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We extend the concept of nonterminal separating (or NTS) context-free grammar to non-
terminal separating m-macro grammar where the mode of derivation m is equal to
‘‘unrestricted’’, ‘‘outside-in’’ or ‘‘inside-out’’. Then we show some (partial) characteri-
zation results for these NTS m-macro grammars.

1. Introduction

Macro grammars have been introduced in [6,7] as a way to describe context-dependent aspects of
the syntax of programming languages. They are an extension of context-free grammars generat-
ing, for each mode of derivation, a family of languages in between the families of context-free
languages and of context-sensitive languages. Though outside-in (or OI-) macro languages are
able to describe correctly the declaration and use of program variables, they have the disadvan-
tage of possessing an NP-complete membership problem. For IO-macro languages the problem is
roughly as complex as for context-free languages [1]; so it can be solved deterministically in
polynomial time or in space log2n. But IO-macro grammars seem to be less suitable for modeling
the declaration of program variables.

Without considering this complexity issue any further we investigate in this paper a way to
restrict macro grammars. It is inspired by a restriction on context-free grammars, viz. by the non-
terminal separating (or NTS) condition [3]. For context-free grammars this restriction results in
deterministic languages that have ‘‘disjunct syntactic categories’’ [3,5]. The actual NTS condi-
tion requires that adding the reductions corresponding to the productions of a grammar does not
extend its set of sentential forms. Or, equivalently, the set of sentential forms does not change
when we apply the rules of the grammar in both directions.

In Section 2 we provide the necessary notions, elementary results and terminology on
macro grammars and on context-free grammars that satisfy the NTS condition. Section 3 is
devoted to the definition of NTS macro grammar and some of their properties as far as they
extend the corresponding results on NTS context-free grammars. We restrict our attention to
characterization results of the NTS property for m-macro grammars where m is a mode of deriva-
tion, i.e., m equals either ‘‘outside-in’’ (or OI), ‘‘inside-out’’ (or IO) or ‘‘unrestricted’’ (or UNR).
Finally, Section 4 contains some concluding remarks.

2. Preliminaries

2.1. Macro Grammars

Macro grammars have been introduced by Fischer in [6,7] as an extension of context-free gram-
mars. In essence, they differ from context-free grammars in possessing a ranked alphabet of non-
terminal symbols and so macro grammars are a particular kind of term rewriting system.
hhhhhhhhhhhhhhhh
* The work of the author has been supported by the Netherlands Organization for the Advancement of Pure Research
(Z.W.O.).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universiteit Twente Repository

https://core.ac.uk/display/11467952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 J.A. Hogendorp

A ranked alphabet ∆ is a finite set of symbols each of which is provided with a natural
number, called its rank. For i ≥0, let ∆i denote the subalphabet of ∆ that consists of all symbols of
rank i. Thus if i ≠ j, then ∆i∩∆ j = ∅ .

Definition 2.1.1. Let ∆ be a ranked alphabet and PC the set of punctuation characters (i.e., left
and right parenthesis and comma symbol). The set T (∆) of terms over ∆ is the smallest set of
strings over ∆∪ PC that satisfies

(i) ∆0∪ {λ}⊆ T (∆); λ denotes the empty word,

(ii) if t 1,t 2∈ T (∆), then t 1t 2∈ T (∆),

(iii) if A ∈∆ n and t 1,...,tn∈ T (∆), then A (t 1,...,tn)∈ T (∆). `

Formally, we ought to write A () if A ∈∆ 0; in practice we will omit the parentheses in that
case. However, the notation A (t 1,...,tn) does not imply that n >0.

Definition 2.1.2. A macro grammar G is a 5-tuple G = (Φ,Σ,X,P,S) where Φ is a ranked alphabet
of nonterminals, Σ is an alphabet of terminals, X is a finite set of variables (Each terminal and
variable has rank zero. The sets Φ, Σ and X are disjoint.), S ∈Φ 0 is the start symbol, and P is a
finite set of productions or rules of the form A (x 1,...,xn)→t with A ∈Φ n, x 1,...,xn are mutually dis-
tinct elements of X, and t is a term over Σ∪Φ∪ {x 1,...,xn}. `

Sentential forms of a macro grammar are terms over Σ∪Φ . Some specific subsets of terms
give rise to interesting special types of macro grammars and corresponding sets of sentential
forms. Viz. the set BT (Σ∪Φ ) of basic terms over Σ∪Φ is the subset of T (Σ∪Φ ) of terms in which
no A ∈Φ appears in the argument list of another symbol of Φ (i.e., nonterminals are not nested).
And the set LBT (Σ∪Φ ) of linear basic terms over Σ∪Φ is the subset of T (Σ∪Φ ) of terms contain-
ing at most one nonterminal.

A production A (x 1,...,xn)→tis called [linear] basic if t is a [linear] basic term. A macro
grammar is [linear] basic if all its productions are [linear] basic. A production A (x 1,...,xn)→t is
called argument preserving if for each i (1≤i ≤n), t contains at least one occurrence of xi, and it is
called non-duplicating if t contains at most one occurrence of xi for each i (1≤i ≤n).

In order to describe several modes of derivation for macro grammars we need the following
concepts.

Definition 2.1.3. Let σ be a term over Σ∪Φ . τ is a subterm of σ if τ is a term over Σ∪Φ and τ is a
substring of σ.

A subterm τ of σ occurs at top level in σ if there exist subterms σ1 and σ2 such that
σ = σ1τσ2. So τ does not appear within the argument list of some nonterminal in σ.

A term over Σ∪Φ is called expanded if it contains no nonterminals together with its associ-
ated argument list, or equivalently, if it is a string over Σ. `

Using the productions of a macro grammar one can expand terms. As usual we distinguish
three modes of derivation.
Unrestricted mode (UNR): An occurrence of a nonterminal together with its arguments can be
expanded according to a production by replacing the nonterminal and its arguments by the right-
hand side of that production in which the arguments have been substituted for the corresponding
variables.
Inside-Out (IO): A nonterminal with its arguments is expanded only if its arguments are all
expanded terms.
Outside-In (OI): A nonterminal with its arguments is expanded only if it occurs at top level.
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Each of these modes of derivation gives rise to a derivation relation, formally defined as fol-
lows.

Definition 2.1.4. Let G = (Φ,Σ,X,P,S) be a macro grammer and let σ,τ∈ T (Σ∪Φ ). The relations
⇒ UNR, ⇒ IO and ⇒ OI over T (Σ∪Φ ) are defined by
(1) σ ⇒ UNRτ holds if σ contains a subterm of the form A (t 1,...,tn) where A ∈Φ n and
t 1,...,tn∈ T (Σ∪Φ ), P contains a production A (x 1,...,xn)→t and τ results from σ by substituting
A (t 1,...,tn) by t [t 1/x 1,...,tn/xn].
(2) σ ⇒ IOτ holds in case σ ⇒ UNRτ and all the arguments of the rewritten nonterminal are
expanded terms.
(3) σ ⇒ OIτ holds in case σ ⇒ UNRτ and the subterm of σ which is rewritten occurs at top level in
σ. `

Let ≤=m be the converse of ⇒ m, i.e., for all σ,τ∈ T (Σ∪Φ ), σ≤=mτ holds if and only if τ ⇒ mσ.
And let <==> m be the union of ⇒ m and ≤=m. The reflexive and transitive closures of ⇒ m, ≤=m

and <==> m are denoted by ⇒ m
∗ , ≤=m

∗ and <==> m
∗ , respectively. In case σ≤=m

∗ τ [σ≤=mτ] we say that
σ reduces [directly] to τ.

It is easy to see that <==> m
∗ is a congruence relation. Obviously, it is an equivalence relation

and the congruency follows from: σ<==> m
∗ τ and α<==> m

∗ β imply σα<==> m
∗ τβ; for m =UNR this is

trivial and in the other cases it follows from the fact that concatenation does not cause any addi-
tional nesting.

Definition 2.1.5. Let G be a macro grammar and m a mode of derivation. An m-macro grammar
is a pair (G,m), or simply denoted by G when m is known from the context. The language gen-
erated by an m-macro grammar G = (Φ,Σ,X,P,S) is defined by

Lm(G) ={w ∈Σ ∗ cS ⇒ m
∗ w}.

By OI, IO and UNR we denote the family of languages generated by OI-, IO- and UNR-macro
grammars, respectively. `

In [6] Fischer proved the equality OI =UNR, and the fact that IO and OI are incomparable.

In the sequel many of our results are restricted to macro grammars which possess the pro-
perty that every term derived by the macro grammar has a derivation that ultimately yields a
string over the terminal alphabet. These macro grammars are called admissible macro grammars
[6]. This property is defined as follows.

Definition 2.1.6. A m-macro grammar G = (Φ,Σ,X,P,Z) with Z ⊆Φ 0 is admissible if either Φ =Z

and P = ∅ or
(1) for each A ∈Φ , there exists a sentential form of G in which A occurs,
(2) for each A ∈Φ n (n ≥0) and each σ1,...,σn∈Σ ∗ there exists a string w over Σ such that
A (σ1,...,σn) ⇒ m

∗ w. `

In [6] it is shown that for each m-macro grammar there exists an equivalent admissible m-
macro grammar. For m = IO every (G,m) has an equivalent admissible subgrammar; for m =OI the
task to find such an admissible grammar is more elaborate.

Example 2.1.7. Let L 0⊆ {0,1}∗ the language containing exactly those words in which the number
of 1’s is equal to 2n for some n ≥0. L 0 is generated by the OI-macro grammar G = (Φ,Σ,X,P,S) with
Φ = Φ0∪Φ 1, Φ0 ={S,A}, Φ1 ={B}, X ={x}, Σ ={0,1} and P consists of the rules

S → B (A)

B (x) → B (xx) c x

A → 0A c A 0 c 1
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In [6] it has been shown that L 0 cannot be generated by any IO-macro grammar. `

2.2. The NTS Property for Context-Free Grammars

NTS or nonterminal separating grammars have been introduced by Boasson [3]. A context-free
grammar possesses the NTS property if its set of sentential forms is invariant when we apply the
rules in both directions, i.e., when we use apart from its productions the corresponding reductions
too.

Let G = (V, Σ,P,Z) be a context-free grammar with alphabet V, terminal alphabet Σ (Σ⊆ V), set
of productions P, and start set Z (Z ⊆ V −Σ). For each ω∈ V ∗ we denote the set of words over Σ
derivable from ω by G as

L (G, ω) ={w ∈Σ ∗ cω⇒ ∗ w}.

We call this set the language generated by G from ω. The language generated by G is

L (G) ={w ∈Σ ∗ c∃ S ∈ Z : S ⇒ ∗ w}.

The set of sentential forms generated by G from ω∈ V ∗ is

Lii(G, ω) ={ψ∈ V ∗ cω⇒ ∗ ψ}.

The relations ≤=, ≤=∗ , <==> and <==> ∗ are defined in a way similar to §2.1; however, historically
they were first defined for context-free grammars [3].

The set of words over V derivable from ω∈ V ∗ by both productions and the corresponding
reductions is

LRiii(G, ω) ={ψ∈ V ∗ cω<==> ∗ ψ}.

Definition 2.2.1. A context-free grammar G = (V, Σ,P,Z) has the NTS property or is an NTS gram-
mar if for all A ∈ V −Σ, LRiii(G,A) = Lii(G,A). A language L is called an NTS language if there exists
an NTS grammar that generates L. `

Proposition 2.2.2. [3,5]. Let G = (V, Σ,P,Z) be an NTS grammar. Then for all A and B in V −Σ,
either Lii(G,A)∩Lii(G,B) = ∅ or Lii(G,A) =Lii(G,B) holds. `

This property motivates the name of the concept defined in 2.2.1. However, the converse of
2.2.2 does not hold; e.g. {a nb n cn ≥1}∪ {a nb 2n cn ≥1} is not an NTS language [5], but it is easy to
show that this language can be generated by a grammar that possesses ‘‘disjunct syntactic
categories’’.

On the other hand NTS grammars can be characterized in the following way.

Theorem 2.2.3. [5,10]. Let G = (V, Σ,P,Z) be a context-free grammar. G has the NTS property if
and only if for all A,B ∈ V −Σ and for all α,β,u ∈ V ∗ the following implication holds:

if A ⇒ ∗ αu β and B ⇒ ∗ u, then A ⇒ ∗ αB β. `

For further details of context-free NTS grammars and languages the reader is referred to
[2,3,5,8,9,10].

3. The NTS Property for Macro Grammars
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3.1. Definitions

We use the following notational conventions. Usually, (σ1,...,σn) is abbreviated to (σ
→

(n)). The

subscript (n) is necessary to distinguish for example A (x→(n)) and B (x→(k)). Only if no confusion is

possible we write x→. For A ∈Φ , A (x→) is the left-hand side of a production; so A (x→) =A if A ∈Φ 0. In
the sequel an m-macro grammar will have a finite set Z (Z ⊆Φ 0) of initial symbols of rank 0

instead of a single initial symbol; cf. the definition of NTS context-free grammar.

Definition 3.1.1. Let G = (Φ,Σ,X,P,Z) be an m-macro grammar. Then the language generated by
(G,m) is

Lm(G) ={w ∈Σ ∗ c∃ S ∈ Z : S ⇒ m
∗ w},

and for each t ∈ T (Σ∪ X ∪Φ ),
Lm(G,t) ={w ∈ (Σ∪ X)∗ ct ⇒ m

∗ w},
Liim(G,t) ={ω∈ T (Σ∪ X ∪Φ ) ct ⇒ m

∗ ω},
LRiiim(G,t) ={ω∈ T (Σ∪ X ∪Φ ) ct<==> m

∗ ω}. `

We are now ready to define the nonterminal separating property for m-macro grammars.

Definition 3.1.2. An m-macro grammar G = (Φ,Σ,X,P,Z) has the NTS property or is an NTS m-
macro grammar if for all n ≥0, A ∈Φ n, {x 1,...,xn}⊆ X,

LRiiim(G,A (x→)) =Liim(G,A (x→)). `

Here we consider the variables x 1,...,xn as members of a terminal alphabet Σ′ with Σ⊆Σ′ , according
to Fischer [6]; cf. also [4].

Proposition 3.1.3. Let G =(Φ,Σ,X,P,Z) be an NTS m-macro grammar. Then for all n,k ≥0, A ∈Φ n,
B ∈Φ k, {x 1,...,xn}⊆ X , {x 1,...,xk}⊆ X,

Liim(G,A (x→(n)))∩Liim(G,B (x→(k))) = ∅
or

Liim(G,A (x→(n))) =Liim(G,B (x→(k))).

Proof: Let ω be an element of Liim(G,A (x→(n)))∩Liim(G,B (x→(k))). Then A (x→(n)) ⇒ m
∗ ω as well as

B (x→(k)) ⇒ m
∗ ω holds. This implies A (x→(n))<==> m

∗ B (x→(k)). With the NTS property of G we get

A (x→(n)) ⇒ m
∗ B (x→(k)) and B (x→(k)) ⇒ m

∗ A (x→(n)) which implies Liim(G,A (x→(n))) =Liim(G,B (x→(k))). `

We see that NTS m-macro grammars have a similar ‘‘nonterminal separating property’’ as
context-free grammars; cf. Proposition 2.2.2.

Example 3.1.4. Consider the linear basic macro grammar G = (Φ,Σ,X,P,Z) with Φ = Φ0∪Φ 3,
Φ0 ={S} =Z, Φ3 ={A}, X ={x,y,z}, Σ ={a,b,c, [,],#}, and P consists of the productions

S → A (λ,λ,λ)

A (x,y,z) → A (ax,by,cz)

A (x,y,z) → [x#y#z ]

The language generated by G is L (G) ={[a n#b n#c n] cn ≥0}, and
Lii(G,S) ={S}∪ {A (a n,b n,c n) cn ≥0}∪ L (G). Because A (a n,b n,c n), (n ≥1) only reduces to terms
A (a k ,b k ,c k) with 0≤k <n, and [a n#b n#c n] only reduces to A (a n,b n,c n), we have Lii(G,S) = LRiii(G,S).
A similar argument for A (x,y,z) yields Lii(G,A (x,y,z)) = LRiii(G,A (x,y,z)); so G is an NTS macro
grammar. `

We see also that in case Φ = Φ0 and, consequently, G is a context-free grammar, Definition
3.1.2 corresponds to Definition 2.2.1 for context-free grammars.
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3.2. Properties of NTS Macro Grammars

This section is devoted to some results which generalize Theorem 2.2.3 to m-macro grammars.
To facilitate formulation and proofs we use the following notation.

Definition 3.2.1. Let G = (Φ,Σ,X,P,Z) be an m-macro grammar. Then G has property Π(m) if for

all A ∈Φ n, B ∈Φ k, u,αu β∈ T (Σ∪ X ∪Φ ), with {x 1,...,xn}⊆ X and σ
→

(k) ∈ T k(Σ∪ X ∪Φ ) the following
implication holds

if A (x→(n)) ⇒ m
∗ αu β and B (σ

→
(k)) ⇒ m

∗ u,

then A (x→(n)) ⇒ m
∗ αB (σ

→
(k))β. `

First, we note that property Π(m) is a natural extension of the property mentioned in
Theorem 2.2.3 in the sense that if Φ = Φ0, i.e., G is context-free, the two properties coincide. To
establish Theorem 3.2.3 we need the following lemma.

Lemma 3.2.2. Let G be an admissible m-macro grammar. Let ω,ψ∈ T (Σ∪ X ∪Φ ). Then ω⇒ UNRψ
implies ω<==> OI

∗ ψ as well as ω<==> IO
∗ ψ. As a corollary we have ω⇒ UNR

∗ ψ implies ω<==> m
∗ ψ for

both m =OI and IO.

Proof: Let ω = αA (σ
→

)β with A ∈Φ n, n ≥0, σ
→

∈ T n(Σ∪ X ∪Φ ) and ψ = αδ(σ
→

)β. Then ω⇒ UNRψ using the

rule A (x→) → δ(x→), δ(x→)∈ T (Σ∪ X ∪Φ ).

m =OI. First we have αA (σ
→

)β ⇒ OI
∗ α′A (σ

→
)β′. This is the string obtained from ω such that every

A (σ
→

) is on top level. Next we derive α′A (σ
→

)β′ ⇒ OI
∗ α′δ(σ

→
)β′. Now all new occurrences of δ(σ

→
) are

on top level; so we can write α′δ(σ
→

)β′≤=OI
∗ αδ(σ

→
)β.

m = IO. Similarly, using A (σ
→

) ⇒ IO
∗ A (t→), A (t→) ⇒ IO

∗ δ(t→) and δ(t→)≤=IO
∗ δ(σ

→
), where t→∈ (Σ∗ )n. `

Theorem 3.2.3. Let G be an admissible m-macro grammar. Then (G,m) is an NTS m-macro
grammar if and only if G has property Π(m).

Proof: First we prove the if-part. We have to show for G satisfying Π(m) that for each A ∈Φ n

(n ≥0),

Liim(G,A (x→)) =LRiiim(G,A (x→)).
The inclusion from left to right (⊆ ) is trivial. To establish the converse inclusion (⊇ ), we ought

to prove that A (x→)<==> m
∗ t implies A (x→) ⇒ m

∗ t. This is done by induction on the length of <==> m
∗ .

Basic step (p =0): A (x→)<==> m
0 t implies A (x→) ⇒ m

∗ t trivially.

Induction step. As induction hypothesis we take: A (x→)<==> m
p t implies A (x→) ⇒ m

∗ t.

Consider A (x→)<==> m
p +1 t. We distinguish two cases:

Case 1. A (x→)<==> m
p t ′ ⇒ mt. Obvious.

Case 2. A (x→(n))<==> m
p t ′≤=mt. Suppose t ⇒ mt ′ by the derivation step B (σ

→
(k)) ⇒ mu and let

t = αB (σ
→

(k))β, t ′ = αu β with αu β, u, B (σ
→

(k))∈ T (Σ∪ X ∪Φ ). By the induction hypothesis we have

A (x→(n)) ⇒ m
∗ t ′. Using Π(m) on A (x→(n)) ⇒ m

∗ αu β and B (σ
→

(k)) ⇒ mu we get A (x→(n)) ⇒ m
∗ αB (σ

→
(k))β = t.

This completes the induction and the proof of the second inclusion.

To prove the only if-part we need the following. Let G be an NTS m-macro grammar. Then

for all u, αu β∈ T (Σ∪ X ∪Φ ), B ∈Φ k, σ
→

(k) ∈ T k(Σ∪ X ∪Φ ),

B (σ
→

(k)) ⇒ m
∗ u implies αB (σ

→
(k))β<==> m

∗ αu β.
It is easy to see that for m =IO and m =UNR this holds even without G being NTS and with ⇒ m

∗

instead of <==> m
∗ . For m =OI we obtain this implication as follows. If B (σ

→
(k)) ⇒ OI

∗ u, then

B (σ
→

(k)) ⇒ UNR
∗ u trivially; so αB (σ

→
(k))β ⇒ UNR

∗ αu β and by Lemma 3.2.2. we have

αB (σ
→

(k))β<==> OI
∗ αu β. (Note that because G is NTS, we now can even prove the stronger fact:

B (σ
→

(k)) ⇒ OI
∗ u implies αB (σ

→
(k))β ⇒ OI

∗ αu β).
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Now, if A (x→(n)) ⇒ m
∗ αu β and B (σ

→
(k)) ⇒ m

∗ u, then we get A (x→(n))<==> m
∗ αB (σ

→
(k))β. Since (G,m)

is NTS, we conclude with A (x→(n)) ⇒ m
∗ αB (σ

→
(k))β. `

3.3. The Pre-NTS Property for Macro Grammars

Closely connected to the NTS property for context-free grammars is the pre-NTS property
[3,5,9]; informally, the pre-NTS property equals the NTS property formulated for terminal strings
only. It is still an open problem whether these two properties are equivalent for context-free
grammars [3,5,9].

In this section we introduce and study the pre-NTS property for m-macro grammars.

Definition 3.3.1. Let G = (Φ,Σ,X,P,Z) be an m-macro grammar with Z ⊆Φ 0. Then (G,m) is pre-
NTS or has the pre-NTS property if for all A ∈Φ n (n ≥0), and {x 1,...,xn}⊆ X,

Lm(G,A (x→)) =LRm(G,A (x→)) where LRm(G,A (x→)) =LRiiim(G,A (x→))∩(Σ∪ X)∗ . `

Definition 3.3.2. Let G = (Φ,Σ,X,P,Z) be an m-macro grammar with Z ⊆Φ 0. Then G has property

π(m) if for all A ∈Φ n (n ≥0), B ∈Φ k, u ′,αu β∈ (Σ∪ X)∗ , {x 1,...,xn}⊆ X, and τ
→

∈ T k(Σ∪ X ∪Φ ), the follow-
ing implication holds:

if A (x→) ⇒ m
∗ αu β, B (τ

→
) ⇒ m

∗ u and B (τ
→

) ⇒ m
∗ u ′,

then A (x→) ⇒ m
∗ αu ′β. `

We want to prove the equivalence of Definition 3.3.1 and Definition 3.3.2. It turns out to be the
easiest way to do this by introducing a second property ρ(m) which is equivalent to both of them.

Definition 3.3.3. An m-macro grammar G has property ρ(m) if for all A ∈Φ n (n ≥0), and
{x 1,...,xn}⊆ X, t ∈ T (Σ∪ X ∪Φ ), u,u ′∈ (Σ∪ X)∗ the following implication holds:

if A (x→) ⇒ m
∗ u, t ⇒ m

∗ u, and t ⇒ m
∗ u ′, then A (x→) ⇒ m

∗ u ′. `

Theorem 3.3.4. Let G be an admissible m-macro grammar. Then the following statements are
equivalent:

(1) (G,m) is pre-NTS,
(2) G has property π(m),
(3) G has property ρ(m).

Proof: (1) ⇒ (2): Suppose there exist derivations B (τ
→

) ⇒ m
∗ u, B (τ

→
) ⇒ m

∗ u ′ and A (x→) ⇒ m
∗ αu β for u ′,

αu β∈ (Σ∪ X)∗ . Because αu β is a word over Σ∪ X there is no distinction between the three modes

of reduction from αu β. Therefore we have A (x→) ⇒ m
∗ αu β≤=m

∗ αB (τ
→

)β. Now in αB (τ
→

)β, B (τ
→

) is on

top level, so we continue with αB (τ
→

)β ⇒ m
∗ αu ′β which is a word over Σ∪ X. Thus A (x→)<==> m

∗ αu ′β
and, as (G,m) is pre-NTS, A (x→) ⇒ m

∗ αu ′β. Hence G has property π(m).

(2) ⇒ (3): Let A (x→) ⇒ m
∗ u, t ⇒ m

∗ u and t ⇒ m
∗ u ′. Obviously, it is possible to write t as an unique

sequence of terms, viz. t = t 1...tk, such that no ti is a concatenation of two or more terms. It is clear
that in expanding some ti, none of the other terms tj is affected. So we can write u as u 1...uk and

u ′ as u 1 ′...uk ′ with ti ⇒ m
∗ ui and ti ⇒ m

∗ ui ′, respectively. Now we have for some i, 1≤i ≤k A (x→) ⇒ m
∗

u 1...ui ...uk, ti ⇒ m
∗ ui, ti ⇒ m

∗ ui ′, and with π(m) we get A (x→) ⇒ m
∗ u 1...ui ′...uk. We apply this argument

to each ui consecutively, which finally yields A (x→) ⇒ m
∗ u 1 ′...uk ′ = u ′ which is the desired result.

(3) ⇒ (1): We have to show LRm(G,A (x→))⊆ Lm(G,A (x→)), which we do by induction on the number

of reduction steps in A (x→)<==> m
∗ w, with w ∈ (Σ∪ X)∗ . We denote this by <==> m

∗ n which means that
α<==> m

∗ nβ holds if and only if α<==> m
∗ β in which n reduction steps have been used.

Basic step (n =0). A (x→)<==> m
∗ 0 w directly implies A (x→) ⇒ m

∗ w.
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Induction step. As induction hypothesis we have: A (x→)<==> m
∗ n w implies A (x→) ⇒ m

∗ w. Let

A (x→)<==> m
∗ n +1 w. To show that A (x→) ⇒ m

∗ w we look at the last reduction step in A (x→)<==> m
∗ n +1 w.

We write this as A (x→)<==> m
∗ n t≤=mt ′ ⇒ m

∗ w. Because G is admissible there is a word u ∈ (Σ∪ X)∗ with

t ⇒ m
∗ u. Applying the induction hypothesis we get A (x→) ⇒ m

∗ u, with t ′ ⇒ m
∗ u, and t ′ ⇒ m

∗ w and pro-

perty ρ(m) this gives us A (x→) ⇒ m
∗ w. `

4. Concluding Remarks

In the previous section we generalized some characterizations of NTS and pre-NTS context-free
grammars to corresponding statements for (pre-) NTS m-macro grammars. On the other hand one
wants results that are specific for NTS macro grammars in the sense that there is no analogue for
context-free grammars. Or, in other words, results that are due to the fact that we deal with
macro grammars rather than context-free grammars.

A first example of such a result shows that NTS ‘‘reduced macro grammars’’, i.e., admissi-
ble NTS macro grammars with no initial symbols in the right-hand sides of their productions, are
argument-preserving.

Proposition 4.1. Let G = (Φ,Σ,X,P,Z) be an admissible NTS m-macro grammar, with no elements
of Z occurring in the right-hand side of any production. Then G is argument-preserving.

Proof: Suppose we have a production rule A (x 1,...,xn) → t with A ∉Φ 0, which is not argument-
preserving, say xi does not occur in t, 1≤i ≤n. Suppose further that we have obtained a word
ω∈ T (Σ∪Φ ) derived from some S ∈ Z on which this rule is applicable. Writing ω as αA (σ1,...,σn)β
we derive

αt [σ1/x 1,...,σi −1/xi −1,σi +1
/xi +1,...,σn/xn]β.

This last term however is, for instance, for some T in Z reducible to αA (σ1,...,σi −1,T, σi +1,...,σn)β,
which we write as ω(T). So we have S<==> m

∗ ω(T). Since G is NTS, we obtain S ⇒ m
∗ ω(T). But no

production rule can ever introduce a T from Z in a sentential form. Thus we cannot derive such a
term ω(T) from S. `

The following statement is much more interesting. However, we are unable to prove it and
therefore we formulate it as

Conjecture 4.2. Each admissible NTS IO-macro grammar generates a basic macro language. `

The first easy step in proving this conjecture, consists of the following observation.

Lemma 4.3. Let G be an admissible NTS IO-macro grammar. Then for all A ∈Φ ,

LiiUNR(G,A (x→)) =LiiIO(G,A (x→)).

Proof: We only have to show LiiUNR(G,A (x→))⊆ LiiIO(G,A (x→)), since the converse inclusion is trivial.

Let t ∈ T (Σ∪ X ∪Φ ) and A (x→) ⇒ UNR
∗ t. Then we have by Lemma 3.2.2 A (x→)<==> IO

∗ t, and using the

fact that (G,IO) is NTS, we obtain A (x→) ⇒ IO
∗ t. `

In order to complete the proof of Conjecture 4.2 it is sufficient to establish

Conjecture 4.4. Let G be an NTS IO-macro grammar that contains a nested production

A (x→) → B (γ
→

(x→)) (∗ )

i.e., some entry of γ
→

contains a nonterminal symbol. If β(x→)∈ LUNR(G,B (x→)), then in the derivation

A (x→) ⇒ IO
∗ β(γ

→
(x→)) the rule (∗ ) has not been applied. `

Acknowledgment. I thank Peter Asveld for his helpful comments and for his aid during the
preparation of the text.
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tional Colloquium on Automata Languages and Programming’’ Lect. Notes Comp. Sci. 85
(1980) 109-118, Springer-Verlag, Berlin - Heidelberg - New York.

4. J. Engelfriet, E.M. Schmidt & J. van Leeuwen: Stack machines and classes of non-nested
macro languages, J. Assoc. Comput. Mach. 27 (1980) 96-117.

5. L. Boasson & G. Sénizergues: NTS languages are deterministic and congruential, J. Com-
put. System Sci. 31 (1985) 332-342.

6. M.J. Fischer: Grammars with Macro-like Productions, Ph.D. Thesis (1968), Harvard
University, Cambridge, Mass.

7. M.J. Fischer: Grammars with macro-like productions, Proc. 9th Ann. IEEE Symp. on
Switching and Automata Theory (1968) 131-142.

8. Ch. Frougny: Simple deterministic NTS languages, Inform. Process. Lett. 12 (1981) 174-
178.

9. G. Sénizergues: A new class of C.F.L. for which the equivalence is decidable, Inform. Pro-
cess. Lett. 13 (1981) 30-34.

10. G. Sénizergues: The equivalence and inclusion problems for NTS languages, J. Comput.
System Sci. 31 (1985) 303-331.


