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Strongly correlated systems far from equilibrium can exhibit scaling solutions with a dynamically
generated weak coupling. We show this by investigating isolated systems described by relativistic
quantum field theories for initial conditions leading to nonequilibrium instabilities, such as parametric
resonance or spinodal decomposition. The nonthermal fixed points prevent fast thermalization if classical-
statistical fluctuations dominate over quantum fluctuations. We comment on the possible significance of
these results for the heating of the early Universe after inflation and the question of fast thermalization in

heavy-ion collision experiments.
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Introduction.—Important phenomena in early Universe
cosmology (“Big Bang™) and collision experiments of
heavy nuclei (“Little Bangs’’) involve quantum fields far
from equilibrium. A prominent topical example concerns
the role of nonequilibrium instabilities for the process of
thermalization. The heating of the early Universe after
inflation may proceed via an instability such as parametric
resonance [ 1,2]. Similarly, plasma instabilities may play an
important role in our understanding of observations at the
Relativistic Heavy Ion Collider [3]. Instabilities also arise
in many other areas, such as dynamics of ultracold quan-
tum gases.

Nonequilibrium instabilities lead to exponential growth
of field fluctuations on time scales much shorter than the
asymptotic thermal equilibration time. Though their origin
can be very different, the subsequent evolution after an
instability follows similar patterns: After a fast initial
period of exponential growth, the dynamics slows down
considerably. At this stage, all processes become of order
unity, and one is dealing with a strongly correlated system
that has to be treated nonperturbatively, even if the under-
lying microscopic theory is weakly coupled. The subse-
quent evolution is characterized by power-law behavior
reminiscent of turbulence. It has been argued that this
behavior does not occur in the nonperturbative regime
and a perturbative analysis is employed with apparent
success [4,5].

In this Letter, we show that far-from-equilibrium dy-
namics in the nonperturbative regime can approach scaling
solutions with a dynamically generated weak coupling. As
an example, we consider scalar N-component quantum
field theory with quartic self-interaction following a para-
metric resonance instability. In the nonperturbative regime,
we find new scaling solutions with strongly enhanced low-
momentum fluctuations ~p~* as compared to a high-
temperature distribution ~p~!. They correspond to non-
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thermal fixed points of the time evolution equations for
correlation functions once classical-statistical fluctuations
dominate over quantum fluctuations. At sufficiently high
momenta, we recover the perturbative behavior ~p~=3/2
reported in the literature.

We employ the two-particle irreducible (2PI) large-N
expansion to next-to-leading order [6]. The 2PI approxi-
mation schemes have been applied to a variety of far-from-
equilibrium phenomena, including parametric resonance
[2] and tachyonic preheating [7]. They are known to de-
scribe the late-time approach to thermal equilibrium char-
acterized by Bose-Einstein or Fermi-Dirac distributions,
respectively [6,8]. The nonperturbative regime after an
instability is traditionally described using classical-
statistical field theory simulations, and we present a com-
parison of quantum and classical evolution.

Nonequilibrium instabilities.—We consider a relativistic
real scalar N —component quantum field ®, (a = 1, ..., N)
with A/(4!N)(®,®,)? interaction, where summation over
repeated indices is implied. The macroscopic field of the
quantum theory is given by ¢,(x) = (®,(x)), where the
brackets describe the trace for given initial density matrix.
There are two independent two-point correlation functions,
which can be associated to the anticommutator and the
commutator of two fields:

Fults 3) = 3 (0, 4001 = $o ()8, 0),
Pab(% y) = ([P, (x), Py (y)])-

Here, p is the spectral function, which is related to the
retarded propagator Gg(x,y) = p(x, y)O(xy — y9). The
statistical function F' is proportional to “occupation num-
n(t,p) +1/2=

for spatially homogeneous

ey

£

ber,” which may be taken as
[F(t, 20,0, F (1, 7:p)]5

=t
systems [6].
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The nonequilibrium time evolution of F and p is de-
scribed by coupled differential equations,

[Dxaac + M%c(x)]pcb (X, Y) = . ddZEgC(X, Z)pcb(Z, ))),

Xo

(0,800 + M2 (0)]F (3, y) = f " 17SE (%, 2)pep(z,y)

- f"o dz35:(x, 2 F (2, y),
2

and a similar equation for ¢,(x) [6]. These evolution
equations would be exact for known effective mass term
M?(¢, F), spectral (imaginary) part of the self-energy,
3P (¢, F, p), and statistical (real) part, 27 (¢, F, p). Here,
t; describes the initial time, and we will consider a pure
initial quantum state with spatially homogeneous fields

b4(t) = a()JON/AS,, 3)

for A < 1. All quantities will be given in units of the initial
oo = o(t = 0). The initial two-point functions are taken to
be diagonal with F,;, = diag{F|, Fy,..., F1} ~ O(N°A°),
and the initial spectral function is fixed by the equal-time
commutation relations.

Dynamics of parametric resonance in quantum field
theory has been studied in detail [2] using the 2PI 1/N
expansion to NLO [6]. Primary resonant amplification
occurs for the dominant transverse modes in the momen-
tum range 0 =< p? = ¢3/2. This is followed by a nonlinear
regime, where F| ~ O(N'/3A~2/3). Here, occupied low-
momentum modes act as sources for a secondary stage of
enhanced amplification in a broad higher momentum
range. The exponential growth stops when F; ~ F) ~
O(N°A~1), and the dynamics slows down considerably.
At this nonperturbative stage, all processes are of order
unity, and the system is strongly correlated.

Figure 1 shows F | (z, t, p) for times ¢t = 10, t = 40 in the
nonlinear regime, and # = 90 in the nonperturbative re-
gime. The solid line shows the result for the quantum
evolution for A = 0.01 and N = 4. For comparison, the
dashed line gives the same quantity as obtained from
simulations of the corresponding classical-statistical field
theory on a lattice with same initial conditions following
Ref. [9]. The precision of agreement between the curves is
remarkable. Quantum fluctuations are expected to be sup-
pressed if the classicality condition F? > p? is fulfilled
[9]. However, with p? being of order unity, the quantum
corrections turn out to be extremely small even for F? <
1. We emphasize that this is not a generic property of the
NLO approximation [6,9], but a consequence of the insta-
bility dynamics and A < 1. In turn, contributions beyond
NLO seem to play an inferior role even for the nonpertur-
bative regime.

Nonthermal fixed points.—Fixed points are time and
space translation invariant solutions of the evolution

6
10 . : : —

classical simulation -~
10° =90 ___—— . quantum (NLO) —— |

10* }

10% +

FJ_[tit!p]

102 Lo

10" t

10° t

10—1 . L
0.1 1

p

FIG. 1 (color online). Two-point function F(z,t;p) as a
function of momentum |p| for three different times. Quantum
(solid line) and classical (dashed line) evolution agree well even
where F(p) < 1.

Egs. (2), which require

See(P)F o (P) = 2Ee(P)Pes(P) = [33) (p) + 133 (p)]/A=0.
“)
Thermal equilibrium solves (4) using the fluctuation-
dissipation  relation Ffflf)(p) = [nr(po) + 1/2]p£;?)(p)
and correspondingly for self-energies [6]. We show (4)
has nonthermal approximate solutions if classical-
statistical fluctuations dominate over quantum fluctuations.
First, we analytically determine fixed point solutions
with Fab(p) = f(p)/Aaab’ pab(p) = p(p)aab’ and o =
const # 0. Second, these nontrivial solutions are shown
to describe well the slow dynamics in the nonperturbative
regime. At NLO of the 2PI 1 /N expansion in the classical-
statistical field theory limit, we have
o2

320 fd4kd4q54(p —q—k)
X [Aegr(k) + Aee(q) + Aee(p)]
X [p()f(@)f(p) + f(k)p(g)f(p)

Jad(pso) = =

= fk)f(@p(p)] (5)
where we summed over components a. Here,
1
Aei(p) = ————— 6)
P+ a(p)l?

with the resummed ‘“‘one-loop” retarded self-energy

Mx(p) = f d'qf@)Gep —q). ()

1
32m)*
Diagrammatically, J® contains contributions described by
the ““one-loop” graph in Fig. 2. In contrast to perturbative
Feynman diagrams, here lines correspond to self-
consistently dressed propagators F or p [6]. The full dot
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FIG. 2. NLO contributions to the fixed point Eq. (4).

denotes the effective vertex (6), which is graphically dis-
played in the lower graph of Fig. 2. It iteratively generates
the infinite series of resummed “‘chain” diagrams contrib-
uting at NLO in the 1/N expansion. Similarly,

IO (pro) = ] dkd'qd r8*(p+k—q—r)

18(2r)3
X Aeii(p +E{Lf (p)p(k) + p(p)f(K)]f(9)f ()

— () fWLf(@)p(r)+ plg) f(r)]}
X[1=A(p+ko)] )

corresponds to the ‘“‘two-loop” graph in Fig. 2 with
A(p; o) = 40”Re{Gr(p)/[1 + TIx(p)]}.

In the nonperturbative regime, where the dynamics is
slow, one can extract quantities such as A.(p) also directly
from the nonequilibrium quantum evolution by Fourier
transformation with respect to relative coordinates. The
result is shown in Fig. 3 for r =240 as a function of
three-momentum p for different values of the frequency
® = p,, with parameters as in Fig. 1. For momenta larger
than order unity, A.(p) tends to one. One observes that
this holds if either p or w is not small. Therefore, in this
range, the dynamics is well approximated by the one-
and two-loop expressions as displayed in Fig. 2 without
the effective vertex. Most strikingly, for small four-
momentum, the infinite series of O(1) contributions add
up to a substantially reduced effective coupling. The latter
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FIG. 3. The effective vertex at r = 240 as a function of spatial
momentum p for different frequencies w = p,.

is still slowly changing in time and is shown to approach a
power-law behavior in the following.

For scaling solutions, the correlators behave under si-
multaneous scaling p — sp and ¢ — s¢ as [10]

F(p) = s***F(sp), p(p) = s*p(sp),

&)
Aegr(P) = Y Aege(sp).

Similarly, we have Gg(p) = s*Gg(sp), and it follows that
Mg(p) = s¢Ilx(sp). Taking sp ~ 1, one concludes for
a >0 that [T4z(p) > 1 for p — 0. According to (6), the
infrared scaling behavior of the effective vertex in this case
is described by (9) with the exponent

y = —2a. (10)

Using this scaling behavior, we find J3)(p;o) =
s% (spyso) and I (p;0) = 52 (sp;0) such that
) (p;0) dominates the infrared dynamics. The field-
dependent part Jffa)(p; o) — Jfffl)(p;O) scales as J(a%l)(p; o)
since A(p; o) = s~ *A(sp; so) in this regime.
Accordingly, for the infrared, we consider solutions of
[ I (po, p;0) = 0. The integration over spatial mo-
mentum allows us to solve this equation using generalized
Zakharov transformations [11]. In this way, the problem is
reduced to simple algebraic conditions for the exponents.
E.g., to map the second term in the integrand sum of (8)
onto the first, we employ the transformation k — pp,/ky,
q — qpo/ko, r— rpo/ky as well as for the spatial p —
K po/ky, and similar for the third and fourth term. Using
the scaling properties (9), the integrand vanishes if o =
4 —vy)/3 or « = (5— v)/3. With (10), this yields two
nonthermal fixed point solutions for the infrared scaling
behavior:

a =35 (11)

We do not list classical thermal solutions (@ = 1, 0), which
appear as a consequence of the fluctuation-dissipation
relation discussed above. We emphasize that (11) cannot
be obtained from a perturbative 2 < 2 scattering analysis
[4,11], which we recover for vanishing 7.

The size of the one-loop retarded self-energy (7) dis-
tinguishes the low-momentum from a high-momentum
regime. The latter is defined by Ilz(p) < 1, and in
this range, the effective vertex scales trivially (y = 0)
according to (6) with A.q(p) = 1. Therefore, at high
momenta, Jﬁ)(p;o-) = szo‘J%(sp;sa') and J((ﬁ,)(p;O) =
s3"‘1§;2(s p;0) such that Jz(fa)(l?; o) dominates over
JW (p;0) for @ > 0. The field-dependent part 152(17; o) —
JE,‘L)(p;O) scales in the same way as JSL) (p;0) since here
A(p; o) = s°A(sp; so). A similar analysis as above yields
for fd3pJ£,3a)(w, p; ¢) = 0 in this regime

a=23/2. (12)
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FIG. 4 (color online). Occupation number as a function of
momentum for different times. The solid line corresponds to ¢ =
8000, along with fits ~|p|~* for low and ~|p|~3/2 for higher
momenta.

Consequently, simulation results may be fitted by pertur-
bative estimates down to rather low momenta [4].

It remains to show that the nonequilibrium evolution
approaches nonthermal fixed points. For this, we follow
the classical-statistical evolution numerically to late times
[12]. Figure 4 gives the occupation number n(z, p) as a
function of three-momentum at different times. We employ
N = 4 and a weak coupling A = 1073 in order to keep
quantum corrections small. The latest time shown is rep-
resented by the solid line. For a region of momenta above
|[pl = 1, the evolution is very well approximated by a
power-law behavior n(z, p) ~ |p|~%/? in agreement with
(12). As time proceeds, this region grows towards higher
momenta, which is indicated by the arrow in Fig. 4.

Going to smaller momenta, one first observes a transi-
tion region as expected from the above discussion. The
infrared behavior is consistent with a power-law that is
well approximated by a = 4. The evolution in this region
is very slow, as can be inferred from comparing to the t =
3000 line, and getting an even better possible agreement
between numerics and analytics would be very costly in
computational time. From the current data, the a =5
solution indicated in (11) is clearly unfavored.

Scaling solutions govern the nonequilibrium dynamics
only if classical-statistical fluctuations dominate [13]. For
initial conditions leading to instabilities, the statistical
fluctuations grow large. In this case, the system approaches
nonthermal fixed points exhibiting critical slowing down.
Nonthermal fixed points are unstable with respect to quan-
tum corrections, which eventually lead to thermalization.
The quantum evolution is diagrammatically described by
same topologies as displayed in Fig. 2 at NLO. However,
pairs of propagators f(p)f(g) in classical Egs. (5) or (8)
can be associated to f(p)f(q) + (A%/4)p(p)p(q) in the
quantum theory [6]. The coupling does not drop out, and

no universal scaling solutions appear if quantum correc-
tions dominate.

Nonthermal fixed points can excessively delay thermal-
ization. In the context of early Universe reheating, a most
conservative limit requires thermal equilibrium at a tem-
perature of order 10 MeV before Big Bang Nucleo-
synthesis. Even this might already rule out some very
weakly coupled inflaton models [4]; however, more real-
istic models have to be considered including quantum
corrections. In the context of heavy-ion collisions, QCD
plasma instabilities can lead to a regime with qualitatively
similar scaling behavior [5]. Classical simulations indicate
possible fast isotropization due to instabilities in about
1-2 fm/c for low momenta of less than 1-2 GeV [15].
However, subsequent scaling behavior leads to large iso-
tropization times for higher momentum modes in this case,
which seems incompatible with experimental findings. So
far, the role of quantum corrections for the lower occupied
high-momentum modes were not taken into account. The
question of whether it is possible to find also an effective
weak coupling in QCD, which may facilitate an analytic
quantum description, is exciting.
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