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Abstract. From an average (ideal) sampling/reconstruction process, the question arises whether
and how the original signal can be recovered from its average (ideal) samples. We consider the above
question under the assumption that the original signal comes from a prototypical space modelling
signals with finite rate of innovation, which includes finitely-generated shift-invariant spaces, twisted
shift-invariant spaces associated with Gabor frames and Wilson bases, and spaces of polynomial
splines with non-uniform knots as its special cases. We show that the displayer associated with
an average (ideal) sampling/reconstruction process, that has well-localized average sampler, can
be found to be well-localized. We prove that the reconstruction process associated with an average
(ideal) sampling process is robust, locally behaved, and finitely implementable, and thus we conclude
that the original signal can be approximately recovered from its incomplete average (ideal) samples
with noise in real time. Most of our results in this paper are new even for the special case that the
original signal comes from a finitely-generated shift-invariant space.
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1. Introduction. Modern digital data processing of functions (or signal or im-
ages) uses a discretized version of the original function that is obtained by (average)
sampling on a discrete set ([2]). The classical model is the Shannon sampling and
reconstruction on the band-limited space BΩ, the space of all square-integrable func-
tions on the real line with their Fourier transform supported in [−Ω,Ω]. From the
Shannon sampling theorem, sampling a function f in Bπ on the uniform grid Z yields
an `2 sequence (f(k))k∈Z, and conversely the original function f can be recovered
from its sampling data {f(k), k ∈ Z} by the following reconstruction formula:

f(x) =
∑
k∈Z

f(k)sinc(x− k), x ∈ R,(1.1)

where the sinc function is defined by sinc(x) = sin πx
πx . The above sampling and re-

construction theorem gives a framework for converting analog signals into sequences,
which can be processed digitally and converted back to analog signals via the recon-
struction formula (1.1). For the ideal sampling and reconstruction on the band-limited
space and the finitely-generated shift-invariant spaces, there are extensive literature
(see, for example, the recent review papers [2, 56] and monographs [11, 13, 42]).

In most of physical circumstance, due to the non-ideal acquisition device at the
sampling location, it is not realistic to measure the sample f(γ) of the original signal
f in a space V at the location γ exactly. So a better assumption is that the sampled
data are of the form 〈f, ψγ〉,

A : V 3 f 7−→ (〈f, ψγ〉)γ∈Γ,(1.2)

where ψγ , to be known as the average sampling functional, reflects the characteristic
of the nonideal acquisition device at the sampling location γ. We call the above
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sampling process as an average sampling process, and the collection Ψ := {ψγ , γ ∈ Γ}
of average sampling functionals as an average sampler. Clearly, the average sampling
process becomes an ideal sampling process if the delta function δγ is used as the
average sampling functional ψγ on every sampling location γ.

An easy model for the average sampling process is the discretization of the blurring
process encountered in many practical situation, such as in the process of a remote
camera imaging a scene and an observer viewing the sampled image ([58]). For the
average sampling and reconstruction on the band-limited space and on the finitely-
generated shift-invariant spaces, the reader may refer [1, 4, 5, 6, 21, 24, 27, 52, 53, 54,
60] and references cited therein.

The question arise from the average sampling process whether and how the orig-
inal function can be recovered from its average samples. Specifically, the first part
of the above question, which will be discussed in Section 4, can be described as fol-
lows: Given a class of functions V on Rd, find conditions on the average sampler
Ψ = {ψγ : γ ∈ Γ} under which any function f in V can be reconstructed uniquely
and stably from its average samples {〈f, ψγ〉 : γ ∈ Γ}.

The second part of the above question arisen from the average sampling process
is the reconstruction process from the average (ideal) samples:

D : (cγ)γ∈Γ 7−→
∑
γ∈Γ

cγψ̃γ ∈ V(1.3)

such that

DAf = f for all f ∈ V.(1.4)

Here for each γ ∈ Γ, the function ψ̃γ , to be known as the display block at the location
γ, reflects the characteristic of the display device at the sampling location γ. We
call the above reconstruction process as an average reconstruction process and the
collection Ψ := {ψ̃γ , γ ∈ Γ} of display blocks as an displayer.

For the efficiency and stability of the reconstruction process (1.3) and (1.4) to
recover a function f in the space V from its averaging samples {〈f, ψγ〉, γ ∈ Γ} or
from its ideal samples {f(γ), γ ∈ Γ}, we require that the corresponding displayer Ψ̃ :=
{ψ̃γ , γ ∈ Γ} is well-localized, and that the average sampling/reconstruction process
(1.3) and (1.4) is robust, local-behaved, and finitely-implementable. In this paper, we
show that those natural requirements for the average (ideal) sampling/reconstruction
process would be met when signals in the space V has finite rate of innovation and
the average sampler Ψ is well-localized, see Section 2.3 for our reasons to consider
sampling/reconstruction of signals with finite rate of innovation. Here a signal is said
to have finite rate of innovation if it has finite degree of freedom per unit of time, see
[22, 33, 39, 41, 44, 45, 57].

The paper is organized as follows. We divide Section 2 into five subsections. In
the first three subsections, we make some basic assumptions on the sampling set Γ,
the average sampler Ψ = {ψγ , γ ∈ Γ}, and the space V where the original function f
for the average sampling/reconstruction process comes from. Briefly, we assume that
the sampling set Γ is a relatively-separated subset of Rd, the average sampler Ψ is
well-localized in the sense that every average sampling functional ψγ in the average
sampler Ψ is essentially located in a neighborhood of γ ∈ Γ, and the space V is the
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space Vq(Φ,Λ), that is originally introduced in [51] for modelling signals with finite
rate of innovation. In the last two subsections, we recall some basic properties of
the space Vq(Φ,Λ) in [51], and introduce a simplified model of our average (ideal)
sampling/reconstruction process for readers’ convenience.

Since each display block ψ̃γ in the displayer Ψ̃ := {ψ̃γ , γ ∈ Γ} reflects the char-
acteristic of the display device at the sampling location γ, γ ∈ Γ, it is reasonable to
require that for each γ ∈ Γ, the display block ψ̃γ is essentially supported in a neigh-
borhood of the sampling location γ. In Section 3, derived from a general theorem
for localized frames ([8, Theorem 1], [23, Theorem 3.6] and [31, Theorem 13]), it is
shown that such an requirement would be met for average (ideal) sampling in the
space V2(Φ,Λ) if the average sampler Ψ and the generator Φ for the space V2(Φ,Λ)
are well-localized (Theorems 3.1 and 3.2), see Remark 3.1 for more general formula-
tion of the well-localization of a displayer. The well-localization of displayers will play
crucial roles in our study of stable average sampling in Vr(Φ,Λ) with r 6= 2 (Corollary
3.4), the robustness and local convergence of the reconstruction process from aver-
age (ideal) samples (Theorems 5.1 – 5.3 and 6.1 – 6.3), and exponential convergence
of an iterative algorithm for the reconstruction process from average (ideal) samples
(Theorems 7.1 and 7.2).

In Section 4, we find conditions on the average sampling sampler Ψ = {ψγ : γ ∈ Γ}
(respectively, on the ideal sampling set Γ) under which any function f in V2(Φ,Λ)
can be reconstructed uniquely and stably from its average samples {〈f, ψγ〉 : γ ∈ Γ}
(respectively, from its ideal samples {f(γ), γ ∈ Γ}), see Theorems 4.1 and 4.2.

In the average (ideal) sampling/reconstruction process, we should bring the fol-
lowing situations into our consideration: the average samples {〈f, ψγ〉 : γ ∈ Γ} may
involve some noises (caused, such as, by measurement, storage, or transmission), and
the average sampler Ψ may not be exactly same as the one we expect (such as, because
of the mathematical modelling or the measurement of the acquisition device). In Sec-
tion 5, we consider the numerical stability of the reconstruction process (1.3) and (1.4).
We show that if the average sampler Ψ and the generator Φ for the space V2(Φ,Λ)
are well-localized, then the reconstruction process (1.3) and (1.4) for f ∈ V2(Φ,Λ) is
stable under the corruption of the average (ideal) sampling data, and the perturbation
of averaging samplers, ideal sampling sets and the displayers, see Theorems 5.1, 5.2,
and 5.3 for details. Then we conclude that the reconstruction process (1.3) and (1.4)
for f ∈ V2(Φ,Λ) is robust.

By the reconstruction process (1.3) and (1.4), any function f in the space V can
be recovered fully when its average (ideal) sampling data are received completely. In
some situations (such as data missing in the transmission and real-time reconstruc-
tion process), we are required to recover the original function (signal) partially from
incomplete (ideal) average samples. We observe from the well-localization of the av-
erage sampler Ψ and of the ideal sampling set Γ, the average sampling data 〈f, ψγ〉
and the ideal sampling data f(γ) catches the information of the function f essen-
tially in a neighborhood of the sampling location γ for every γ ∈ Γ, which implies
that the average (ideal) sampling procedure is locally behaved. So a natural question
is whether the reconstruction procedure is locally behaved, or particularly whether
a function f ∈ V2(Φ,Λ) on a certain region K can be recovered approximately (or
exactly) from the average sampling data 〈f, ψγ〉 and the ideal sampling data f(γ)
for the sampling location γ in a neighborhood of that region. In Section 6, it is
proved that for any bounded region K, the original function in the space V2(Φ,Λ)
can be approximately recovered from its average (ideal) samples in a R-neighborhood
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B(K,R) = {y : infx∈K |y−x| ≤ R} of that region K via a finite algorithm (see Theo-
rems 6.1 and 6.2 for details), and moreover that the local convergence rate of the local
reconstruction procedure is almost the same as the rate of polynomial (subexponen-
tial) decay of the generator Φ and of the average sampler Ψ. Therefore we conclude
that the reconstruction process (1.3) and (1.4) for f ∈ V2(Φ,Λ) is locally behaved
and finitely implementable (hence it could lead possibly to a real-time reconstruction
algorithm) when the average sampler Ψ and the generator Φ are well-localized. As a
byproduct of the local reconstruction theorems, we obtain a necessary condition on
the location Γ of average (ideal) sampling devices, which states that, for a stable av-
erage(ideal) sampling/reconstruction procedure on the space V2(Φ,Λ), there exists a
positive constant R0 such that for any domain K ⊂ Rd, the number of average (ideal)
sampling devices located in R0-neighborhood B(K,R0) of that domain K should ex-
ceed the degrees of freedom of the space V2(Φ,Λ) in the domain K, see Theorem 6.3
for details. The above necessary condition, which is usually known as the density
property, is established in [3] for the ideal sampling on the B-spline space (see [2, 3]
and references cited therein for nonuniform sampling on the band-limited space, and
[8] for non-uniform Gabor system).

In the average (ideal) sampling/reconstruction process, we need efficient and fast
numerical algorithm that recover any function f ∈ Vr(Φ,Λ) from its average sampling
values 〈f, ψγ〉, γ ∈ Γ, or from its ideal sampling values f(γ), γ ∈ Γ. In Section 7,
we modify the standard Richardson-Landweber iterative frame algorithm to imple-
ment the reconstruction process (1.3) and (1.4) for signals f ∈ Vr(Φ,Λ) when average
(ideal) samples are received completely, and show that the new iterative algorithm
converges exponentially for any initial data in `r and the limit agrees with the sig-
nal in the space Vr(Φ,Λ) whenever the initial data is obtained from average (ideal)
sampling that signal (see [2, 6, 21] for similar convergence results to the standard
Richardson-Landweber iterative frame algorithm in the shift-invariant setting). The
Richardson-Landweber iterative algorithm is easily to be implemented but it provides
slow convergence in general. Relaxation and acceleration techniques, such as the
conjugate gradient acceleration, help to alleviate the convergence problem, but their
consideration is beyond the scope of this paper and will be discussed in the subsequent
paper.

The proofs of all results are collected in Section 8.
In this paper, the big letter C, if unspecified, denotes an absolute constant which

may be different at different occurrences.

2. Preliminaries.

2.1. The sampling set Γ. Every γ in the sampling set Γ is used as the location
of a (non-)ideal sampling acquisition device, which has the average sampling charac-
teristic ψγ . Then reasonable assumptions on the sampling set Γ are that only finitely
many such sampling acquisition devices are located in any unit interval, and that the
distribution of those devices is almost location-invariant. So in this paper, we make
the following basic assumption to the sampling set Γ:

(i) The sampling set Γ is a relatively-separated subset of Rd.
Here, given a subset X = {xj} of Rd, we say that X is relatively-separated if there
exists a positive constant D(X) such that∑

xj∈X

χ
xj+[0,1]d

(x) ≤ D(X) for all x ∈ Rd.(2.1)
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2.2. The average sampler Ψ. We say that a positive function u on Rd is a
weight if it is continuous and symmetric, and satisfies 1 = u(0) ≤ u(x) < ∞ for
all x ∈ Rd, and the inequality u(x + y) ≤ u(x)v(y), x, y ∈ Rd, holds for another
continuous function v on Rd. The model examples of weights convenient for our
considering the sampling/reconstruction process are the polynomial weights

uα(x) = (1 + |x|)α(2.2)

with α ≥ 0, and the subexponential weights

eD,δ(x) = exp(D|x|δ)(2.3)

with D > 0 and δ ∈ (0, 1).
Given 1 ≤ p, q ≤ ∞, a weight u, a relatively-separated subset Γ of Rd, and a

family Ψ = {ψγ : γ ∈ Γ} of functions on Rd, we define ‖Ψ‖q,p,u by

‖Ψ‖q,p,u := sup
γ∈Γ

∥∥(
‖ψγ(·)u(· − γ)‖Lq(k+[0,1]d)

)
k∈Zd

∥∥
`p(Zd)

+ sup
k∈Zd

∥∥(
‖ψγ(·)u(· − γ)‖Lq(k+[0,1]d)

)
γ∈Γ

∥∥
`p(Γ)

,(2.4)

where, as usual, ‖ · ‖Lq(K) denotes the usual Lq norm on the space Lq(K) of all q-
integrable functions on a measurable set K, and ‖ · ‖`p(X) (or ‖ · ‖`p for short) is
the usual `p(X) norm on the space of all q-summable sequences on the index set
X. For q = p = ∞, it is obvious that ‖Ψ‖q,p,u < ∞ if and only if |ψγ(x)| ≤
‖Ψ‖q,p,u(u(x−γ))−1 for all x ∈ Rd and γ ∈ Γ. In general, for the family of functions
Ψ = {ψγ : γ ∈ Γ} with ‖Ψ‖q,p,u <∞, each the function ψγ , γ ∈ Γ, is an Lq function
“locally” and a weighted Lp function centered at γ “globally”. Therefore for each
γ ∈ Γ, the function ψγ in the collection Ψ := {ψγ , γ ∈ Γ} with ‖Ψ‖q,p,u < ∞ can be
thought to be essentially supported in a neighborhood of γ ∈ Γ.

For the average sampler Ψ = {ψγ : γ ∈ Γ}, each average sampling functional ψγ

reflects the characteristic of the nonideal acquisition device at the location γ ∈ Γ, and
hence it should be essentially supported in a neighborhood of the sampling location
γ. So we make the following basic assumption on the average sampler Ψ:

(ii) The average sampler Ψ = {ψγ : γ ∈ Γ} satisfies

‖Ψ‖q,p,u <∞(2.5)

for some 1 ≤ p, q ≤ ∞ and weight u.
We interpret any average sampler, that satisfies the basic assumption (ii), to have

polynomial (subexponential) decay, due to the interpretation of the collection Ψ of
average sampling functional ψγ , γ ∈ Γ, with ‖Ψ‖q,p,u <∞ and the model assumption
on the weight u convenient for our considering sampling/reconstruction process that
u is a polynomial weight uα or a subexponential weight eD,δ.

Remark 2.1. For adapting to different average (ideal) sampling situations, we
add some flexibility to the basic assumption (ii) on the average sampler Ψ with variable
exponents p and q and weights u. For instance, we may use q = 1 for approximating
ideal sampling (ψγ ≈ δγ , [6]), q = 2 for frame sampling (for instance, Ψ = {φ(· −
k), k ∈ Zd} for frame sampling in the shift-invariant space V2(φ) generated by φ,
[7, 12, 38, 51]), q = ∞ in local blurring or local averaging (for instance, ψγ = h(· − γ)
for some compactly supported phase function h, [5, 24, 58]), and the subexponential
weight eD,δ for oversampling band-limited signals ([34]).
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Remark 2.2. Given p ∈ [1,∞], a weight u, and two relatively-separated subsets
Γ,Γ′ of Rd, we define the matrix algebra Ap,u(Γ,Γ′) of Schur class by

Ap,u(Γ,Γ′) :=
{
A := (A(γ, γ′))γ∈Γ,γ′∈Γ′ : ‖A‖Ap,u

<∞
}

(2.6)

where

‖A‖Ap,u := sup
γ∈Γ

∥∥(
A(γ, γ′)u(γ − γ′)

)
γ′∈Γ′

∥∥
`p(Γ′)

+ sup
γ′∈Γ′

∥∥(
A(γ, γ′)u(γ − γ′)

)
γ∈Γ

∥∥
`p(Γ)

,

(see, e.g., [31, 36, 50]). Then the basic assumption ‖Ψ‖q,p,u < ∞ on the average
sampler Ψ is characterized by:

‖Ψ‖q,p,u <∞ if and only if (‖ψγ‖Lq(k+[0,1]d))γ∈Γ,k∈Zd ∈ Ap,u(Γ,Zd).(2.7)

For the basic assumption ‖Ψ‖q,p,u < ∞ with different exponents p, q and weights u,
we have the following results, which will be used frequently in the proofs:

‖Ψ‖q1,p,u ≤ C‖Ψ‖q2,p,u(2.8)

if q1 ≤ q2, and

‖Ψ‖q,p1,u ≤ C‖Ψ‖q,p2,v(2.9)

if p1 ≤ p2 and ‖uv−1‖Lr <∞ where 1/r = 1/p1 − 1/p2, see [51] for details.

2.3. The space V in which functions are sampled and recovered. The
band-limited space BΩ,Ω > 0, is a prototypical space for sampling theory and for
signal processing in the classical band-limited model ([2]). By Whittaker represen-
tation theorem, the band-limited space Bπ is spanned by the shifted sinc function
sinc(x−k) := sin π(x−k)

π(x−k) , k ∈ Z, using `2 coefficients, i.e., BΩ = {
∑

k∈Z c(k)sinc(x−k) :
(c(k)) ∈ `2}.

Since the sinc function has infinite support and slow decay at infinity, the band-
limited space is often unsuitable for numerical implementations (see e.g. [2, 34]).
Hence people consider other models that retain some of the simplicity and structure
of the band-limited model, but are more amenable to numerical implementation and
are more flexible for approximate real data (see [2, 10, 14, 35, 55] and references cited
therein).

A finitely-generated shift-invariant space is such a widely-used model other than
the band-limited model, see e.g. [1, 2, 4, 5, 6, 18, 27, 40, 52, 53, 54]. Here the finitely-
generated shift-invariant space Vq(φ1, . . . , φN ), that has functions φ1, . . . , φN on Rd

as its generators, is defined by

Vq(φ1, . . . , φN ) :=
{ N∑

n=1

∑
k∈Zd

cn(k)φn(· − k) :

(cn(k))k∈Zd ∈ `q, 1 ≤ n ≤ N
}
,(2.10)

where 1 ≤ q ≤ ∞ (see e.g. [7, 12, 15, 20, 38] for the applications of finitely-generated
shift-invariant spaces in wavelet analysis and approximation theory). Clearly the
finitely-generated shift-invariant space Vq(φ1, . . . , φN ) becomes the band-limited space
Bπ if we let q = 2, N = 1 and φ1 = sinc.
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The space Vq(Φ,Λ),

Vq(Φ,Λ) :=
{ ∑

λ∈Λ

c(λ)φλ :
∥∥(c(λ))λ∈Λ

∥∥
`q(Λ)

<∞
}
,(2.11)

that was recently introduced by the author in [51], is a new model other than the above
band-limited model and shift-invariant model, where 1 ≤ q ≤ ∞, Λ is a relatively-
separated subset of Rd, and Φ = {φλ, λ ∈ Λ} satisfies ‖Φ‖q,p,u < ∞ for some 1 ≤
p, q ≤ ∞ and some weight u. We call Φ as the generator of the space Vq(Φ,Λ), and Λ
as the location of the generator.

The prototypical space Vq(Φ,Λ) has shift-invariant spaces, twisted shift-invariant
spaces generated by (non-)uniform Gabor frame system (or Wilson basis) in the time-
frequency analysis (see, e.g. [8, 16, 25, 37, 46] and references cited therein), and spaces
of polynomial splines (which are widely used as approximating spaces in data fitting
problems and operator-equation problems [14, 35, 47]) as its special cases. Particularly
the space Vq(Φ,Λ) and the shift-invariant space Vq(φ1, . . . , φN ) are related as follows:

Vq(Φ,Λ) = Vq(φ1, . . . , φN )(2.12)

and

‖Φ‖q,p,u <∞ if and only if φ1, . . . , φN ∈Wq(Lp,u),(2.13)

if we let Λ := {x1, . . . , xN} + Zd and φλ := φn(· − k) if λ = xn + k for some k ∈ Zd

where {x1, . . . , xN} is a discrete set in Rd/Zd, see [51] for details. Here we recall that
the Wiener amalgam space Wq(Lp,u), which consists of functions that are “locally”
in Lq and “globally” in weighted Lp space with weight u ([2]), is defined by

Wq(Lp,u) :=
{
f : ‖f‖Wq(Lp,u) :=

∥∥(
‖fu‖Lq(k+[0,1]d)

)
k∈Zd

∥∥
`p(Zd)

<∞
}
.(2.14)

The prototypical space Vq(Φ,Λ) is suitable for modelling signals with finite rate of
innovations in [22, 33, 39, 41, 44, 45, 57], for instance, (i) stream of pulses

∑
l alp(t−tl)

found in GPS applications and cellular radio, where p(t) is the antenna transmit pulse
shape; (ii) stream of different pulses

∑
l alpl(t − tl) found in modelling ultra wide-

band, where different incoming paths are subjected to different frequency-selective
attentuations; (iii) bandlimited signals with additive shot noise

∑
k∈Z c(k)sinc(t −

k) +
∑

l d(l)δ(t− tl); (iv) sum of bandlimited signals and non-uniform spline signals,
convenient for modelling electrocardiogram signals.

The prototypical space Vq(Φ,Λ) retains some of the simplicity and structure of
a finitely-generated shift-invariant space of the form (2.10), is amenable to numerical
implementation (see Sections 5, 6 and 7), and is more flexible for approximating real
data than the band-limited model and the shift-invariant model (see [51] for details).

So in this paper, we make the following basic assumption on the space V in which
functions are sampled and recovered:

(iii) The space V is of the form Vq(Φ,Λ), where 1 ≤ q ≤ ∞, Λ is a relatively-
separated subset of Rd, and Φ = {φλ : λ ∈ Λ} is a family of functions on Rd

satisfying ‖Φ‖q,p,u <∞ for some 1 ≤ p ≤ ∞ and weight u.
Remark 2.3. Signals in the space V := Vq(Φ,Λ), that satisfies the above basic

assumption (iii), have finite rate of innovation, because a signal f =
∑

λ∈Λ c(λ)φλ ∈
Vq(Φ,Λ) on a unit interval t+[−1/2, 1/2)d is essentially determined by the coefficients
c(λ) with λ ∈ t+[−1/2, 1/2)d because of the well-localization property of the generator
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Φ, and the total number of the locations λ ∈ Λ on the unit interval t + [−1/2, 1/2)d

is bounded by some constant C0 independent of the center t of the unit interval due
to relatively-separatedness of the location Λ of the generator Φ.

Remark 2.4. We provide some flexibility on the assumption ‖Φ‖q,p,u < ∞ on
the generator Φ of the space Vq(Φ,Λ) for adapting to different modelling situations.
For instance, we may use q = 1 and p = ∞ when modelling slow-varying signals
with shot noises ([57]), 1 ≤ p, q ≤ ∞ when modelling signals in a finitely-generated
shift-invariant space ([2]), q = ∞ and 1 ≤ p ≤ ∞ for decomposing a time signal via
(non-)uniform Gabor frame system or Wilson basis ([25]).

2.4. The space Vq(Φ,Λ) for modelling signals with finite rate of innova-
tions. Let δλλ′ stand for the usual Kronecker symbol. For a Hilbert space H with
E = {eλ, λ ∈ Λ} being its Riesz basis, we say that Ed = {ed

λ : λ ∈ Λ} ⊂ H is a dual
Riesz basis of E if Ed is a Riesz basis of H and 〈eλ, e

d
λ′〉 = δλλ′ for all λ, λ′ ∈ Λ; and

we say that Eo = {eo
λ : λ ∈ Λ} is an orthonormal basis for H if Eo is a basis of H

and 〈eo
λ, e

o
λ′〉 = δλλ′ for all λ, λ′ ∈ Λ.

Let 1 ≤ p ≤ ∞. We say that a weight u is p-admissible if there exist a weight v
and two positive constants D := D(u) ∈ (0,∞) and θ := θ(u) ∈ (0, 1) such that

u(x+ y) ≤ D(u(x)v(y) + v(x)u(y)) for all x, y ∈ Rd,(2.15)

‖(vu−1)‖Lp′ ≤ D, and(2.16)

inf
τ>0

‖v‖L1(B(τ)) + t‖vu−1‖Lp′ (Rd\B(τ)) ≤ Dtθ for all t ≥ 1,(2.17)

where p′ = p/(p− 1) and B(τ) = {x ∈ Rd : |x| ≤ τ}. The p-admissibility of a weight
u is a technical condition in [50] to establish the Wiener lemma for matrix algebras of
Schur class and of Sjöstrand class, see also Lemmas 8.1 and 8.2. It is verified in [50]
that the polynomial weight uα with α > d(1 − 1/p) and the subexponential weight
eD,δ with D > 0 and δ ∈ (0, 1) are p-admissible weights. The reader may refer those
two model examples for simplification, see also subsection 2.5.

Now we recall some properties of the space Vq(Φ,Λ) in [51], see e.g. [2, 38] for
the similar results for our familiar shift-invariant setting.

Proposition 2.1. ([51]) Let 1 ≤ q ≤ ∞, uα(x) := (1 + |x|)α, α ≥ 0, be the
polynomial weights, Λ be a relatively-separated subset of Rd, Φ = {φλ, λ ∈ Λ} satisfy
‖Φ‖q,1,u0 <∞, and Vq(Φ,Λ) be defined as in (2.11). Then Vq(Φ,Λ) ⊂ Lq. Moreover,∥∥∥ ∑

λ∈Λ

c(λ)φλ

∥∥∥
Lr

≤ C
∥∥(
c(λ)

)
λ∈Λ

∥∥
`r(Λ)

‖Φ‖q,1,u0(2.18)

for every sequence (c(λ))λ∈Λ ∈ `r(Λ) with 1 ≤ r ≤ q, and∥∥(
〈f, φλ〉

)
λ∈Λ

∥∥
`r(Λ)

≤ C‖f‖Lr‖Φ‖q,1,u0(2.19)

for all f ∈ Lr with q/(q − 1) ≤ r ≤ ∞.

Proposition 2.2. ([51]) Let 2 ≤ q ≤ ∞, 1 ≤ p ≤ ∞, u be a p-admissible weight,
Λ be a relatively-separated subset of Rd, Φ = {φλ, λ ∈ Λ} be a family of functions on
Rd, V2(Φ,Λ) be as in (2.11), and the frame operator S on V2(Φ,Λ) be defined by

Sf =
∑
λ∈Λ

〈f, φλ〉φλ, f ∈ V2(Φ,Λ).(2.20)
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Assume that Φ is a Riesz basis for V2(Φ,Λ) and satisfies ‖Φ‖q,p,u <∞. Then S−1Φ :=
{S−1φλ : λ ∈ Λ} is a dual Riesz basis of Φ, S−1/2Φ := {S−1/2φλ : λ ∈ Λ} is an
orthonormal basis of V2(Φ,Λ), and ‖S−1Φ‖q,p,u + ‖S−1/2Φ‖q,p,u < ∞. If we further
assume that Λ is a lattice, and that the generator Φ of the space V2(Φ,Λ) is enveloped
by a function in the Wiener amalgam space W∞(Lp,u) (hence ‖Φ‖q,p,u ≤ ‖Φ‖∞,p,u ≤
C‖h‖W∞(Lp,u) < ∞), i.e., |φλ(x)| ≤ h(x − λ) for some h ∈ W∞(Lp,u), then so are
dual Riesz basis S−1Φ and orthonormal basis S−1/2Φ.

Remark 2.5. Let 1 ≤ p, r ≤ ∞, we say that a weight u is (p, r)-admissible,
(or we say that w(x, y) := u(x− y) is a (p, r)-admissible translation-invariant weight,
[50]), if there exist a weight v and two positive constants D ∈ (0,∞) and θ ∈ (0, 1)
such that (2.15), (2.16), and

inf
τ>0

‖v‖Lr′ (B(τ)) + t‖vu−1‖Lp′ (Rd\B(τ)) ≤ Dtθ for all t ≥ 1,(2.21)

hold, where p′ = p/(p− 1) and r′ = r/(r− 1). Clearly the p-admissibility of a weight
agrees with its (p,∞)-admissibility. Since for any weight v it holds that ‖v||Lr′ (B(τ)) ≤
C‖v‖L1(B(τ)) for all τ ≥ 1, we then conclude that p-admissibility of a weight implies
its (p, r)-admissibility for any 1 ≤ r ≤ ∞.

2.5. Model. The reader may consider the following model for simplification:
(i) The generator Φ := {φλ, λ ∈ Λ} of the space Vr(Φ,Λ) is enveloped by some

function g in the Wiener amalgam space Wq(Lp,u) with 2 ≤ q ≤ ∞, i.e.,

|φλ(x)| ≤ g(x− λ) for all x ∈ Rd and λ ∈ Λ.(2.22)

(The above envelopment assumption (2.22) for the generator Φ implies that
the basic assumption (iii) ‖Φ‖q,p,u <∞ for the generator Φ is satisfied. The
converse is true in the shift-invariant setting, Vr(Φ,Λ) = Vr(φ1, . . . , φN ),
particularly, the above envelopment property for the generator Φ of the
space Vr(Φ,Λ) is equivalent to the basic assumption (iii) ‖Φ‖q,p,u < ∞, and
also equivalent to the property that the generators φ1, . . . , φN of the space
V2(φ1, . . . , φN ) belong to the Wiener amalgam space Wq(Lp,u). The envelop-
ment assumption (2.22) for the generator Φ is not satisfied when the space
Vq(Φ,Λ) is used for modelling slow-varying signals with shot noises, [41].)

(ii) The average sampler Ψ = {ψγ : γ ∈ Γ} is enveloped by some function h in
the Wiener amalgam space Wq∗(Lp,u) with q/(q − 1) ≤ q∗ ≤ ∞, i.e.,

|ψγ(x)| ≤ h(x− γ) for all x ∈ Rd and γ ∈ Γ.(2.23)

(The above envelopment assumption (2.23) for the average sampler Ψ implies
that the basic assumption (ii) ‖Ψ‖q∗,p,u < ∞ for the average sampler Ψ is
satisfied. The above envelopment assumption (2.23) for the average sampler
Ψ is not satisfied when it is a family of approximating delta functionals with
variable width, [27].)

(iii) The weight u in the above envelopment assumptions on the generator Φ and
the average sampler Ψ is the polynomial weight uα(x) := (1 + |x|)α with
α > d(1 − 1/p) or the exponential weight eD,δ(x) := exp(D|x|δ) with D > 0
and δ ∈ (0, 1).

Remark 2.6. Given an exponent p ∈ [1,∞], a weight u, and two relatively-
separated subsets Γ,Γ′ of Rd, we define the matrix algebra Cp,u(Γ,Γ′) of Sjöstrand
class by

Cp,u(Γ,Γ′) :=
{
A := (A(γ, γ′))γ,γ′∈Γ, ‖A‖Cp,u

<∞
}

(2.24)
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where

‖A‖Cp,u
:= ‖(Au)∗(k))k∈Zd‖`p

and

(Au)∗(k) = sup
γ∈m+[−1/2,1/2)d,γ′∈m+k+[−1/2,1/2)d,m∈Zd

|A(γ, γ′)u(γ − γ′)|, k ∈ Zd

(see, e.g. [8, 9, 26, 48, 50]). For the case that q = ∞, 1 ≤ p ≤ ∞, and Γ is a
lattice, the envelopment property (2.23) for the average sampler Ψ := {ψγ , γ ∈ Γ} is
characterized by (‖ψγ‖Lq(µ+[0,1]d))γ,µ∈Γ ∈ Cp,u(Γ,Γ). Here a subset X of Rd is said to
be a lattice if 1 ≤

∑
xj∈X χ

xj+[0,1]d
(x) ≤ D(X) for all x ∈ Rd and some D(X) <∞.

3. Well-localized displayer. Let 1 ≤ q ≤ ∞ and V be a subspace of Lq. We
say that Γ, a subset of Rd, is a stable ideal sampling set for the space V if there exist
two positive constants A,B such that

A‖f‖Lq ≤ ‖(f(γ))γ∈Γ‖`q(Γ) ≤ B‖f‖Lq for all f ∈ V,(3.1)

and that Ψ = {ψγ : γ ∈ Γ}, a family of average sampling functionals, is a stable
averaging sampler for the space V if there exist two positive constants A′, B′ such
that

A′‖f‖Lq ≤ ‖(〈f, ψγ〉)γ∈Γ‖`q(Γ) ≤ B′‖f‖Lq for all f ∈ V(3.2)

([5]). From the above definitions of a stable ideal sampling set Γ and a stable average
sampler Ψ, we have that any function f ∈ V can be reconstructed uniquely and stably
from its samples {f(γ) : γ ∈ Γ} if Γ is a stable ideal sampling set for V , and similarly
that any function f ∈ V can be reconstructed uniquely and stably from its average
samples {〈f, ψγ〉 : γ ∈ Γ} if Ψ is a stable averaging sampler for V .

For average (ideal) sampling on the space V2(Φ,Λ), derived from a general theo-
rem for localized frames ([8, Theorem 1], [23, Theorem 3.6] and [31, Theorem 13]), we
have the following well-localization results for its displayer (Theorems 3.1 and 3.2),
see Remark 3.1 for more general formulation of the well-localization of a displayer.
From those results, it concludes that the displayer Ψ̃ associated with a stable (ideal)
averaging sampler Ψ has the same polynomial (subexponential) decay when both
the average sampler Ψ and the generator Φ for the space V2(Φ,Λ) have polynomial
(subexponential) decay.

Theorem 3.1. Let 2 ≤ q ≤ ∞, q/(q − 1) ≤ q∗ ≤ ∞, 1 ≤ r ≤ q, 1 ≤ p ≤ ∞, u
is a p-admissible weight, the subsets Λ,Γ of Rd be relatively-separated, the generator
Φ = {φλ : λ ∈ Λ} satisfy

‖Φ‖q,p,u <∞,(3.3)

the average sampler Ψ = {ψγ : γ ∈ Γ} satisfy

‖Ψ‖q∗,p,u <∞,(3.4)

and the space Vr(Φ,Λ) be as in (2.11). Assume that Φ is a Riesz basis of V2(Φ,Λ) and
that Ψ is a stable averaging sampler for V2(Φ,Λ) ⊂ L2. Then there exists a displayer
Ψ̃ = {ψ̃γ : γ ∈ Γ} ⊂ V1(Φ,Λ) such that

‖Ψ̃‖q,p,u <∞,(3.5)
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and

f =
∑
γ∈Γ

〈f, ψγ〉ψ̃γ for all f ∈ Vr(Φ,Λ).(3.6)

If we further assume that Λ is a lattice and that the generator Φ and the average
sampler Ψ are enveloped by some functions in the Wiener amalgam space W∞(Lp,u),
then so is the displayer Ψ̃.

Theorem 3.2. Let 1 ≤ p, r ≤ ∞, u be a p-admissible weight, the subsets Λ,Γ of
Rd be relatively-separated, Φ = {φλ : λ ∈ Λ} be a family of continuous functions on
Rd that satisfies

‖Φ‖∞,p,u <∞,(3.7)

and the space Vr(Φ,Λ) be as in (2.11). Assume that Φ is a Riesz basis of V2(Φ,Λ), and
that Γ is a stable ideal sampling set for V2(Φ,Λ) ⊂ L2. Then there exists a displayer
Ψ̃ = {ψ̃γ : γ ∈ Γ} such that Ψ̃ ⊂ V1(Φ,Λ), ‖Ψ̃‖∞,p,u <∞, and

f =
∑
γ∈Γ

f(γ)ψ̃γ for all f ∈ Vr(Φ,Λ).(3.8)

If we further assume that Γ is a lattice and that Φ is enveloped by a function in the
Wiener amalgam space W∞(Lp,u), then so is the displayer Ψ̃.

Remark 3.1. For the well-localization of the displayer Ψ̃, the following gen-
eral principle can be derived from theorems for localized frames ([8, Theorem 1], [23,
Theorem 3.6] and [31, Theorem 13]): Let Λ and Γ be two index sets, and let the
families A(Λ) = {(a(λ, λ′))λ,λ′∈Λ} and A(Γ,Λ) = {(a(γ, λ))γ∈Γ,λ∈Λ} of infinite ma-
trices have the following algebraic properties that (i) A(Λ) is an inverse-closed matrix
algebra in B(`2(Λ)) (the space of all bounded operators on `2(Λ)), (ii) ATA ∈ A(Λ)
for any A ∈ A(Γ,Λ), and (iii) AB ∈ A(Γ,Λ) for any A ∈ A(Γ,Λ) and B ∈ A(Λ).
Then on the space V2(Φ,Λ) whose generator Φ := (φλ)λ∈Λ is a frame, there exists
a A(Γ,Λ)-localized displayer Ψ̃ := (ψ̃γ)γ∈Γ associated with a stable average sampling
processing

V2(Φ,Λ) 3 f 7−→ 〈f,Ψ〉 ∈ `2(Γ)(3.9)

whose average sampler Ψ := (ψγ)γ∈Γ is A(Γ,Λ)-localized. Here we say that Ψ :=
(ψγ)γ∈Γ is A(Γ,Λ)-localized on V2(Φ,Λ) if AΨ,Φ := (〈ψγ , φλ〉)γ∈Γ,λ∈Λ ∈ A(Γ,Λ) and
AΨ,Φ̃ := (〈ψγ , φ̃λ〉)γ∈Γ,λ∈Λ ∈ A(Γ,Λ) where Φ̃ = (φ̃λ)λ∈Λ is the dual frame gener-
ator Φ̃ associated with the frame Φ. Thus the well-localization for the displayer in
Theorems 3.1 and 3.2 becomes essentially a concrete example of the above general
principle, (particularly in Theorems 3.1 and 3.2, the Schur class Ap,u(Γ,Λ) and the
Sjöstrand class Cp,u(Γ,Λ) are used as A(Γ,Λ) in the above principle, and Ap,u(Λ,Λ)
and Cp,u(Λ,Λ) as A(Λ).) The well-localization of the displayer in the above principle
and the localization of the dual frame in the theory of frames are equivalent since
for the case that Ψ ∈ V2(Φ,Λ), (otherwise replacing Ψ by the projection PΨ of Ψ
on V2(Φ,Λ), see Remark 3.2 below,) the stability of the average sampling process
(3.9) is equivalent to the frame property for Ψ, and the displayer AΨ,Φ(AT

Ψ,ΦAΨ,Φ)†Φ
associated with the average sampling processing (3.9) is the canonical dual frame as-
sociated with the frame Ψ, where (AT

Ψ,ΦAΨ,Φ)† is the pseudo-inverse of the matrix
AT

Ψ,ΦAΨ,Φ. Therefore the above principle for the well-localization of a displayer is
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established: (i) in [8, Theorem 1] for the case that Ψ = Φ, Γ = Λ, A(Λ,Λ) and A(Λ)
are the Sjöstrand class C1,0(Λ,Λ) defined by

C1,0(Λ,Λ) =
{

(c(λ, λ′)λ,λ′∈Λ :
(

sup
a(λ)−a(λ′)=g∈G

|c(λ, λ′)|
)
g∈G

∈ `1(G)
}
,

where G is a additive discrete group of the form B0Zd × (Zd′/B1Zd′) for some non-
singular diagonal matrices B0 and B1, and a : Λ → G is a map with supg∈G #{λ ∈
Λ : a(λ) = g} < ∞; (ii) in [23, Theorem 3.6] for the case that Ψ = Φ, Γ = Λ,
A(Λ,Λ) and A(Λ) are a solid, inverse-closed, involutive Banach algebra; and (iii) in
[31, Theorem 13] for the case that Λ = Zd, Γ is a relatively-separated subset of Rd,
A(Λ) = A, and A(Γ,Λ) = {(a(γ, k))γ∈Γ,k∈Zd : (ã(m,n))m,n∈Zd ∈ A}, where A is a
solid, inverse-closed, involutive Banach algebra, and

ã(m,n) =
{

supγ∈(m+[0,1)d)∩Γ |a(γ, n)| if (m+ [0, 1)d) ∩ Γ 6= ∅,
0 if (m+ [0, 1)d) ∩ Γ = ∅.

The above principle for the well-localization of the displayer can be derived from
[31, Theorem 13] with identical proof. The author thanks the anonymous referee for
the suggestion that leads to the above general principle for the well-localization of
the displayer, and for pointing out that the results in Theorems 3.1 and 3.2 can be
derived from theorems for localized frames in [8, 23, 31].

Remark 3.2. Let Φ = {φλ : λ ∈ Λ} and Ψ = {ψγ : γ ∈ Γ} be as in either
Theorem 3.1 or Theorem 3.2, and S−1Φ = {S−1φλ : λ ∈ Λ} be the dual Riesz
basis for the space V2(Φ,Λ) in Proposition 2.2. By Propositions 2.1 and 2.2, the
operator P defined by Pf :=

∑
λ∈Λ〈f, S−1φλ〉φλ is a projection operator from L2

to V2(Φ,Λ). We can extend the domain of the projection operator P so that Pψγ is
well defined for every sampling functional ψγ in the average sampling case and for
the delta functional δγ in the ideal sampling case. Moreover, 〈f, ψγ〉 = 〈f, Pψγ〉 for
all γ ∈ Γ and f ∈ V2(Φ,Λ). We then have that if Ψ is a stable average sampler then
PΨ = {Pψγ : γ ∈ Γ} is a frame of V2(Φ,Λ), that is, there exist two positive constants
A,B > 0 such that

A‖f‖2 ≤ ‖(〈f, Pψγ〉)γ∈Γ‖`2(Γ) ≤ B‖f‖2 for all f ∈ V2(Φ,Λ).(3.10)

So by the general frame theory, a displayer Ψ̃ ⊂ V2(Φ,Λ), which may or may not have
polynomial (subexponential) decay, can be constructed, while we show in Theorems
3.1 and 3.2 that a displayer Ψ̃ can be constructed to has polynomial (subexponential)
decay whenever the generator Φ and the average sampler Ψ have. The reader may refer
[2] and references cited therein for the connection among average (ideal) sampling,
reproducing kernel Hilbert space, and frame theory in the shift-invariant setting.

By Theorem 3.1 and 3.2, we have the following corollary for the uniform sampling
in the familiar shift-invariant space:

Corollary 3.3. Let 1 ≤ p ≤ ∞, 2 ≤ q ≤ ∞, 1 ≤ r ≤ q, q/(q − 1) ≤ q∗ ≤ ∞,
u be the polynomial weight uα with α > d(1− 1/p) or the subexponential weight eD,δ

with D > 0 and δ ∈ (0, 1), and φ1, . . . , φN ∈Wq(Lp,u), and Φ = {φn(· − k) : 1 ≤ n ≤
N, k ∈ Zd} be a Riesz basis of V2(φ1, . . . , φN ). Then we have

(i) If ψ1, . . . , ψL ∈Wq∗(Lp,u), and Ψ := {ψl(·−k) : 1 ≤ l ≤ L, k ∈ Zd} is a stable
average sampler for V2(φ1, . . . , φN ), then there exist functions ψ̃1, . . . , ψ̃L ∈
Wq(Lp,u) such that f =

∑L
l=1

∑
k∈Zd〈f, ψl(· − k)〉ψ̃l(· − k) holds for all f ∈

Vr(φ1, . . . , φN ).
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(ii) If φ1, . . . , φN are continuous functions in W∞(Lp,u), and X0 +Zd is a stable
ideal sampling set for V2(φ1, . . . , φN ) where X0 = {x1, . . . , xL} ⊂ [0, 1)d,
then there exist continuous functions ψ̃1, . . . , ψ̃L ∈ W∞(Lp,u) such that f =∑L

l=1

∑
k∈Zd f(xl + k)ψ̃l(· − k) holds for all f ∈ Vr(φ1, . . . , φN ).

Remark 3.3. For the shift-invariant setting V2(Φ,Λ) = V2(φ1, . . . , φN ) for some
functions φ1, . . . , φN , it is shown in [27] that if the generator φ1, . . . , φN satisfy
|φn(x)| ≤ C0(1 + |x|)−α for all 1 ≤ n ≤ N and x ∈ Rd, (i.e., ‖Φ‖∞,∞,uα

< ∞
where Φ := {φn(· − k), 1 ≤ n ≤ N, k ∈ Zd}), and if the average sampling functional
ψγ is supported in γ+[−a, a] and ‖ψγ‖L1 ≤ C0 for some positive constants C0 and a,
(which implies that ‖Ψ‖1,∞,u < ∞ for any weight u where Ψ := {ψγ , γ ∈ Γ}),
then the corresponding displayer Ψ̃ := {ψ̃γ : γ ∈ Γ} can be chosen to satisfy
|ψ̃γ(x)| ≤ C1(1 + |x − γ|)−α for some positive constant C1 (i.e., ‖Ψ̃‖∞,∞,uα

< ∞).
A similar result for the ideal sampling process is also established in [27]. The above
results for average (ideal) sampling process follow from Theorems 3.1 and 3.2 with
p = q = ∞, q∗ = 1, u = uα and V2(Φ,Λ) being a finitely-generated shift-invariant
space. Other than those exponents p, q, q∗ and weight u mentioned above, the results
in Theorems 3.1 and 3.2 are new even for our familiar shift-invariant setting.

By Theorems 3.1 and 3.2, we have the following result for the stability of the
average sampler Ψ in the space Vr(Φ,Λ) ⊂ Lr with r 6= 2, which can also derived
from [23, Theorem 2.7] and [27, Theorem 10].

Corollary 3.4. Let 2 ≤ q ≤ ∞, 1 ≤ p ≤ ∞, u be a p-admissible weight, the
subsets Λ,Γ of Rd be relatively-separated. Then we have

(i) If Φ is a Riesz basis of V2(Φ,Λ) and satisfies (3.3), and if Ψ is a stable
averaging sampler for V2(Φ,Λ) ⊂ L2 and satisfies (3.4) for some q/(q− 1) ≤
q∗ ≤ ∞, then the stable average sampler Ψ for V2(Φ,Λ) is also a stable
averaging sampler for Vr(Φ,Λ) ⊂ Lr for all q∗/(q∗ − 1) ≤ r ≤ q.

(ii) If the family Φ = {φλ : λ ∈ Λ} of continuous functions on Rd is a Riesz
basis of V2(Φ,Λ) and satisfies (3.7), and if Γ is a stable ideal sampling set
for V2(Φ,Λ), then the ideal sampling set Γ for V2(Φ,Λ) is also a stable ideal
sampling set for Vr(Φ,Λ) ⊂ Lr for all 1 ≤ r ≤ ∞.

Remark 3.4. By Corollary 3.4, the stability of average (ideal) sampler for
V2(Φ,Λ) ⊂ L2 implies the stability of average (ideal) sampler for Vr(Φ,Λ) ⊂ Lr

with r 6= 2. Such an implication can also be derived from [23, Theorem 2.7] and
[27, Theorem 10] where the formulation of localized frames are used. (The author
thank the anonymous referee to point out that derivation.) The above implication is
observed in [21, 27] for the shift-invariant setting under a bit stronger assumptions on
the average sampler Ψ, the generator Φ, and the non-uniform sampling set Γ than the
ones in Corollary 3.4. As for the case that the average sampler and the generator are
identical and that the grid Λ and the sampling set Γ are Zd, the above implication
has long been known (and even the converse is also true), see, for instance, [7, 38].

4. Stability of the average (ideal) sampling/reconstruction process. For
a matrixA := (A(λ, λ′))λ∈Λ,λ∈Λ′ , we define its transposeA∗ byA∗ := (A(λ, λ′))λ′∈Λ′,λ∈Λ.
For a space V2(Φ,Λ) generated by Φ := {φλ, λ ∈ Λ}, an average sampling on the space
V2(Φ,Λ) with the average sampler Ψ := {ψγ , γ ∈ Γ}, and an ideal sampling on the
space V2(Φ,Λ) with the sampling set Γ, we define the subspace H of `2 by

H = {(〈f, φλ〉)λ∈Λ : f ∈ V2(Φ,Λ)},(4.1)
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and two Gram matrices AΨ,Φ and AδΓ,Φ by

AΨ,Φ =
(
〈ψγ , φλ〉

)
γ∈Γ,λ∈Λ

,(4.2)

and

AδΓ,Φ =
(
φλ(γ)

)
γ∈Γ,λ∈Λ

.(4.3)

Theorem 4.1. Let 2 ≤ q ≤ ∞, q/(q − 1) ≤ q∗ ≤ ∞, q∗/(q∗ − 1) ≤ r ≤ q, 1 ≤
p ≤ ∞, u be a p-admissible weight, the subsets Λ,Γ of Rd be relatively-separated, the
generator Φ = {φλ : λ ∈ Λ} satisfy ‖Φ‖q,p,u < ∞, the average sampler Ψ = {ψγ :
γ ∈ Γ} satisfy ‖Ψ‖q∗,p,u < ∞, and the space Vr(Φ,Λ), the subspace H of `2 and the
matrix AΨ,Φ be as in (2.11), (4.1) and (4.2) respectively. Assume that Φ is a frame
of V2(Φ,Λ). Then Ψ is a stable averaging sampler for V2(Φ,Λ) ⊂ L2 if and only if
there exists a positive constant C such that

C−1‖c‖2
`2(Λ) ≤ 〈(AΨ,Φ)∗AΨ,Φc, c〉 ≤ C‖c‖2

`2(Λ) for all c ∈ H.(4.4)

Theorem 4.2. Let 1 ≤ p, r ≤ ∞, u be a p-admissible weight, the subsets Λ,Γ
of Rd be relatively-separated, Φ = {φλ : λ ∈ Λ} be a family of continuous functions
on Rd that satisfies (3.7), and the space Vr(Φ,Λ), the space H and the matrix AδΓ,Φ

be as in (2.11), (4.1) and (4.3) respectively. Assume that Φ is a frame of V2(Φ,Λ).
Then Γ is a stable ideal sampling set for V2(Φ,Λ) if and only if there exists a positive
constant C such that

C−1‖c‖2
`2(Λ) ≤ 〈(AδΓ,Φ)∗AδΓ,Φc, c〉 ≤ C‖c‖2

`2(Λ) for all c ∈ H.(4.5)

Remark 4.1. For the uniform average sampling on finitely-generated shift-
invariant spaces, that is, V2(Φ,Λ) = V2(φ1, . . . , φN ) and Ψ = {ψl(·−k), 1 ≤ l ≤ L, k ∈
Zd} for some functions φn, 1 ≤ n ≤ N , and ψl, 1 ≤ l ≤ L, the matrix (AΨ,Φ)∗AΨ,Φ in
(4.4) can be written as

(AΨ,Φ)∗AΨ,Φ =
( N∑

l=1

∑
j∈Zd

〈φn(·−k), ψl(·−j)〉〈ψl(·−j), φn′(·−k′)〉
)

(n,k),(n′,k′)∈{1,...,N}×Zd
.

Due to the shift-invariant structure of the matrix (AΨ,Φ)∗AΨ,Φ, we may use the Fourier
technique to interpret (4.4) in Theorem 4.1 as

C−1G(ξ) ≤ Aas(ξ) ≤ CG(ξ) a.e. ξ ∈ Rd,(4.6)

where the Fourier transform f̂ of an integrable function f is defined by f̂(ξ) =∫
Rd f(x)e−ixξdx, and the N ×N matrices G(ξ) and Aas(ξ) are defined by

G(ξ) =
( ∑

k∈Zd

φ̂n(ξ + 2kπ)φ̂n′(ξ + 2kπ)
)

1≤n,n′≤N

and

Aas(ξ) =
L∑

l=1

∑
k,k′∈Zd

(
φ̂n(ξ + 2kπ)ψ̂l(ξ + 2kπ)ψ̂l(ξ + 2k′π)φ̂n′(ξ + 2k′π)

)
1≤n,n′≤N

.
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The above characterization (4.6) of the stable averaging sampler Ψ is given in [5] under
weaker assumptions on the generator φ1, . . . , φN and the average sampler ψ1, . . . , ψL

than the ones for the generator Φ and the average sampler Ψ in Theorem 4.1.
Remark 4.2. For the uniform ideal sampling on a single generated shift-invariant

space, that is, V2(Φ,Λ) = V2(φ) and Γ = Zd, the matrix (AδΓ,Φ)∗AδΓ,Φ in (4.5) can be
written as (AδΓ,Φ)∗AδΓ,Φ = (

∑
j∈Zd φ(j − k)φ(j − k′))k,k′∈Zd . Similar to the uniform

average sampling case, we may use the Fourier technique to interpret (4.5) in Theorem
4.2 as follows: C−1 ≤ |

∑
k∈Zd φ̂(ξ+2kπ)| ≤ C for almost all ξ ∈ Rd, which was given

in [59].
Remark 4.3. For the characterization of stable average sampler and stable ideal

sampling set for various spaces, there are extensive literature (see, for instance, the
recent review papers [2, 56] and monographs [11, 13, 42] for ideal sampling, and
[1, 2, 4, 5, 6, 27, 52, 53, 54] for average sampling.)

5. Robustness of the reconstruction process. For the numerical stability
reconstruction formula (3.6) and (3.8) when the average (ideal) sampling data and
the displayer are corrupted, such as, by the noise in the measurement, we have the
following result.

Theorem 5.1. Let p, q, q∗, r, u,Λ,Γ,Φ,Ψ, Ψ̃ be as either in Theorem 3.1 or in
Theorem 3.2. Assume that the original function f belongs to Vr(Φ,Λ), and that
G = {gγ : γ ∈ Γ} and Ψ̃′ = {ψ̃′γ : γ ∈ Γ} are the corrupted average sampling data and
displayer respectively. Then there exists a positive constant C (independent of f,G
and Ψ̃′) such that∥∥∥f − ∑

γ∈Γ

gγψ̃
′
γ

∥∥∥
r
≤ C‖(gγ − 〈f, ψγ〉)γ∈Γ‖`r(Γ)‖Ψ̃‖q,p,u

+C‖Ψ̃− Ψ̃′‖q,p,u‖(gγ)γ∈Γ‖`r(Γ).(5.1)

For the numerical stability of the reconstruction process (3.6) and (3.8) when
there is certain perturbation for the average sampler and for the ideal sampling set,
we have the following results.

Theorem 5.2. Let p, q, q∗, u,Λ,Γ,Φ,Ψ, Ψ̃, Vq(Φ,Λ) be as in Theorem 3.1. Then
there exist a sufficiently small positive number δ0 and a positive constant C such that
any average sampler Ψ′ = {ψ′γ : γ ∈ Γ} with the property that

‖Ψ′ −Ψ‖q∗,p,u ≤ δ0(5.2)

is a stable average sampler for the space V2(Φ,Λ), and the corresponding displayer Ψ̃′

satisfies

‖Ψ̃′ − Ψ̃‖q∗,p,u ≤ C‖Ψ′ −Ψ‖q∗,p,u.(5.3)

Theorem 5.3. Let p, u,Λ,Γ,Φ, Ψ̃, Vq(Φ,Λ) be as in Theorem 3.2. Assume that
Φδ = {φγ,δ : γ ∈ Γ} satisfies

‖Φδ‖∞,p,u → 0 as δ → 0,(5.4)

where φγ,δ(x) = sup|t|≤δ |φγ(x + t) − φγ(x)|. Then there exist a sufficiently small
positive number δ0 and a positive constant C such that any sampling set Γ′ := {γ+δγ :
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γ ∈ Γ} with supγ∈Γ |δγ | ≤ δ0 is a stable ideal sampling set for the space V2(Φ,Λ), and
the corresponding displayer Ψ̃′ satisfies ‖Ψ̃′ − Ψ̃‖∞,p,u ≤ C‖Φδ0‖∞,p,u.

By Theorems 5.2 and 5.3, we have the following results about perturbation for
non-uniform average (ideal) sampling on a finitely-generated shift-invariant space.

Corollary 5.4. Let 1 ≤ p ≤ ∞, 2 ≤ q ≤ ∞, q/(q − 1) ≤ q∗ ≤ ∞, u be the
polynomial weight uα with α > d(1 − 1/p) or the subexponential weight eD,δ with
D > 0 and δ ∈ (0, 1), φ1, . . . , φN ∈ Wq(Lp,u), Γ be a relatively-separated subset of
Rd, and Φ := {φn(· − k), 1 ≤ n ≤ N, k ∈ Zd} be a Riesz basis of the shift-invariant
space V2(φ1, . . . , φN ). Then

(i) If ψ1, . . . , ψL ∈Wq∗(Lp,u), and Ψ := {ψl(· − γ), 1 ≤ l ≤ L, γ ∈ Γ} is a stable
average sampler for V2(φ1, . . . , φN ), then there exists a positive constant δ0
such that for any functions θ1, . . . , θL with

∑L
l=1 ‖ψl−θl‖Wq∗(Lp,u) ≤ δ0, their

generating average sampler Θ := {θl(· − γ), 1 ≤ l ≤ L, γ ∈ Γ} is a stable
average sampler for V2(φ1, . . . , φN ).

(ii) If φ1, . . . , φN are continuous functions in W∞(Lp,u), and Γ is a stable ideal
sampling set for V2(φ1, . . . , φN ), then there exists a positive constant δ0 such
that any relatively-separated set Γ̃ = {γ + δγ : γ ∈ Γ} with supγ∈Γ |δγ | ≤ δ0 is
a stable ideal sampling set for V2(φ1, . . . , φN ).

Remark 5.1. From Corollary 5.4, we see that for the shift-invariant setting,
the stability of the non-uniform average (ideal) sampling is preserved under small
perturbation. Such a phenomenon is observed in [18, 40, 56] for the ideal sampling
process in the band-limited spaces and the finite-generated shift-invariant spaces,
and in [4] for the average sampling process in the finitely-generated shift-invariant
spaces. We use different approach to consider the perturbation problem than the
ones in [4, 18, 40, 56] and then the stability under small perturbation is shown to be
preserved under weak assumptions on the generator Φ and the average sampler Ψ,
see for instance, such a preservation is established in [4] only for the case q = ∞, q∗ =
1, p = 1 and u = u0.

Remark 5.2. Unlike in the shift-invariant setting, the stability of the ideal
sampling set is not preserved under small perturbation in our general setting, or in
some way the assumption (5.4) in Theorem 5.3 cannot be eliminated if we expect
that the stability of the ideal sampling set is preserved under small perturbation. For
instance, let Λ = Z and Φ := {φk(x) := h(2(x− k)) cos2(4kπ(x− k)) : k ∈ Z}, where
h(x) = max(1− |x|, 0) is the hat function. For the space V2(Φ,Z) generated by that
family of functions Φ, we see that f(k) = c(k), k ∈ Z, for any f =

∑
k∈Z c(k)φk ∈

V2(Φ,Z). Thus ‖f‖2 ≤ ‖(f(k))k∈Z‖`2(Z) ≤ 4‖f‖2 for all f ∈ V2(Φ,Z), where we
have also used the facts that φk, k ∈ Z, are supported in k + [−1/2, 1/2] and satisfy
1
4 ≤ ‖φk‖2 ≤ 1. This shows that Z is a stable sampling set for V2(Φ,Z). Noting that
f(k+1/(8k)) = 0, k ∈ Z, for any f =

∑
k∈Z c(k)φk ∈ V2(Φ,Z), we then conclude that

for any 0 < δ < 1/2, the small perturbation Zδ = {k+(−1)k min(δ, 1/(8|k|)), 0 6= k ∈
Z} of the stable sampling set Z is not a stable sampling set for V2(Φ,Λ). Moreover,
the assumption (5.4) does not hold for that family of functions Φ, since for any δ > 0,

‖Φδ‖q,p,α ≥ ‖φk − φk(·+ 1/(8k))‖Lq(k+[0,1]) ≥
1
2

∫ 1/4

0

| cos 8kπx|dx ≥ 1
16
,

where the integer k is chosen so that 8kδ ≥ 1.

6. Locally finite reconstruction process. For a bounded setK and a positive
number R, we let B(K,R) := {y ∈ Rd : infx∈K |y − x| ≤ R} be the R-neighborhood
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of the set K. For an average sampling process on the space Vr(Φ,Λ) with the average
sampler Ψ := {ψγ , γ ∈ Γ}, we define the locally finite reconstruction approximation
of a function f ∈ Vr(Φ,Λ) on a bounded set K using average sampling data on the
R-neighborhood B(K,R) of the set K by

f̃a
K,R =

∑
γ∈Γ∩B(K,R)

〈f, ψγ〉ψ̃a
γ,K,R(6.1)

where

ψ̃a
γ,K,R =

∑
λ1,λ2∈B(K,2R)

〈ψγ , φλ1〉(ÃΨ,Φ,K,R)−1(λ1, λ2)φλ2(6.2)

and

ÃΨ,Φ,K,R =
( ∑

γ∈Γ∩B(K,4R)

〈φλ, ψγ〉〈ψγ , φλ′〉
)

λ,λ′∈B(K,3R)
.(6.3)

Similarly for the ideal sampling process on the space Vr(Φ,Λ) with the sampling set
Γ, we define the locally finite reconstruction approximation of a function f ∈ Vr(Φ,Λ)
on a bounded set K using the ideal sampling data on the R-neighborhood B(K,R)
of the set K by

f̃ i
K,R =

∑
γ∈Γ∩B(K,R)

f(γ)ψ̃i
γ,K,R(6.4)

where

ψ̃i
γ,K,R =

∑
λ1,λ2∈B(K,2R)

φλ1(γ)(ÃδΓ,Φ,K,R)−1(λ1, λ2)φλ2(6.5)

and

ÃΨ,Φ,K,R =
( ∑

γ∈Γ∩B(K,4R)

φλ(γ)φλ′(γ)
)

λ,λ′∈B(K,3R)
.(6.6)

For any bounded set K, we observe that the locally finite reconstruction approxi-
mation f̃a

K,R for the average sampling/reconstruction process and f̃ i
K,R for the ideal

sampling/reconstruction process are obtained by using the samples in a finite neigh-
borhood of that set K with finitely many steps. Then we conclude from Theorems 6.1
and 6.2 that the locally finite reconstruction approximation could be possibly used in
the real-time reconstruction by selecting the parameter R properly.

Using the similar idea to the finite section method in frame theory (see e.g. [17,
19, 34]), we have the following locally finite reconstruction approximation for the
average (ideal) sampling/reconstruction process:

Theorem 6.1. Let p, q, q∗, r, u,Λ,Γ,Φ,Ψ, Ψ̃ be as in Theorem 3.1, and f̃a
K,R

be defined as in (6.1) for any bounded set K, positive number R ≥ 1 and function
f ∈ Vr(Φ,Λ). Then there exists a positive constant C (independent of the bounded set
K, the positive number R ≥ 1, and the function f ∈ Vr(Φ,Λ)) such that

‖f̃a
K,R − f‖Lr(K) ≤ C‖u−1‖2

Lp′ (Rd\B(R))
‖(〈f, ψγ〉)γ∈Γ‖`r(Γ)

+C‖u−1‖Lp′ (Rd\B(R))‖(〈f, ψγ〉)γ∈Γ\B(K,R)‖`r(Γ\B(K,R))(6.7)
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holds for any bounded set K, any positive number R ≥ 1, and any f ∈ Vr(Φ,Λ).
Theorem 6.2. Let p, r, u,Λ,Γ,Φ, Ψ̃ be as in Theorem 3.2, and f̃ i

K,R be defined
as in (6.4) for any bounded set K, positive number R ≥ 1 and function f ∈ Vr(Φ,Λ).
Then there exists a positive constant C (independent of the bounded set K, the positive
number R ≥ 1 and the function f ∈ Vr(Φ,Λ)) such that

‖f̃ i
K,R − f‖Lr(K) ≤ C‖u−1‖2

Lp′ (Rd\B(R))
‖(f(γ))γ∈Γ‖`r(Γ)

+C‖u−1‖Lp′ (Rd\B(R))‖(f(γ))γ∈Γ\B(K,R)‖`r(Γ\B(K,R))(6.8)

holds for any bounded set K, any positive number R ≥ 1, and any f ∈ Vr(Φ,Λ).
As a byproduct of Theorems 6.1 and 6.2, we have the following result about the

location of (non-)ideal sampling devices.
Theorem 6.3. Let p, q, q∗, r, u,Λ,Γ,Φ,Ψ, Ψ̃ be as in either Theorem 3.1 or The-

orem 3.2. Then there exists a positive constant R0 such that for any bounded set K,
the number of (non-)ideal sampling devices located in B(K,R0) exceeds the degrees of
freedom of the space V2(Φ,Λ) in the domain K, that is,

#(Γ ∩B(K,R0)) ≥ #(Λ ∩K)(6.9)

where #(E) denotes the cardinality of a set E.
Remark 6.1. If V2(Φ,Λ) is a shift-invariant space generated by a compactly sup-

ported continuous function φ, then one may verify that the matrix
( ∑

γ∈Γ φλ(γ)φλ′(γ)
)

associated with the ideal sampling on Γ is a band-limited matrix. Furthermore for
the case that finite truncation of that matrix is invertible, (which is true if φ is a
B-spline and Γ is a sampling set with sampling density strictly less than the optimal
density, see [3, 4]), Gröchenig and Schwab ([32]) proposed an efficient local recon-
struction algorithm to recover the original function in a domain exactly, instead of
approximately in Theorems 6.1 and 6.2, from its samples in a neighborhood of that
domain. Comparing with the locally perfect recovery in [32], we see that the locally
finite approximation in Theorems 6.1 and 6.2 works for well-localized average sam-
pling process as well as ideal sampling process, and for most signals with finite rate
of innovation instead of signals of B-spline type.

Remark 6.2. The density property (6.9) in Corollary 6.3 is established in [3]
for the ideal sampling of signals in a B-spline space, that is, V2(Φ,Λ) is the shift-
invariant space generated by the integer shifts of a B-spline. The readers may refer
[2] for similar results to average (ideal) sampling in the band-limited space, and [8] to
the non-uniform Gabor system.

7. The Richardson-Landweber iterative reconstruction process. Let Φ
be the generator of the space V2(Φ,Λ), Ψ be an average sampler, and Γ be an ideal
sampling set. We define an iterative reconstruction algorithm from average sampling
data (aγ)γ∈Γ ∈ `r by:{

f0 = A−2
∑

γ∈Γ,λ∈Λ aγ〈ψγ , φλ〉φλ,

fn = f0 + fn−1 −A−2Tasfn−1 if n ≥ 1,
(7.1)

where A is a positive parameter and the operator Tas is defined by

Tasf =
∑

γ∈Γ,λ∈Λ

〈f, ψγ〉〈ψγ , φλ〉φλ.(7.2)
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Similarly we define an iterative reconstruction algorithm from ideal sampling data
(aγ)γ∈Γ ∈ `r by: {

f0 = A−2
∑

γ∈Γ,λ∈Λ aγφλ(γ)φλ

fn = f0 + fn−1 −A−2Tisfn−1, n ≥ 1,
(7.3)

where A is a positive parameter and the operator Tis is defined by

Tisf =
∑

γ∈Γ,λ∈Λ

f(γ)φλ(γ)φλ.(7.4)

Since the operators Aas in (7.2) and Ais in (7.4) can be written as Tas =
TΦA

∗
Ψ,ΦAΨ,Φ(TΦ)−1, and Tis = TΦA

∗
δΓ,ΦAδΓ,Φ(TΦ)−1, where TΦ : (c(λ)) 7−→

∑
λ∈Λ c(λ)φλ,

we then have that the iterative reconstruction algorithms from average sampling data
and from ideal sampling data are equivalent to the familiar Richardson-Landweber
iterative algorithms for the positive operators A∗Ψ,ΦAΨ,Φ and A∗δΓ,ΦAδΓ,Φ on `2(Λ)
respectively. For the iterative reconstruction algorithms from average sampling data
and from ideal sampling data, we have the following exponential convergence for sig-
nals in Vr(Φ,Λ).

Theorem 7.1. Let p, q, q∗, r, u,Λ,Γ,Φ,Ψ, Vr(Φ,Λ) be as in Theorem 3.1. We
assume that the parameter A in (7.1) is a positive constant larger than the operator
norm of the matric AΨ,Φ from `2(Λ) to `2(Γ). Then the sequence {fn, n ≥ 1} in (7.1)
converges to a function f∞ in Vr(Φ,Λ) in Lr norm exponentially for any initial data
(aγ)γ∈Γ ∈ `r, that is, there exist two positive constants C ∈ (0,∞) and s ∈ (0, 1) such
that

‖fn − f∞‖r ≤ Csn‖(aγ)γ∈Γ‖`r(Γ) for all n ≥ 1.(7.5)

Furthermore if the initial data (aγ)γ∈Γ are obtained from average sampling a function
f in Vr(Φ,Λ), that is, aγ = 〈f, ψγ〉 for all γ ∈ Γ, then the limit function f∞ of the
sequence {fn, n ≥ 1} agrees with the original function f .

Theorem 7.2. Let p, r, u,Λ,Γ,Φ, Vq(Φ,Λ) be as in Theorem 3.2. Assume that
the parameter A in (7.3) is a positive constant larger than the operator norm of the
matrix AδΓ,Φ := (φλ(γ))γ∈Γ,λ∈Λ from `2(Λ) to `2(Γ). Then the sequence {fn, n ≥ 1}
in (7.3) converges to a function f∞ ∈ Vr(Φ,Λ) in Lr norm exponentially. Moreover
if aγ = f(γ), γ ∈ Γ, holds for some f ∈ Vr(Φ,Λ), then f∞ = f .

Remark 7.1. For Φ = {φλ : λ ∈ Λ}, we let P be the projection operator from
L2 to V2(Φ,Λ), see Remark 3.2. Then for the average sampling/reconstuction process
with Ψ as its average sampler (resp. the ideal sampling/reconstruction process with Γ
as its sampling set), PΨ := {Pψγ , ψγ ∈ Ψ} (resp. PδΓ := {Pδγ , γ ∈ Γ}) is a frame
for V2(Φ,Λ), and hence the corresponding frame algorithm is the familiar Richardson-
Landweber iterative algorithm for the positive operator (AΦ,Φ)−1/2A∗Ψ,ΦAΨ,Φ(AΦ,Φ)−1/2

(resp. (AΦ,Φ)−1/2A∗δΓ,ΦAδΓ,Φ(AΦ,Φ)−1/2) on the space `2(Λ), see [2]. Clearly the it-
erative frame algorithm becomes the iterative algorithm proposed in the paper when
Φ is an orthonormal basis of V2(Φ,Λ). In general, we need more computation for
each iterative step of the iterative frame algorithm than the one of the iterative algo-
rithm in the paper. The consideration which iterative algorithm converges faster and
other implementation of the reconstruction process associated with average (ideal)
sampling/reconstruction process are beyond the scope of this paper and will be dis-
cussed in the subsequent paper. By the general frame theory, the iterative frame
algorithm associated with the average (ideal) sampling/reconstruction process on the
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space V2(Φ,Λ) ⊂ L2 converges exponentially. Similar to the proofs of Theorems 7.1
and 7.2, we have the exponential convergence of the iterative frame algorithm on
the space Vr(Φ,Λ) with r 6= 2, under the assumption that p, q, q∗, r, u,Λ,Λ,Φ,Ψ are
as in Theorems 3.1 or 3.2. The above exponential convergence theorem for iterative
frame algorithm is established in [2, 21] for the shift-invariant setting with some minor
additional assumptions on the exponents p, q, q∗ and weight u.

8. Proofs. In this section, we collect the proofs of all theorems and corollaries
stated in Sections 3, 4, 5, 6, and 7.

8.1. Proof of Theorem 3.1. Unlike in the study of average (ideal) sampling
signals in a shift-invariant space, the main obstacle to consider well-localization of
the displayer comes from the non-group structure on the generator Φ and the average
sampler Ψ, which makes the standard approach from Fourier analysis inapplicable.
In the proof of Theorem 3.1, we will use the procedure used in the study of localized
frames (see [8, 23, 30, 31, 36, 49, 50, 51] and references cited therein) with some
nonessential modification (see also Remark 3.1). For the completeness of this paper,
we include a complete proof.

For a matrix A = (a(λ, λ′)λ,λ′∈Λ, we denote by ‖A‖B2 its operator norm on
`2(Λ). To prove Theorem 3.1, we recall some properties of the matrix algebras of
the Schur class Ap,u(Λ,Λ′) and of the Sjöstrand class Cp,u(Λ,Λ) in [50]. The third
property in Lemmas 8.1 and 8.2 below is usually known as the Wiener’s lemma, see,
for instance, [8, 9, 23, 26, 30, 31, 36, 48, 49, 50] and references cited therein for its
recent development and various applications.

Lemma 8.1. ([50]) Let 1 ≤ p ≤ p̃ ≤ ∞, u and ũ are weights, and Λ,Λ′,Λ′′ are
relatively-separated subsets of Rd. Then the following statements are true.

(i) If ‖uũ−1‖Lr <∞ where r = pp̃/(p̃− p), then

‖A‖Ap,u ≤ C‖A‖Ap̃,ũ for all A ∈ Ap̃,ũ(Λ,Λ′).(8.1)

(ii) If there exists another weight v such that (2.15) and (2.16) hold, then

‖AB‖Ap,u ≤ C‖A‖Ap,u‖B‖Ap,u(8.2)

for all A ∈ Ap,u(Λ,Λ′) and B ∈ Ap,w(Λ′,Λ′′), where

AB :=
( ∑

λ′∈Λ′

A(λ, λ′)B(λ′, λ′′)
)
λ∈Λ,λ′′∈Λ′′

.

(iii) If u is a p-admissible weight and A is a matrix in Ap,u(Λ,Λ) satisfying

‖Ac‖`2 ≥ D0‖c‖`2 for all c ∈ `2(8.3)

for some positive constant D0, then the inverse A−1 of the matrix A belongs
to Ap,u(Λ,Λ).

(iv) If u is a p-admissible weight, then there exist positive constants C1, C2 ∈
(0,∞) and θ ∈ (0, 1) such that the following estimate hold for all A ∈
Ap,u(Λ,Λ):

‖An‖Ap,u
≤

(
C1

‖A‖Ap,u

‖A‖B2

)C2nθ

‖A‖n
B2 , n ≥ 1.(8.4)
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Lemma 8.2. ([50]) Let 1 ≤ p ≤ p̃ ≤ ∞, u and ũ are weights on Rd, and Λ is a
lattice of Rd. Then the following statements are true.

(i) If ‖uũ−1‖Lr <∞ where r = pp̃/(p̃− p), then

‖A‖Cp,u
≤ C‖A‖Cp̃,ũ

for all A ∈ Cp̃,ũ(Λ,Λ).(8.5)

(ii) If there exists another weight v such that (2.15) and (2.16) hold, then

‖AB‖Cp,u
≤ C‖A‖Cp,u

‖B‖Cp,u
for all A,B ∈ Cp,u(Λ,Λ).(8.6)

(iii) If u is a p-admissible weight on Rd and if A is a matrix in Cp,u(Λ,Λ) that
satisfies (8.3), then the inverse A−1 of the matrix A belong to Cp,u(Λ,Λ).

Now we are ready to start the proof of Theorem 3.1.
Proof of Theorem 3.1. By Proposition 2.2, without loss of generality, we may as-

sume that Φ is an orthonormal basis of V2(Φ,Λ) for otherwise replacing Φ by S−1/2Φ.
Therefore ∥∥c∥∥

`2(Λ)
=

∥∥ ∑
λ∈Λ

c(λ)φλ

∥∥
2

for all c :=
(
c(λ)

)
λ∈Λ

∈ `2(Λ),(8.7)

and

f =
∑
λ∈Λ

〈f, φλ〉φλ for all f ∈ V2(Φ,Λ).(8.8)

From (2.8), (3.3) and (3.4), it follows that ‖Ψ‖q/(q−1),p,u + ‖Φ‖q,p,u < ∞. This,
together with (2.7), Lemma 8.1, and the following trivial estimate,

|AΨ,Φ(γ, λ)| ≤
∑

k∈Zd

‖ψγ‖Lq/(q−1)(k+[0,1]d)‖φλ‖Lq(k+[0,1)d),

proves that the matrix AΨ,Φ = (AΨ,Φ(γ, λ))γ∈Γ,λ∈Λ in (4.2) belongs to Ap,u(Γ,Λ),

AΨ,Φ ∈ Ap,u(Γ,Λ).(8.9)

Furthermore, there exists a positive constant C such that

‖AΨ,Φ‖Ap,u ≤ C‖Ψ‖q/(q−1),p,u‖Φ‖q,p,u.(8.10)

Clearly the transpose A∗ of a matrix A ∈ Ap,u has the same Ap,u norm as the
one of the matrix A,

‖A∗‖Ap,u = ‖A‖Ap,u .(8.11)

Combining (8.2), (8.9) and (8.11) then yields

A∗Ψ,ΦAΨ,Φ ∈ Ap,u(Λ,Λ).(8.12)

For the matrix AΨ,Φ, we obtain from (8.7) and the stable assumption on the
averaging sampler Ψ that

C−1‖c‖2 ≤
∥∥∥( ∑

λ∈Λ

AΨ,Φ(γ, λ)c(λ)
)

γ∈Γ

∥∥∥
`2(Γ)

≤ C‖c‖2(8.13)
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for any `2(Λ)-sequence c = (c(λ))λ∈Λ.
Combining (8.2), (8.12) and (8.13), and applying Lemma 8.1 to the matrix

A∗Ψ,ΦAΨ,Φ, we conclude that

(A∗Ψ,ΦAΨ,Φ)−1 ∈ Ap,u(Λ,Λ).(8.14)

Let

R := AΨ,Φ(A∗Ψ,ΦAΨ,Φ)−1,(8.15)

write R = (R(γ, λ))γ∈Γ,λ∈Λ, and define Ψ̃ := {ψ̃γ : γ ∈ Γ} by

ψ̃γ =
∑
λ∈Λ

R(γ, λ)φλ, γ ∈ Γ.(8.16)

Now we prove that Ψ̃ satisfies all requirements of the displayer associated with the
average sampler Ψ. By (8.2), (8.9) and (8.14), we have

R ∈ Ap,u(Γ,Λ).(8.17)

This implies that the sequence (R(γ, λ))λ∈Λ ∈ `1(Λ) for any γ ∈ Γ, and hence Ψ̃ ⊂
V1(Φ,Λ).

From (2.7), (8.2), (8.17), and the trivial estimate for Ψ̃: ‖ψ̃γ‖Lq(k+[0,1]d) ≤∑
λ∈Λ |R(γ, λ)|‖ψλ‖Lq(k+[0,1]d), we have

‖Ψ̃‖q,p,u ≤ C‖R‖Ap,u
‖Φ‖q,p,u <∞.(8.18)

For any f ∈ V2(Φ, λ), it follows from (8.8), (8.15) and (8.17) that(〈 ∑
γ∈Γ

〈f, ψγ〉ψ̃γ , φλ

〉)
λ∈Λ

=
( ∑

λ1∈Λ

〈f, φλ1〉 ×
∑

λ2∈Λ

〈φλ2 , φλ〉
( ∑

γ∈Γ

A∗Ψ,Φ(λ1, γ)R(γ, λ2)
))

λ∈Λ

=
( ∑

λ1∈Λ

〈f, φλ1〉〈φλ1 , φλ〉
)

λ∈Λ
=

(
〈f, φλ〉

)
λ∈Λ

.(8.19)

This proves the reconstruction formula (3.6) for r = 2,

f =
∑
γ∈Γ

〈f, ψγ〉ψ̃γ for any f ∈ V2(Φ,Λ).(8.20)

For 1 ≤ r < ∞, we obtain from (2.8), (2.9), (8.2), (8.9), (8.17), and Proposition 2.1
that ∥∥∥ ∑

γ∈Γ

∑
λ,λ′∈Λ

|c(λ)| × |〈φλ, ψγ〉| × |R(γ, λ′)| × |φλ′ |
∥∥∥

Lr

≤ C‖c‖`r(Λ)‖AΨ,Φ‖Ap,u
‖R‖Ap,u

‖Φ‖r,p,u

≤ C‖c‖`r(Λ)‖AΨ,Φ‖Ap,u
‖R‖Ap,u

‖Φ‖q,p,u <∞(8.21)

for any sequence c := (c(λ))λ∈Λ ∈ `r(Λ). Then for 1 ≤ r < ∞, the reconstruction
formula (3.6) follows easily from (8.20), (8.21), and the density of `2 ∩ `r in `r.



Non-uniform Average Sampling and Reconstruction 23

For r = ∞, we have that p = ∞. Take c = (c(λ))λ∈Λ ∈ `∞(Λ). We let f =∑
λ∈Λ c(λ)φλ and fk,τ =

∑
|λ−k|≤τ c(λ)φλ for τ ≥ 1. Then there exists a positive

constant C (independent of k ∈ Zd and τ ≥ 1) such that

sup
x∈k+[0,1]d

|f(x)− fk,τ (x)| ≤
∑

|γ−k|>τ

|c(λ)| sup
x∈k+[0,1]d

|φλ(x)|

≤ C‖c‖`∞(Λ)‖Φ‖∞,p,u‖u−1‖Lp′ (Rd\B(τ)),

and

sup
x∈k+[0,1]d

∣∣∣ ∑
γ∈Γ

〈f − fk,τ , ψγ〉ψ̃γ(x)
∣∣∣

≤ ‖c‖`∞

( ∑
|γ−k|≥τ/2,γ∈Γ

∑
λ∈Λ

+
∑
γ∈Γ

∑
|λ−γ|≥τ/2,λ∈Λ

)
|〈φλ, ψγ〉| sup

x∈k+[0,1]d
|ψ̃γ(x)|

≤ C‖c‖`∞(Λ)‖AΨ,Φ‖Ap,u‖Ψ̃‖∞,p,u‖u−1‖Lp′ (Rd\B(τ/2)).

The above two estimates, together with (8.20), lead to

sup
x∈k+[0,1]d

|f(x)−
∑
γ∈Γ

〈f, ψγ〉ψ̃γ(x)|

= sup
x∈k+[0,1]d

|(f − fk,τ )(x)−
∑
γ∈Γ

〈f − fk,τ , ψγ〉ψ̃γ(x)|

≤ C‖c‖`∞(Λ)‖u−1‖Lp′ (Rd\B(τ/2)) → 0 as τ →∞,

for all k ∈ Zd, where we have used the assumption (2.17) to obtain the last limit.
This proves the reconstruction formula (3.6) for r = ∞, and hence completes the
verification that the collection Ψ̃ in (8.16) is the desired displayer associated with the
average sampler Ψ.

Now we prove that the displayer Ψ̃ in (8.16) is enveloped by a function in
W∞(Lp,u) when Λ is a lattice, and the average sampler Ψ and the generator Φ for the
space V2(Φ,Λ) are enveloped by some functions g, h ∈ W∞(Lp,u) respectively. Let
AΨ,Φ = (AΨ,Φ(γ, λ))γ∈Γ,λ∈Λ be as in (4.2). Then for any λ ∈ m + [−1/2, 1/2)d and
λ′ ∈ m′ + [−1/2, 1/2)d with m,m′ ∈ Zd,

|(A∗Ψ,ΦAΨ,Φ)(λ, λ′)| ≤
∑

k,l∈Zd

∑
µ∈Γ

‖h(·+ λ− k)‖L∞([0,1]d)‖g(·+ µ− k)‖L∞([0,1]d)

×‖g(·+ µ− l)‖L∞([0,1]d)‖h(·+ λ′ − l)‖L∞([0,1]d)

≤ C
∑

k,l,n∈Zd

‖h(·+m− k)‖L∞([−1,2]d)‖g(·+ n− k)‖L∞([−1,2]d)

×‖g(·+ n− l)‖L∞([−1,2]d)‖h(·+m′ − l)‖L∞([−1,2]d)

≤ d(m−m′)

for some sequence (d(m))m∈Zd with (d(m)u(m))m∈Zd ∈ `p. This implies that

A∗Ψ,ΦAΨ,Φ ∈ Cp,u(Λ,Λ).(8.22)

Therefore using (8.13) and (8.22), and applying Lemma 8.2 to the matrix A∗Ψ,ΦAΨ,Φ,
we conclude that

(A∗Ψ,ΦAΨ,Φ)−1 ∈ Cp,u(Λ,Λ).(8.23)
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Let R be the matrix in (8.15) and Ψ̃ := {ψ̃γ , γ ∈ Γ} be the displayer defined in (8.16).
Then for γ ∈ k + [0, 1)d and x ∈ l + [0, 1)d,

|ψ̃γ(x)| ≤
∑

λ,λ′∈Λ

∑
m∈Zd

‖g(·+ γ −m)‖L∞([0,1]d)‖h(·+ λ′ −m)‖L∞([0,1]d)

|(A∗Ψ,ΦAΨ,Φ)−1(λ′, λ)|h(x− λ)

≤ C
∑

n,n′,m∈Zd

‖g‖L∞(m−k+[−1,2]d)‖h‖L∞(m−n′+[−1,2]d)

b(n− n′) sup
y∈l−n+[−1,2]d

|h(y)| ≤ c(k − l),

where (b(k))k∈Zd and (c(k))k∈Zd are sequences with (b(k)u(k))k∈Zd and (c(k)u(k))k∈Zd

belonging to `p. This proves that Ψ̃ := {ψ̃γ , γ ∈ Γ} is enveloped by some function in
W∞(Lp,u), and hence completes the proof.

8.2. Proof of Theorem 3.2. By (3.7) and relatively-separatedness of the sets
Γ and Λ, the matrix AδΓ,Φ = (φλ(γ))γ∈Γ,λ∈Λ in (4.3) belongs to Ap,u(Γ,Λ). Then we
may reach the conclusion of Theorem 3.2 using the same argument as the one in the
proof of Theorem 3.1 except replacing the average sampler Ψ by the ideal sampler δΓ.
We omit the details of the proof here.

8.3. Proof of Theorem 4.1. Let S be the frame operator (2.20) on the space
V2(Φ,Λ). By the frame assumption on the generator Φ, we have

C−1‖f‖2 ≤ ‖Sf‖2 ≤ C‖f‖2 for all f ∈ V2(Φ,Λ)(8.24)

and

C−1‖f‖2 ≤
∥∥(
〈f, φλ〉

)
λ∈Λ

∥∥
`2(Λ)

≤ C‖f‖2 for all f ∈ V2(Φ,Λ).(8.25)

Then the conclusion follows from (8.24), (8.25), and

〈A∗Ψ,ΦAΨ,Φc, c〉 =
∥∥(
〈Sf, ψγ〉

)
γ∈Γ

∥∥2

`2(Λ)

for any c = (〈f, φλ〉)λ∈Λ, where f ∈ V2(Φ,Λ).

8.4. Proof of Theorem 4.2. Note that 〈A∗δΓ,ΦAδΓ,Φc, c〉 = ‖(Sf(γ))γ∈Γ‖2
`2(Λ)

for c = (〈f, φλ〉)λ∈Λ, where f ∈ V2(Φ,Λ). This, together with (8.24) and (8.25),
proves the conclusion.

8.5. Proof of Theorem 5.1. The estimate (5.1) follows from (3.6), (3.8),
Proposition 2.1 and the following inequality:∣∣∣f − ∑

γ∈Γ

gγψ̃
′
γ

∣∣∣ ≤ ∑
γ∈Γ

|〈f, ψγ〉 − gγ ||ψ̃γ |+
∑
γ∈Γ

|gγ ||ψ̃γ − ψ̃′γ |.

8.6. Proof of Theorem 5.2. Let AΨ,Φ and AΨ′,Φ be the Gram matrices as in
(4.2). Then there exists a positive constant C independent of the average samplers
Ψ′ and Ψ by (2.8) and (8.10) such that

‖AΨ,Φ −AΨ′,Φ‖Ap,u = ‖AΨ−Ψ′,Φ‖Ap,u

≤ C‖Ψ−Ψ′‖q/(q−1),p,α‖Φ‖q,p,u ≤ C‖Ψ−Ψ′‖q∗,p,u‖Ψ‖q,p,u.(8.26)
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This, together with (8.2), yields the following estimate:

‖(AΨ,Φ)∗AΨ,Φ − (AΨ′,Φ)∗AΨ′,Φ‖Ap,u
≤ C‖Ψ−Ψ′‖q∗,p,u,(8.27)

which then implies that

‖((AΨ′,Φ)∗AΨ′,Φ)−1 − ((AΨ,Φ)∗AΨ,Φ)−1‖Ap,u

≤ C‖((AΨ,Φ)∗AΨ,Φ)−1‖Ap,u

×
∞∑

k=1

∥∥∥((
(AΨ,Φ)∗AΨ,Φ

)−1((AΨ,Φ)∗AΨ,Φ − (AΨ′,Φ)∗AΨ′,Φ

))k∥∥∥
Ap,u

≤ C‖((AΨ,Φ)∗AΨ,Φ)−1‖Ap,u

×
∞∑

k=1

(
C‖((AΨ,Φ)∗AΨ,Φ)−1‖Ap,u

‖(AΨ,Φ)∗AΨ,Φ − (AΨ′,Φ)∗AΨ′,Φ)‖Ap,u

)k

≤ C
∞∑

k=1

(
C‖Ψ−Ψ′‖q∗,p,u

)k ≤ C2‖Ψ−Ψ′‖q∗,p,u

1− C‖Ψ−Ψ′‖q∗,p,u
≤ C2δ0

1− Cδ0
<∞

when δ0 in (5.2) is sufficiently small, where we have used the estimates in (5.2), (8.2),
(8.14) and (8.27). This proves that ((AΨ′,Φ)∗AΨ′,Φ)−1 ∈ Ap,u(Λ,Λ) as δ0 in (5.2)
is sufficiently small. Moreover using the argument in the proof of Theorem 3.1, we
conclude that Ψ′ is a stable average sampler for the space V2(Φ,Λ), and

‖R′ −R‖p,α ≤ C‖Ψ−Ψ′‖q∗,p,α(8.28)

for some positive constant C, whereR′ = AΨ′,Φ((AΨ′,Φ)∗AΨ′,Φ)−1 = (R′(γ, λ))γ∈Γ,λ∈Λ

and R = AΨ,Φ((AΨ,Φ)∗AΨ,Φ)−1 = (R(γ, λ))γ∈Γ,λ∈Λ. Therefore the displayers Ψ̃′ =
{ψ̃′γ : γ ∈ Γ} and Ψ̃ = {ψ̃γ : γ ∈ Γ} associated with the stable average sam-
plers Ψ′ and Ψ respectively, which are defined by ψ′γ =

∑
λ∈ΛR

′(γ, λ)φλ and ψγ =∑
λ∈ΛR(γ, λ)φλ, γ ∈ Γ, satisfy

‖Ψ̃′ − Ψ̃‖q∗,p,u ≤ C‖R−R′‖Ap,u
‖Φ‖q∗,p,u ≤ C‖Ψ−Ψ′‖q∗,p,u.(8.29)

Hence (5.3) follows.

8.7. Proof of Theorem 5.3. We can use the same technique as the one in
the proof of Theorem 5.2 except the matrices AΨ,Φ and AΨ′,Φ and the estimate
(8.26) being replaced by the matrices AδΓ,Φ = (φλ(γ))γ∈Γ,λ∈Λ and AδΓ′ ,Φ = (φλ(γ +
δγ))γ∈Γ,λ∈Λ, and the estimate ‖AδΓ,Φ − AδΓ′ ,Φ‖Ap,u ≤ ‖Φδ0‖∞,p,u for sequences {δγ}
with supγ∈Γ |δγ | ≤ δ0 respectively. We omit the details of the proof here.

8.8. Proof of Corollary 5.4. The first conclusion follows from Theorem 5.2
and the equivalence between

∑L
l=1 ‖θn‖Wq∗ (Lp,u) and ‖Θ‖q∗,p,α where Θ = {θl(·−γ) :

1 ≤ l ≤ L, γ ∈ Γ}.
For any continuous function φ in W∞(Lp,u), there exist continuous functions

φn, n ≥ 1, with compact support such that limn→∞ ‖φn − φ‖W∞(Lp,u) = 0. Therefore
the modulus of continuity ω(φ, δ)(x) := sup|t|≤δ |φ(x + t) − φ(x)| of the continuous
function φ in W∞(Lp,u) has the property that ‖ω(φ, δ)‖W∞(Lp,u) → 0 as δ → 0 ([2]).
This together with (2.13) and Theorem 5.3 proves the second conclusion.
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8.9. Proof of Theorem 6.1. For average sampling on the space Vr(Φ,Λ) with
the average sampler Ψ := {ψγ , γ ∈ Γ}, we introduce two local reconstruction approx-
imation of a function f ∈ Vr(Φ,Λ) on a bounded set K using average sampling data
on the R-neighborhood B(K,R) of the set K by

fK,R =
∑

γ∈Γ∩B(K,R)

〈f, ψγ〉ψ̃γ ,(8.30)

and

f1
K,R =

∑
γ∈Γ∩B(K,R)

〈f, ψγ〉ψ̃1
γ,K,R(8.31)

where

ψ̃γ =
∑

λ1,λ2∈Λ

〈ψγ , φλ1〉(A∗Ψ,ΦAΨ,Φ)−1(λ1, λ2)φλ2

and

ψ̃1
γ,K,R =

∑
λ1,λ2∈B(K,2R)∩Λ

〈ψγ , φλ1〉(A∗Ψ,ΦAΨ,Φ)−1(λ1, λ2)φλ2 .

For a bounded domain K and a positive number R > 0, define the projection
matrices PK,R and QK,R by

(PK,Rc)(λ) =
{
c(λ) if λ ∈ Λ ∩B(K,R)
0 if λ 6∈ Λ ∩B(K,R)

for any c := (c(λ))λ∈Λ, and

(QK,Rd)(γ) =
{
d(γ) if γ ∈ Γ ∩B(K,R)
0 if γ 6∈ Γ ∩B(K,R)

for any d := (d(γ))γ∈Γ.
To prove Theorem 6.1, we need the following estimates for f − fK,R and fK,R −

f1
K,R:

Lemma 8.3. Let p, q, q∗, r, u,Λ,Γ,Φ,Ψ, Ψ̃ be as in Theorem 3.1, and set p′ =
p/(p−1). Then there exists a positive constant C (independent of the bounded set K,
the positive number R ≥ 1 and the function f ∈ Vr(Φ,Λ)) such that

‖fK,R − f‖Lr(K) ≤ C‖u−1‖Lp′ (Rd\B(R))‖(〈f, ψγ〉)γ∈Γ\B(K,R)‖`r(Γ\B(K,R))(8.32)

and

‖fK,R − f1
K,R‖Lr(K) ≤ C‖u−1‖2

Lp′ (Rd\B(R))
‖(〈f, ψγ〉)γ∈B(K,R)‖`r(B(K,R))(8.33)

for any compact set K, any positive number R ≥ 1, and any f ∈ Vr(Φ,Λ).
Proof. Let K̃ ⊂ Zd be the minimal subset of Zd such that K ⊂ K̃ + [0, 1)d. For

1 ≤ r ≤ q and r <∞,

‖f − fK,R‖r
Lr(K) =

∥∥∥ ∑
γ 6∈ΓK,R

〈f, ψγ〉ψ̃γ

∥∥∥r

Lr(K)
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≤
∫

K̃+[0,1]d

( ∑
γ 6∈ΓK,R

|〈f, ψγ〉|r|ψ̃γ(x)|
)
×

( ∑
γ 6∈ΓK,R

|ψ̃γ(x)|
)r−1

dx

≤
∑

γ 6∈ΓK,R

|〈f, ψγ〉|r
∑
k∈K̃

‖ψ̃γ‖Lr(k+[0,1]d) ×
( ∑

γ 6∈ΓK,R

‖ψ̃γ‖Lr(k+[0,1]d)

)r−1

≤
∥∥(〈f, ψγ〉)γ∈Γ\ΓK,R

‖r
`r(Γ\ΓK,R) ×

(
sup

γ 6∈ΓK,R

∑
k∈K̃

‖φ̃γ‖Lr(k+[0,1]d)

)
×

(
sup
k∈K̃

∑
γ 6∈ΓK,R

‖ψ̃γ‖Lr(k+[0,1]d)

)r−1

(8.34)

where we set ΓK,R = Γ ∩B(K,R). Then for all r ∈ [1,∞) with 1 ≤ r ≤ q, we have

‖f − fK,R‖Lr(K) ≤ C
∥∥(〈f, ψγ〉)γ∈Γ\ΓK,R

‖`r(Γ\ΓK,R)

×‖u‖Lp′ (Rd\B(R))‖Ψ̃‖r,p,u.(8.35)

For r = ∞, it follows from r ≤ q that q = ∞. Then using standard modification to
the estimate (8.35), we obtain

‖f − fK,R‖L∞(K) ≤ C
∥∥(〈f, ψγ〉)γ∈Γ\ΓK,R

‖`∞(Γ\ΓK,R)

×‖u‖Lp′ (Rd\B(R))‖Ψ̃‖∞,p,u.(8.36)

Then the local estimate (8.32) follows from (8.18), (8.35) and (8.36).
Set RΦ,r = (‖φλ‖Lr(k+[0,1]d))λ∈Λ,k∈Zd and |A| = (|aλ,λ′ |) for a matrix A = (aλ,λ′).

Then it follows from (2.7), (2.9) and Lemma 8.1 that

sup
k∈K̃

∑
γ∈B(K,R)∩Γ

‖ψ̃γ − ψ̃1
γ,K,R‖Lr(k+[0,1]d)

+ sup
γ∈B(K,R)∩Γ

∑
k∈K̃

‖ψ̃γ − ψ̃1
γ,K,R‖Lr(k+[0,1]d)

≤ C
(

sup
k∈K̃

∑
γ∈B(K,R)∩Γ

+ sup
γ∈B(K,R)∩Γ

∑
k∈K̃

)
( ∑

λ∈B(K,2R)∩Λ

∑
λ′∈Λ\B(K,2R)

+
∑

λ∈Λ\B(K,2R)

∑
λ′∈Λ

)
|〈ψγ , φλ〉| |(A∗Ψ,ΦAΨ,Φ)−1(λ, λ′)| ‖φλ′‖Lr(k+[0,1]d)

≤ C‖QK,R |AΨ,Φ| PK,2R |(A∗Ψ,ΦAΨ,Φ)−1| (I − PK,2R)RΦ,rPK,1‖A1,u0

+C‖QK,R |AΨ,Φ| (I − PK,2R) |(A∗Ψ,ΦAΨ,Φ)−1| RΦ,rPK,1‖A1,u0

≤ C‖u‖2
Lp′ (Rd\B(R))

‖ |AΨ,Φ| PK,2R |(A∗Ψ,ΦAΨ,Φ)−1| ‖Ap,u
‖RΦ,r‖Ap,u

+C‖u‖2
Lp′ (Rd\B(R))

‖AΨ,Φ‖Ap,u
‖ |(A∗Ψ,ΦAΨ,Φ)−1| RΦ,r‖Ap,u

≤ C‖u‖2
Lp′ (Rd\B(R))

‖AΨ,Φ‖Ap,u‖(A∗Ψ,ΦAΨ,Φ)−1‖Ap,u‖Φ‖r,p,u.(8.37)

This together with (8.10) and (8.14) proves (8.33).
To prove Theorem 6.1, we need another lemma.
Lemma 8.4. Let p, q, q∗, r, u,Λ,Γ,Φ,Ψ, Ψ̃ be as in Theorem 3.1, and AΨ,Φ be as

in (4.2). Then there exist positive constants C and δ0 (independent of the bounded



28 Qiyu Sun

set K and the positive number R ≥ 1) such that

‖PK,2R(A∗Ψ,ΦAΨ,Φ)−1PK,2R − PK,2RRΨ,Φ,K,3RPK,2R‖A1,u0

≤ C‖u‖2
Lp′ (Rd\B(R))

(8.38)

holds for all bounded sets K and all positive numbers R with ‖u‖Lp′ (Rd\B(R)) ≤ δ0,
where RΨ,Φ,K,3R is the generalized inverse of the matrix PK,3RÃΨ,Φ,K,RPK,3R, that is,
RΨ,Φ,K,3RPK,3RÃΨ,Φ,K,RPK,3R = PK,3R and PK,3RRΨ,Φ,K,3RPK,3R = RΨ,Φ,K,3R.

Proof. By (8.13), for any A ≥ (‖A∗Ψ,ΦAΨ,Φ‖B2)1/2 there exists a matrix B ∈
Ap,u(Λ,Λ) such that

A∗Ψ,ΦAΨ,Φ = A2(I −B),(8.39)

and

‖B‖B2 < 1,(8.40)

where I is the usual unit matrix. By (8.4), (8.40), and the estimates ‖PK,3RBPK,3R‖B2 ≤
‖B‖B2 and ‖PK,3RBPK,3R‖Ap,u

≤ ‖B‖Ap,u
, we have

‖Bk‖Ap,u + ‖(PK,3RBPK,3R)k‖Ap,u ≤ C
(‖B‖B2 + 1

2

)k

, k ≥ 1.(8.41)

Therefore for k ≥ 2,∥∥∥PK,2R

∞∑
k=1

BkPK,2R − PK,2R

∞∑
k=1

(PK,3RBPK,3R)kPK,2R

∥∥∥
A1,u0

≤
∞∑

k=2

k−2∑
l=0

‖PK,2R(PK,3RBPK,3R)lB(I − PK,3R)Bk−1−lPK,2R‖A1,u0

≤ C
∞∑

k=2

k−2∑
l=0

‖PK,2R(PK,3RBPK,3R)lB(I − PK,3R)‖A1,u0

×‖(I − PK,3R)Bk−1−lPK,2R‖A1,u0

≤ C‖u‖2
Lp′ (Rd\B(R))

∞∑
k=2

k−2∑
l=0

‖(PK,3RBPK,3R)lB‖Ap,u
‖Bk−1−l‖Ap,u

≤ C‖u‖2
Lp′ (Rd\B(R))

‖B‖Ap,u

∞∑
k=2

(k − 1)
(‖B‖B2 + 1

2

)k−1

≤ C‖u‖2
Lp′ (Rd\B(R))

,(8.42)

where we have used (8.40) and (8.41) to obtain the last inequality.
Write

PK,3RÃΨ,Φ,K,RPK,3R = PK,3RA
∗
Ψ,ΦQK,4RAΨ,ΦPK,3R = A2(PK,3R −B′),(8.43)

where A is the positive constant in (8.39). Since

‖PK,3RA
∗
Ψ,ΦQK,4RAΨ,ΦPK,3R − PK,3RA

∗
Ψ,ΦAΨ,ΦPK,3R‖B2

≤ ‖PK,3RA
∗
Ψ,ΦQK,4RAΨ,ΦPK,3R − PK,3RA

∗
Ψ,ΦAΨ,ΦPK,3R‖A1,u0

≤ C‖u‖2
Lp′ (Rd\B(R))

‖AΨ,Φ‖2
Ap,u

,(8.44)
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we have that

‖PK,3RBPK,3R −B′‖B2 ≤ D0‖u‖2
Lp′ (Rd\B(R))

‖AΨ,Φ‖2
Ap,u

≤ 1− ‖B‖B2

3
,(8.45)

when ‖u‖2
Lp′ (Rd\B(R))

≤ δ0 for some sufficiently small positive number δ0, where D0

is a positive constant. Therefore

‖(B′)k‖Ap,u
≤ C

(‖B‖B2 + 1
2

)k

, k ≥ 1(8.46)

by (8.4), (8.40) and (8.45). Similar to the argument in the proof of the estimate
(8.42), we have

∥∥∥PK,2R

∞∑
k=1

(B′)kPK,2R − PK,2R

∞∑
k=1

(PK,3RBPK,3R)kPK,2R

∥∥∥
A1,u0

≤
∞∑

k=1

k−1∑
l=0

‖(B′)l(B′ − PK,3RBPK,3R)(PK,3RBPK,3R)k−1−l‖A1,u0

≤ C‖u‖2
Lp′ (Rd\B(R)

‖AΨ,Φ‖Ap,u

∞∑
k=1

k
(‖B‖B2 + 1

2

)k

≤ C‖u‖2
Lp′ (Rd\B(R))

,(8.47)

where the second inequality follows from (8.41), (8.44), (8.45) and (8.46). Combining
(8.39), (8.42), (8.43) and (8.47) proves the desired estimate (8.38).

Now we start to prove Theorem 6.1.
Proof of Theorem 6.1 By Lemma 8.4,

sup
λ∈B(K,2R)

∑
λ′∈B(K,2R)

|(A∗Ψ,ΦAΨ,Φ)−1(λ, λ′)−(ÃΨ,Φ,K,R)−1(λ, λ′)| ≤ C‖u‖2
Lp′ (Rd\B(R))

,

which, together with (8.9) and Lemma 8.1, implies that(
sup
k∈K̃

∑
γ∈B(K,R)∩Γ

+ sup
γ∈B(K,R)∩Γ

∑
k∈K̃

)
‖ψ̃a

γ,K,R−ψ̃1
γ,K,R‖Lr(k+[0,1]d) ≤ C‖u‖2

Lp′ (Rd\B(R))
.

(8.48)
Therefore the estimate (6.7) follows from (8.48), Proposition 2.1 and Lemma 8.3.

8.10. Proof of Theorem 6.2. Theorem 6.2 can be proved using the similar
argument to the one in the proof of Theorem 6.1 except the average sampler Ψ being
replaced by the ideal sampler δΓ. We omit the details of the proof here.

8.11. Proof of Theorem 6.3. For any bounded set K, we let

V2(Φ,Λ ∩K) =
{ ∑

λ∈Λ∩K

c(λ)φλ,
∑

λ∈Λ∩K

|c(λ)|2 <∞
}
.

By the Riesz assumption on Φ,

C−1‖c‖`2(Λ∩K) ≤
∥∥∥ ∑

λ∈Λ∩K

c(λ)φλ

∥∥∥
L2(Rd)

≤ C‖c‖`2(Λ∩K)(8.49)
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for any sequence c := (c(λ))λ∈Λ∩K . For any R ≥ 1, it follows the localization assump-
tion on the generator Φ that∥∥∥ ∑

λ∈Λ∩K

c(λ)φλ

∥∥∥2

L2(Rd\B(K,R))

≤
∑

λ∈Λ∩K

|c(λ)|2
∑

k∈Zd\B(K,R−1)

‖φλ‖L2(k+[0,1]d)

( ∑
λ′∈Λ∩K

‖φλ′‖L2(k+[0,1]d)

)
≤ C‖Φ‖2

2,p,u‖u−1‖2
Lp′ (Rd\B(R))

∑
λ∈Λ∩K

|c(λ)|2.(8.50)

We recall that

‖u−1‖Lp′ (Rd\B(R)) → 0 as R→∞(8.51)

by (2.17). Therefore by (8.49), (8.50) and (8.51), there exist positive constants C and
R1 such that

C−1‖c‖`2(Λ∩K) ≤
∥∥∥ ∑

λ∈Λ∩K

c(λ)φλ

∥∥∥
L2(B(K,R1))

≤ C‖c‖`2(Λ∩K)(8.52)

for all sequences c := (c(λ))λ∈Λ∩K .
Set K1 = B(K,R1). For the average sampling/reconstruction process, there

exists a positive constant C by Theorem 6.1 and Lemma 8.1 such that for any R ≥ 1
and f =

∑
λ∈Λ∩K c(λ)φλ,

‖f̃a
K1,R − f‖L2(K1) ≤ C‖u−1‖Lp′ (Rd\B(R))‖(〈f, ψγ〉)γ∈Γ‖`2(Γ)

≤ C‖u−1‖Lp′ (Rd\B(R))‖AΨ,Φ‖Ap,u

( ∑
λ∈Λ∩K

|c(λ)|2
)1/2

.(8.53)

Similarly for the ideal sampling/reconstruction procedure, there exists a positive con-
stant C such that for any R ≥ 1 and f =

∑
λ∈Λ∩K c(λ)φλ,

‖f̃ i
K1,R − f‖L2(K1) ≤ C‖u−1‖Lp′ (Rd\B(R))‖AδΓ,Φ‖Ap,u

( ∑
λ∈Λ∩K

|c(λ)|2
)1/2

.(8.54)

Therefore there exists a positive constant R2 independent of K by (8.9) and (8.51) –
(8.54) that

C−1
( ∑

λ∈Λ∩K

|c(λ)|2
)1/2

≤ ‖fa
K1,R2

‖L2(K1) ≤ C
( ∑

λ∈Λ∩K

|c(λ)|2
)1/2

,(8.55)

for the average sampling/reconstruction process, and

C−1
( ∑

λ∈Λ∩K

|c(λ)|2
)1/2

≤ ‖f i
K1,R2

‖L2(K1) ≤ C
( ∑

λ∈Λ∩K

|c(λ)|2
)1/2

,(8.56)

for the ideal sampling/reconstruction process. Therefore the conclusion (6.9) follows
by letting R0 = R1 +R2.
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8.12. Proof of Theorem 7.1. Let AΨ,Φ be as in (4.2), and the matrix B ∈
Ap,u(Λ,Λ) be as in (8.39) and (8.40). Write the sequence (aγ)γ∈Γ as a vector, to be
denoted by a, and the family of functions Φ as a vector, which is still denoted by Φ.
We claim that

fn =
n∑

k=0

aTAΨ,ΦB
kΦ, n ≥ 0,(8.57)

where aT denotes the transpose of the vector a. The above claim is obviously true
for n = 0. Inductively we assume that the claim is true for n. By (7.1), (8.39), and
the inductive hypothesis, we have

fn+1 = aTAΨ,ΦΦ +
n∑

k=0

aTAΨ,ΦB
kΦ−A−2

n∑
k=0

aTAΨ,ΦB
kA∗Ψ,ΦAΨ,ΦΦ

= aTAΨ,ΦΦ +
n∑

k=0

aTAΨ,ΦB
kΦ−

n∑
k=0

aTAΨ,ΦB
k(I −B)Φ

=
n+1∑
k=0

aTAΨ,ΦB
kΦ.

This proves the claim (8.57) by induction.
By (8.9), (8.41), (8.57) and Proposition 2.1, we have

‖fn+1 − fn‖r = ‖aTAΨ,ΦB
n+1Φ‖r

≤ C‖a‖`r(Γ)‖AΨ,Φ‖Ap,u
‖Bn+1‖Ap,u

‖Φ‖q,p,u

≤ C
(‖B‖B2 + 1

2

)n

‖a‖`r(Γ) for all n ≥ 0,(8.58)

where a := (aγ)γ∈Γ. The first conclusion then follows from (8.58).
Now we assume that the initial data a := (aγ)γ∈Γ are obtained from average

sampling a function f ∈ Vr(Φ,Λ). Taking limit at both side of fn = f0 + fn−1 −
A−2Tasfn−1 and using the Riesz property of Φ, we obtain∑

γ∈Γ

〈f − f∞, ψγ〉〈ψγ , φλ〉 = 0 for all λ ∈ Λ.(8.59)

Write

f − f∞ =
∑
λ∈Λ

dλφλ(8.60)

for some `r sequence d = (dλ)λ∈Λ. We then may write (8.59) as

dTA∗Ψ,ΦAΨ,Φ = 0.(8.61)

Combining (8.13), (8.60), and (8.61) leads to the second conclusion of the theorem
that the limit function f∞ agrees with the original function f .

8.13. Proof of Theorem 7.2. We may use the same argument as in the proof
of Theorem 7.1 with standard modification, for instance, the matrix AΨ,Φ in the proof
of Theorem 7.1 by the matrix AδΓ,Φ := (φλ(γ))γ∈Γ,λ∈Λ. We omit the details of the
proof here.
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Applications, Birkhäuse, Boston, 2001.

[12] J. J. Benedetto and S. Li, The theory of multiresolution analysis frames and applications to
filter banks, Appl. Comput. Harmon. Anal., 5(1998), 389–427.

[13] J. J. Benedetto and A. I. Zayed (editors), Sampling, Wavelets, and Tomography, Birkhäuser,
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[24] H. G. Feichtinger and K. Gröchenig, Irregular sampling theorems and series expansions of

band-limited functions, J. Math. Anal. Appl., 167(1992), 530–556.
[25] K. Gröchenig, Foundation of Time-Frequency Analysis, Birkhäuser, Boston, 2001.
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[30] K. Gröchenig and M. Leinert, Wiener’s lemma for twisted convolution and Gabor frames, J.

Amer. Math. Soc., 17(2003), 1–18.
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[37] A. J. E. M. Janssen, Duality and biorthogonality for Weyl-Heisenberg frames, J. Fourier Anal.

Appl., 1(1995), 403–436.
[38] R.-Q. Jia and C. A. Micchelli, Using the refinement equations for the construction of pre-

wavelets. II. Powers of two, In Curves and Surfaces (Chamonix-Mont-Blanc, 1990), Aca-
demic Press, Boston, MA, 1991, pp. 209–246.

[39] J. Kusuma, I. Maravic and M. Vetterli, Sampling with finite rate of innovation: channel and
timing estimatation for UWB and GPS, IEEE Conference on Communication 2003, Achor-
age, AK.

[40] Y. Liu, Irregular sampling for spline wavelet subspaces, IEEE Trans. Information Theory,
42(1996), 623–627.

[41] I. Maravic and M. Vetterli, Sampling and reconstruction of signals with finite rate of innovation
in the presence of noise, IEEE Trans. Signal Proc., 53(2005), 2788–2805.

[42] F. A. Marvasti (editor), Nonuniform Sampling: Theory and Practice (Information Technology:
Transmission, Processing, and Storage), Plenum Pub. Corp., 2001.

[43] P. Marziliano and M. Vetterli, Reconstruction of Irregular sampled discrete-time bandlimited
signals with unknown sampling locations, IEEE Trans. Signal Proc., 48(2000), 3462–3471.

[44] P. Marziliano, M. Vetterli, and T. Blu, Sampling and exact reconstruction of bandlimited
signals with shot noise, IEEE Trans. Information Theory, 52(2006), 2230–2233.

[45] P. Marziliano, Sampling Innovations, PhD thesis Swiss Federal Institute of Technology, April
2001.

[46] A. Ron and Z. Shen, Weyl-Heisenberg frames and Riesz bases in L2(Rd), Duke Math. J.,
89(1997), 237–282.

[47] L. L. Schumaker, Spline Functions: Basic Theory, John Wiley & Sons, New York, 1981.
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