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ABSTRACT. Four theorems about commutative rings are proved with the aid

of the notion of a trivial ring.

0. Introduction. A ring R is trivial if 0 = 1 in R, that is, if R consists

of a single element. Although a trivial ring is a boring object, the fact that a

construction results in a trivial ring can be quite interesting. In this note we

prove the following four theorems from the point of view of trivial rings; in all four

theorems R C T are commutative rings with 1.

(1) If Rm maps onto Rn, and m <n, then R is trivial.

(2) If Rn maps one-to-one into Rm, and m < n, then R is trivial.

(3) If J2 a¿Az is a unit in i?[A], then o¿ is nilpotent for i > 1.

(4) If I is an ideal in R[X] such that 1 E TI, then each element of the annihilator

of / fl R is nilpotent.

Theorem 1 is a standard strong form of the invariance of the rank of a finite-rank

free module over a commutative ring [2]; Theorem 2 is a not-so-standard stronger

form of the same thing. Alternative formulations presuppose that R is nontrivial

and conclude that m > n; I find (1) and (2) more satisfactory. Theorem 1 says that

we can derive the equation 0 = 1 from the n equations in R that express the fact

that Rm maps onto Rn. Theorem 2 says that we can derive the equation 0 = 1

from the conditional equations:

n

if Y^ OijTj — 0 for î = 1,... ,m, then r, = 0 for j = 1,... ,n.

j=i

The techniques developed in this paper were motivated by a desire to prove

Theorems 1 through 4 in a constructive manner, in the sense of Errett Bishop [1].

This in fact has been achieved, but the reader need not be familiar with constructive

mathematics to follow the proofs. I will mention, however, that by phrasing (1) and

(2) in terms of triviality, rather than nontriviality, we don't have to worry about

what inequality in R means. In connection with this, the reader might notice that

in our proofs we never have to decide whether two elements of R are equal or not

(of course we may know that they are equal).

Theorem 3 admits an elegant proof upon observing that each a¿, with » > 1,

must be in every prime ideal of R, and that the intersection of the prime ideals of

R consists of the nilpotent elements of R.  This proof gives no clue as to how to
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calculate n such that a" = 0, while such a calculation can be extracted from the

proof that we present.

Theorem 4, which is a bit technical, says that if / blows up in T[X], then I C\R

is big; in particular if I fl R = 0, and R is nontrivial, then / cannot blow up in

T[X]. An example of a proper ideal I that blows up in T[X] is obtained by letting

a,b,c and s be indeterminates over a field k, setting R = k[a,b,c]/(ca,cb,c2) and

T = R[s]/(sa + (1 - s)b), and letting / be the ideal in R[X] generated by 1 + aX

and 1 + bX. In this example I C\R= (c,a — b) has a nonzero annihilator (c), so we

cannot strengthen (4) to read that the annihilator of ID R is zero.

We rely heavily on the construction of the ring of fractions S~*R for S a subset

of R containing 1 and closed under multiplication. Many authors require S not

to contain 0, but this annoying negative statement is unnecessary since we allow

S~XR to be trivial. Indeed we draw interesting consequences from the triviality of

S-îR.

Recall that S_1R = {r/s:r E R and s E S} with ri/si = r2/s2 if there exists

s in 5 such that s(ris2 - r2si) — 0. In particular, S~1R is trivial if and only if

0 E S. We will always choose S to be {1, s, s2,ss,...} for some fixed element s in

R. This allows us to invert s in S_1R, and to conclude that s is nilpotent in R if

S~1R is trivial.

1. PROOF OF THEOREM 1. This one is easy; just a warm-up, really. Let <p

be a map from Rm onto Rn. Because tp is onto, there is a map ip from Rn to Rm

such that tpip = 1. Extend tp to Rn = Rm © Rn~m by setting tp(Rn~m) = 0, and

view tp as a map into Rn. If A is the n x n matrix of tp, and B the n x n matrix

of tp, then AB is the identity matrix, so (det A)(detB) = 1. On the other hand,

det 5 = 0 because the last row of B is all zeros. Hence 0 = 1, so R is trivial.    D

2. PROOF OF THEOREM 2. This proof is more interesting. Let A be the n x m

matrix of a one-to-one map tp from Rn into Rm. We first show that the elements

in the first column of A are nilpotent. If r is an element in the first column, then

let S = {l,r,r2,...} and pass to the ring T = S~1R. It is easily seen that A

is the matrix of a one-to-one map from Tn into Tm. Apply elementary row and

column operations to A, which amounts to changing the bases of Tm and Tn, so

that the first column and row of A are 0 except for a 1 in the upper left corner. Let

t\,..., en be the new basis for Tn. If m = 1 then <p(en) = 0, so 0 = 1 in T because

tp is one-to-one. If m > 1, then 0 = 1 in T by induction applied to the matrix that

results from A by deleting the first row and column. Thus r is nilpotent in R.

Let / be the ideal in R generated by the elements of the first column of A, and

let d,..., e„ be the natural basis of Rn. Then Ik = 0 for some k. But if Ike\ = 0

for k > 1, then <p(Ik~1ei) = 0, so 7fc_1e1 = 0 as tp is one-to-one. Thus ei = 0 so R

is trivial.    D

3. PROOF OF THEOREM 3. Suppose /(A) = amXm+am-iXm~1 + - ■ - + a0 and

g(X) = bnXn + bn-iXn-1 + ---+b0 are polynomials in R[X] such that f(X)g(X) =

1. It suffices to show that if am, am_i,..., ap+i are nilpotent, and p > 0, then ap

is nilpotent.

Let 5 = {l,ap,a2,...} and pass to S~*R. We shall show that if bn,bn-i, ■ ■ ■,

ba+i are nilpotent in S_1R, and q > 0, then bq is nilpotent in S~1R. This will

show that bn,- ■ ■ ,bo are nilpotent in S~1R, so 1 = f(X)g(X) is nilpotent in S_1R,

hence 0, and therefore ap is nilpotent in R.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1014 FRED RICHMAN

So suppose am,am-i,... ,ap+i and bn,bn-i, ■■■ ,bq+i are nilpotent in S 1i?.

Because p > 0 and fg = 1 we have ^2i+j=p+q ai°j — 0- Thus apbq is nilpotent in

S_1R, so bq is nilpotent in S~lR.

4. PROOF OF THEOREM 4. This is the most complicated proof; we break off a

piece as a lemma. I am indebted to Steve Merrin for pointing out how to simplify

the proof of this lemma.

LEMMA.   Let A be a matrix over R such that

(a) if (r, 0,..., 0) is in the row space of A over R, then r — 0,

(b) (1,0,..., 0) is in the row space over A over T.

Then R is trivial.

PROOF. Designate a finite number of rows of A as good, the rest being designated

bad, in such a way that

/ \ If a row of A is good, then it contains a 1, called a good 1, in a

column whose other entries are 0.

To start we may designate all rows as bad. We induct on the number of bad rows.

Here we show the constructivist colors: Why not just define a row to be good if it

satisfies (*)? Because to determine, in general, whether or not a row is good, we

must be able to decide whether or not an element of R is 1, or 0; and we need not

assume the ability to make such decisions for the purposes of proving this lemma.

In effect we proceed by backwards induction on the number of known good rows.

Suppose r is in a bad row. Let S = {l,r, r2,... } and consider A as a matrix

over S~1R. Clearly we can reduce the number of bad rows of A by elementary row

operations, so S_1R = 0 by induction; thus r is nilpotent in R. We have shown

that all elements in bad rows are nilpotent.

If pi denotes row i of A, then by hypothesis (b) we have

tiPi + t2p2 + ■■■ + tmpm = (1,0,..., 0)

for some elements ti,... ,tm ET. If all rows are bad, then 1 is nilpotent and we are

done. If pj has a good 1 in a column other than the first, then tj = 0. So we may

assume that some p, has a good 1 in the first column, and the remaining tjßj consist

of nilpotent elements. Then every entry of pi except the first is nilpotent. Let I

be the ideal of R generated by these nilpotent elements. If Ik = 0, and r E / ,

then rpt has zero entries except for the first, which is r, so r = 0 by hypothesis (a).

Therefore / = 0, so p¿ = (1,0,..., 0) whereupon 1 = 0 by hypothesis (a). Therefore

R is trivial.    D

Returning to Theorem 4, suppose first that I C\ R = 0. Write 1 as tiai + ■ ■ ■ +

tmam, with ti E T and a, E I. Applying the lemma to the matrix of coefficients

of the a, we conclude that R is trivial. Now let I D R he arbitrary and suppose

r(InR) = 0. Let S = {l,r,r2,...} and pass to S-1/?. As IC\R = 0 in S_1iî, we

conclude that S~lR is trivial, so r is nilpotent in R.
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