shannon, “The lattice theory of information,” Trans. IRE Prof.

Group on Info. Theory, vol. 1, no. 1, pp. 105–8, 1953.
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