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Recently, evidence has emerged for a field-induced even- to odd-parity superconducting phase
transition in CeRh2As2 [S. Khim et al., Science 373 1012 (2021)]. Here we argue that the P4/nmm
non-symmorphic crystal structure of CeRh2As2 plays a key role in enabling this transition by en-
suring large spin-orbit interactions near the Brillouin zone boundaries, which naturally leads to
the required near-degeneracy of the even- and odd-parity channels. We further comment on the
relevance of our theory to FeSe, which crystallizes in the same structure.

Introduction—The discovery of a transition between
two distinct superconducting phases at high magnetic
fields in CeRh2As2 [1] has generated great interest [2–
6]. Due to the immense upper critical field, this has
been widely interpreted as a transition between even- and
odd-parity pairing states. Creating odd-parity supercon-
ductors is a central goal of quantum materials science
as they can host non-trivial topological phenomena [7].
The putative field-induced transition in CeRh2As2 offers
a straightforward route to a bulk odd-parity state. As
such, it is of great importance to clarify the physics re-
sponsible for its remarkable phase diagram.

The even to odd parity transition is enabled by a
Rashba-like spin-orbit coupling (SOC) that exists on an
inversion (I) symmetry breaking sublattice of atoms. I
symmetry transforms one sublattice to the other, with
opposite signs for SOC, ensuring the Hamiltonian satis-
fies a global I symmetry. However, the even to odd parity
transition is also suppressed by hopping between the two
sublattices, and so the SOC should be larger than this
inter-sublattice hopping for this transition to occur. It
is unclear if this condition can be realized in bulk crys-
tals: Indeed, a relatively strong Rashba-like spin tex-
ture has been observed in bilayer cuprate Bi2212 [8], but
there is no evidence of a field-induced odd-parity state.
Since superconductors with this sublattice structure are
not uncommon, the rarity of the field-induced transition
suggests that additional physics is necessary to explain
the phase diagram of CeRh2As2.

Here we show that the non-symmorphic (NS) structure
of CeRh2As2 allows the Rashba-like SOC to be larger
than the inter-sublattice hopping, providing an explana-
tion for why this transition is observed. In particular,
we show that the NS structure ensures that the SOC
energy scale is asymptotically larger than that of the
inter-sublattice hopping near the Brillouin zone edges.
Provided that a Fermi surface with sufficiently large den-
sity of states (DOS) exists near the zone edge, the field-
induced even- to odd-parity transition can appear at the

∗ philip.brydon@otago.ac.nz
† agterber@uwm.edu

relatively high temperature seen in CeRh2As2.

The manuscript is organized as follows: First a gen-
eral argument is given that on the Brillouin zone edge
arbitrary superpositions of Kramers degenerate states
have the same spin polarization direction, in contrast to
Kramers degenerate states at the Brillouin zone center.
This remarkable feature reflects the dominance of SOC
near the zone edges. We confirm this by examining a k ·p
theory valid near the zone edge and contrasting it with
one valid near the zone center. This explicitly reveals
that the SOC is asymptotically smaller than the inter-
sublattice hopping near the zone center, but is asymp-
totically larger near the zone edge. Considering super-
conductivity originating from an intra-sublattice pairing
instability, the dominance of the SOC at the zone edge
allows us to qualitatively reproduce the magnetic field-
temperature phase diagram of CeRh2As2, provided that
the contribution to the DOS from the Fermi surfaces
near the zone edges is sufficiently large. Density func-
tional calculations for CeRh2As2 reveal that this can be
the case if electron correlations are included. Finally,
since our analysis shows that exotic physics due to strong
SOC can be expected generically in NS superconductors,
we discuss an additional application of our theory to NS
FeSe.

Non-symmorphic symmetry and spin texture— In con-
trast to Kramers degenerate band states at the Brillouin
zone center, the NS structure of CeRh2As2 implies that
the two-fold Kramers degenerate band states at the zone
edge exhibit the same spin polarization direction. To
show this, we consider the set of symmetries that keep
momenta lying in the zone-center plane kc = (0, ky, kz)
and the zone-edge plane ke = (π, ky, kz) unchanged.
These include: Mx, a mirror reflection through the x̂
direction; T Ĩ, where T is time-reversal symmetry and
Ĩ = {I| 12 ,

1
2 , 0}; and their product T ĨMx. Since (T Ĩ)2 =

−1, these states exhibit a two-fold Kramers degeneracy
denoted as |kν=e,c,±〉 ≡ |ν,±〉. These two-fold degen-
erate eigenstates are also eigenstates of Mx, and since
M2
x = −1, Mx|ν,±〉 = eν,±|ν,±〉 where the eν,± are

purely imaginary. From the non-symmorphicity and the
general result that T commutes with spatial symmetries,
we find T ĨMx = {E|100}MxT Ĩ, where {E|100} is an in-
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plane translation vector. Importantly, {E|100} becomes
1 for kx = 0, and −1 for kx = π. Hence, for the zone
center plane Mx(T Ĩ|c,±〉) = −ec,±(T Ĩ|c,±〉), while for

the zone-edge plane Mx(T Ĩ|e,±〉) = ee,±(T Ĩ|e,±〉). We
thus conclude that Kramers degenerate partners at the
zone center plane have opposite eigenvalues with respect
to Mx, while those at the zone boundary have the same
eigenvalue with respect to Mx.

Since the spin operators Sy and Sz are odd under Mx,
they will have non-zero matrix elements at the zone-
center plane, but all their matrix elements are zero at the
zone-edge plane [9]. That is, at the zone edges, all eigen-
states have their spins polarized along the ±x̂ direction.
A similar argument can be made for the k = (kx, π, kz)
plane, where we find that the states are polarized along
the ±ŷ direction. This implies that the states in the zone-
edge plane cannot couple to a c-axis field, while those in
the zone center plane can. As seen below, it is this key
difference that enhances the c-axis Pauli limiting fields
and stabilizes a field-induced even- to odd-parity tran-
sition for Fermi surfaces near the zone edges relative to
those near the zone center.

k·p theories— To quantify the difference between zone-
center and zone-edge Fermi surfaces on superconductiv-
ity, we construct k ·p theories valid near the Γ point and
the M-A Dirac line. (Our results for the M-A Dirac line
hold more generally for Fermi surfaces near the zone-
edge.) For the Γ point, it suffices to take the small k
limit of the tight binding theory presented in Ref. [1]. To
develop the k · p theory near the M-A Dirac line [10] we
use the representations as given on the Bilbao crystallo-
graphic server [11].

In both k·p theories the Hamiltonian has the structure

H0 =ε00,kτ0σ0 + εx0,kτxσ0 + εy0,kτyσ0

+ εzx,kτzσx + εzy,kτzσy + εzz,kτzσz. (1)

The τi Pauli matrices encode the sublattice basis com-
posed of two states that are transformed into each other
under inversion (e.g., a Ce site basis). The σi Pauli ma-
trices encode the spin basis. The first line of Eq. (1) de-
scribes spin-independent intra- and inter-subllatice hop-
ping processes, whereas the second line includes the SOC
terms. I symmetry is given by the operator τxσ0 at the
Γ, M, and A points. Consequently, ε00,k and εx0,k are
even in momentum k, while the other coefficients are
odd. Eq. (1) has the same form as a minimal Hamilto-
nian for a locally non-centrosymmetric material [12–16].
The Hamiltonian possesses two doubly-degenerate eigen-
values ε00,k ± ε̃k where

ε̃k =
√
ε2x0,k + ε2y0,k + ε2zx,k + ε2zy,k + ε2zz,k. (2)

It is convenient to label the two degenerate states in each
band by a pseudospin index. Our choice of pseudospin
basis is presented in the SM [17].

In Table I we give the momentum dependence of the
coefficients εµν,k. Along the M-A line we expand radially

from the line, i.e., k = (π, π, kz) + (kx, ky, 0) and expand
in kx and ky. We do not give the form of ε00,k since
this term does not play an essential role in the physics,
and also only keep the lowest non-zero power of kν in the
coefficient of each τiσj matrix. The k · p theories reveal
several remarkable features of the electronic structure: i)
The εzz,k SOC is parametrically smaller than the Rashba-
like SOC terms εzx,k and εzy,k (and will henceforth be
ignored); ii) Near the M-A Dirac line when kx = 0, only
the coefficient of τzσx is non-zero, a consequence of the
NS spin texture presented above; iii) The NS symmetry
requires that all coefficients vanish at the M-A Dirac line,
and hence the energy bands are four-fold degenerate here.

Importantly, the Rashba SOC terms vanish asymp-
totically more slowly than the inter-sublattice hop-
ping as the M-A Dirac line is approached. This
is reflected in the divergence of the ratio α̃k =√

(ε2zx,k + ε2zy,k)/(ε2x0,k + ε2y0,k) as one approaches the

Dirac line. In contrast, only the inter-sublattice hopping
εx0,k can be nonzero at the Γ point, which implies that
the ratio α̃k vanishes at the zone center. As we shall see,
α̃k plays a key role in our theory.
Zeeman response—We include a Zeeman field by

adding the term HZ = gµBτ0~σ · ~H to the Hamilto-
nian Eq. (1). Expressed in the band-pseudospin basis,
HZ typically has both interband and intraband compo-

nents. The former are not important in the ε̃k � gµ| ~H|
limit; in contrast, the latter lifts the pseudospin degen-
eracy, acting like an effective pseudospin Zeeman field,
which we obtain by projecting τ0~σ onto the pseudospin
basis, τ0σµ → ~γµk · ~s. For our choice of pseudospin ba-
sis, Zeeman fields parallel (perpendicular) to the c-axis
produce pseudospin fields that are also parallel (perpen-
dicular) to the c-axis; explicit expressions for the effec-
tive g-factors ~γµk are given in the SM [17]. Moreover, the
magnitude of ~γµk is basis-independent and given by

|~γµk |
2 = ε̂2x0,k + ε̂2y0,k + ε̂2zµ,k (3)

where ε̂µν,k = εµν,k/ε̃k. For a c-axis field, the pseu-
dospin splitting is controlled by the ratio α̃k as |~γzk| =

(1 + α̃2
k)−1/2. Our k · p theory therefore shows that the

pseudospin splitting is maximal near the Γ point, but
vanishes as we approach the M-A Dirac line. This re-
flects the in-plane spin polarization of the band states
near the zone edge required by the NS symmetry as dis-
cussed above, and implies that the effective g-factor van-
ishes on the zone boundary (|~γzk| = 0).
Superconductivity—In the standard scenario for the

field-induced transition in locally I-symmetry broken su-
perconductors [18–21], the dominant interaction pairs
electrons on the same sublattice in a spin singlet. Since
the sublattices are swapped by I, this generates both
even- and odd-parity states, corresponding to equal and
opposite signs of the pairing potential on each sublat-
tice, respectively. We refer to these two possibilities as
the uniform and staggered states. The sign difference
can be readily encoded in the τ -dependence of the pair-
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Γ point M-A Dirac line

εx0,k gx0 m
(e)
x0 kxky

εy0,k gy0kz m
(o)
y0 kxky

εzx,k gzxky m
(e)
zx ky

εzy,k −gzxkx −m(e)
zx kx

εzz,k gzzkzkxky(k2
x − k2

y) m
(o)
zz kxky(k2

x − k2
y)

α̃2
k

g2xz(k2x+k2y)

g2x0
→ 0

m
(e)2
zx (k2x+k2y)

(m
(e)2
x0 +m

(o)2
y0 )k2xk

2
y

→∞

TABLE I. Form of the nontrivial terms in Eq. (1) near the
Γ point and along the M-A Dirac line. The expansion coef-

ficients m
(e)
ij are functions of kz, with the (e) and (o) super-

scripts indicating that these are non-vanishing or vanishing
at the M and A points. The last row gives α̃2

k, characterizing
the ratio of the SOC to the inter-sublattice hopping, and the
limiting values as k→ 0.

ing potential, which for the uniform (staggered) state is
fk∆τ0iσy (fk∆τziσy), where fk is an even-parity form
factor.

In the pseudospin basis, the uniform and staggered
pairing potentials are

∆fkτ0iσy → ∆fkisy (4)

∆fkτziσy → ± (ε̂zx,ksx + ε̂zy,ksy) ∆fkisy . (5)

The odd-parity staggered state is transformed into a he-
lical pseudospin-triplet state, with reduced gap magni-

tude
√
ε̂2zx,k + ε̂2zy,k|∆fk| and opposite sign in each band.

The reduced gap magnitude of the staggered state is
due to interband pairing, implying that this state has
a lower transition temperature (Tc) than the uniform
state. In the weak-coupling limit the Tc of the stag-
gered state is determined by an effective coupling con-
stant which is smaller than that of the uniform state by
〈ε̂2zx,k + ε̂2zy,k〉FS = 〈α̃2

k/(1 + α̃2
k)〉FS where the average is

taken over the Fermi surface [22]. Due to the exponen-
tial sensitivity of Tc on the coupling constant, the ratio
α̃k must be larger than unity for Tc of the staggered and
uniform states to be comparable.

The projection onto the pseudospin basis reveals the
essential physics of the field-induced transition. Since
the same interaction mediates pairing in both channels,
the generically smaller gap opened by the staggered state
implies that it has the lower Tc at zero field. However,
whereas the uniform state is Pauli limited (albeit with an
enhanced upper critical field due to the reduced effective
g factor [15]), the staggered state is not Pauli limited for
a c-axis field, since the effective pseudospin Zeeman field

is perpendicular to the ~d-vector of the pseudospin triplet
state. Thus, a field-induced transition occurs when a c-
axis field suppresses the uniform state below the Tc of
the staggered state.

The key parameter that underlies both the Tc of the
staggered state and the response of the uniform state to
c-axis fields is α̃k. Crucially, our k ·p analysis shows that
α̃k strongly varies across the Brillouin zone in CeRh2As2

(a) (b)

FIG. 1. (a) Phase diagram for NM = 0.9N0: the blue line
gives the upper critical field of the uniform state, and the red
dashed line gives the boundary of the staggered state. The
staggered state is realized in the shaded region. (b) The de-
pendence of the upper critical field of the uniform state (Hmax,
black solid line) and the critical field (Ht, blue dashed line)
and temperature (Tc,t red dot-dashed line) at which the field-
induced transition occurs as a function of the contribution of
the density of states at the M point to the total density of
states. The field strengths are expressed in terms of the Pauli
limiting field HP ≈ 1.25kBTc,0.

due to the NS crystal symmetry. In particular, although
it vanishes upon approaching the Γ point, α̃k diverges
towards the M-A Dirac line due to the vanishing inter-
sublattice terms, as indicated in Table I. More gener-
ally, it diverges on the Brillouin zone edges. Thus, large
values of α̃k are generically expected for Fermi surfaces
sufficiently near the zone edge. In CeRh2As2, the field-
induced transition occurs at Tc,t ≈ 0.7Tc,0, where Tc,0
is the zero-field transition temperature, implying that
α̃k ≈ 3.5 at the Fermi energy. Our theory shows that
such ratios are possible if states near the Brillouin zone
edge make a significant contribution to the DOS at the
Fermi energy. Previous theoretical studies of CeRh2As2

have assumed Fermi surfaces near the Γ point, where the
enhancement of α̃k due to the NS symmetry is not ap-
parent [4–6]; as in similar treatments of symmorphic lat-
tices [18–21], these theories require an unexpectedly large
SOC strength to explain the field-induced transition.

It is instructive to contrast our results with previous
results in I-symmetric 2D Ising superconductors [23–25]
and a toy model of a 1D NS zig-zag chain [26]. In the
Ising systems, a symmetry-required divergence of the ra-
tio α̃k occurs for band representations with angular mo-
mentum jz = ±3/2 at certain points in the 2D Brillouin
zone, which strongly enhances the Pauli limit field for in-
plane fields. Our result is more general, however, as the
divergent α̃k occurs on a 2D manifold of the 3D Brillouin
zone, and holds for all band representations. In the zig-
zag chain, the stability of an odd-parity state similar to
that discussed here is found to be enhanced when the 1D
FS is near the zone edge [26]. Although the correspond-
ing ratio α̃k does take a maximum at the zone-edge, it
does not diverge as in our model. Consequently, the NS
spin texture mechanism we examine is a more general
route to enhancing the effect of SOC.

Two-pocket model—While Fermi surfaces near the zone
edge favor a field-induced transition, it is likely that they
will appear together with other Fermi surfaces near the
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zone center where the parameter α̃k is small. To ex-
amine the sensitivity of our theory to the presence of
these additional Fermi surfaces, we consider a model
of CeRh2As2 with two cylindrical Fermi pockets cen-
tered on the Γ-Z and M-A Dirac lines, fixing |~γzk| = 0.9

and 0.1|k̂xk̂y| on the two Fermi surfaces, correspond-
ing to small and large values of α̃k, respectively. The
momentum-dependence of the effective g-factor near the
M-A Dirac line reflects the NS symmetry-enforced spin
texture at the zone boundary. Assuming an intrasublat-
tice pairing interaction, we use standard techniques to
construct the field-temperature phase diagram, see the
SM for details [17]. For simplicity we assume an s-wave
form factor, i.e. fk = 1, but our results are robust to
other choices.

In Fig. 1(a), we present a phase diagram which qualita-
tively agrees with that observed in CeRh2As2. Since we
only consider the Zeeman effect, the upper critical field
of the staggered state is infinite, and so the right-most
boundary of the staggered state is vertical; including or-
bital effects will give a finite upper critical field [2], but
does not qualitatively alter our theory. Fig. 1(a) was
found by setting the M-A pocket DOS at 90% the total
DOS. In Fig. 1(b) we examine the consequences of vary-
ing this M-A pocket DOS for the upper critical field of the
uniform state, and the field strength and temperature at
which the transition into the staggered state occurs. The
field-induced transition is strongly enhanced as the con-
tribution of the M-A pocket to the DOS increases, with
the even- and odd-parity states near-degenerate when
this is the only Fermi surface. Importantly, the field-
induced transition occurs at an observable temperature
Tc,t > 0.1Tc0 if the M-A pocket makes up at least half of
the DOS.

DFT results—DFT calculations and analysis were car-
ried out to explore the possibility that the Fermi surface
of CeRh2As2 contains regions near the zone-edge and to
verify that the states at the zone-edge exhibit the spin
polarization found above. As shown in the SM [17], the
Fermi surface (shown in Fig. S1a) predicted by the DFT
bands consists of four pockets about the A point that do
not intersect the zone edge, and portions about the Γ-Z
line, representing ∼53% of the DOS, in agreement with
[6]. This Fermi surface is unlikely to be consistent with
the observed odd-parity state.

The experimental heat jump at the superconducting
transition temperature suggest fermion masses a factor
100-1000 larger than the bare electron mass, implying
that the Ce 4f electrons are itinerant. The standard
DFT results are inconsistent with this enhanced effective
mass. To address this, we have employed a renormal-
ized band structure approach similar to that pioneered
by Zwicknagl [27, 28]. Fig. 2a shows the resulting band
structure; the corresponding Fermi surface, Fig. 2b, has a
DOS 10 times larger than standard DFT and agrees with
that found in Ref. [29]. Moreover, the pockets at the zone
boundary account for 80% of the total DOS, consistent
with the observed odd-parity state. In the SM, we show
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FIG. 2. (a) Bands including 4f electron correlations through
a renormalized band structure approach with Ce 4f weight
represented by orange dots. (b) Fermi surface for (a). (c) x-
component spin density distribution of the doubly degenerate
bands at a point on zone edge marked by the pink circle in
(b). Red/blue represents positive/negative spin density.

that with different choices of renormalizations, the DOS
can be further increased (with similar Fermi surfaces),
and also explore the effects on the band structure from
several other scenarios within DFT. Figure 2(c) shows
the Sx spin density arising from a Kramers pair on the
zone boundary; the integrated spin density around each
atom is non-vanishing only for Sx and is opposite on the
two sublattices, in agreement with the symmetry-based
arguments presented above.

Discussion and conclusions—Our key result is that the
NS P4/nmm structure of CeRh2As2 enables the SOC
structure required to stabilize an odd-parity supercon-
ducting state under field and to enhance the critical field
along the c-axis. It is natural to ask if there exist other
materials with the same structure for which this is also
the case. Remarkably, there exist experimental results
on superconducting FeSe, which also crystallizes in a
P4/nmm structure, that suggest similar considerations
apply. In particular, Knight shift measurements indi-
cate that there is no change in the spin susceptibility
upon entering the superconducting state for the field ap-
plied along the c-axis [30, 31]. Within the framework we
have discussed here, this could be explained by a nearly-
vanishing g-factor for a c-axis Zeeman field due to strong
SOC. This implies that the Zeeman coupling only pro-
duces a van-Vleck-like spin susceptibility which is largely
unchanged by superconductivity [18]. In addition, there
exists evidence for an unexplained c-axis field-induced
superconducting phase transition for fields much larger
than the Pauli limiting field [32]. The possibility that
this transition corresponds to a transition from an even
to odd parity phase is currently under investigation.
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Oleś, and P. Piekarz, Phys. Rev. B 104, L041109 (2021).
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Appendix A: DFT calculations and analysis

DFT calculations, including spin-orbit, for CeRh2As2

are carried out using the Full-Potential Linearized Aug-
mented Plane Wave (FLAPW) method [33] with the
structural parameters determined by x-ray diffraction [1].
The Perdew-Burke-Ernzerhof form of the generalized gra-
dient approximation [34] is employed for exchange and
correlation. The muffin-tin sphere radii are set to 1.4,
1.2, and 1.1 Å for Ce, Rh, and As atoms, respectively.
The wave function and potential cutoffs are 16 and 200
Ry, respectively. The Brillouin zone (BZ) is sampled with
a 20×20×10 k-point mesh during the self-consistent field
cycle. A denser 50×50×25 mesh is used to determine the
Fermi surface, and are visualized by using FermiSurfer
[35]. The crystal structure and spin density distribution
are visualized by using VESTA [36].

The calculated Fermi surface of CeRh2As2 within stan-
dard DFT is shown in Fig. S3a, and is in a fair agreement
with previous calculations [6]. As described in the main
text, this Fermi surface does not account for the experi-
mental high specific heat jump nor intersects the BZ edge
where α̃k diverges. The Fermi surface resulting from a
shift of the chemical potential by 0.08 eV, Fig. S1b, has
tubes around the M-A line as well as other pieces inter-
secting the zone edge.

X

R

M

A
X

R

M

A

(a) (b)

FIG. 3. Fermi surfaces from the standard DFT bands for (a)
the calculated Fermi level and (b) for the chemical potential
shifted by 0.08 eV.

To partially account for the renormalization/reduction
of the bandwidth commonly seen in 4f and heavy fermion
materials, we implemented a scheme to manipulate the
energy dependence of the logarithmic derivative of the
4f orbitals in the framework of the FLAPW method,
an approach closely related to the phase shift technique

High VFLow VF High VFLow VF

(a) (b)

FIG. 4. Fermi surface of CeRh2As2 with “renormalized”
Ce 4f bands. (a) and (b) correspond to different choices of
renormalization paramters, and provide enhanced DOS at the
chemical potential 10 and 20 times larger, respectively, than
the bare DFT. For each case, a 3D view (color code shows
Fermi velocity) and a kz=0 section (two colors stand for two
different bands) are shown.

E
n

er
g

y 
(e

V
)

(a)  Standard (b)  Reduce As height (c)  n5d = 0 (d)  Have localized 4f

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Γ X M Γ Z R A Z Γ X M Γ Z R A Z Γ X M Γ Z R A Z Γ X M Γ Z R A Z

1
0.1

FIG. 5. Electronic band structure of CeRh2As2. (a) Stan-
dard calculation using the experimental structural parame-
ters. Cyan dots give weight of the 4dxy orbital from the 2a-
site Rh (between As atoms). Inset: an illustrative view of
crystal structure where Ce, Rh, and As atoms are shown by
yellow, gray, and green spheres, respectively. (b) The heights
of the As layers sitting above and below the Rh 2a layer are
reduced by 0.05Å from the experimental value 1.34Å. (c) Pos-
itive infinite potential on the Ce 5d orbitals to illustrate 5d-4f
valence fluctuation. The 5d electrons (0.70 electrons within
a Ce-nucleus centered sphere of radius 1.4Å) are eliminated
from the occupied levels while the 4f count is increased by
0.54. (d) Localized (core) 4f states for 1 or 0.1 4f electrons
to illustrate the effects of localization and f1 → f0 mixed
valence.

used in Ref. [29]. Methodological details will be pre-
sented elsewhere. The resulting calculated Fermi surface
in Fig. S4(a) [Fig. 2(b) of the main text] closely resembles
that in Ref. 29 with six tubes attached to the BZ edge.
The total DOS at the Fermi energy is enhanced by a fac-
tor of 10 compared to the bare DFT DOS. Fig. S4(b),
obtained from another choice of renormalization param-
eters, shows stronger DOS enhancement, now a factor
of 20. The near-edge elements are maintained yet these
tubes are now connected at kz = ±π plane. In both cases
(and with other choices, not shown here), the Fermi sur-
face elements near the BZ edge constitute 80-90% of the
total DOS with very low Fermi velocity.

In addition, we examine other possible scenarios,
within standard DFT, that alter the relative energies of
the bands and provide Fermi surface elements near the
BZ edge. The standard DFT calculation shows that the
Ce 4f states predominantly hybridize with the conduc-
tion Rh 4d bands. In particular, the bottom of the con-
duction band around the M-A Dirac line of the Brillouin
zone is of particular interest since this band, having Ce
4f contributions, shows large Rashba-type band split-
ting. This state is built up of Rh xy (and z2) orbitals
on the 2a site [the site sandwiched by As atoms; see in-
set of Fig. S5(a)] antibonded to As p states. Therefore,
the energy position of this band (which at M point is
located about 0.05 eV above the Fermi level) is sensi-
tive to the As-layer height relative to the Rh 2a layer;
as demonstrated in Figure S5(b), when the As height is
slightly reduced (by 0.05 Å), this band moves down to the
Fermi level. The energy position of this 4f -hybridized
band is also sensitive to the mixed valent and local-
ized/delocalized nature of the 4f orbital [37, 38]. Fig-
ure S5(c) shows the effect of Ce 5d-4f (f1 → f2) va-
lence fluctuation, which is simulated by adding infinite
potential on the 5d state. To mimic localized 4f orbitals
and f1 → f0 fluctuations, the 4f states are treated as
core electrons (with the valence states properly orthog-
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onalized), and are shown in Fig. S5(d). In all of these
cases, the bands around M-A near the chemical poten-
tial are common features, although the exact position rel-
ative to the chemical potential does vary. Importantly,
the robustness of these features implies that the essen-
tial physics of the staggered Rashba splitting about the
M-A Dirac line near the chemical potential remains un-
changed.

Appendix B: Pseudospin basis

The defining feature of the pseudospin index is that it
transforms like a spin under inversion and time-reversal
symmetry. That is, letting {|k, b,⇑〉, |k, b,⇓〉} be the
pseudospin basis at momentum k in band b, we have
the operation of inversion

P |k, b,⇑〉 = | − k, b,⇑〉 , P |k, b,⇓〉 = | − k, b,⇓〉 , (B1)

and time-reversal

T |k, b,⇑〉 = −|−k, b,⇓〉 , T |k, b,⇓〉 = |−k, b,⇑〉 . (B2)

It is furthermore often convenient to adopt a pseudospin
basis where the pseudospin has the same transformation
properties as the electronic spin under the point group
operations, a so-called manifestly covariant Bloch basis
(MCBB) [39]. Consider a symmetry operation g of the
point group such that

UgH0(k)U†g = H0(gk) , (B3)

where Ug is the unitary matrix for the symmetry opera-
tion in the four-component basis. The eigenvectors φk,±,s
define an MCBB if the matrix with columns composed
of these vectors,

Ψk = (ψk,+,⇑, ψk,+,⇓, ψk,−,⇑, ψk,−,⇓) , (B4)

satisfies

Ψ†gkUgΨk = s0 ⊗ ug , (B5)

where ug is the equivalent symmetry operation for a spin-
1/2 system.

We adopt the following pseudospin basis for our model

ψk,+,⇑ =


−e−

iξk
2 cos

(
χk

2

)
cos
(
ωk

2

)
−e− 1

2 i(ξk−2φk) sin
(
χk

2

)
cos
(
ωk

2

)
−e

iξk
2 cos

(
χk

2

)
sin
(
ωk

2

)
e

1
2 i(ξk+2φk) sin

(
χk

2

)
sin
(
ωk

2

)
 ψk,+,⇓ =


−e− 1

2 i(ξk+2φk) sin
(
χk

2

)
sin
(
ωk

2

)
−e−

iξk
2 cos

(
χk

2

)
sin
(
ωk

2

)
e

1
2 i(ξk−2φk) sin

(
χk

2

)
cos
(
ωk

2

)
−e

iξk
2 cos

(
χk

2

)
cos
(
ωk

2

)
 (B6)

ψk,−,⇑ =


−ie−

iξk
2 sgn(ξk) cos

(
χk

2

)
sin
(
ωk

2

)
ie−

1
2 i(ξk−2φk)sgn(ξk) sin

(
χk

2

)
sin
(
ωk

2

)
ie
iξk
2 sgn(ξk) cos

(
χk

2

)
cos
(
ωk

2

)
ie

1
2 i(ξk+2φk)sgn(ξk) sin

(
χk

2

)
cos
(
ωk

2

)
 ψk,−,⇓ =


ie−

1
2 i(ξk+2φk)sgn(ξk) sin

(
χk

2

)
cos
(
ωk

2

)
−ie−

iξk
2 sgn(ξk) cos

(
χk

2

)
cos
(
ωk

2

)
ie

1
2 i(ξk−2φk)sgn(ξk) sin

(
χk

2

)
sin
(
ωk

2

)
ie
iξk
2 sgn(ξk) cos

(
χk

2

)
sin
(
ωk

2

)


(B7)

where the angles are defined in terms of the coefficients
of the general Hamiltonian as

ξk = arctan

(
εy0,k

εx0,k

)
(B8)

ωk = arctan


√
ε2x0,k + ε2y0,k

εzz,k

 (B9)

χk = arctan


√
ε2zx,k + ε2zy,k√

ε2x0,k + ε2y0,k + ε2zz,k

 (B10)

φk = arctan

(
εzy,k
εzx,k

)
(B11)

Note that the appearance of sgn(ξk) in the definition of

the − band states is ill-defined if ξk = 0; since ξk =
−ξ−k, however, on this set of measure zero we can define
sgn(ξk) = 1 and sgn(ξ−k) = −1.

A key feature of this pseudospin basis is that it con-
verges smoothly to the electronic spin in the limit of
vanishing SOC, which is reached when ωk → π

2 and
χk → 0. Other important cases are a purely Rashba
SOC (εzz,k = 0), where we have ωk = π

2 , and a purely
Ising SOC (εzx,k = εzy,k = 0) which is characterized by
χk = 0. In the latter case the pseudospin is again equiv-
alent to the electronic spin.

We now consider the projection of the spin operators
onto the pseudospin basis of each band:

τ0σx → sin(ωk)
(
cos(χk) sin2(φk) + cos2(φk)

)
sx(B12)
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(a) (b)

FIG. 6. The dependence of the effective g-factor magnitude
on the Γ point Fermi surface pocket (a) and maximum mag-
nitude on the M point Fermi surface pocket (b) on the ratio
of SOC to interlayer hopping and relevant Fermi wavevector
kF .

+ sin2
(χk

2

)
sin(ωk) sin(2φk)sy (B13)

+ sin(χk) cos(ωk) cos(φk)sz (B14)

τ0σy → sin2
(χk

2

)
sin(ωk) sin(2φk)sx (B15)

+ sin(ωk)
(
sin2(φk) + cos(χk) cos2(φk)

)
sy(B16)

+ sin(χk) cos(ωk) sin(φk)sz (B17)

τ0σz → cos(χk)sz (B18)

The pseudospin and Zeeman fields are not generally
colinear, with the notable exception of a c-axis Zee-
man field. In both the Rashba and Ising limits in-plane
and out-of-plane Zeeman fields produce pseudospin fields
which are also strictly in-plane and out-of-plane, respec-
tively.

We now turn to the staggered singlet pairing state.

Expressed in the pseudospin basis we have

τziσy →± [sinχk sinωk (cosφkŝx + sinφkŝy) + cosωkŝz] iŝy
(B19)

Since we have a MCBB, the effective d-vector indeed
transforms as a state in the A2u irrep, with dk ∼
a1(fyx̂−fxŷ)+a2fA1u

z, where fν has the transformation
properties of a pν-harmonic, whereas fA1u

transforms as
A1u. We note that in the Ising limit the effective d-vector
is oriented along the c-axis, whereas in the Rashba limit
the d-vector is purely in-plane. Comparing this to the
projected spin operators, we note the remarkable result
that the staggered singlet state is immune to in-plane
and out-of-plane fields in the Ising and Rashba limits,
respectively. This is a particular feature of the staggered
singlet state which makes it generically robust against
applied fields.

Appendix C: Model calculation

In a c-axis field H, the free energy of the uniform sin-
glet superconductor relative to the normal state is given
by

FS = N0 |∆0|2 Φ

(
∆

∆0
,
kBT

∆0
,
gµBH

∆0

)
, (C1)

where N0 is the total density of state at the Fermi energy,
∆0 is the zero temperature and zero field superconduct-
ing gap. The latter is explicitly given by

∆0 = 2Λ exp

− 1

V0

∑
ν Nν

〈
|fν,k|2

〉
ν

 exp

−∑ν Nν
〈
|fν,k|2 log (|fν,k|)

〉
ν∑

ν Nν
〈
|fν,k|2

〉
ν

 , (C2)

where Λ is the energy scale for the pairing interaction (the exact magnitude of which does not enter into our calcu-
lations), V0 is the pairing interaction. The ν index in Eqn. C2 runs over the Fermi surfaces, and 〈. . .〉ν denotes the
average over the ν Fermi surface, with Nν the density of states and fν,k the form factor of the superconducting gap
in Fermi surface ν. In Eqn. C1, we have also defined the dimensionless function

Φ (δ, t, h) =
∑
ν

Nν
N0

∞∫
0

dx

〈
|fν,k|2 δ2√
x2 + |fν,k|2

− 2t
∑
σ=±

log

cosh

(
σ|~γzν,k|h+

√
x2+|fν,k|2δ2

2t

)
cosh

(
σ|~γzν,k|h+x

2t

)

〉
ν

(C3)

with
∣∣∣~γzν,k∣∣∣ the (momentum-dependent) effective g-factor on the ν Fermi surface pocket. For the pocket centered

about the M-A Dirac line, the effective g-factor vanishes with the radius of the pocket kF,MA → 0, while for the
pocket at the Γ-Z line the effective g-factor converges to the free electron value as kF,ΓZ → 0 due to the vanishing of
the ratio α̃k. Additionally, the effective g-factor of the M point Fermi surface pocket is strongly anisotropic. From
our k · p theory at kz = 0, the dependence of the effective g-factors on the model parameters and Fermi pocket size
are presented in Fig. S6. Clearly, for a wide parameter range the maximum of the g-factor for the M-A pocket is
typically close to zero, while for the Γ-Z pocket the g-factor is generally only slightly smaller than g0.
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The free energy of the staggered singlet (relative to the normal state) is similarly given by

FS,s = N0 |∆0,s|2 Φs

(
∆

∆0,s
,
kBT

∆0,s

)
, (C4)

where Φs is related to Eq. C3 by Φs(δ, t) = Φ(δ, t, h = 0) with the substitution |fν,k| →
√
rν,k |fν,k| which accounts

for the reduced magnitude of the gap on the Fermi surface, with rν,k the superconducting fitness on band ν [22].
The c-axis magnetic field does not enter this expression since it is not pair breaking for the staggered singlet state,
Assuming the pairing interaction V0 is of equal strength in both the uniform and staggered singlet channels, the
pairing potential at zero temperature is

∆0,s = 2Λ exp

− 1

V0

∑
ν Nν

〈
rν,k |fν,k|2

〉
ν

 exp

−∑ν Nν
〈
rν,k |fν,k|2 log

(√
rν,k |fν,k|

)〉
ν∑

ν Nν
〈
rν,k |fν,k|2

〉
ν

 . (C5)

The necessary choice of a specific value for the pairing interaction is the only non-universal aspect of our calculation,
as the energy scale Λ is irrelevant since the staggered singlet free energy can be expressed in terms of the ratio between
the two gap magnitudes, and we assume an intermediate pairing interaction strength of V0N0 = 0.3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1
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(a) (b)

FIG. 7. Variation of the effective g-factor magnitudes: (a)
The phase diagram for NM = 0.9N0, the blue line gives the
upper critical field of the uniform state, and the red dashed
line gives the boundary of the staggered state (shaded). (b)
Plot showing the dependence of the upper critical field of the
uniform state (Hmax) and the critical field (Ht) and temper-
ature (Tc,t) at which the field-induced transition occurs as a
function of the contribution of the density of states at the M
point to the total density of states, assuming an equal pair-
ing interaction strength in both channels, and gΓ = 0.8g0 and
max(gM ) = 0.2g0.

We minimize the free energy of the uniform and stag-
gered singlet states, Eqs. C1 and C4, and compare the
two over the range of temperature and field to obtain the
phase diagram. Reasonable variation of the effective g-
factor magnitudes or interaction strength does not quali-
tatively alter the phase diagram. However, the reduction
of the effective g-factor at the Γ point and enhancement
at the M point in Fig. S 7 reduces the critical field magni-
tudes, but does not qualitatively alter the phase diagram
otherwise.

We can additionally consider a model with Fermi sur-
face pockets around the M-A and X-R Dirac lines, where
the latter pocket has a strongly anisotropic effective g-
factor which is independent of kF,XR. For reasonable
ratios of the SOC strength and interorbital hopping in-

tegral it has a maximum value close to the bare g0, al-
though the anisotropy significantly reduces the average
value of the effective g-factor. In this model, we find that
the M-A pocket is still the most significant contributor
to the stability of the staggered singlet state, but that
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0
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(b)

FIG. 8. Two pocket model with pockets at M -A and X-R: (a)
The phase diagram for NM = 0.9N0, the blue line gives the
upper critical field of the uniform state, and the red dashed
line gives the boundary of the staggered state (shaded). (b)
Plot showing the dependence of the upper critical field of the
uniform state (Hmax) and the critical field (Ht) and temper-
ature (Tc,t) at which the field-induced transition occurs as a
function of the contribution of the density of states at the M
point to the total density of states, assuming an equal pairing
interaction strength in both channels, and gX = 0.9g0 and
max(gM ) = 0.1g0.

the pocket about X-R is considerably less detrimental to
the staggered singlet state than the Γ-Z pocket, due to
the smaller average g-factor in the former. In Fig. S8 we
highlight the effect of including an X-R pocket instead of
the Γ-Z pocket, and see that the transition to the stag-
gered singlet state generically occurs at a higher value of
Tc,t.

As a final demonstration of the generality of the phase
diagram of the two pocket model, in Fig. S9 we provide
results for an M-A and Γ-Z model but with d-wave form
factors fk.
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FIG. 9. The phase diagram for NM = 0.9N0, gΓ = 0.9g0

and max(gM ) = 0.1g0 with (a) dx2−y2 -wave and (b) dxy-wave
form factors. The blue line gives the upper critical field of
the uniform state, and the red dashed line gives the bound-
ary of the staggered state (shaded). Here, Tc,0 is the critical
temperature for the d-wave state.
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