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Nonuniform Multiconductor Transmission Line

Analysis by a Two-Step Perturbation Technique
Mykola Chernobryvko, Daniël De Zutter, Fellow, IEEE and Dries Vande Ginste, Senior Member, IEEE.

Abstract—A two-step perturbation technique to model nonuni-
form multiconductor transmission lines in the frequency domain
is presented. In this method nonuniformities are treated as per-
turbations with respect to the nominal uniform multiconductor
line. Starting from the Telegrapher’s equations and applying two
consecutive perturbations steps, at each step, we obtain second-
order ordinary differential equations with distributed source
terms. Solving these equations together with the appropriate
boundary conditions provides the sought-for voltages and cur-
rents along the interconnect structure. The method is validated
by means of a frequency domain analysis of a ten conductor
microstrip line with random uniformities, confirming its accuracy
and efficiency. Additionally, the time domain accuracy and
efficiency is demonstrated by means of a high-speed packaging
nonuniform interconnect with six signal conductors.

Index Terms—Interconnect modeling, nonuniform multicon-
ductor transmission line (NMTL), perturbation, Telegrapher’s
equations, transient analysis.

I. INTRODUCTION

NONUNIFORM multiconductor transmission

lines (NMTLs) have been widely used as

interconnections in various microwave applications. Due

to the increasing density, operation speed and complexity of

modern integrated circuits, physical effects such as delay,

ringing, distortion, and crosstalk cannot be neglected and

must be captured properly as frequency increases. Moreover,

skin, proximity, edge, and roughness effects can lead to

signal integrity problems at high frequencies [1]. However,

the analytical solution of differential equations describing

the behavior of NMTLs with varying per-unit-length (p.u.l.)

parameters along the line are not available for the general

case.

Recently, several methods for analyzing NMTLs have been

proposed in both time and frequency domains. The straightfor-

ward way to perform the analysis is to approximate an NMTL

as a cascade of discrete uniform transmission lines [2], [3].

However, many segments have to be used in order to get

an accurate solution. One of the most commonly used tools

to obtain a transient response is the inverse fast Fourier

transform [4]. Nevertheless, it requires very many data points

to avoid aliasing errors when very fast signals are studied.

The method of characteristics [5]–[8], which discretizes both

time and distance, can also be applied to obtain transients.

Unfortunately, the technique becomes inefficient to account

for frequency-dependent p.u.l. parameters. Another technique

M. Chernobryvko, D. Vande Ginste and D. De Zutter are with the
Electromagnetics Group, Department of Information Technology, Ghent Uni-
versity/iMinds, St. Pietersnieuwstraat 41, 9000 Ghent, Belgium (e-mail:
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transforms the Telegrapher’s equations into algebraic equations

in frequency or in time domain using wavelet expansions [9]–

[11]. The accuracy of the method depends on the number

of components of the wavelet basis. Also, its complexity

grows significantly with the number of signal conductors.

Full-wave simulations of NMTLs based on the method of

moments (MoM) [12], finite-difference time-domain (FDTD)

technique [13]–[15], finite elements method (FEM) [16] or dif-

ferential quadrature method (DQM) [17], [18] provide results

with high accuracy, but the computational expenses of the full-

wave techniques considerably exceed those of the quasi-TM

approach.

In this paper, we propose a two-step perturbation technique

to analyze NMTLs in the frequency domain. Whereas only

nonuniform single and differential lines could be treated

in [19], this paper presents the general theory for the case

with N signal conductors. The perturbation approach can be

applied to NMTLs for which the cross-sectional properties

vary in an arbitrary way. We perform the analysis using the

well-known RLGC-matrix description for transmission lines

in the quasi-TM regime [20]. The NMTL is represented as a

uniform multiconductor transmission line with perturbations

describing the nonuniformities. This uniform interconnect is

considered to be the nominal structure in our approach. First,

the nominal voltages and currents are found as a solution of the

classical Telegrapher’s equations. Next, in the first perturbation

step, we obtain the first-order perturbation values of voltages

and currents solving a similar set of Telegrapher’s equations

with additional distributed voltage and current sources. These

source terms depend on the nominal voltages and currents

and on the deviation of p.u.l. parameters from their nominal

values in each point along the line. As was already shown

in [19], a second perturbation step is needed to significantly

improve the accuracy of our technique. To demonstrate the

accuracy and efficiency of the technique, two examples are

worked out in detail. First, a nonuniform transmission line with

ten signal conductors, for which the cross-sectional properties

change randomly, is investigated in the frequency domain.

The second example is a high-speed packaging interconnect

example composed of six nonuniform lines. To perform the

analysis of the second structure in the time domain, the results

of the perturbation approach are imported into Agilent’s ADS

framework and compared to the full-wave solution of ADS.

The outline of this paper is as follows. Section II details the

two-step perturbation technique for nonuniform transmission

lines with N signal conductors. The details of the first-

order perturbation solution are considered in Section II-B. The

theory is validated and illustrated in Section III. Section IV



2

summarizes our work and conclusions.

II. FORMALISM FOR GENERAL NONUNIFORM

MULTICONDUCTOR LINES

We analyse NMTLs within the framework of the quasi-

TM approach and in the frequency domain (with the ejωt

dependency suppressed). Consider voltage and current N × 1
column vectors V and I, holding the N voltages and N
currents along the lines where N is the number of signal

conductors and with the voltages defined with respect to a

common reference conductor (conductor N + 1). To simplify

the notation, we work with N ×N complex p.u.l. inductance

L and capacitance C matrices, i.e. the p.u.l. resistance R
and conductance G are understood to be part of L and C
(L = L + R

jω
and C = C + G

jω
). Our starting point is the

well-known Telegrapher’s equations:

dV(z)
dz

= −jωL(z)I(z), (1)

dI(z)
dz

= −jωC(z)V(z), (2)

with z being the signal propagation direction. To formulate

a perturbation technique, the following expansions are intro-

duced:

V(z) = Ṽ(z) + ∆V1(z) + ∆V2(z) + ...,

I(z) = Ĩ(z) + ∆I1(z) + ∆I2(z) + ...,

C(z) = C̃ +∆C(z),
L(z) = L̃+∆L(z). (3)

The leading terms of the series expansions (3), i.e. the voltage

Ṽ(z) and current Ĩ(z), are labeled as the unperturbed values.

The remaining terms are perturbations of order one, two, etc.

C(z) and L(z) in (3) are simply written as the sum of a

constant part and a place-dependent part. Here, C̃ and L̃ are

the unperturbed values. ∆C(z) and ∆L(z) are the variations

of the capacitance and inductance along the line, which remain

after subtracting the constant martrices C̃ and L̃ from C(z) and

L(z) respectively. Remark that C̃ and L̃ are not necessarily the

mean values of C and L over the line. We only suppose that

∆C(z) and ∆L(z) are small enough with respect to C̃ and L̃.

To simplify notations, the z-dependence between the brackets

will be dropped in the sequel. For the unperturbed quantities

we have:

dṼ
dz

= −jωL̃Ĩ, (4)

dĨ
dz

= −jωC̃Ṽ, (5)

while the perturbations of order one and two satisfy

d∆V1

dz
= −jωL̃∆I1 − jω∆LĨ, (6)

d∆I1
dz

= −jωC̃∆V1 − jω∆CṼ, (7)

d∆V2

dz
= −jωL̃∆I2 − jω∆L∆I1, (8)

d∆I2
dz

= −jωC̃∆V2 − jω∆C∆V1. (9)

A. The unperturbed problem

Let us now summarize what is relevant to the solution of the

unperturbed problem. Both Ṽ and Ĩ satisfy a wave equation:

d2Ṽ
dz2

+ ω2(L̃C̃)Ṽ = 0, (10)

d2Ĩ
dz2

+ ω2(C̃L̃)Ĩ = 0. (11)

To solve (10) and (11), the voltages are expanded in terms

of the eigenvectors Vi of L̃C̃ and the currents in terms of the

eigenvectors Ii of C̃L̃:

Ṽ =
N
∑

i=1

αiVi, (12)

Ĩ =

N
∑

i=1

α̃iIi. (13)

From now on we will systematically introduce vector and ma-

trix notations to avoid working with individual eigenvectors.

Let us store the coefficients αi in the N × 1 column vector ṽ

and likewise, the coefficients α̃i in the column vector ĩ. The

eigenvectors Vi are collected in a N ×N matrix T, column i
of which is Vi and the Ii’s are similarly collected in S. Hence,

(12) and (13) can be concisely written as

Ṽ = Tṽ (14)

Ĩ = Sĩ. (15)

As proven in Appendix A (and is well-known), the eigenvec-

tors of voltages and currents are biorthogonal and hence, with

proper normalization, we can assert that TTS = STT = IN ,

where IN is the N × N unit matrix. The critical reader

will remark that this orthonormalization does not uniquely

determine the eigenvectors as a particular voltage eigenvector

can be multiplied by a constant, provided the corresponding

current eigenvector is divided by that same factor. We will

not pursue this issue here but remark that in the end, the

actual voltages and currents as given by (12) and (13) remain

unchanged.

At this point, it is very important to remark that the above

reasoning (and further properties used in this paper and proven

in Appendix A) are only valid provided all eigenvalues are

distinct. If this is not the case, due care has to be taken to still

obtain a diagonal modal impedance matrix. This is possible

when using so-called ”generalized associated eigenvectors”.

For more details we refer the reader to [21] and [22]. The

examples treated in the present paper are of such a nature that

the eigenvalues are distinct, which is also what is assumed in

the further derivation of the theory below. In [21] and [22] the

reader will find the necessary material to extend the theory to

the more general case.

Furthermore (also proven in Appendix A), the eigenvalues

λi of voltage and current eigenvectors are identical. For further

use, we will need a diagonal N ×N matrix Λ, with diagonal

elements λi. With this eigenvalue matrix, the eigenvector

matrices ṽ and ĩ satisfy

(L̃C̃)T = TΛ,

(C̃L̃)S = SΛ. (16)



3

Using the above and substituting (14) into (10) and (15) into

(11) shows that:

d2ṽ

dz2
+ ω2Λṽ = 0, (17)

d2 ĩ

dz2
+ ω2Λĩ = 0. (18)

Let us go back to (4), insert the eigenvector expansions (14)

and (15) and project both sides of the equation on the current

eigenvectors. This yields

dṽ

dz
= −jωLĩ, (19)

with the matrix L given by

L = ST L̃S. (20)

As proven in Appendix A, the current eigenvectors satisfy the

orthogonality property (Ii)
T L̃Ij = 0 for i 6= j, hence, L is a

diagonal matrix. Similarly, starting from (5) we arrive at

d̃i

dz
= −jωCṽ, (21)

C = TT C̃T, (22)

with C a diagonal matrix as a consequence of the orthogo-

nality property (Vi)
T C̃Vj = 0 for i 6= j (see Appendix A).

Futhermore, we have

LC = CL = Λ. (23)

Let us now proceed by first solving (17) yielding

ṽ = e−jKzA+ e+jKzB, (24)

with K = ω
√
Λ and with A and B complex amplitude N × 1

vectors. The matrix exponential and square root are well-

defined as Λ is a diagonal matrix. From (24), (19) and (23) it

is found that

ĩ = Z−1
m (e−jKzA− e+jKzB), (25)

with the (diagonal) modal impedance matrix Zm given by

Zm =
√
LC−1 =

√
C−1L. (26)

In order to determine the actual values of A and B we have

to impose the boundary conditions. For an NTML of length l
at z = 0 and z = l, we impose that

Ṽ(z = 0) + ZsĨ(z = 0) = Vs, (27)

Ṽ(z = l)−ZLĨ(z = l) = 0, (28)

where the currents are directed in the positive z-direction at

both the source and load side and with Zs and ZL the N ×N
source side and load side impedance matrices resp. and with

Vs the N × 1 source column vector. At the source, (14), (15),

(24), (25) and (27) show that

T(A+B) + ZsSZ
−1
m (A−B) = Vs. (29)

Left multiplication with ST yields

(A+B) + ZsZ
−1
m (A−B) = Vs, (30)

where we have introduced the following quantities

Zs = STZsS, (31)

Vs = STVs. (32)

Note the similarity between (31) and (20). The N × 1 voltage

vector Vs is the original voltage vector Vs projected on the

current eigenvectors. At the load, (14), (15), (24), (25) and

(27) now show that

T(e−jKlA+ e+jKlB)

−ZLSZ
−1
m (e−jKlA− e+jKlB) = 0. (33)

Left multiplication with ST gives

(e−jKlA+ e+jKlB)

−ZLZ
−1
m (e−jKlA− e+jKlB) = 0, (34)

with

ZL = STZLS. (35)

Finally, (30) and (34) yield the following set of equations for

the unknown complex wave amplitudes:
(

IN + ZsZ
−1
m IN − ZsZ

−1
m

(e−jKl − ZLZ
−1
m e−jKl) (e+jKl + ZLZ

−1
m e+jKl)

)(

A

B

)

=

(

Vs

0

)

.

(36)

To emphasize the analogy with the single line problem, the

above result is rewritten as
(

φs ϕs

ϕLe
−jKl φLe

+jKl

)(

A

B

)

=

(

Vs

0

)

, (37)

with

φ = IN + ZZ−1
m ,

ϕ = IN − ZZ−1
m ,

(38)

and where the subindex “s” or “L” is added to distinguish

between the source and load impedance matrices resp. The

product φ−1ϕ represents a generalized reflection coefficient.

To conclude this subsection, we would like to draw the

attention to the fact that the modal impedance matrix Zm is not

uniquely defined. Indeed, the eigenvectors in the eigenvector

matrix v are only defined up to a multiplicative constant,

implying that C and L are also not uniquely defined. This

does not influence the eigenvalues: they remain fixed. Going

back to the original voltages Ṽ and currents Ĩ, using (14),

(15), (24) and (25), we readily deduce that Ṽ = ZinĨ, with

the input impedance matrix of the infinite multiconductor line

given by

Zin = TZmTT . (39)

Using (20), (22) and the fact that STT = TTS = IN , one

can prove that Zin is indeed unique, as it should be.
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B. The perturbed problem

Let us now turn to the perturbations. Taking the z-derivative

of (6) and using (7), we find that

d2∆V1

dz2
+ ω2(L̃C̃)∆V1 = −ω2(L̃∆C)Ṽ − jω

d

dz
(∆LĨ).

(40)

Voltage and current perturbations of order one are also ex-

panded in the corresponding eigenvectors as,

∆V1 =

N
∑

i=1

βiVi = Tv1, (41)

∆I1 =

N
∑

i=1

β̃iIi = Si1. (42)

The βi and β̃i coefficients have been collected in the vectors

v1 and i1 resp. Inserting these expansions into (40) and taking

the proper orthogonality into account, shows that

d2v1

dz2
+ ω2Λv1 = −ω2(ST L̃∆CT)ṽ − jω

d

dz
[(ST∆LT)̃i]

(43)

Once differential equation (43) is solved for v1, (6) shows that

v1 can be solved from

dv1

dz
= −jω[Li1 + (ST∆LS)̃i]. (44)

To simplify further calculations and analogous to (20) and

(22), we introduce

∆L = ST∆LS,
∆C = TT∆CT. (45)

Contrary to L and C, these matrices are not diagonal. With

this notation, (43) and (44) become

d2v1

dz2
+ ω2Λv1 = −ω2L∆Cṽ − jω

d

dz
(∆Lĩ), (46)

dv1

dz
= −jω(Li1 +∆Lĩ). (47)

A particular solution to (46) can be found by applying the

general theory for second-order differential equations with an

arbitrary source term (see e.g. [23] or Appendix A of [24]),i.e.

− 1

2j
K−1e−jKz

∫ z

0

e+jKz′

[−ω2L∆Cṽ − jω
d

dz′
(∆Lĩ)]dz′

+
1

2j
K−1e+jKz

∫ z

0

e−jKz′

[−ω2L∆Cṽ − jω
d

dz′
(∆Lĩ)]dz′.

(48)

The above expression can now be simplified by applying

partial integration to the terms with the derivative d/dz′.
Careful calculations show that the resulting contributions of

the upper limit of the integration interval (i.e. z′ = z) drop

out, while the contributions of the lower limit of the integration

interval (i.e. z′ = 0) are of the form Ce±jKz with C a

constant vector. Hence, it turns out that these contributions

are solutions to the homogeneous equation, i.e. (46) without

source. Consequently, we still have a valid particular solution

if these contributions are dropped. The final result for v1,

including an arbitrary solution to the homogeneous equation,

then becomes

v1 = e−jKzP+ e+jKzQ

−jω

2
e−jKz

∫ z

0

e+jKz′

(Zm∆Cṽ +∆Lĩ)dz′

+
jω

2
e+jKz

∫ z

0

e−jKz′

(Zm∆Cṽ −∆Lĩ)dz′, (49)

with P and Q as yet undetermined and where we have used the

identity K−1L = Zm/ω. We can now turn to the calculation

of i1 by substituting v1 into (47). This yields

i1 = Z−1
m (e−jKzP− e+jKzQ)

−jω

2
Z−1

m e−jKz

∫ z

0

e+jKz′

(Zm∆Cṽ +∆Lĩ)dz′

−jω

2
Z−1

m e+jKz

∫ z

0

e−jKz′

(Zm∆Cṽ −∆Lĩ)dz′. (50)

To determine the values of P and Q we again have to impose

the boundary conditions at z = 0 and z = l

∆V1(z = 0) + Zs∆I1(z = 0) = 0, (51)

∆V1(z = l)−ZL∆I1(z = l) = 0. (52)

At z = 0, the result is similar to (30), but with A and B

replaced by P and Q and without source term:

(P+Q) + ZsZ
−1
m (P−Q) = 0. (53)

To apply (52), we first need v1 and i1 at z = l:

v1(z = l) = e−jKlP+ e+jKlQ

−jω

2
e−jKl[(ZmF+,− +G+,−Z

−1
m )A

+(ZmF+,+ −G+,+Z
−1
m )B]

+
jω

2
e+jKl[(ZmF−,− −G−,−Z

−1
m )A

+(ZmF−,+ +G−,+Z
−1
m )B] (54)

and

i1(z = l) = Z−1
m (e−jKlP− e+jKlQ)

−jω

2
Z−1

m e−jKl[(ZmF+,− +G+,−Z
−1
m )A

+(ZmF+,+ −G+,+Z
−1
m )B]

−jω

2
Z−1

m e+jKl[(ZmF−,− −G−,−Z
−1
m )A

+(ZmF−,+ +G−,+Z
−1
m )B]. (55)

Symbols F+,− and G+,− are defined as

F+,− =

∫ l

0

e+jKz′

∆Ce−jKz′

dz′,

G+,− =

∫ l

0

e+jKz′

∆Le−jKz′

dz′, (56)

where the subindex notation +,− points to the fact that

the first exponential under the integral sign has a plus-sign

while the second one has a minus-sign. All the other F and
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G symbols are defined in an analogous way. In an easy to

understand notation we rewrite (54) and (55) as

v1(z = l) = e−jKlP+ e+jKlQ

−e−jKl(T1A+U1B) + e+jKl(T2A+U2B) (57)

and

i1(z = l) = Z−1
m [e−jKlP− e+jKlQ

−e−jKl(T1A+U1B)− e+jKl(T2A+U2B)]. (58)

Applying (52) yields

v1(z = l)− ZLZ
−1
m [Zmi1(z = l)] = 0. (59)

Finally, (53) and (59) can be combined to determine P and

Q:
(

φs ϕs

ϕLe
−jKl φLe

+jKl

)(

P

Q

)

=

(

0 0
ψA ψB

)(

A

B

)

, (60)

with

ψA = e−jKlT1 − e+jKlT2 − ZLZ
−1
m (e−jKlT1 + e+jKlT2)

= VLe
−jKlT1 − SLe

+jKlT2, (61)

ψB = e−jKlU1 − e+jKlU2 − ZLZ
−1
m (e−jKlU1 + e+jKlU2)

= VLe
−jKlU1 − SLe

+jKlU2. (62)

To obtain the second-order perturbation solution, we take the

z-derivative of (8) taking (9) into account, leading to

d2∆V2

dz2
+ ω2(L̃C̃)∆V2 = −ω2(L̃∆C)∆V1 − jω

d

dz
(∆L∆I1),

(63)

which is similar to (40), but with a more complex source term

containing voltages and currents from the first perturbation

step instead of unperturbed ones. Following the same proce-

dure as described above for the first perturbation step, the

second order perturbation voltages and currents are found. We

will not give the explicit expressions for these second order

voltages and currents. Similar to the observation made in [19],

this second perturbation leads to a substantial gain in accuracy.

III. VALIDATION EXAMPLES

A. Frequency domain results

The theory proposed above for NMTLs is validated by

applying it to a ten conductor microstrip line interconnection

with random nonuniformities. The nominal structure is shown

in Fig. 1. The track width of every line is w = 1.8 mm and the

spacing between any two neighboring lines is s = 700 µm.

The microstrips and ground plane have a thickness t = 35 µm

and a conductivity σ = 5.8·107 S/m. The microstrip lines

reside on a Roger’s RO4350B substrate with a thickness

h = 1.524 mm, a relative permittivity εr = 3.66, and a loss

tangent tan δ = 0.003. The total length of the multiconductor

microstrip line is l = 40 mm.

The nominal frequency dependent L̃- and C̃-matrices are

obtained with the technique of [20] and [25]. This 2-D elec-

tromagnetic numerical technique solves the pertinent complex

capacitance and complex inductance problem assuming the

quasi-TM behavior of the fields. To model the presence of
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Fig. 1. The nominal uniform microstrip line interconnection with ten signal
conductors.

TABLE I
INFLUENCE OF VARYING THE MAXIMAL VALUE OF ∆L AND ∆C

Max. deviation (%) ∆S12-2 @ 20 GHz (%)

10 0.17

15 0.30

20 0.46

25 0.67

30 0.96

35 1.39

40 2.07

random nonuniformities, the nominal structure is divided in

100 equal sections. Each element of the L̃ and C̃ 10× 10
matrices for any single section is then multiplied with the

same random variable (RV) that is uniformly distributed

within the interval [1 - ξ, 1 + ξ]. In such a way, we retain

perturbed p.u.l. L and C matrices that are positive-definite as

required for any passive 2D structure. However, for different

sections, different RVs are used. The number ξ determines the

maximum deviation from the nominal case. We employ the

chain parameter matrix approach [2] as a reference solution.

In this method the voltages and currents at the input for each

individual section are related to the voltages and currents

at the output by means of 20× 20 chain parameter matrix.

Finally, S-parameters can be easily derived from the overall

chain parameter matrix obtained as a product of the 100 chain

parameter matrices of the individual sections. We compute the

S-parameters with respect to 50 Ω reference impedances at

all ports of the investigated structure. As a sample result, the

transmission from port 2 to port 12 is chosen in order to have

the transmission through a line which has strong coupling

with two neighboring lines. Fig. 2 shows the magnitude of

the reflection coefficient S2-2, the backward crosstalk S1-2,

the transmission coefficient S12-2 and the forward crosstalk

S11-2, when the maximum deviation ξ = 25% with respect

to the nominal L̃ and C̃ values. As can be seen, the results

obtained by applying the perturbation technique are in a very

good agreement with the reference method. The phase of the

S-parameters is also modeled with a very high accuracy. The

S-parameters for the nominal uniform interconnect are also

shown to indicate the influence of random nonuniformities.

To further demonstrate the accuracy and limitations of the

perturbation approach, a study of the relative error on the



6

1 5 10 15 20

-45

-35

-25

-15

-5

Frequency (GHz)

|S
2

-2
|
(d

B
)

Perturbation technique

Chain parameter matrix

Uniform interconnect (ξ = 0)

(a)

1 5 10 15 20

-8

-6

-4

-2

0

Frequency (GHz)

|S
1
2

-2
|
(d

B
)

Perturbation technique

Chain parameter matrix

Uniform interconnect (ξ = 0)

(b)

1 5 10 15 20

-40

-35

-30

-25

-20

-15

-10

Frequency (GHz)

|S
1

-2
|
(d

B
)

Perturbation technique

Chain parameter matrix

Uniform interconnect (ξ = 0)

(c)

1 5 10 15 20

-24

-20

-16

-12

-8

-4

Frequency (GHz)

|S
1
1

-2
|
(d

B
)

Perturbation technique

Chain parameter matrix

Uniform interconnect (ξ = 0)

(d)

Fig. 2. S-parameters of the ten conductor microstrip line for the case when the maximum variation of the p.u.l. capacitance and inductance is ξ = 25%
using the two-step perturbation and chain parameter matrix techniques. (a) Reflection coefficient S2-2. (b) Transmission coefficient S12-2. (c) Backward
crosstalk S1-2. (d) Forward crosstalk S11-2. To indicate the influence of the perturbation, the S-parameters of the nominal uniform line (ξ = 0) are also
shown.

transmission coefficient S12-2 at the highest frequency of

20 GHz is performed. For different values of the maximum

deviation ξ, we define the relative error on S12-2 taking both

magnitude and phase into account as

∆S12-2 =

∣

∣

∣

∣

∣

S
(ch)
12-2 − S

(p)
12-2

S
(ch)
12-2

∣

∣

∣

∣

∣

, (64)

where Sch
12-2 and Sp

12-2 are obtained by means of the chain

parameter matrix and perturbation techniques, respectively.

Table I shows the growing relative error when increasing the

maximal values of ∆L and ∆C. However, this error remains

limited to 1% if the perturbations do not exceed 30% with

respect to the nominal case.

Finally, we study the execution time of the code in Mat-

lab 2009a to illustrate the efficiency of the two-step perturba-

tion technique. All calculations were performed on a computer

with an Intel Core i7 3630QM Processor and 16 GB of

installed memory (RAM). The calculations of the integrals

occuring in (49) and (50) determine the computational costs

for the perturbation approach. The computational complexity

of the reference method is proportional to the number of

sections used in concatenation. Table II shows the CPU time

for both techniques for 100 frequency samples linearly spaced

TABLE II
CPU TIME COMPARISON

Number of Perturbation Reference Speed-up

sections technique solution factor

50 7.16 s 33.41 s 4.67

100 10.83 s 62.67 s 5.79

200 19.05 s 120.08 s 6.30

500 41.01 s 288.13 s 7.03

between 1 and 20 GHz and for a varying number of sections.

For example, in the case of 200 sections, the speed-up factor

is about 6.3.

B. Time domain results

The transient analysis is performed on the high-speed

packaging interconnect investigated in [26], which is depicted

in Fig. 3. The structure contains six conductors providing

an electrical connection between different components on a

PCB. The conductors and ground plane are 20 µm thick with

conductivity σ = 5.8·107 S/m. The structure is symmetrical

with respect to the dashed straight line depicted in Fig. 3

with a total nominal length AB of 7 mm measured along
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Fig. 4. Time domain analysis of the high-speed packaging nonuniform interconnect with six signal conductors of Fig. 3. (a) Transient waveform at port 1.
(b) Transient response at port 7. (c) Transient response at port 2. (d) Transient response at port 8.
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Fig. 3. A high-speed packaging interconnect taper [26].

the dashed central line. The widths and distances between

two neighboring conductors are equal to 1 mm at the left

terminations and to 0.125 mm at the right termination. At both

sides, the interconnection structure has 1 mm long uniform

multiconductor line. The interconnect pattern resides on a

substrate with a thickness h = 400 µm, a relative permittivity

εr = 4.5, and a loss tangent tan δ = 0.001. Before employing

the perturbation technique, the p.u.l. parameters are obtained

for nine cross sections orthogonal to the line of symmetry with

the method described in [20]. Then, interpolation provides

the p.u.l. parameters for the entire structure. Afterwards, we

calculate the S-parameters applying the two-step perturbation

technique to the resulting structure. The numbering of the

ports is specified in Fig. 3. The resulting 12× 12 S-parameters

are imported into Agilent’s Schematic ADS 2013.06 tool in

S12P format for analysis in the time domain. In addition, we

perform a full-wave simulation of the investigated structure

using Momentum of ADS 2013.06. Then, the results of the

full-wave modeling are also used in Schematic to serve as

a reference solution. A ramped step signal, going from 0 V

to 1 V with a rise time of tr = 50 ps, is applied to the

input port 1. All ports are matched to 50 Ω. Fig. 4 shows

the voltages at the input ports 1 and 2 together with the

transient response at the output ports 7 and 8. As can be seen,

the results of the perturbation technique represented in time

domain are in a very good agreement with the reference full-

wave solution. However, the CPU time needed for the transient

analysis using the perturbation approach is significantly less

than the CPU time needed for the full-wave modeling. In

both cases, S-parameters were calculated for 100 frequency

samples logarithmically spaced in the frequency range from

DC to 60 GHz. The perturbation technique including calcula-

tions of p.u.l. parameters by means of the method described in

[20] takes 9 minutes on a computer with Intel(R) Core(TM)

Quad CPU Q9650 and 8 GB of installed memory (RAM).

In contrast, the full-wave analysis requires about 16 hours
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to perform the same calculations. This clearly defines our

perturbation technique as a very efficient one.

IV. CONCLUSION

In this paper, a two-step perturbation technique has been

presented to analyze NMTLs. Nonuniformities were repre-

sented as perturbations with respect to a nominal configuration,

allowing an interconnect designer to easily see what the effect

of (unwanted) perturbations might be. Relying on the Teleg-

rapher’s equations, the perturbation approach derives voltages

and currents along the multiconductor interconnection from

second-order differential equations for the nominal configura-

tion with source terms accounting for the perturbations.

The presented methodology was validated by modeling a

ten conductor microstrip line with random uniformities in

frequency domain. Compared to a chain parameter matrix

approach, excellent accuracy and improved efficiency was

achieved. Moreover, a transient analysis performed on a high-

speed packaging nonuniform interconnect confirms the validity

and very good efficiency of the perturbation method with

respect to the full-wave modeling.

APPENDIX A

EIGENVECTORS OF VOLTAGES AND CURRENTS

The capacitance and inductance matrices C̃ and L̃ are sym-

metric square N×N matrices. The eigenvalues λ of L̃C̃ are the

solutions of det(L̃C̃ −λI) = 0 with I the N ×N unit matrix.

The determinant of the transpose of a matrix is identical to the

determinant of the matrix itself. As (L̃C̃)T = C̃T L̃T = C̃L̃, we

immediately see that det[(L̃C̃ − λI)T ] = det(C̃L̃ − λI) = 0
and hence we remark that L̃C̃ and C̃L̃ have the same eigen-

values.

Now suppose that Vi is an eigenvector of L̃C̃ with eigenvalue

λi and Ij is an eigenvector of C̃L̃ with eigenvalue λj .

Consequently,

(Vi)
TλjIj = (Vi)

T C̃L̃Ij = (L̃T C̃TVi)
T Ij

= (L̃C̃Vi)
T Ij = (Vi)

TλiIj . (A-1)

For distinct eigenvalues this implies that (Vi)
T Ij = 0.

Next, we will show that the following orthogonality property

holds for two distinct eigenvectors Vi and Vj :

(Vj)
T C̃Vi = 0. (A-2)

The proof runs along the same lines as above. We know that

L̃C̃Vi = λiVi. (A-3)

Hence,

λi(Vj)
T C̃Vi = (Vj)

T C̃L̃C̃Vi

= (L̃T C̃TVj)
T C̃Vi

= (L̃C̃Vj)
T C̃Vi

= λj(Vj)
T C̃Vi, (A-4)

which implies (A-2) for distinct eigenvalues. Similarly, we

have that

(Ij)
T L̃Ii = 0. (A-5)

We next prove that LC = CL = Λ. It suffices to prove

that LC = Λ as taken the transpose immediately yields the

remaining identity. From (20) and (22) we have that

LC = ST L̃STT C̃T
= STTT−1L̃STTSS−1C̃T. (A-6)

Using the orthogonality properties TTS = STT = IN , (A-6)

becomes

LC = T−1L̃SS−1C̃T
= T−1L̃C̃T = T−1TΛ = Λ, (A-7)

where we have used (15).
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