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Abstract

We exhibit a knot P in the solid torus, representing a generator of first homology, such that for any

knot K in the 3-sphere, the satellite knot with pattern P and companion K is not smoothly slice

in any homology 4-ball. As a consequence, we obtain a knot in a homology 3-sphere that does not

bound a piecewise-linear disk in any homology 4-ball.
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1. Introduction

A knot K in the boundary of a smooth 4-manifold X is called smoothly slice

(in X ) if it bounds a smoothly embedded disk in X , and topologically slice if it

merely bounds a locally flatly embedded disk (that is, a continuous embedding

with a topological normal bundle). The classical study of knot concordance aims

to classify which knots in the 3-sphere S3 are (topologically or smoothly) slice

in the 4-ball D4. Note that without the requirement of either smoothness or local

flatness, this question becomes uninteresting, since every knot K in S3 bounds a

piecewise-linear (PL) embedded disk in D4 (and hence in any 4-manifold with

boundary S3), obtained by taking the cone on K .

In the 1960s, Zeeman [30] conjectured that the analogous statement can

fail to hold for knots in the boundary of an arbitrary compact, contractible

4-manifold, making PL concordance of knots in 3-manifolds other than S3 a

nontrivial subject. Akbulut [1] proved Zeeman’s conjecture in 1991, exhibiting
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a contractible 4-manifold X and a knot J ⊂ ∂X which does not bound any

embedded PL disk in X . However, this knot does bound a smoothly embedded

disk in a different contractible 4-manifold X ′ with ∂X ′ = ∂X . The purpose of this

paper is to prove a stronger statement:

THEOREM 1.1. There exist a smooth, compact, contractible 4-manifold X and

a knot J ⊂ ∂X such that J does not bound a PL disk in X or in any other

rational homology 4-ball X ′ with ∂X ′ = ∂X. Moreover, J can be assumed to be

topologically slice in X.

Our strategy for proving Theorem 1.1 is to reduce it to a problem concerning

smooth concordance of satellite knots in S3. We begin by reviewing some

terminology. Two oriented knots K0 and K1 in S3 are called (smoothly)

concordant if there is a smoothly embedded annulus in S3 × I whose boundary

is −K0 × {0} ∪ K1 × {1}. The set of concordance classes of knots in S3 forms a

group C under connected sum, with identity element given by the concordance

class of the unknot. It is often useful to consider weaker notions of concordance

as well. We call K0 and K1 exotically concordant (or pseudo-concordant) if

they cobound a smoothly embedded annulus in a smooth 4-manifold that is

homeomorphic to S3× I but perhaps has an exotic smooth structure, and (for any

ring R) R-homology concordant if they cobound a smoothly embedded annulus

in a smooth manifold with the R-homology of S3 × I . Denote the corresponding

groups by Cex and CR , respectively. There are surjective forgetful maps

C ։ Cex ։ CZ ։ CQ.

We say that K ⊂ S3 is (smoothly) slice, exotically slice, or R-homology slice if

it represents the trivial element of C, Cex, or CR , respectively; this is equivalent

to K bounding an embedded disk in D4, a contractible 4-manifold (which must

be homeomorphic to D4 by work of Freedman [7]), or an R-homology 4-ball. (If

the smooth 4-dimensional Poincaré conjecture is true, then any smooth, compact,

contractible 4-manifold with boundary S3 must be diffeomorphic to D4, so

C = Cex.)

Fix an orientation on S1; this determines a generator of H1(S
1 × D2;Z) ∼= Z.

Given an oriented knot P ⊂ S1 × D2, the winding number of P is the integer m

such that P represents m times this generator. For any knot K ⊂ S3, the Seifert

framing of K ⊂ S3 determines an embedding of S1 × D2 in S3 as a regular

neighborhood of K , up to isotopy. We define P(K ), the satellite of K with pattern

P , as the image of P under this embedding. If K0 is concordant to K1, then

P(K0) is concordant to P(K1), so P induces a function from each of the groups

C, Cex, CR to itself, known as a satellite operator. (In general, satellite operators

are not group homomorphisms.)
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Figure 1. (a) Kirby diagram for the Mazur manifold X P , along with the knot

JP ⊂ YP . The circle marked P denotes a tangle with an odd number of strands.

(b, c) Dehn surgery diagrams showing that ∂W = S3
0(P(−K )), whose first

homology is generated by the curve γ . In (c), the strands passing through the

box marked −K are 0-framed parallels of −K .

Problem 1.45 in Kirby’s problem list [16], attributed to Akbulut, asks whether

there exists a winding number ±1 satellite operator P for which P(K ) is never

exotically slice. The following theorem answers a stronger form of this question

in the affirmative:

THEOREM 1.2. There exists a pattern knot P ⊂ S1 × D2 with winding number

1 such that for any knot K ⊂ S3, P(K ) is not slice in any rational homology

4-ball; that is, the images of the maps on C, Cex, CZ, and CQ induced by P do not

contain 0.

Note that to prove Theorem 1.2, it suffices to find a winding-number-one

satellite operator Q that is nonsurjective on CQ, that is, that there exists a knot

L ⊂ S3 such that L is not rational homology concordant to Q(K ) for any K ⊂ S3.

Then P = Q #−L ⊂ S1 × D2 satisfies the conclusion of Theorem 1.2.

Before introducing the example that proves Theorem 1.2, we show how this

result implies the first part of Theorem 1.1. For any pattern knot P ⊂ S1× D2, let

P̃ ⊂ S3 be the knot obtained by applying P to the unknot. Let λP be the framing

of P that corresponds to the Seifert framing of P̃ . Viewing P as a knot in the

boundary of S1 × D3, let X P be the manifold obtained by attaching a 2-handle to

S1×D3 along P with framing λP , and let YP = ∂X P . (A schematic Kirby diagram

for X P is shown in Figure 1(a).) Note that X P is contractible if and only if the

winding number of P is±1, in which case YP is a homology sphere. Let JP ⊂ YP

be the knot S1 × {pt}. As an example, let Q denote the Mazur pattern shown in

Figure 2, so called because X Q (with orientation reversed) is Mazur’s original

construction of a contractible 4-manifold with boundary not homeomorphic to

S3 [21].
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Figure 2. The Mazur pattern knot Q in the solid torus S1 × D2.

PROPOSITION 1.3. If P ⊂ S1× D2 is a pattern knot with winding number 1 that

satisfies the conclusion of Theorem 1.2, then JP ⊂ YP does not bound a PL disk

in any rational homology 4-ball X with ∂X = YP .

Proof. Suppose, toward a contradiction, that JP bounds a PL disk ∆ ⊂ X . We

may assume that ∆ is smooth away from finitely many singular points that are

cones on knots K1, . . . , Kn . By deleting neighborhoods of arcs in ∆ connecting

the cone points to ∂∆, we see that JP # −K is smoothly slice in X , where

K = K1 # · · · # Kn .

Let W be obtained by attaching a 0-framed 2-handle to X along JP # −K .

Then W is a homology S2 × D2, and a generator of H2(W ) can be represented

by a sphere S with trivial normal bundle, obtained as the union of a slice disk for

JP # −K and the core of the 2-handle. As seen in Figure 1(b,c), the boundary of

W is diffeomorphic to 0-surgery on P(−K ); let γ ⊂ S3
0(P(−K )) be the core of

the surgery torus, represented in a surgery picture by a meridian of P(−K ).

Let W ′ be obtained from W by surgering out S; W ′ is a homology S1 × D3,

and H1(W
′) is generated by [γ ]. Attaching a 0-framed 2-handle to W ′ along γ

produces a rational homology 4-ball Z whose boundary is S3. The cocore of the

new 2-handle is a smooth slice disk for P(−K ), contradicting the conclusion of

Theorem 1.1.

REMARK 1.4. In [1], Akbulut proves that JQ does not bound a PL disk in X Q .

However, note that Q does not satisfy the conclusion of Theorem 1.2, since Q̃

is the unknot. Moreover, if we form the Kirby diagram for X Q as in Figure 1(a)

using Q, we may interchange the dotted 1-handle and 0-framed 2-handle to obtain
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a different contractible 4-manifold X ′ in which JQ is smoothly slice. Note that X ′

is in fact diffeomorphic to X , but not rel boundary.

REMARK 1.5. Given homology 3-spheres Y0, Y1 and knots K0 ⊂ Y0, K1 ⊂ Y1,

we say that K0 and K1 are homology concordant if they cobound a smoothly

embedded annulus in some homology cobordism W between Y0 and Y1. Let ĈZ

denote the group of homology concordance classes of knots in homology spheres

that bound homology 4-balls. Note that a knot K ⊂ Y bounds a PL disk in

some homology 4-ball X if and only if K is homology concordant to some knot

K ′ ⊂ S3. Thus, Theorem 1.1 can be reformulated as saying that the natural

inclusion CZ→ ĈZ is not surjective. This answers a question posed by Matsumoto

[16, Problem 1.31]. (See also [5, Proposition 6.3].)

In order to prove Theorem 1.2, we recall two concordance invariants arising

from the knot Floer complex of a knot K ⊂ S3 [23, 27]. The invariant τ(K ) ∈ Z,

defined by Ozsváth and Szabó [22], provides a lower bound for the smooth

rational homology 4-ball genus of K (the minimum genus of a properly embedded

surface in a rational homology 4-ball with boundary K ) and is additive under

connected sum; as a result, it descends to a group homomorphism CQ → Z.

More recently, Hom [10] defined an invariant ǫ(K ) ∈ {−1, 0, 1}, which together

with τ(K ) determines the value of τ for all cables of K . As a result, ǫ(K ) = 0

whenever K is smoothly Q–slice. (In [10], this result is only stated when K is

smoothly slice in D4, but the same proof holds for any rational homology ball.)

The ǫ invariant is not a group homomorphism, but its behavior under connected

sum is the same as that of the signs of real numbers under addition: positive plus

positive equals positive, and so forth. This property actually makes ǫ a rather

powerful invariant; Hom has used it to find an infinite-rank direct summand of the

group of topologically slice knots [12].

Our technical main result, which immediately implies Theorem 1.2, is a

formula for τ(Q(K )) and ǫ(Q(K )) in terms of τ(K ) and ǫ(K ), proved using

bordered Heegaard Floer homology [18, 20]:

THEOREM 1.6. Let Q denote the Mazur pattern shown in Figure 2. For any knot

K ⊂ S3,

τ(Q(K )) =

{
τ(K ) if τ(K ) 6 0 and ǫ(K ) ∈ {0, 1},

τ (K )+ 1 if τ(K ) > 0 or ǫ(K ) = −1,
(1.1)

and

ǫ(Q(K )) =

{
0 if τ(K ) = ǫ(K ) = 0,

1 otherwise.
(1.2)
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In particular, Q(K ) is not rational homology concordant to any knot L with

ǫ(L) = −1.

Proof of Theorem 1.1. If L ⊂ S3 is any knot with ǫ(L) = −1 (for example, the

left-handed trefoil), then P = Q # −L ⊂ S1 × D2 satisfies the conclusion of

Theorem 1.2. By Proposition 1.3, JL ⊂ ∂X L does not bound a PL disk in any

rational homology 4-ball.

For the second part of the theorem, first note that for any pattern knot P with

winding number 1, the Alexander polynomial of JP is equal to that of P̃ . To

see this, first note that the Kirby diagram in Figure 1(a) presents YP = ∂X P as

surgery on the two-component link P̃ ∪ O ⊂ S3, where O is the dotted unknot.

Since lk(P̃, O) = 1, we may find a Seifert surface F for P̃ that meets O in a

single point. By puncturing F at this point and capping it off in the surgery on P̃ ,

we find a Seifert surface F ′ ⊂ YP for JP . It is easy to check that the Seifert forms

of F and F ′ are equal, and hence ∆JP
= ∆P̃ .

Now, if P = Q #−L as above, then P̃ = −L . In particular, if L is a knot with

∆L = 1, then ∆JP
= 1, and hence JP is topologically slice in X P by the famous

theorem of Freedman and Quinn [8, Theorem 11.7B]. Hom [11, Lemma 6.12]

showed that the negative, untwisted Whitehead double of the left-handed trefoil

is an example of a knot L with ǫ(L) = −1 and ∆L = 1, as required.

Another consequence of Theorem 1.6 is the following:

COROLLARY 1.7. If L ⊂ S3 is any knot with τ(L) > 0, then L is not rational

homology concordant to Qn(K ) for any K ⊂ S3 and n > τ(L).

Proof. Induction using Theorem 1.6 shows that for any n > 1,

τ(Qn(K )) =





τ(K ) if τ(K ) 6 0 and ǫ(K ) ∈ {0, 1},

τ (K )+ 1 if τ(K ) < 0 and ǫ(K ) = −1,

τ (K )+ n if τ(K ) = 0 and ǫ(K ) = −1, or if τ(K ) > 0.

(1.3)

In particular, for n > 2, τ(Qn(K )) cannot equal any number in {1, . . . , n−1}.

Corollary 1.7 implies that the images of the iterated satellite operators Qn (seen

as functions on any of the groups C, Cex, CZ, or CQ) are strictly decreasing:

im(Q) ) im(Q2) ) im(Q3) ) · · ·. (1.4)
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Cochran, Davis, and Ray [2] showed that any pattern P with winding number ±1

induces an injection on CZ, and any pattern P with strong winding number ±1

(that is, for which π1(∂(S
1 × D2)) normally generates π1(S

1 × D2r nbd(P)))

induces an injection on Cex. Moreover, Cochran and Harvey [4] showed that such

satellite operators are (quasi-)isometries with respect to certain natural metrics

on each of the concordance groups. Note that the Mazur pattern Q has strong

winding number 1 since Q̃ is the unknot [2, Proposition 2.1]. Therefore, (1.4) can

perhaps be seen as an example of fractal structure in the concordance groups.

The operator Q also appears in work of Cochran, Franklin, Hedden, and Horn

[3], who used it to give the first known examples of nonconcordant knots whose

0-surgeries are homology cobordant rel meridians. Specifically, they showed that

the 0-surgeries on K and Q(K ) are homology cobordant rel meridians for any

knot K , while there exist knots for which τ(K ) 6= τ(Q(K )). Ray [28] extended

this argument to show that for such knots, all of the iterates Qn(K ) (n ∈ N)
are distinct in concordance. The formula for τ(Q(K )) given above confirms and

strengthens both of these results. (See Remark 4.1 for more details.)

We assume throughout the paper that the reader is familiar with knot Floer

homology [23], sutured Floer homology [15], and bordered Heegaard Floer

homology [18, 20]. (For a quick summary of the latter, see the author’s exposition

in [17, Section 2].) All Floer homology groups are taken with coefficients in

F = Z/2Z. In Section 2, we discuss the role of relative spinc structures in

the bordered theory, with an eye toward computations of knot Floer homology

for satellite knots. In Section 3, we compute the bordered Floer homology of

S1 × D2r nbd(Q), making use of Lipshitz, Ozsváth, and Thurston’s arc-slides

algorithm [19], as implemented in Python by Bohua Zhan [31]. We then use this

computation to determine the values of τ for Q(K ) (Section 4) and for the (2, 1)

and (2,−1) cables of Q(K ) (in Section 5), and finally deduce ǫ(Q(K )) using

Hom’s formula for τ of cables [10], leading to the proof of Theorem 1.6.

2. Alexander gradings in bordered Floer homology

In this section, we elaborate on the pairing theorem for knot Floer homology

given by Lipshitz, Ozsváth, and Thurston [18, Theorem 11.21]. Specifically,

we will show that bordered Floer homology determines the absolute Alexander

grading on the knot Floer homology of a knot in a manifold obtained by

gluing, not just the relative Alexander grading as was originally stated. The

most important result is Proposition 2.2, which provides a useful technique for

computing Alexander gradings in the knot Floer homology of satellite knots. (See

Remark 2.3 regarding other strategies for such computations used by Petkova [26],

Hom [10], and the author [17].)
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2.1. The knot Floer complex and τ(K ). We begin by recalling some basics

concerning knot Floer homology. For simplicity, suppose that K is a knot

in a homology sphere Y . In this discussion, we shall use the convention for

relative spinc structures used in sutured Floer homology [15]. Specifically, let

X K = Yr nbd(K ), equipped with a pair of meridional sutures Γ on the boundary.

We fix a vector field Ev along ∂X K that points into X K along R−(Γ ), parallel

to ∂X K and transverse to the sutures along Γ , and out of X K along R+(Γ ). A

relative spinc structure is a homology class of nonvanishing vector fields on X K

that restrict to Ev on ∂X K . (Here, two vector fields on X K are homologous if they

are homotopic outside of finitely many balls in X K ; the homotopies are required to

be fixed on ∂X K .) The set of relative spinc structures is denoted Spinc(Y, K ) and is

an affine space for H 2(X K , ∂X K ), which by excision is isomorphic to H 2(Y, K ).

Let PD[µ] ∈ H 2(X K , ∂X K ) denote the Poincaré–Lefschetz dual of the meridian

of K . (A different convention also appears in the literature: specifically, Ozsváth

and Szabó [24] define Ev to point outward on all of ∂X K . The only difference

between the two conventions is the formula for the Alexander grading in terms of

the first Chern class; using the other convention, the right side of (2.2) should have

an additional term of− 1

2
〈PD[µ], [F]〉. Our convention agrees with the convention

for spinc structures in sutured Floer homology [15]; it seems to behave more

naturally with respect to bordered constructions.)

Given a doubly pointed Heegaard diagram (H, z, w) presenting K , the knot

Floer complex CFK−(H) is freely generated over F[U ] by points x ∈ Tα ∩ Tβ ,

with differential given by

∂(x) =
∑

y∈S(H)

∑

φ∈π2(x,y)
µ(φ)=1

#(M̂(φ))U nw(φ)y.

Each generator x has an associated relative spinc structure in Spinc(Y, K ), denoted

sw,z(x); for any φ ∈ π2(x, y), we have

sw,z(x)− sw,z(y) = (nz(φ)− nw(φ))PD[µ] (2.1)

[23, Lemma 2.5]. The Alexander grading of a generator is defined as

A(x) = 1

2
〈c1(sw,z(x)), [F]〉, (2.2)

where [F] ∈ H2(X K , ∂X K ) denotes the homology class of a Seifert surface for

K . We extend this grading to CFK−(H) by setting A(U n
· x) = A(x) − n; (2.1)

shows that A determines a filtration on CFK−(H). (Alternately, we may define

sw,z(U
n
· x) = sw,z(x)− n PD[µ], and simply view CFK−(H) as being filtered by

the set of relative spinc structures, ordered by the action of PD[µ].)
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The filtered chain homotopy type of CFK−(H) is an invariant of the isotopy

class of K ; any complex of this homotopy type will be denoted CFK−(Y, K ),

and the grading by spinc structures is denoted sY,K (in the absence of an actual

Heegaard diagram). The associated graded complex of CFK−(Y, K ) is denoted

gCFK−(Y, K ); the differential counts disks that avoid the basepoint z. The

homology of gCFK−(Y, K ) is denoted HFK−(Y, K ); as an F-vector space, it

decomposes by Alexander grading as

HFK−(Y, K ) =
⊕

s∈Z

HFK−(Y, K , s),

with the action of U taking HFK−(Y, K , s) to HFK−(Y, K , s − 1).

For any knot K ⊂ S3, HFK−(S3, K ) is (noncanonically) isomorphic to the

direct sum of F[U ] and a finitely generated, torsion F[U ]–module. The invariant

τ(K ) is equal to

τ(K ) = −max{s | U n · HFK−(S3, K , s) 6= 0 for all n > 0}. (2.3)

That is, τ(K ) is minus the Alexander grading of 1 ∈ F[U ] ⊂ HFK−(S3, K ). (See

[25, Lemma A.2] for the proof that this agrees with the original definition of τ in

terms of the filtration on ĈFK(S3, K ).) Ozsváth and Szabó proved that if X is a

rational homology 4-ball with boundary S3, and K is the boundary of a smoothly

embedded surface in X of genus g, then |τ(K )| 6 g [22]. Since τ is additive

under connected sums, it descends to a homomorphism CQ→ Z.

2.2. Relative spinc structures on bordered manifolds. We now turn to

bordered Floer homology [18]. Let Z = (Z , a,M, z) be a pointed matched circle

of genus k. (Here, Z is an oriented circle, a is a set of 4k points in Z , M : a→ {1,
. . . , 2k} is a two-to-one function, and z ∈ Zra.) Let F(Z) denote the surface

associated to Z . The surface F(Z) admits a handle decomposition with a single

0-handle ∆ whose boundary is identified with Z ; 2k 1-handles whose feet are at

the points of a, paired according to M ; and a single 2-handle. Let A(Z) denote

the bordered algebra associated to Z .

We shall make use of Huang and Ramos’s construction of a topological grading

on bordered Floer homology [14]. In this discussion, we refer to a smooth

section of the bundle T F(Z) ⊕ R as a vector field along F(Z), where R is a

trivial real line bundle over F(Z) equipped with a choice of orientation. For any

k-element subset s ⊂ {1, . . . , 2k}, we fix a nonvanishing vector field Evs along

F(Z) according to the construction given in [14, Definition 2.1]. For subsets s,

t ⊂ {1, . . . , 2k} of order k, let G(Z, s, t) denote the set of homotopy classes of

vector fields on F(Z)× I restricting to s on F(Z)× {0} and to t on F(Z)× {1},
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and let Spinc(Z, s, t) denote the set of homology classes of such vector fields. The

latter is an affine set for H 2(F(Z)× I, F(Z)×∂ I )∼= H1(F(Z)× I )∼= H1(F(Z)).

There is a free action of Z on G(Z, s, t), where the action of n ∈ Z is

denoted [Ev] 7→ λn · [Ev], whose quotient map is precisely the forgetful map

Φs,t : G(Z, s, t)→ Spinc(Z, s, t). Let

G(Z) =
∐

s,t⊂{1,...,2k}
|s|=|t |=k

G(Z, s, t) and Spinc(Z) =
∐

s,t⊂{1,...,2k}
|s|=|t |=k

Spinc(Z, s, t),

each of which equipped with a groupoid structure in which multiplication is

given by concatenation in the I factor; combine the forgetful maps Φs,t into a

single map Φ. (Huang and Ramos refer to the former as G(Z), but we prefer

the notation G(Z) to avoid confusion with the grading group given by Lipshitz,

Ozsváth, and Thurston [18, Section 3.3.2].) Huang and Ramos define a grading

gr on A(Z) taking values in G(Z); they also show that there is a homomorphism

F : G(Z)→ G ′(Z), where G ′(Z) is the grading group from [18, Section 3.3.1],

under which their grading agrees with the original grading on A(Z). For a ∈
A(Z), let s(a) = Φ(gr(a)) ∈ Spinc(Z).

Next, let Y be a bordered 3-manifold with boundary parametrized by F(Z). We

identify T Y |F(Z) with T F(Z) ⊕ R, where the outward normal is mapped to the

positive R direction. For each k-element subset s ⊂ {1, . . . , 2k}, let Vect(Y, s) and

Spinc(Y, s) denote the set of homotopy classes and homology classes, respectively,

of nonvanishing vector fields on Y restricting to vs. Elements of Spinc(Y ) are

called relative spinc structures (relative to Evs); note that Spinc(Y, s) is an affine

set for H 2(Y, ∂Y ;Z). Let Φs : Vect(Y, s)→ Spinc(Y, s) denote the forgetful map.

Once again, there is an action of Z on Vect(Y, s) (not necessarily free) whose

quotient map is precisely Φs. Define

S(Y ) =
∐

s⊂{1,...,2k}
|s|=k

Vect(Y, s) and Spinc(Y ) =
∐

s⊂{1,...,2k}
|s|=k

Spinc(Y, s),

and combine the maps Φs into a single map Φ. The groupoid G(Z) acts on S(Y )

from the right by concatenation, and the action descends to an action of Spinc(Z)

on Spinc(Y ). (In a similar manner, if ∂Y is parametrized by −F(Z), then G(Z)

and Spinc(Z) act on S(Y ) and Spinc(Y ) from the left.)

Let H be a bordered Heegaard diagram for Y . For each generator x ∈ S(H),

let o(x) be the k-element subset of {1, . . . , 2n} corresponding to the arcs occupied

by x. Lipshitz, Ozsváth, and Thurston [18, Section 4.3] construct a nowhere-

vanishing vector field Evz(x) on Y whose restriction to a collar neighborhood

of ∂Y is Evo(x), and define the relative spinc structure associated to x, denoted
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sz(x) ∈ Spinc(Y ), to be the homology classes of vx. Subsequently, Huang and

Ramos defined gr(x) ∈ S(Y ) to be the homotopy class of Evz(x), and proved that

this assignment determines a grading on the bordered invariants ĈFA(H) and

ĈFD(H) that is compatible with the algebraic structures of those invariants. That

is, if in ĈFA(H) the generator y appears in mk+1(x, a1, . . . , ak), then

gr(y) = λk−1 gr(x) · gr(a1) · · · gr(ak). (2.4)

It follows that

sz(y) = sz(x) · s(a1) · · · s(ak). (2.5)

A similar statement holds for ĈFD; see [14, Theorem 1.3].

Moreover, the maps used in [18] to prove the invariance of bordered Heegaard

Floer homology are in fact graded chain homotopy equivalences. This is not

spelled out explicitly in [14], but it follows along the same lines as the proof

of invariance for Huang and Ramos’s earlier work [13], modified for the bordered

setting. It follows that the graded chain homotopy type of ĈFA(H) or ĈFD(H),

where the grading has values in S(Y ), is an invariant of Y ; by abuse of notation,

we refer to any A∞-module or type-D structure with this graded chain homotopy

type as ĈFA(Y ) or ĈFD(Y ), respectively. Note also that the chain homotopy

equivalences used in the ‘edge reduction’ procedure for simplifying a chain

complex, A∞-module, or type-D structure (see [17, Section 2.6]) are graded.

For the present purposes, the upshot of this discussion is that each

homogeneous generator x of (a module representing) ĈFA(Y ) or ĈFD(Y )

has an associated relative spinc structure, denoted sY (x), which is obtained by

applying the forgetful map Φ to gr(x). This is true even when we are working

with a representative for ĈFA(Y ) or ĈFD(Y ) that is not actually the complex

associated to a Heegaard diagram, a fact that was not fully spelled out in [18].

(We do not need to make use of the Maslov component of the grading in this

paper.)

2.3. Knots in bordered 3-manifolds. Next, we consider knots in bordered

manifolds. As explained in [18, Section 11.4], a bordered Heegaard diagram

(H, z) for Y together with a second basepoint w in the interior of the Heegaard

surface determines a knot K ⊂ Y , a segment of which lies in ∂Y . (We refer to

K as a based knot.) To be precise, fix a Riemannian metric g and a self-indexing

Morse function f on Y that are compatible with the Heegaard diagram H (in

the sense of [18, Section 4.8]). The basepoints z and w each determine flowlines

γz and γw connecting the unique index-0 and index-3 critical points of f ; note

that γz ⊂ ∂Y . If we orient each of these flowlines upward, the knot K is defined

to be γw − γz . (For an alternate description, let tα be an arc from z to w in the
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complement of the α curves, and let tβ be an arc from w to z in the complement

of the β curves; we obtain K by pushing tα into the α handlebody and tβ into the

β handlebody.)

Lipshitz et al. define type A and D modules CFA−(H, z, w) and CFD−(H, z, w)

over the ground ring F[U ], where the original definitions of the differentials

on ĈFA(H, z) and ĈFD(H, z) are modified so that a holomorphic disk with

multiplicity m at w contributes a factor of U m . That is, in CFA−(H, z, w), the

A∞ multiplications are given by

mn+1(x, a(ρ1), . . . , a(ρn)) =
∑

y∈S(H)

∑

B∈π2(x,y)
ind(B,Eρ)=1

#MB(x, y; ρ1, . . . , ρn)U nw(B)y,

(2.6)

where all notation is as in [18, Section 7]. The chain homotopy types of

CFA−(H, z, w) and CFD−(H, z, w) are invariants of the isotopy class of K ,

where a segment of K is constrained to lie in ∂Y throughout the isotopy. We shall

explain how to construct relative spinc gradings on these invariants. We focus on

CFA−; the case of CFD− is similar.

The complement YK of a regular neighborhood of K is naturally a bordered

sutured manifold, in the sense of Zarev [29, Definition 3.5]. Specifically, let F ′(Z)

be F(Z)minus its 0- and 2-handles plus an annulus connecting the two boundary

circles, with a pair of parallel sutures Γ contained in this annulus. The sutures

divide F ′(Z) into regions R+ and R− with χ(R+) = 0 and χ(R−) = −2k; the

pointed matched circle Z determines a parametrization of R−. The boundary

of ∂YK is then naturally identified with F ′(Z). Moreover, YK is represented

by the bordered sutured Heegaard diagram H′ obtained from H by deleting a

neighborhood of w. Note that the generating sets S(H) and S(H′) are the same.

Moreover, the bordered sutured invariant B̂S A(H′) defined by Zarev is precisely

equal to the quotient ĈFA(H, z, w) = CFA−(H, z, w)/(U = 0).

As noted by Huang and Ramos [14, Remark 1.5], the discussion from the

previous section carries through for bordered sutured manifolds. Just as in the

absolute case, for each k-element subset s ⊂ {1, . . . , 2k}, we fix a nonvanishing

vector field Ev′s along F ′(Z); define groupoids of homology and homotopy classes

of vector fields on F ′(Z) × I , denoted G̃(Z) and S̃pinc(Z), analogous to the

constructions in the previous section. The algebra A(Z) has a grading g̃r valued

in G̃(Z); the image of g̃r(a) in S̃pinc(Y ) is denoted s̃(a). Let Vect(Y, K , s) and

Spinc(Y, K , s) be the sets of homotopy classes and homology classes, respectively,

of vector fields on YK extending Ev′s, and let

S(Y, K ) =
∐

s

Vect(Y, K , s) and Spinc(Y, K ) =
∐

s

Spinc(Y, K , s);
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these admit actions by G̃(Z) and S̃pinc(Z), respectively. Then ĈFA(H, z, w) has

a grading g̃r valued in S(Y, K ); the image of g̃r(x) in Spinc(Y, K ) is denoted

sw,z(x).

We now show that CFA−(H, z, w) is also graded by relative spinc

structures. For each s, Spinc(Y, K , s) is an affine set for H 2(YK , ∂YK ). Let

PD[µ] ∈ H 2(Y, nbd(K )) ∼= H 2(YK , ∂YK ) denote the Poincaré–Lefschetz dual of

the meridian [µ] ∈ H1(YK ;Z), which generates the kernel of the restriction map

H 2(Y, nbd(K ))→ H 2(Y ). There are maps

Γs : Spinc(Y, K , s)→ Spinc(Y, s),

given by extending the vector fields over nbd(K ) in a canonical way, whose fibers

are the orbits of the action of PD[µ]; the maps Γs combine to give a single map

Γ : Spinc(Y, K )→ Spinc(Y ),

satisfying Γ (sw,z(x)) = sz(x). (See [24, Section 2.2] for more details of the

analogous construction for knots in closed manifolds.) If B ∈ π2(x, y) is a class

(in H) with associated algebra elements a1, . . . , an , then

Γ (sw,z)(y) = Γ (sw,z(x) · s̃(a1) · · · s̃(an))

by (2.5), so sw,z(y) and sw,z(x) ·̃s(a1) · · · s̃(an)must differ by an element of PD[µ];
more precisely, a bordered analogue of [23, Lemma 2.5] says that

sw,z(x) · s̃(a1) · · · s̃(an)− sw,z(x) = −nw(B)PD[µ].

Therefore, if we define the relative spinc grading on CFA−(H, z, w) by

sw,z(U
n · x) = sw,z(x)− n PD[µ],

the A∞ multiplications respect the spinc structures just as in (2.5). The graded

chain homotopy type of CFA−(H, z, w) is an invariant of the knot K (once

again, under isotopies leaving a segment of K fixed on ∂Y ). We denote any

representative of this homotopy type by CFA−(Y, K ), and refer to its spinc

grading as sY,K .

We may now state the graded version of the pairing theorem for knot

Floer homology. First, suppose Y is a homology 3-sphere with a bordered

decomposition Y1 ∪F(Z) Y2, and K is a based knot in Y1, which may be viewed as

a knot in Y . There is a gluing map

Ψ :
∐

s⊂{1,...,2k}
|s|=k

(Spinc(Y1, K , s)× Spinc(Y2, s))→ Spinc(Y, K ).

The version of the pairing theorem that we shall use states:
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Figure 3. Doubly pointed bordered Heegaard diagrams for the knots C (a) and

C2,1 (b) in the solid torus V . The boundary segments are labeled according to the

convention for ĈFA.

THEOREM 2.1. There is a homotopy equivalence

gCFK−(Y, K ) ≃ CFA−(Y1, K )⊠ ĈFD(Y2)

that respects the grading by relative spinc structures, in the sense that for

homogeneous elements x1 ∈ CFA−(Y1, K ) and x2 ∈ ĈFD(Y2) whose idempotents

agree, we have

sY,K (x1 ⊗ x2) = Ψ (sY1,K
(x1), sY2

(x2)). (2.7)

Proof. The existence of the homotopy equivalence is simply [18, Theorem 11.21],

and (2.7) follows directly from the construction.

Thus, the spinc grading on bordered Floer homology can be used to recover

the absolute Alexander grading on HFK−, not just the relative grading (as stated

in [18]). Moreover, similar pairing theorems also apply for computations using

bimodules, all of which respect the grading by relative spinc structures.

2.4. Satellite knots. We now give a more concrete description of the way that

bordered Floer homology determines the Alexander gradings on HFK− of satellite

knots.

Let V denote the solid torus S1 × D2, equipped with the standard bordered

structure described in [18, Section 11.4]. That is, in any bordered Heegaard

diagram for V , αa
1 represents a meridian µV = {pt} × ∂D2 and αa

2 represents

a longitude λV = S1 × {pt}. Let P ⊂ V be a based knot in V , represented

by a doubly pointed bordered Heegaard diagram (H, z, w) as above. Label the

boundary regions of H R0, R1, R2, R3 according to the conventions for ĈFA.

Two specific examples that will be useful below are represented by the genus-

1 Heegaard diagrams in Figure 3: let C be a copy of S1 × {pt}, and let C2,1 be a

curve in ∂V representing the homology class 2λV + µV (a (2, 1) curve).
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Let Fµ = {pt} × D2 ⊂ V ; the homology class of Fµ generates H2(V, ∂V ).

There is a periodic domain Pµ representing [Fµ], whose multiplicities in the four

boundary regions are 0, 0, 1, 1, respectively. Set m = nw(Pµ); this is the winding

number of P . Since P is homologous in V to mλV , there is an oriented surface

Fλ ⊂ V whose boundary is the union of P and m parallel copies of −λV .

For any knot K ⊂ S3, let X K denote the exterior of K equipped with the

bordered structure given by the 0-framing. Let FK be a Seifert surface for K ,

which represents a generator of H2(X K , ∂X K ). The type-D structure ĈFD(X K )

splits as a direct sum (of F-vector spaces) V0 ⊕ V1 corresponding to the two

idempotents ι0, ι1 ∈ A(T 2). (That is, Vi = ιi · ĈFD(X K ).) By [18, Proposition

11.19], V0 (together with its internal differential D) is chain homotopy equivalent

to gĈFK(S3, K ). Indeed, given a Heegaard diagram H for K , (V0, D) is actually

isomorphic to gĈFK(H′), where H′ is the complex obtained by gluing H to the

Heegaard diagram for (V,C) in Figure 3(a). Moreover, this identification respects

the gradings by relative spinc structures. Thus, V0 admits an Alexander grading,

which we shall denote by AK . (In a similar manner, V1 can be identified with the

longitude Floer complex of K [6], which likewise admits an Alexander grading.)

When we form the union S3 = V ∪ X K , the knot P ⊂ V becomes the satellite

P(K ). According to Theorem 2.1, there is a chain homotopy equivalence

gCFK−(S3, P(K )) ≃ CFA−(V, P)⊠ ĈFD(X K ). (2.8)

Moreover, this identification determines the grading of gCFK−(S3, P(K )) by

relative spinc structures, and thus the absolute Alexander grading, which we

denote by AP(K ).

A key tool that we will use in our computations in Sections 4 and 5 is the

following:

PROPOSITION 2.2. Let P ⊂ V be a based knot with winding number m. For each

element a ∈ CFA−(V, P)·ι0 that is homogeneous with respect to the spinc grading,

there exists a constant Ca with the following property: for any knot K ⊂ S3, and

any homogeneous element x ∈ ι0ĈFD(X K ), we have

AP(K )(a ⊗ x) = m AK (x)+ Ca. (2.9)

Proof. We may construct a Seifert surface G for P(K ) as the union of

Fλ ⊂ V with |m| parallel copies of a Seifert surface FK for K . (If m is negative, we

take these copies of FK with reversed orientation.) The relative spinc structures

s(a) ∈ Spinc(V, ∂V ∪ K ) and s(x) ∈ Spinc(X K , ∂X K ) glue together to give
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a relative spinc structure s(a ⊗ x) ∈ Spinc(S3, P(K )). We then have:

AP(K )(a ⊗ x) =
1

2
〈c1(sS3,K (a ⊗ x)), [G]〉

=
1

2
〈c1(sV,P(a)), [Fλ]〉 +

m

2
〈c1(sX K

(x)), [FK ]〉

=
1

2
〈c1(sV,P(a)), [Fλ]〉 + m AK (x). (2.10)

Thus, we define Ca =
1

2
〈c1(sV,P(a)), [Fλ]〉, which depends only on a and not on

the choice of K .

The value of Proposition 2.2 is that it enables us to compute Alexander

gradings without using a Heegaard diagram. Specifically, in Section 4 we will

compute CFA−(V, Q), where Q is the Mazur pattern knot in Figure 2, without

keeping track of the relative spinc structures associated to the various elements.

Since applying the satellite operation Q to the unknot O yields the unknot,

CFA−(V, Q) ⊠ ĈFD(X O) computes HFK−(S3, O), which is simply F[U ]
generated by an element in Alexander grading 0. This enables us to determine

the constants Ca associated to some generators a ∈ CFA−(V, Q). We can

then use Proposition 2.2 to determine the absolute Alexander gradings of the

relevant generators of CFK−(S3, Q(K )) for any knot K , and this computation

suffices to determine τ(Q(K )). The same reasoning is used in Section 5 to study

CFA−(V, Q2,1), where Q2,1 denotes the (2, 1) cable of Q.

REMARK 2.3. Proposition 2.2 is closely related to the strategy used by Hom in

[10, Section 4] for computing τ for cable knots. Given a doubly pointed Heegaard

diagram for a knot K ⊂ S3, Ozsváth and Szabó give an explicit formula for

the Alexander grading of each generator in terms of topological data in the

Heegaard diagram [23, Equation (9)]. When the Heegaard diagram is obtained

by gluing together two bordered Heegaard diagrams, this formula splits into a

sum of compositions from the two sides; this is precisely the sum in the second

line of (2.10). In the setting of cabling, Hom computes the contribution from

the A side directly from a Heegaard diagram for the pattern knot and writes the

contribution from the D side as an explicit linear function of the Alexander

grading in ĈFK(S3, K ); the sum of these contributions is precisely (2.9). In our

setting, because we are not computing CFA− directly from a Heegaard diagram,

we are forced to determine the constant Ca indirectly, as explained above.

Another strategy for determining absolute Alexander gradings, used by the

author in [17] and by Petkova in [26], is first to compute the relative Alexander

grading on CFK−(Y, P(K )) as described in [18], and then to pin down the
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absolute grading using the symmetry of knot Floer homology [23, Equation (3)],

which refines the symmetry of the Alexander polynomial. The disadvantage of

this approach is that it requires careful consideration of all the generators of the

tensor product complex and use of the nonabelian grading on bordered Floer

homology, rather than only the generators that affect τ(P(K )).

2.5. ĈFD of knot complements. We now recall Lipshitz et al.’s formula for

ĈFD(X K ) in terms of CFK−(S3, K ) [18, Theorems 11.27 and A.11], using some

notation from [9, Section 2.4]. Let C− = CFK−(S3, K ). The following is a slight

enhancement of [9, Proposition 2.5]:

PROPOSITION 2.4. There exist a pair of bases {̃ξ0, . . . , ξ̃2n} and {̃η0, . . . , η̃2n} for

CFK−(S3, K ) (over F[U ]) satisfying:

(1) {̃ξ0, . . . , ξ̃2n} is a vertically simplified basis, with a vertical arrow of length

k j > 1 from ξ̃2 j−1 to ξ̃2 j for each j = 1, . . . , n.

(2) {̃η0, . . . , η̃2n} is a horizontally simplified basis, with a horizontal arrow of

length l j > 1 from η̃2 j−1 to η̃2 j for each j = 1, . . . , n.

(3) If ǫ(K ) = −1, then ξ̃0 = η̃1 and η̃0 = ξ̃1. If ǫ(K ) = 0, then ξ̃0 = η̃0. If

ǫ(K ) = 1, then ξ̃0 = η̃2 and η̃0 = ξ̃2.

(4) If

ξ̃p =

2n∑

q=0

ãp,q η̃q and η̃p =

2n∑

q=0

b̃p,q ξ̃q, (2.11)

where ãp,q, b̃p,q ∈ F[U ], then ãp,q = 0 whenever A(̃ξp) 6= A(̃ap,q η̃q), and

b̃p,q = 0 whenever A(̃ηp) 6= A(bp,q ξ̃q). (In other words, each ξ̃p is an

F[U ]-linear combination of the elements η̃q that are in the same filtration

level as ξ̃p, and vice versa.) Define ap,q = ãp,q |U=0 and bp,q = b̃p,q |U=0.

(5) A(̃ξ0) = τ(K ) and A(̃η0) = −τ(K ).

Proof. By [9, Proposition 2.4], we may find bases {̃ξ0, . . . , ξ̃2n} and {̃η0, . . . , ξ̃2n}
satisfying conditions (1), (2), (4), and (5), and such that ξ̃0 equals either η̃0, η̃1, or

η̃2 as in condition (3).

If ǫ(K ) = 0, we are done; otherwise, we modify the horizontally simplified

basis as follows. Suppose ǫ(K ) = −1. By the symmetry of knot Floer homology,

the distinguished horizontal generator η̃0 has an outgoing vertical differential,

which implies that b0,2 j−1 6= 0 for some j ∈ {1, . . . , n}. After reordering the
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elements of {̃ξ1, . . . , ξ̃2n}, we may assume that b0,1 = 1, and that for any other j

with b0,2 j−1 = 1, we have k j > k1 and hence A(̃ξ2 j) 6 A(̃ξ2). Thus, replacing ξ̃1

and ξ̃2 with ξ̃ ′1 = η̃0 and ξ̃ ′2 =
∑n

j=1 b0,2 j−1̃ξ2 j is a filtered change of basis, and

∂ξ̃ ′1 ≡ ξ̃
′
2 (mod U ·C−). The new bases satisfy all the conclusions of the theorem.

The case where ǫ(K ) = 1 is treated similarly.

REMARK 2.5. Property 2.4 may be taken as the definition of ǫ(K ); Hom [10]

proves that it does not depend on the choice of bases.

THEOREM 2.6. Let K be a knot in S3. Given bases {̃ξ0, . . . , ξ̃2n} and

{̃η0, . . . , η̃2n} satisfying the conclusions of Proposition 2.4, the type-D structure

ĈFD(X K ) satisfies the following properties:

• The summand ι0 · ĈFD(X K ) has dimension 2n + 1, with designated bases

{ξ0, . . . , ξ2n} and {η0, . . . , η2n} related by

ξp =

2n∑

q=0

ap,qηq and ηp =

2n∑

q=0

bp,qξq .

These elements are all homogeneous with respect to the grading by relative

spinc structures.

• The summand ι1 · ĈFD(X K ) has dimension
∑n

j=1(k j + l j) + s, where s =
2|τ(K )|, with basis

n⋃

j=1

{κ
j

1 , . . . , κ
j

k j
} ∪

n⋃

j=1

{λ
j

1, . . . , λ
j

l j
} ∪ {µ1, . . . , µs}.

• For j = 1, . . . , n, corresponding to the vertical arrow ξ̃2 j−1 → ξ̃2 j , there are

coefficient maps

ξ2 j

D123
−−→ κ

j

1

D23
−→ · · ·

D23
−→ κ

j

k j

D1
←− ξ2 j−1. (2.12)

• For j = 1, . . . , n, corresponding to the horizontal arrow η̃2 j−1 → η̃2 j , there

are coefficient maps

η2 j−1

D3
−→ λ

j

1

D23
−→ · · ·

D23
−→ λ

j

l j

D2
−→ η2 j , (2.13)

• Depending on τ(K ), there are additional coefficient maps




η0

D3
−→ µ1

D23
−→ · · ·

D23
−→ µs

D1
←− ξ0 τ(K ) > 0

ξ0

D12
−→ η0 τ(K ) = 0

ξ0

D123
−−→ µ1

D23
−→ · · ·

D23
−→ µs

D2
−→ η0 τ(K ) < 0.

(2.14)
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We refer to the subspaces of ĈFD(X K ) spanned by the generators in (2.12),

(2.13), and (2.14) as the vertical chains, horizontal chains, and unstable chain,

respectively. (Note that our notation differs slightly from that of [18]: the

generators κ
j

1 , . . . , κ
j

k j
are indexed in the reverse order, as are µ1, . . . , µs in the

case where τ(K ) > 0.)

We conclude this section with a pair of technical lemmas that will be needed in

Section 5. They are somewhat similar in flavor to results in [9, Section 3].

LEMMA 2.7. In ĈFD(X K ) for any knot K ⊂ S3, we have (D1 ◦ D2 ◦ D3)(ξ0) = 0.

Proof. The only way we may have (D2 ◦D3)(ξ0) 6= 0 is if ǫ(K ) = −1 and l1 = 1,

so that there is a horizontal chain

ξ0 = η1

D3
−→ λ1

1

D2
−→ η2.

We thus must show in this case that D1(η2) = 0.

Since the horizontal arrow from η̃1 = ξ̃0 to η̃2 has length 1, we have

A(̃η1) = A(̃ξ0) = τ(K ) and A(̃η2) = τ(K )+1. By the definition of a horizontally

simplified basis, ∂η̃1 = U η̃2 + γ , where A(γ ) < τ(K ); by the definition of a

vertically simplified basis, ∂η̃1 ∈ U ·C−, so γ = Uδ, and A(δ) 6 τ(K ). We have

0 = ∂2η̃1 = U∂η̃2 + ∂γ = U∂(̃η2 + δ),

and since multiplication by U is injective, ∂η̃2 = ∂δ.
From (2.11), we have

η̃2 =

2n∑

q=0

b̃2,q ξ̃q,

where A(̃b2,q ξ̃q) = τ(K )+ 1 whenever b̃2,q 6= 0. Recall that b2,q = b̃2,q |U=0. We

may also write

γ =

2n∑

q=0

c̃q ξ̃q

for some polynomials c̃0, . . . , c̃2n ∈ F[U ], where A(̃cq ξ̃q) 6 τ(K ) whenever

c̃q 6= 0, and set cq = c̃q |U=0. The conditions on the Alexander grading imply

that cq and b2,q cannot both be nonzero for any q. Now, by the definition of a

vertically simplified basis,

n∑

j=1

b2,2 j−1̃ξ2 j ≡ ∂η̃2 = ∂δ ≡

n∑

j=1

c2 j−1̃ξ2 j (mod U · C−).
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Figure 4. The two-bridge link L Q , along with an arc joining the two components.

Therefore, b2,2 j−1 = c2 j−1 = 0 for all j = 1, . . . , n. Returning to ĈFD(X K ),

we see that η2 is a linear combination of {ξ2, ξ4, . . . , ξ2n}, which completes the

proof.

LEMMA 2.8. Suppose K is a knot in S3 such that ǫ(K ) = −1 and the vertical

arrow from η̃0 = ξ̃1 to ξ̃2 has length k1 = 1. Then, in ĈFD(X K ), we have

D3(ξ2) = 0.

Proof. An argument similar to that of the previous lemma shows that ξ2 is a linear

combination of {η2, η4, . . . , η2n}.

3. Bordered Floer homology of two-bridge link complements

Let L = L1 ∪ L2 be any two-component, two-bridge link, presented by a plat

diagram such as the one shown in Figure 4. (We do not require the diagram

to be alternating, although such diagrams can always be found.) Orient L such

that both L1 and L2 are oriented counterclockwise in the projection plane near

their local minima. The components of L are both unknotted, meaning that

the complement of either component is a solid torus. (For the specific link L Q

shown in Figure 4, the remaining component, viewed as a knot in the solid torus,

is precisely the Mazur pattern knot Q shown in Figure 2.) Let X (L) be the
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strongly bordered manifold S3r nbd(L), where each of the boundary components

is equipped with the 0-framing; we connect the two boundary components of

X (L) using an arc A in the projection plane connecting the two local minima,

equipped with the blackboard framing. The goal of this section is to describe how

to compute the bordered invariant ĈFDD(X (L)) using the arc-slides algorithm

of Lipshitz, Ozsváth, and Thurston [19], and then to provide the computation for

ĈFDD(X (L Q)).

Let Xdr(L) = X (L)r nbd(A), and notice that Xdr is in fact a genus-2

handlebody. To describe the parametrization of ∂Xdr(L) in terms of arc slides, it

helps to consider how to obtain a bordered Heegaard diagram Hdr(L) for Xdr(L).

Let (x, y, z) denote coordinates on R3, where z is the height function with respect

to which L is in bridge position. We may view a neighborhood of L1 ∪ L2 ∪ A

in S3 as the lower half-space {z < 0} in R3 together with a pair of interlocking

1-handles in the upper half-space whose feet lie along the y-axis. Xdr(L) is then

the complement of this configuration, consisting of the upper half-space {z > 0}
minus the two 1-handles, together with the point at∞. Since Xdr is a handlebody,

its boundary (which consists of the xy-plane together with the point at infinity,

minus four disks, plus two tubes in the upper half-space) is a Heegaard surface

for Xdr(L). The distinguished disk ∆ may be taken to be a neighborhood of the

point at infinity, with the basepoint z lying on the y axis; let Σ = ∂Xdrr∆, with

orientation coming from the standard orientation of R2 (which is opposite the

boundary orientation on ∂Xdr(L)). The α arcs α1, α2, α3, α4 are chosen to satisfy:

• α1 (respectively α3) consists of a pair of arcs in the {x 6 0, z = 0} half-plane

connecting ∂Σ to the feet of the 1-handle corresponding to L1 (respectively

L2), together with a 0-framed longitudinal arc in the boundary of the 1-handle.

• α2 (respectively α4) consists of a pair of arcs in the {x 6 0, z = 0} half-plane

connecting ∂Σ to the y-axis, joined by an arc in the {x > 0, z = 0} half-plane.

• If we label the endpoints of α1, α2, α3, α4 by (a1, a2), (b1, b2), (c1, c2), and

(d1, d2), respectively, and traverse ∂Σ with the orientation opposite to that

induced from Σ , we encounter the points in the order a1, b1, a2, b2, c1, d1, c2,

d2.

To find the β circles, we apply an ambient isotopy of R3 that untangles the two

1-handles from each other so that they become separated by the (x, z) plane, at

which point the compression disks become evident. We must describe the effect

of the isotopy on the α arcs.

For simplicity, assume that the bridge presentation of L consists entirely of

whole twists and that the top and bottom closures both consist of arcs that are
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neither overlapping nor nested. To be precise, suppose that L is the plat closure

of the 4-stranded braid

σ
2a0

2 σ
2a1

1 · · · σ
2am−2

2 σ
2am−1

1 σ
2am

2 (3.1)

for some nonzero integers a0, . . . , am , where m is even and the braid is read from

bottom to top. With the orientation on L given above, the linking number of L1

and L2 is

ℓ = lk(L1, L2) = −

m/2∑

i=0

a2i .

(For our example L Q , m = 2 and (a0, a1, a2) = (2,−1,−1), so ℓ = −1.)

Following the notation of [19, Section 1.4], let Z g denote the split pointed

matched circle of genus g. Let H g denote a handlebody of genus g, and let φ0
g :

−F(Z)→ ∂H g denote the standard (0-framed) parametrization of the boundary;

in the case g = 2, (H 2, φ0
2) is represented by the Heegaard diagram H0 in Figure 6

(which is diffeomorphic to the one in [19, Figure 5].) Let γ1, γ2 be curves in H0 as

shown. Let T1 denote a positive Dehn twist around γ1, and let T2 denote a positive

Dehn twist around γ2 composed with a negative Dehn twist around the meridian

of each of the two tubes. If we ignore the β circles, we may identify H0 with

the surface in Figure 5. Undoing a full right-handed twist between the feet of the

left-hand 1-handle in Figure 5 modifies the curves in the (x, y) plane by T1, and

undoing a full twist between the feet of the two 1-handles modifies the curves

by T2. Applying these operations and their inverses in the sequence prescribed by

(3.1), we see:

LEMMA 3.1. The bordered Heegaard diagram Hdr(L) is isotopic to the diagram

obtained from H0 by applying the diffeomorphism

ψL = T
am

2 ◦ T
am−1

1 ◦ T
am−2

2 ◦ · · · ◦ T
a1

1 ◦ T
a0

2 (3.2)

to the α arcs and leaving the β circles unchanged. Therefore, as a bordered

manifold,

Xdr(L) = (H
2, φ0

2 ◦ ψL).

It remains to describe the factorization of T1 and T2 into arc slides. For this

discussion, we label the points on the boundary of any genus-2 pointed matched

circle p0, . . . , p7. An arc slide of pi over p j (where j = i ± 1) is indicated by

[i → j], assuming that the initial and final pointed matched circles are known

from context. Composition is written from right to left (just as with functions).
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Figure 5. A bordered Heegaard diagram for the complement of the two-bridge link

in Figure 4. The positive x axis points into the page, the positive y axis points to

the left, and the positive z axis points upward; with this convention, the (x, y)

plane can be identified with the diagram in Figure 6.

PROPOSITION 3.2. In the strongly based mapping class groupoid of genus 2, the

mapping classes

T1, T2 : F(Z2)→ F(Z2)
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Figure 6. The standard Heegaard diagram for the 0-framed genus-2 handlebody.

have the following factorizations into arc slides:

T1 = [7→ 6]6

T2 = [6→ 5] ◦ [5→ 4] ◦ [4→ 3] ◦ [7→ 6] ◦ [5→ 4] ◦ [4→ 3] ◦ [3→ 2] ◦

[6→ 5] ◦ [4→ 3] ◦ [3→ 2] ◦ [2→ 1] ◦ [3→ 4] ◦ [4→ 5] ◦ [4→ 3].

Proof. Let Ti(H0) denote the bordered Heegaard diagram obtained by applying

Ti to the α arcs of H0 while leaving the β circles unchanged. An element of the

mapping class groupoid is completely determined by where it sends the α arcs of

H0. Therefore, if we exhibit a sequence of arc slides taking the α arcs of H0 to

those of Ti(H0), it follows that the sequence is a factorization of Ti .

The verification is shown in Figures 7 and 8. For T1, all of the arc slides take

place within the connected summand of the surface containing the arcs α3 and

α4, so we only show that summand. Figure 7 shows that performing six arc slides

of the topmost point over the arc adjacent to it ([7 → 6] in the above notation)

results in a Dehn twist along a curve encircling both feet of the 1-handle.

For T2, the sequence of arc slides is more complicated. We first slide α3

over α2 ([4 → 3]), and then slide α2 and α3 over α4 ([4 → 5] followed by

[3 → 4]). We then slide α2 over α3, α4, α3 so that the feet of α3 and α4 become

nested between those of both α1 and α2. We then perform a sequence of four slides

of α1 over α3 and α4 alternately, and then do the same for α4. It is easy to verify

that the resulting diagram agrees the one obtained by applying T2 to H0 and that

the notation for these arc slides agrees with the composition in the statement of

the proposition.
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Figure 7. Arc-slide decomposition of T1.

REMARK 3.3. In the more general setting where the 2-bridge diagram for L is not

comprised of full twists only, one can compute the arc-slide factorizations of the

surface diffeomorphisms corresponding to undoing a single crossing rather than

a full twist by the same techniques. The initial and final pointed matched circles

of each of these diffeomorphisms are not the same, so there are more cases to

consider. Indeed, a similar strategy can be used to compute the bordered invariants

of any knot or link complement, starting from a bridge presentation.

According to [19, Theorem 3], we may compute ĈFD(Xdr(L)) by factoring ψL

into arc slides, which can be done combining Lemma 3.1 and Proposition 3.2.

Specifically, suppose that ψL = ψ1 ◦ · · · ◦ψn , where ψi : F(Zi)→ F(Zi−1) is an

arc slide, where Z0 = Zn = Z2. By [19, Theorem 3],

ĈFD(Xdr(L)) ≃ Mor(D̂D(IZn−1
)⊗ · · · ⊗ D̂D(IZ1

),

D̂D(ψn)⊗ · · · ⊗ D̂D(ψ1)⊗ ĈFD(H 2, φ0
2)). (3.3)

Here D̂D(IZi
) denotes the identity DD bimodule for the algebra A(Zi), D̂D(ψi)

denotes the arc-slide DD bimodule associated to ψi , all tensor products are

taken over the appropriate rings of idempotents, and Mor denotes the chain

complex of morphisms of A(Zn−1) ⊗ · · · ⊗A(Z1)–bimodules. All the modules

in (3.3) are completely computed in [19], allowing for algorithmic computation

of ĈFD(Xdr(L)).

To obtain an arced Heegaard diagram H(L) for X (L) [20, Definition 5.4],

we attach a 2-dimensional 1-handle to ∂Σ , joining z to the segment between
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Figure 8. Arc-slide decomposition of T2.

b2 and c1, and let the cocore of this 1-handle be the basepoint arc. Denote

the new Heegaard surface Σ̃ , and denote its two boundary components ∂1Σ̃

and ∂2Σ̃ , corresponding to the complements of L1 and L2. The DD bimodule

ĈFDD(X (L)) is by definition induced from ĈFD(Xdr(L)) via the canonical

inclusion map A(Z1) ⊗ A(Z1) → A(Z2) [20, Definition 6.4]. To be precise,

denote the copies of A(Z1) corresponding to ∂1Σ̃ (respectively ∂2Σ̃) by Aρ

(respectively Aσ ), with idempotents ι
ρ

0 , ι
ρ

1 (respectively ισ0 , ι
σ
1 ) and Reeb elements

ρI (respectively σI ) for contiguous subsequence I ⊂ (1, 2, 3). That is, the algebra

elements associated to the Reeb chords in H(L) are as follows:

[a1, b1] [b1, a2] [a2, b2] [c1, d1] [d1, c2] [c2, d2]
ρ1 ρ2 ρ3 σ1 σ2 σ3

We also consider the periodic domains inHdr(L) andH(L). Orient the α arcs as

shown in Figure 5; that is, α1 and α3 run parallel to L1 and L2 with the orientations

specified above, and α2 and α4 are left-handed meridians of L1 and L2. Letting

[αi ] denote the class in H1(Xdr(L)) represented by the union of αi and a segment
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of ∂Σ , we see that [α1] = −ℓ[α4] and [α3] = −ℓ[α2]. Therefore, in Hdr(L),

there are periodic domainsP1 andP2 (corresponding to punctured Seifert surfaces

for L1 and L2 respectively) whose multiplicities in the eight boundary regions

(beginning with the region containing z and ordered opposite to the boundary

orientation on ∂Σ) are given by:

∂∂(P1) = (0, 1, 1, 0, 0, 0, ℓ, ℓ)

∂∂(P2) = (0, 0, ℓ, ℓ, 0, 1, 1, 0).

These can also be viewed as periodic domains in H(L).

Now suppose P ⊂ V is a pattern knot with winding number m, as in Section 2.4.

Let (H′, z, w) be a doubly pointed Heegaard diagram for (V, P), and label the

boundary regions R0, R1, R2, R3 according to the convention for ĈFA. There

is a periodic domain Pµ in H′ with boundary multiplicities (0, 0, 1, 1), and

nw(Pµ) = m. If we glue the diagrams H′ and H(L) along ∂1Σ̃ , we obtain a

Heegaard diagram for the complement of L2, which is identified with V , and

the basepoint w determines the pattern knot P(L1) ⊂ V . The group of periodic

domains for the new Heegaard diagram is generated by P2+ℓPV . The multiplicity

of this periodic domain at w is ℓm, which is thus the winding number of P(L1).

3.1. Computation of ĈFDD(X (L Q)). Bohua Zhan has written a software

package in Python that implements the arc-slides algorithm for computing

(bordered) Heegaard Floer homology [31]. Specifically, this package contains

functions for manipulating (bi)modules over the bordered algebras, including

evaluating tensor products and Mor pairings, simplifying modules using the edge

reduction algorithm, and recovering ĈFDD(X) from ĈFDD(Xdr ). It can also

generate the type D structure associated to the standard handlebody (H g, φ0
g)

of any genus and the type DD bimodule associated to any arc slide, using the

descriptions given in [19]. With Zhan’s assistance, the author used this program

to compute ĈFDD(X (L Q)); the result is given by the following theorem:

THEOREM 3.4. Let L Q denote the two-bridge link shown in Figure 4. The

type DD bimodule ĈFDD(X (L Q)) has a basis {g1, . . . , g34} with the following

properties:

(1) The associated idempotents in Aρ and Aσ of the generators are:

ι
ρ
0

ι
ρ
1

ισ
0

g2, g21, g27, g29, g34 g4, g5, g9, g10, g16, g23, g25, g32

ισ
1

g1, g7, g11, g13, g15, g18, g19, g30 g3, g6, g8, g12, g14, g17, g20, g22, g24, g26, g28, g31, g33
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(2) The differential is as follows:

d(g1) = ρ1 · g24

d(g2) = ρ3σ3 · g6 + ρ123σ123 · g8 + ρ1σ123 · g12 + ρ123σ1 · g17

d(g3) = ρ2 · g1

d(g4) = ρ2 · g21 + σ3 · g26

d(g5) = σ1 · g31

d(g6) = σ2 · g25 + ρ2 · g30

d(g7) = ρ3 · g3 + ρ1 · g12 + ρ123 · g24 + ρ1σ23 · g31

d(g8) = 0

d(g9) = ρ23 · g25 + ρ2σ1 · g30

d(g10) = ρ23σ1 · g8 + σ1 · g12 + σ123 · g31 + σ3 · g33

d(g11) = ρ1 · g17 + ρ1σ23 · g24 + ρ3 · g28

d(g12) = 0

d(g13) = ρ3 · g20 + σ2 · g27

d(g14) = 0

d(g15) = ρ1σ2 · g25 + σ23 · g30

d(g16) = σ123 · g8 + σ1 · g17 + σ3 · g22

d(g17) = 0

d(g18) = σ2 · g2 + ρ123σ2 · g25 + ρ3 · g26

d(g19) = ρ1 · g14

d(g20) = ρ23 · g6 + σ2 · g9

d(g21) = ρ123σ123 · g14 + σ3 · g15 + ρ1σ123 · g17

d(g22) = σ2 · g23

d(g23) = σ1 · g8

d(g24) = 0

d(g25) = (ρ23σ3 + σ123) · g8 + ρ23σ1 · g14 + (ρ23σ3 + σ123) · g24

d(g26) = σ23 · g6 + ρ2 · g15

d(g27) = ρ3 · g9 + ρ123σ1 · g12

d(g28) = ρ2 · g19

d(g29) = ρ3 · g4 + ρ123σ123 · g17 + σ3 · g18

d(g30) = (ρ123 + ρ3σ23) · g8 + ρ1σ23 · g31 + (ρ123 + ρ3σ23) · g24

d(g31) = 0
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d(g32) = ρ2 · g2 + σ3 · g20

d(g33) = σ2 · g5

d(g34) = ρ123σ123 · g12 + σ3 · g13 + ρ3 · g32

(The indexing of the generators is completely determined by the output of Zhan’s

program.)

4. Computation of τ( Q(K ))

In this section, we prove the first half of Theorem 1.6: for any knot K ⊂ S3,

τ(Q(K )) =

{
τ(K ) if τ(K ) 6 0 and ǫ(K ) ∈ {0, 1},

τ (K )+ 1 if τ(K ) > 0 or ǫ(K ) = −1.
(4.1)

REMARK 4.1. Some partial results in the direction of (4.1) follow from much

simpler considerations. First, note that Q(K ) can be turned into K by changing a

single positive crossing into a negative crossing. This operation either preserves

τ or decreases τ by 1 [22, Corollary 1.5], so τ(Q(K )) must equal τ(K ) or

τ(K ) + 1. Both cases were previously known to occur: if O is the unknot, then

Q(O) = O , so τ(Q(O)) = τ(O) = 0. On the other hand, Cochran, Franklin,

Hedden, and Horn [3] showed that if a nontrivial knot K admits a Legendrian

representative whose Thurston–Bennequin number satisfies tb(K ) = 2g(K )− 1,

then τ(Q(K ))= τ(Q(K ))+1; in fact, their proof carries through almost verbatim

under the weaker hypothesis that tb(K ) = 2τ(K )−1 > 0. Subsequently, Ray [28]

observed that under the same hypotheses, the iterated satellites Qn(K ) satisfy

τ(Qn(K )) = τ(K ) + n and hence are distinct in concordance. Both of these

results follow directly from (4.1).

We begin by using the results of the previous section to compute CFA−(V, Q).

Let C ⊂ V be the knot S1×{pt}, specified by the Heegaard diagram in Figure 3(a),

and let X = X (L Q) = Vr nbd(Q) be the (bordered) exterior of the 2-bridge link

L Q depicted in Figure 4. By a suitable version of the pairing theorem, there is a

graded homotopy equivalence

CFD−(V, Q) ≃ CFA−(V,C)⊠Aρ
ĈFDD(X).

As seen in Section 3, this gluing describes the orientation of Q whose winding

number is −1. Since knot Floer homology is invariant under orientation reversal,

this convention does not affect the computation of τ(Q(K )), but we will need the

winding number (with sign) in order to apply Proposition 2.2.
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The invariant CFA−(V,C) was computed by Lipshitz, Ozsváth, and Thurston

[18, Lemma 11.22]:

LEMMA 4.2. The type A module for the solid torus equipped with its core circle,

CFA−(V,C), has a single generator a, with A∞ multiplications given by

m3+i(a, ρ3, ρ23, . . . , ρ23︸ ︷︷ ︸
i

, ρ2) = U i+1 · a (4.2)

for all i > 0.

PROPOSITION 4.3. The type D structure CFD−(V, Q) has a basis

{x0, . . . , x6, y1, . . . , y6}

with the following properties:

• The generators x0, x2, x4, y2, y4 are in ι0 ·CFD−(V, Q), and the remaining ones

are in ι1 · CFD−(V, Q).

• The differential is as follows:

x0

Uσ1   

x1

σ2oo

U 2

��

x2

U

��

σ3oo x3

σ2

~~
U

��

x4

σ3oo

U

��

x5

U

��

x6

U

��
y1 y2

Uσ3oo y3

σ23

cc y4σ3

oo y5 y6

(4.3)

Proof. In the tensor product CFA−(V,C)⊠Aρ
ĈFDD(X), we define:

x0 = a ⊗ g27 x1 = a ⊗ g13 y1 = a ⊗ g30 x2 = a ⊗ g34 y2 = a ⊗ g2

x3 = a ⊗ g18 y3 = a ⊗ g15 x4 = a ⊗ g29 y4 = a ⊗ g21

x5 = a ⊗ g7 y5 = a ⊗ g11 x6 = a ⊗ g1 y6 = a ⊗ g19.

Any differential in ĈFDD(X) that involves only σI results in a differential in the

tensor product. The chains of differentials in ĈFDD(X) that pair with the higher

multiplications in CFA−(V,C) to produce differentials in the tensor product are:

g2

ρ3σ3 // g6

ρ2 // g30 g7

ρ3 // g3

ρ2 // g1

g11

ρ3 // g28

ρ2 // g19 g13

ρ3 // g20

ρ23 // g6

ρ2 // g30

g18

ρ3 // g26

ρ2 // g15 g27

ρ3 // g9

ρ2σ1 // g30

g29

ρ3 // g4

ρ2 // g21 g34

ρ3 // g32

ρ2 // g2

These account for the eight arrows in (4.3) that involve positive powers of U .
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Figure 9. A genus-one Heegaard diagram for (V, Q).

REMARK 4.4. The reader may easily verify that the doubly pointed, bordered

Heegaard diagram (H, z, w) shown in Figure 9 presents (V, Q). If we label

the generators of CFD−(H, z, w) as shown, one may use the Riemann mapping

theorem to verify that CFD−(H, z, w) agrees with (4.3), except for a few

additional differentials:

x2

Uσ123
−−→ x5 y2

Uσ123
−−→ y5

x4

Uσ123
−−→ x6 y4

Uσ123
−−→ y6.

However, we may make a change of basis, replacing y2 and y4 with

y′2 = y2 + σ123x5 and y′4 = y4 + σ123x6, respectively. With the new basis, it

is easy to verify that the differential agrees precisely with (4.3) (with primes

added as appropriate).

PROPOSITION 4.5. The type A structure CFA−(V, Q) has a basis

{x0, . . . , x6, y1, . . . , y6}

with the following properties:

• The generators x0, x2, x4, y2, y4 are in CFA−(V, Q) ·ι0, and the remaining ones

are in CFA−(V, Q) · ι1.
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• The A∞ multiplications are as follows:

x0

Uρ3

  

x1

ρ2oo

U 2+
Uρ23

��

x2

U

��

ρ1oo

ρ12

xx

Uρ123

~~

x3

ρ2

~~

U

��

x4ρ1

oo

U

��

ρ12





x5

U

��

x6

U

��
y1 y2

Uρ1oo y3

ρ2ρ1

ff y4ρ1

oo

ρ12ρ1

bb y5 y6

(In other words, we have m1(x1) = U 2 y1, m2(x1, ρ23) = U y1, m3(y3, ρ2, ρ1) =
y1, and so on.)

Proof. This follows from a modified version of the algorithm described in [9,

Theorem 2.2], or by direct computation using the description of ĈFAA(I ) given in

[20, Section 10.1]. (Note that we have reverted to referring to the algebra elements

as ρI rather than σI .)

LEMMA 4.6. The constants associated to the generators of CFA−(V, Q) · ι0 via

Proposition 2.2 are Cx0
= Cx2

= −2, Cy2
= Cx4

= −1, and Cy4
= 0.

Proof. Let O ⊂ S3 denote the unknot and X O its complement, equipped with the

0-framing. Note that Q(O) is also the unknot. The type-D structure ĈFD(X O)

has a single generator ξ0, in Alexander grading 0. The tensor product complex

CFA−(V, Q)⊠ ĈFD(X O) is as follows:

x2 ⊗ ξ0

yy
U

��

x4 ⊗ ξ0

yy
U

��
x0 ⊗ ξ0 y2 ⊗ ξ0 y4 ⊗ ξ0

(4.4)

Note that

AQ(O)(x0 ⊗ ξ0) = AQ(O)(x2 ⊗ ξ0) = AQ(O)(y2 ⊗ ξ0)− 1

and

AQ(O)(y2 ⊗ ξ0) = AQ(O)(x4 ⊗ ξ0) = AQ(O)(y4 ⊗ ξ0)− 1.

The homology is F[U ], generated by y4 ⊗ ξ0, which has Alexander grading 0

since τ(Q(O)) = 0. This determines the Alexander gradings of the remaining

generators, and hence the constants from Proposition 2.2.
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Proof of (4.1). Consider the tensor product of CFA−(V, Q) with ĈFD(X K ),

where K is a knot in S3 and X K is its exterior equipped with the 0-framing. Note

that the generators x5, x ′5, x6, x ′6 do not affect τ(Q(K )), since their tensor products

with ĈFD(X K ) produce summands of CFK−(S3, Q(K )) that are U -torsion.

In the case where ǫ(K ) = 0, ĈFD(X K ) has a summand isomorphic to

ĈFD(X O), so CFA−(V, Q) ⊠ ĈFD(X K ) has a summand isomorphic to (4.4). It

follows immediately that τ(Q(K )) = τ(Q(O)) = 0. Thus, we restrict to the cases

where ǫ(K ) = ±1. Let s = 2|τ(K )|.
Let W be the subspace of ĈFK(S3, Q(K )) generated by the elements

{x0 ⊗ η0, x2 ⊗ ξ0, y2 ⊗ ξ0} ∪ {x1 ⊗ µ1, y1 ⊗ µi | i = 1, . . . , s} ∪ H, (4.5)

where

H =

{
∅ if ǫ(K ) = −1,

{x3 ⊗ λ, y3 ⊗ λ} if ǫ(K ) = 1.
(4.6)

(In the latter case λ = λ1
ℓ1

is the final element in the horizontal chain that

terminates in ξ0 = η2, with a differential λ
D2
−→ ξ0.) Using Theorem 2.6 and

Proposition 4.5, it is not hard to verify that W is a direct summand of ĈFK(S3,

Q(K )) (as a chain complex); it has no incoming or outgoing differentials. We

will see that the homology of W contains a F[U ] part, meaning that τ(Q(K )) is

determined completely by W .

Recall that AK (ξ0) = τ(K ) and AK (η0) = −τ(K ). By Proposition 2.2 and

Lemma 4.6, we have:

AQ(K )(x0 ⊗ η0) = −AK (η0)− 2 = τ(K )− 2

AQ(K )(x2 ⊗ ξ0) = −AK (ξ0)− 2 = −τ(K )− 2

AQ(K )(y2 ⊗ ξ0) = −AK (ξ0)− 1 = −τ(K )− 1.

We consider three cases according to τ(K ):

• When τ(K ) > 0, the unstable chain in ĈFD(X K ) (along with the possible D2

differential into ξ0 if ǫ(K ) = 1) has the form

η0

D3 // µ1

D23 // · · ·
D23 // µs ξ0

D1oo λ.
D2oo
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The differential on W is as follows:

x0 ⊗ η0

U

%%

x1 ⊗ µ1

U 2

��

U

##

. . .

U

$$

x1 ⊗ µs−1

U 2

��

U

&&

x1 ⊗ µs

U 2

��

x2 ⊗ ξ0
oo

U

��
y1 ⊗ µ1 . . . y1 ⊗ µs−1 y1 ⊗ µs y2 ⊗ ξ0

Uoo

y3 ⊗ λ

OO

x3 ⊗ λ
Uoo

OO

(4.7)

where the elements in the bottom row are included if ǫ(K ) = 1.

In addition to the Alexander gradings compute above, we see inductively that

AQ(K )(y1 ⊗ µ j) = AQ(K )(x0 ⊗ η0)− j + 2 = τ(K )− j

AQ(K )(x1 ⊗ µ j) = AQ(K )(x0 ⊗ η0)− j = τ(K )− j − 2

and, in the case where ǫ(K ) = 1,

AQ(K )(y3 ⊗ λ) = AQ(K )(y1 ⊗ µs) = −τ(K )

AQ(K )(x3 ⊗ λ) = AQ(K )(y2 ⊗ ξ0) = −τ(K )− 1.

Regardless of ǫ(K ), the element

U s−1x0 ⊗ η0 +U s−2x1 ⊗ µ1 + · · · + x1 ⊗ µs−1 + y2 ⊗ ξ0

is a cycle in Alexander grading −τ(K ) − 1 that generates the F[U ]-free part

of the homology, and there is no such cycle in higher Alexander grading.

Therefore, τ(Q(K )) = τ(K )+ 1.

• When τ(K ) < 0, the unstable chain in ĈFD(X K ) has the form

λ
D2 // ξ0

D123 // µ1

D23 // · · ·
D23 // µs

D2 // η0,

where again λ is included if ǫ(K ) = 1. The differential on W now takes the

form:

x3 ⊗ λ

U

�� $$

x2 ⊗ ξ0

U

%%
U

��

x1 ⊗ µ1

U 2

��

U

##

. . .

U

##

x1 ⊗ µs

U 2

�� %%
y3 ⊗ λ y2 ⊗ ξ0 y1 ⊗ µ1 . . . y1 ⊗ µs x0 ⊗ η0
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In this case, we have

AQ(K )(x1 ⊗ µ j) = AQ(K )(x0 ⊗ η0)+ s − j = −τ(K )− j − 2

AQ(K )(y1 ⊗ µ j) = AQ(K )(x0 ⊗ η0)+ s − j + 2 = −τ(K )− j

and, in the case where ǫ(K ) = 1,

AQ(K )(x3 ⊗ λ) = AQ(K )(y2 ⊗ ξ0) = −τ(K )− 1

AQ(K )(y3 ⊗ λ) = AQ(K )(x3 ⊗ λ)+ 1 = −τ(K ).

A simple change of basis shows that the free part of the homology is generated

by y2 ⊗ ξ0 if ǫ(K ) = −1, but by y3 ⊗ λ if ǫ(K ) = 1. Thus, in this case,

τ(Q(K )) =

{
τ(K ) ǫ(K ) = 1,

τ (K )+ 1 ǫ(K ) = −1.

• When τ(K ) = 0, the unstable chain in ĈFD(X K ) has the form

λ
D2 // ξ0

D12 // η0,

where again λ is included if ǫ(K ) = 1. The differential on W is

x3 ⊗ λ

U

�� $$

x2 ⊗ ξ0

%%
U

��
y3 ⊗ λ y2 ⊗ ξ0 x0 ⊗ η0.

Just as in the previous case, we obtain

τ(Q(K )) =

{
0 ǫ(K ) = 1,

1 ǫ(K ) = −1.

5. Computation of ǫ( Q(K ))

Our next task is to compute ǫ(Q(K )), completing the proof of Theorem 1.6.

Specifically, we claim that

ǫ(Q(K )) =

{
0 ǫ(K ) = 0,

1 ǫ(K ) 6= 0.
(5.1)

To see this, we will directly compute the values of τ for the (2, 1) and (2,−1)

cables of Q(K ). For any knot J , let Jp,q denote the (p, q) cable of J . Hom [10]

found a formula for τ(Jp,q) in terms of τ(J ) and ǫ(J ). Specifically, in the cases

where p = 2 and q = ±1, the formula states:
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THEOREM 5.1. For any knot J ⊂ S3, we have:

τ(J2,1) =





2τ(J )+ 1 if ǫ(J ) = −1,

0 if ǫ(J ) = 0,

2τ(J ) if ǫ(J ) = 1.

(5.2)

τ(J2,−1) =





2τ(J ) if ǫ(J ) = −1,

0 if ǫ(J ) = 0,

2τ(J )− 1 if ǫ(J ) = 1.

(5.3)

In particular, ǫ(J ) = −1 if and only if τ(J2,1) is odd, and ǫ(J ) = 1 if and only if

τ(J2,−1) is odd.

The first case in (5.1) is straightforward: if K is any knot with ǫ(K ) = 0, the τ

invariant of any satellite of K is the same as the τ invariant of the corresponding

satellite of the unknot O , since ĈFD(X K ) has a summand that is isomorphic to

ĈFD(X O). (See [10, Section 4.3].) In particular, τ(Q(K )2,1 = τ(Q(K )2,−1) = 0,

which implies that ǫ(Q(K )) = 0.

For knots with ǫ(K ) 6= 0, the bulk of (5.1) follows from the following

proposition:

PROPOSITION 5.2. For any knot K ⊂ S3, we have τ(Q(K )2,1) = 2τ(Q(K )).

Therefore, ǫ(Q(K )) 6= −1; whenever τ(Q(K )) 6= 0, ǫ(Q(K )) = 1.

Note that Proposition 5.2 suffices for the proof of Theorem 1.2, which in

turn implies Theorem 1.1. The only remaining cases in (5.1) are those where

τ(Q(K )) = 0, in which case the fact that τ(Q(K )2,1) = 0 does not determine

whether ǫ(Q(K )) = 0 or 1. These cases are treated as follows:

PROPOSITION 5.3. For any knot K ⊂ S3 with either τ(K ) = −1 and ǫ(K ) = −1,

or τ(K ) = 0 and ǫ(K ) = 1, we have τ(Q(K )2,−1) = 1. Therefore, ǫ(Q(K )) = 1.

We shall provide a detailed proof of Proposition 5.2, and then sketch the

modifications needed for Proposition 5.3.

To prove Proposition 5.2, let C2,1 denote a (2, 1) curve in the solid torus V ,

represented by the Heegaard diagram in Figure 3(b), and let Q2,1 ⊂ V be the

(2, 1) cable of Q, obtained by gluing (V,C2,1) to the 2-bridge link component

X (L). The gluing theorem states that

CFD−(V, Q2,1) ≃ CFA−(V,C2,1)⊠Aρ
ĈFDD(X (L)).
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As in the previous section, this describes the orientation of Q2,1 whose winding

number is −2.

According to Hom [10, Section 4.1], we have:

LEMMA 5.4. The type A module CFA−(V,C2,1) has generators a, b, c, with A∞
multiplications given by:

m3+i(a, ρ3, ρ23, . . . , ρ23︸ ︷︷ ︸
i

, ρ2) = U 2i+2 · a for all i > 0

m4+i(a, ρ3, ρ23, . . . , ρ23︸ ︷︷ ︸
i

, ρ2, ρ1) = U 2i+1 · b for all i > 0

m2(a, ρ1) = c

m1(b) = U · c.

PROPOSITION 5.5. The type D structure CFD−(V, Q2,1) has a direct summand

with a basis

{p1, . . . , p5, q1, . . . , q5, r1, . . . , r9, s1, . . . , s9, x0, . . . , x4, y1, . . . , y4}

with the following properties:

• The generators

p2, p4, q2, q4, r2, r4, r6, r9, s2, s4, s6, s9, x0, x2, y2, x4, y4

are in ι0 CFD−(V, Q2,1), and the remaining ones are in ι1 CFD−(V, Q2,1).

• The differential is as shown in Figure 10.

Proof. In the tensor product CFA−(V,C2,1) ⊠Aρ
ĈFDD(X (L)), we will denote

generators a⊗gi , b⊗gi , or c⊗gi by ai , bi , ci respectively; there are 55 generators

in all. As in the previous section, it is not hard to verify that the differential is as

follows (where terms with coefficient 1 are indicated in boldface):

d(a1) = c24

d(a2) = σ123c12 +U 2σ3a30

d(b3) = Uc3 d(c3) = 0

d(b4) = Uc4 + σ3b26 d(c4) = σ3c26

d(b5) = Uc5 + σ1b31 d(c5) = σ1c31

d(b6) = Uc6 + σ2b25 d(c6) = σ2c25
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Figure 10. A summand of CFD−(V, Q2,1).

d(a7) = U 2a1 + c12 +Ub24 + σ23c31

d(b8) = Uc8 d(c8) = 0

d(b9) = Uc9 d(c9) = 0

d(b10) = Uc10 + σ1b12 + σ123b31 + σ3b33 d(c10) = σ1c12 + σ123c31 + σ3c33

d(a11) = Ub14 + c17 +U 2a19 + σ23c24

d(b12) = Uc12 d(c12) = 0

d(a13) = σ2a27 +U 4a30 +U 3σ23b31

d(b14) = Uc14 d(c14) = 0

d(a15) = σ2c25 + σ23a30

d(b16) = σ123b8 + σ1b17 +Uc16 + σ3b22 d(c16) = σ123c8 + σ1c17 + σ3c22

d(b17) = Uc17 d(c17) = 0

d(a18) = σ2a2 +U 2a15 +Uσ2b25

d(a19) = c14

d(b20) = σ2b9 +Uc20 d(c20) = σ2c9

d(a21) = σ3a15 + σ123c17

d(b22) = Uc22 + σ2b23 d(c22) = σ2c23

d(b23) = σ1b8 +Uc23 d(c23) = σ1c8
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d(b24) = Uc24 d(c24) = 0

d(b25) = σ123b24 + σ123b8 +Uc25 d(c25) = σ123c24 + σ123c8

d(b26) = σ23b6 +Uc26 d(c26) = σ23c6

d(a27) = U 2σ1a30 +Uσ123b31

d(b28) = Uc28 d(c28) = 0

d(a29) = Uσ123b17 + σ3a18 +U 2a21

d(a30) = σ23c31

d(b31) = Uc31 d(c31) = 0

d(b32) = σ3b20 +Uc32 d(c32) = σ3c20

d(b33) = σ2b5 +Uc33 d(c33) = σ2c5

d(a34) = U 2a2 + σ3a13 +Uσ123b12.

First, observe that the sets {b9, c9, b20, c20, b32, c32}, {b3, c3}, and {b28, c28} each

generate isolated summands whose tensor products with ĈFD(X K )will always be

torsion F[U ]-modules. These summands will not affect τ(Q(K )2,1), so we may

disregard them.

Next, we perform a change of basis that cancels the four terms indicated in

boldface above and further simplifies the differential. Define:

a′2 = a2 + σ123a7 c′10 = c10 + σ1a7

a′11 = a11 + σ23a1 b′12 = b12 +Ua7 + σ23b31

c′12 = c12 +U 2a1 +Ub24 + σ23c31 b′14 = b14 +Ua19

a′15 = a15 + c6 b′16 = b16 + b25

c′16 = c16 + σ1a11 + c25 b′17 = b17 +Ua11 + σ23b24

c′17 = c17 +Ub14 +U 2a19 a′18 = a18 +Ub6

a′21 = a21 + σ123a11 b′24 = b24 +Ua1

c′25 = c25 + σ123a1.

Note that d(a7) = c′12 and d(a′11) = c′17. The sets {a1, c24}, {a19, c14}, {a
′
11, c′12},

and {a′11, c′17} generate acyclic summands that can be canceled. The differential

applied to the remaining primed generators is as follows:

d(a′2) = Uσ123b′24 +U 2σ3a30 d(c′10) = Uσ1b′24 + σ3c33

d(b′12) = U 2b′24 d(b′14) = 0

d(a′15) = σ23a30 d(b′16) = Uc′16 + σ1b′17 + σ3b22

d(c′16) = Uσ1b′14 + σ3c22 d(b′17) = U 2b′14
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d(a′18) = σ2a′2 +U 2a′15 d(a′21) = Uσ123b′14 + σ3a15

d(b′24) = 0 d(c′25) = σ123c8.

In addition, in the new basis, we have:

d(b10) = Uc′10 + σ1b′12 + σ3b33

d(b25) = σ123b8 + σ123b′24 +Uc′25

d(a29) = Uσ3b6 +Uσ123b′17 + σ3a18 +U 2a21

d(a34) = U 2a′2 +Uσ123b′12 + σ3a13.

We now rename the generators as follows:

p1 = b′12 p2 = b10 p3 = b33 p4 = b5 p5 = b31

q1 = b′24 q2 = c′10 q3 = c33 q4 = c5 q5 = c31

x0 = a27 x1 = a13 x2 = a34 x3 = a′18 x4 = a29

y1 = a30 y2 = a′2 y3 = a′15 y4 = a′21

r1 = b′17 r2 = b′16 r3 = b22 r4 = b23 r5 = b8

r6 = b25 r7 = b6 r8 = b26 r9 = b4

s1 = b′14 s2 = c′16 s3 = c22 s4 = c23 s5 = c8

s6 = c25 s7 = c6 s8 = c26 s9 = c4.

It is simple but tedious to verify that the differential on these generators agrees

with the statement of the theorem.

Once again, we may tensor with the identity AA bimodule to obtain:

PROPOSITION 5.6. The type A structure CFA−(V, Q2,1) has a summand with a

basis

{p1, . . . , p5, q1, . . . , q5, r1, . . . , r9, s1, . . . , s9, x0, . . . , x4, y1, . . . , y4}

whose associated idempotents are just as in Proposition 5.5, and whose A∞
multiplications are as shown in Figure 11.

Just as in the previous section, we note that Q2,1(O) is the unknot, and use this

fact to pin down the absolute Alexander grading via Proposition 2.2. The tensor

product CFA−(V, Q2,1)⊠ ĈFD(X O) is

x2 ⊗ ξ0

yy
U 2

��

x4 ⊗ ξ0

yy
U 2

��

U // r6 ⊗ ξ0

U

��

r9 ⊗ ξ0

U

��

oo

x0 ⊗ ξ0 y2 ⊗ ξ0 y4 ⊗ ξ0
// s6 ⊗ ξ0 s9 ⊗ ξ0

oo

(5.4)
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Figure 11. A summand of CFA−(V, Q2,1). The only multiplications not shown

are the higher multiplications ri → r j for 5 6 j < i 6 9, which are the same as

the ones si → s j .

plus summands that do not affect τ . The homology is generated by (y4+ s9)⊗ ξ0,

which must have Alexander grading 0. As in Lemma 4.6, we conclude that

Cx0
= Cx2

= −4, Cy2
= Cy4

= −2, and Cy4
= 0.

Proof of Proposition 5.2. Let K ⊂ S3 be any knot with ǫ(K ) 6= 0. (The case

where ǫ(K ) = 0 was discussed earlier.) As in the previous section, we consider

a subspace of ĈFK(S3, Q(K )2,1) generated by certain elements arising from the
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unstable chain in ĈFD(X K ) and ‘nearby’ elements. Specifically, if ǫ(K ) = 1,

then let λ = λ1
ℓ1

as in the previous section. If ǫ(K ) = −1, then set κ = κ1
k1

, and

κ ′ = κ1
k1−1 if k1 > 1 (where k1 is the length of the corresponding vertical arrow in

CFK−(S3, K )). The vertical chain ending in ξ1 = η0 includes differentials

ξ2

D123
−−→ κ

D1
←− ξ1 = η0

if the corresponding vertical arrow in CFK−(S3, K ) has length k1 = 1, or

κ ′
D23
−→ κ

D1
←− ξ1 = η0

if k1 > 1.

Let W be the subspace of ĈFK(S3, Q(K )2,1) generated by the elements

{x0 ⊗ η0, x2 ⊗ ξ0, y2 ⊗ ξ0} ∪ {x1 ⊗ µ1, y1 ⊗ µi | i = 1, . . . , s} ∪ H, (5.5)

where

H =





{x3 ⊗ λ, y3 ⊗ λ} if ǫ(K ) = 1,

{p2 ⊗ ξ2, q2 ⊗ ξ2, p5 ⊗ κ, q5⊗ κ} if τ(K ) 6 0, ǫ(K ) = −1, and k1 = 1,

{p3 ⊗ κ
′, q3 ⊗ κ

′, p5 ⊗ κ, q5⊗ κ} if τ(K ) 6 0, ǫ(K ) = −1, and k1 > 1.

(5.6)

The verification that W is a direct summand is slightly trickier than in the previous

section: Lemma 2.7 guarantees that the multiplications m4(x2, ρ3, ρ2, ρ1) = U · p1

and m4(y2, ρ3, ρ2, ρ1) = U · q1 do not produce differentials from elements in

W to elements not in W , and Lemma 2.8 does the same for the multiplications

m2(p2, ρ3) = p1 and m2(q2, ρ3) = U · q1 in the case where k1 = 1. By

Proposition 2.2, the Alexander gradings of certain of these generators are

AQ(K )2,1(x0 ⊗ η0) = −2AK (η0)− 4 = 2τ(K )− 4

AQ(K )2,1(x2 ⊗ ξ0) = −2AK (ξ0)− 4 = −2τ(K )− 4

AQ(K )2,1(y2 ⊗ ξ0) = −2AK (ξ0)− 2 = −2τ(K )− 2.

As in the previous section, we shall see that the free part of HFK−(S3, K ) is

supported in W .

• When τ(K ) > 0, the differential on W is as follows:

x0 ⊗ η0

U 2

%%

x1 ⊗ µ1

U 4

��

U 2

##

. . .

U 2

$$

x1 ⊗ µs−1

U 4

��

U 2

&&

x1 ⊗ µs

U 4

��

x2 ⊗ ξ0oo

U 2

��
y1 ⊗ µ1 . . . y1 ⊗ µs−1 y1 ⊗ µs y2 ⊗ ξ0

U 2
oo

y3 ⊗ λ

OO

x3 ⊗ λ
U 2

oo

OO

(5.7)
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where the generators in the bottom row are included if ǫ(K ) = 1. Note that

(5.7) is identical to (4.7), except that U has been replaced by U 2 throughout.

Just as in the previous section, the free part of the homology is generated by

U s−1x0 ⊗ η0 +U s−2x1 ⊗ µ1 + · · · + x1 ⊗ µs−1 + y2 ⊗ ξ0,

which has Alexander grading −2τ(K ) − 2, so τ(Q(K )2,1) = 2τ(K ) + 2 =
2τ(Q(K )). Therefore, ǫ(Q(K )) = 1.

• When τ(K ) < 0, we consider the three cases in (5.6).

– If ǫ(K ) = 1, the differential on W takes the form:

x3 ⊗ λ

U 2

�� $$

x2 ⊗ ξ0

U 2

%%
U 2

��

x1 ⊗ µ1

U 4

��

U 2

##

. . .

U 2

##

x1 ⊗ µs

U 4

�� %%
y3 ⊗ λ y2 ⊗ ξ0 y1 ⊗ µ1 . . . y1 ⊗ µs x0 ⊗ η0

(5.8)

The free part of the homology is generated by y3 ⊗ λ. Since

AQ(K )2,1(y3 ⊗ λ) = AQ(K )2,1(x3 ⊗ λ)+ 2

= AQ(K )2,1(y2 ⊗ ξ0)+ 2

= −2τ(K ),

we see that τ(Q(K )2,1) = 2τ(K ) = 2τ(Q(K )), and hence ǫ(Q(K )) = 1.

– If ǫ(K ) = −1 and k j = 1, the differential on W takes the form:

x2 ⊗ ξ0

U 2

##
U 2

��

x1 ⊗ µ1

U 4

��

U 2

!!

. . .

U 2

!!

x1 ⊗ µs

U 4

�� ##

U 3
// p5 ⊗ κ

U

��

p2 ⊗ ξ2
oo

U

��
y2 ⊗ ξ0 y1 ⊗ µ1 . . . y1 ⊗ µs 88x0 ⊗ η0 q5 ⊗ κ q2 ⊗ ξ2

oo

(5.9)

The same is true when k j > 1, except that p2⊗ξ2 and q2⊗ξ2 are replaced with

p3 ⊗ κ
′ and q3 ⊗ κ

′, respectively. In this case, the free part of the homology

is generated by y2 ⊗ ξ0, with Alexander grading −2τ(K ) − 2. Therefore,

τ(Q(K )2,1) = 2τ(K ) + 2 = 2τ(Q(K )). If τ(K ) < −1, we may conclude

that ǫ(Q(K )) = 1; if τ(K ) = 1, we merely see that ǫ(Q(K )) 6= −1.

• When τ(K ) = 0, an analysis similar to the previous case shows again that

τ(Q(K )2,1 =

{
0 if ǫ(K ) = 1,

2 if ǫ(K ) = −1.
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In either case, τ(Q(K )2,1) = 2τ(Q(K )).

Finally, we sketch the proof of Proposition 5.3. Let C2,−1 ⊂ V denote the

pattern for (2,−1) cabling.

LEMMA 5.7. The type A module CFA−(V,C2,−1) has generators a, b, c, d, e,

with A∞ multiplications given by:

m2(a, ρ1) = c m2(a, ρ12) = e

m1(b) = U · c m2(b, ρ2) = d

m2(c, ρ2) = e m1(d) = U · e

m3+i(a, ρ3, ρ23, . . . , ρ23︸ ︷︷ ︸
i

, ρ2) = U 2i+2 · a for all i > 0

m4+i(a, ρ3, ρ23, . . . , ρ23︸ ︷︷ ︸
i

, ρ2, ρ1) = U 2i+1 · b for all i > 0

m4+i(a, ρ3, ρ23, . . . , ρ23︸ ︷︷ ︸
i

, ρ2, ρ12) = U 2i+1 · d for all i > 0

Proof. This can be seen directly from a Heegaard diagram or by taking the

tensor product of CFA−(V,C2,−1) with the bimodule ĈFDA(τ−1
m ) from [20,

Section 10.2].

PROPOSITION 5.8. The type D structure CFD−(V, Q2,−1) has a direct summand

with a basis

{p1, . . . , p5, q1, . . . , q5, r1, . . . , r9, s1, . . . , s9, x0, . . . , x4, y1, . . . , y4}

with the following properties:

• The generators

p2, p4, q2, q4, r2, r4, r7, r9, s2, s4, s7, s9, x0, x2, y2, x4, y4

have are in ι0 CFD−(V, Q2,1), and the remaining ones are in ι1 CFD−(V, Q2,1).

• The differential is as shown in Figure 12.

Proof. This proceeds similarly to the proof of Proposition 5.5. Most of the

changes of basis are the same; the primary difference is in the definitions of r7,

r8, r9, s7, s8, s9, which use the d and e generators. The details are left to the reader

as an exercise.
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Figure 12. A summand of CFD−(V, Q2,−1).

Proof of Proposition 5.3. For conciseness, we do not write down CFA−(V,

Q2,−1) here. However, the reader can easily verify the following:

• The nontrivial summand of CFA−(V, Q2,−1)⊠ ĈFD(X O) is

x2 ⊗ ξ0

yy
U 2

��

x4 ⊗ ξ0

yy
U 2

��

U // r6 ⊗ ξ0

U

��
x0 ⊗ ξ0 y2 ⊗ ξ0 y4 ⊗ ξ0

// s6 ⊗ ξ0.

(5.10)

The homology is generated by r6 ⊗ ξ0, which implies that Cx0
= Cx2

= −3,

Cy2
= Cx4

= −1, Cr6
= 0, and Cy4

= Cs6
= 1.

• When τ(K ) < 0 and ǫ(K ) = −1, CFK−(Q(K )2,−1) has a summand W whose

differential is exactly the same as (5.9). The Alexander grading of the generator

y2 ⊗ ξ0 is now −2τ(K ) − 1, so τ(Q(K )2,−1) = 2τ(K ) + 1 = 2τ(Q(K )) − 1.

Thus, ǫ(Q(K )) = 1.

• When τ(K ) = 0 and ǫ(K ) = 1, the unstable chain in ĈFD(X K ) and a portion

of the horizontal chain meeting ξ0 = η2 is

η1

D3
−→ λ

D2
−→ ξ0

D12
−→ η0
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if the length of the horizontal arrow is 1, and

λ′
D23
−→ λ

D2
−→ ξ0

D12
−→ η0

if the length is greater than 1. In the former case, the relevant summand of

CFK−(Q(K )2,−1) is

r7 ⊗ η2

U

��

// r6 ⊗ ξ0

U

��

x3 ⊗ λ

U 2

��

Uoo

$$

x2 ⊗ ξ0

U 2

�� %%
s7 ⊗ η2

// s6 ⊗ ξ0 y3 ⊗ λoo y2 ⊗ ξ0 x0 ⊗ η0.

(5.11)

In the latter case, the summand is the same, except that r7 ⊗ η2 and s7 ⊗ η2

are replaced with r8 ⊗ λ
′ and s8 ⊗ λ

′, respectively. In either case, the free part

of the homology is generated by y3 ⊗ λ, with Alexander grading 1. Hence,

τ(Q(K )2,−1) = −1, so ǫ(Q(K )) = 1.
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[25] P. S. Ozsváth, Z. Szabó and D. P. Thurston, ‘Legendrian knots, transverse knots and

combinatorial Floer homology’, Geom. Topol. 12(2) (2008), 941–980.

[26] I. Petkova, ‘Cables of thin knots and bordered Heegaard Floer homology’, Quantum Topol.

4(4) (2013), 377–409.

[27] J. A. Rasmussen, ‘Floer homology and knot complements’, PhD Thesis, Harvard University,

2003, arXiv:math/0509499.

[28] A. Ray, ‘Satellite operators with distinct iterates in smooth concordance’, Proc. Amer. Math.

Soc. 143(11) (2015), 5005–5020.

[29] R. Zarev, ‘Bordered Floer homology for sutured manifolds’, Preprint, 2009,

arXiv:0908.1106.

[30] E. C. Zeeman, ‘On the dunce hat’, Topology 2 (1964), 341–358.

[31] B. Zhan, ‘Computations in bordered Heegaard Floer homology’, software package available

at http://github.com/bzhan/bfh python, 2014.

https://doi.org/10.1017/fms.2016.31 Published online by Cambridge University Press

http://www.arxiv.org/abs/1112.0290
http://www.arxiv.org/abs/1112.0290
http://www.arxiv.org/abs/1112.0290
http://www.arxiv.org/abs/1112.0290
http://www.arxiv.org/abs/1112.0290
http://www.arxiv.org/abs/1112.0290
http://www.arxiv.org/abs/1112.0290
http://www.arxiv.org/abs/1112.0290
http://www.arxiv.org/abs/1112.0290
http://www.arxiv.org/abs/1112.0290
http://www.arxiv.org/abs/1112.0290
http://www.arxiv.org/abs/1112.0290
http://www.arxiv.org/abs/1112.0290
http://www.arxiv.org/abs/1112.0290
http://www.arxiv.org/abs/1112.0290
http://www.arxiv.org/abs/0810.0687
http://www.arxiv.org/abs/0810.0687
http://www.arxiv.org/abs/0810.0687
http://www.arxiv.org/abs/0810.0687
http://www.arxiv.org/abs/0810.0687
http://www.arxiv.org/abs/0810.0687
http://www.arxiv.org/abs/0810.0687
http://www.arxiv.org/abs/0810.0687
http://www.arxiv.org/abs/0810.0687
http://www.arxiv.org/abs/0810.0687
http://www.arxiv.org/abs/0810.0687
http://www.arxiv.org/abs/0810.0687
http://www.arxiv.org/abs/0810.0687
http://www.arxiv.org/abs/0810.0687
http://www.arxiv.org/abs/0810.0687
http://www.arxiv.org/abs/math/0509499
http://www.arxiv.org/abs/math/0509499
http://www.arxiv.org/abs/math/0509499
http://www.arxiv.org/abs/math/0509499
http://www.arxiv.org/abs/math/0509499
http://www.arxiv.org/abs/math/0509499
http://www.arxiv.org/abs/math/0509499
http://www.arxiv.org/abs/math/0509499
http://www.arxiv.org/abs/math/0509499
http://www.arxiv.org/abs/math/0509499
http://www.arxiv.org/abs/math/0509499
http://www.arxiv.org/abs/math/0509499
http://www.arxiv.org/abs/math/0509499
http://www.arxiv.org/abs/math/0509499
http://www.arxiv.org/abs/math/0509499
http://www.arxiv.org/abs/math/0509499
http://www.arxiv.org/abs/math/0509499
http://www.arxiv.org/abs/math/0509499
http://www.arxiv.org/abs/0908.1106
http://www.arxiv.org/abs/0908.1106
http://www.arxiv.org/abs/0908.1106
http://www.arxiv.org/abs/0908.1106
http://www.arxiv.org/abs/0908.1106
http://www.arxiv.org/abs/0908.1106
http://www.arxiv.org/abs/0908.1106
http://www.arxiv.org/abs/0908.1106
http://www.arxiv.org/abs/0908.1106
http://www.arxiv.org/abs/0908.1106
http://www.arxiv.org/abs/0908.1106
http://www.arxiv.org/abs/0908.1106
http://www.arxiv.org/abs/0908.1106
http://www.arxiv.org/abs/0908.1106
http://www.arxiv.org/abs/0908.1106
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
http://github.com/bzhan/bfh_python
https://doi.org/10.1017/fms.2016.31

	Introduction
	Alexander gradings in bordered Floer homology
	The knot Floer complex and τ(K)
	Relative spinc structures on bordered manifolds
	Knots in bordered 3-manifolds
	Satellite knots
	CFD"0362CFD of knot complements

	Bordered Floer homology of two-bridge link complements
	Computation of CFDD"0362CFDD(X(LQ))

	Computation of τ(Q(K))
	Computation of ε(Q(K))
	References

