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ABSTRACT

The optimality of principal component filter banks (PCFB’s) for data compression has been observed in many works
to varying extents. Recent work by the authors has made explicit the precise connection between the optimality of
uniform orthonormal filter banks (FB’s) and the principal component property: The PCFB is optimal whenever the
minimization objective is a concave function of the subband variances of the FB. This gives a unified explanation
of PCFB optimality for compression, denoising and progressive transmission. However not much is known for the
case when the optimization is over a class of nonuniform FB’s. In this paper we first define the notion of a PCFB
for a class of nonuniform orthonormal FB’s. We then show how it generalizes the uniform PCFB’s by being optimal
for a certain family of concave objectives. Lastly, we show that existence of nonuniform PCFB’s could imply severe
restrictions on the input power spectrum. For example, for the class of unconstrained orthonormal nonuniform FB’s
with any given set of decimators that are not all equal, there is no PCFB if the input spectrum is strictly monotone.

Keywords: Principal Component Filter-Banks, nonuniform filter banks, optimal filter banks, majorization, convex
objectives

1. INTRODUCTION
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Figure 1 shows a general subband signal processing scheme using an M channel filter bank (FB). We always assume
the FB to be maximally decimated, i.e. the channel decimation rates ni satisfy

M−1∑
i=0

1
ni

= 1. (1)

The FB is uniform if all decimators ni are equal, i.e. (by (1)) ni = M for all i. The FB has the perfect reconstruction
(PR) property if the input and output are identical in absence of subband processing, i.e. in Fig. 1, y(n) ≡ x(n) when
all the Pi are identity systems. We will only study orthonormal FB’s, i.e. those having PR with Fi(ejω) = H∗

i (ejω).

The subband processors Pi are usually aimed at producing a certain desired signal d(n) at the FB output. For
example in data compression, the Pi are quantizers and d(n) = x(n). In noise suppression, x(n) = s(n)+μ(n) where
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μ(n) is the additive noise, and d(n) = s(n), the pure signal. Now let us be given a class of FB’s, all having the same
set of decimators ni. The question arises as to which is the best FB in the class for a given application. In other
words, given the processors Pi and some well defined measure of the error signal e(n) = y(n) − d(n) between the
true and desired FB output, which FB in the class minimizes the error measure? The answer of course depends on
the error measure and the given FB class.

To obtain a well defined error measure, it is common to employ statistical models of the input using stationary
random processes. In many situations the error signal e(n) is cyclostationary, and the error measure used is its
average mean–square value. Now suppose the given FB class is uniform, i.e. all decimators have same value M .
For such classes, it often happens that the above mentioned mean square value is a concave function of the subband
variances. Recently it has been shown1,2 that in all such cases, a principal component filter bank (PCFB)10–12,1 for
the given FB class and input spectrum will be optimal (if it exists). This leads to a unified explanation of PCFB
optimality for several applications such as progressive transmission, compression, noise suppression, and as shown
more recently, for optimal DMT (discrete multitone modulation) communications.13

The present work seeks to generalize this basic PCFB optimality result to classes of nonuniform FB’s. In3 a
preliminary study of nonuniform PCFB’s has been carried out by the authors. This paper elaborates on these results.
We compare our definitions of nonuniform PCFB’s with previously attempted definitions8,14 that are superficially
similar to that of uniform PCFB’s. We point out that these earlier works do not involve the central concept of
majorization1,7 which is crucial to uniform PCFB optimality. Thus the defined nonuniform PCFB’s could not be
shown to have any interesting optimality properties analogous to uniform ones. Using our definitions, we can show
certain general optimality properties for concave objectives. The form of the objective is somewhat more restricted
here as compared to that for uniform FB classes, however the results clearly show that our definitions are the more
natural generalization of PCFB’s to classes of nonuniform FB’s. We will then prove an important result stating
that for strictly monotone input power spectra, PCFB’s do not exist for the class of unconstrained nonuniform FB’s
with any given set of decimators that are not all equal. In contrast, the class of unconstrained uniform M -channel
orthonormal FB’s always has a PCFB for any input spectrum. Thus PCFB existence for nonuniform FB classes is
much more delicate than that for uniform ones.

2. PROBLEM FORMULATION
Consider first the case when the FB is uniform, i.e. ni = M for all i in Fig. 1. Denote by v

(s)
i (n) the i-th subband

signal when the FB input is s(n). We are given a class of (uniform M -channel) orthonormal FB’s, and the power
spectrum (psd) of the wide sense stationary (WSS) FB input x(n). As explained earlier, we seek to find the best
FB in the class for the given psd. Suppose the subband error signals v

(e)
i (n) are jointly WSS, or equivalently the full

band error e(n) is wide sense cyclostationary with period M (CWSS(M)). From FB orthonormality it can be shown
that the chosen minimization objective, i.e. time averaged expected mean square value ε of e(n), has the form

ε =
1
M

M−1∑
i=0

E[|v(e)
i (n)|2]. (2)

Often the subband error variance is related to the subband signal variance σ2
i

�
= E[|v(x)

i (n)|2], as

E[|v(e)
i (n)|2] = hi(σ2

i ) (3)

where hi is some function depending purely on the nature of the subband processing (i.e. on Pi in Fig. 1), and
independent of the choice of FB.∗ Thus in this case, the minimization objective g is purely a function of the subband
variance vector v

�
= (σ2

0 , σ2
1 , . . . , σ2

M−1), i.e.

g(v) =
1
M

M−1∑
i=0

hi(σ2
i ) (4)

Now if all the functions hi are concave on the interval [0,∞) then g(v) is a concave function of the variance vector
v. In this case, a principal component filter bank (PCFB) for the given class of FB’s and given input psd will be
optimal (if it exists). Uniform PCFB’s and this central result on their optimality will be reviewed in the next section.

∗The term ‘variance’ here should technically be replaced with ‘energy’ or expected mean square value; we will often make
this convenient misuse of terminology. The distinction vanishes if the relevant signals are assumed to be zero mean.
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Now consider the case when all FB’s in the given class of orthonormal M -channel FB’s are nonuniform with a fixed
set of decimators ni (not necessarily all equal). In this section we will (a) generalize the form of the objective (4) to
cover this case, and (b) illustrate the generalization using specific signal processing problems where the assumptions
leading to (4) are satisfied for uniform FB classes.

The key step in dealing with nonuniform FB classes is the transformation6,4,9 from the nonuniform FB to a uniform
L-channel FB where L is any common multiple of the decimators ni (usually L = lcm{ni}). This transformation
is shown in Fig. 2a,b. The k-th channel of the nonuniform FB, with decimator nk, corresponds to pk = L/nk

channels of the uniform one. The filters in these pk channels are delayed versions of each other. Due to these
dependencies between the filters of the equivalent uniform FB, it is not possible to redraw every L-channel uniform
FB as a nonuniform FB with the given decimators ni (unless we allow the nonuniform FB to have filters that are
periodically time varying4 with period L). Note from Fig. 2 that many properties such as maximal decimation,
perfect reconstruction and orthonormality are shared in common by the nonuniform FB and its equivalent uniform
FB (i.e. each has the property if and only if the other does).

The above transformation makes it easy to formulate the minimization objective for nonuniform FB’s starting
from the earlier formulation for uniform ones. Let w

(s)
i (n) denote the signals in the equivalent uniform FB subbands

when the FB input is s(n). The earlier notation v
(s)
i (n) is used for the nonuniform FB subbands. Both (2) and (3)

can be generalized to nonuniform FB’s; the issue to be resolved is whether the subband signals in these equations
should now refer to the uniform subbands w

(e)
i (n) or to the nonuniform ones v

(e)
i (n). Evidently (2) generalizes as

ε =
∑L−1

i=0 E[|w(e)
i (n)|2], under the assumption that the signals w

(e)
i (n) are jointly WSS. On the other hand, (3)

reflects the action of processor Pi on its WSS input (a subband signal), and hence generalizes as it is, under the
assumption that the signal v

(x)
i (n) is WSS with variance σ2

i . Finally, examine the signals w
(e)
i (n) for the group of

pk uniform FB subbands in Fig. 2b. By linearity of the systems in Fig. 2, these signals are obtained by passing
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the signal v
(e)
k (n) of the corresponding nonuniform subband through the pk channel delay-chain. Thus if v

(e)
k (n) is

WSS, all these w
(e)
i (n) have the same variance equal to that of v

(e)
k (n). Combining these observations yields the

minimization objective for nonuniform FB classes:

g(v) =
M−1∑
i=0

pi

L
hi(σ2

i ) =
M−1∑
i=0

1
ni

hi(σ2
i ) (5)

This is a very natural generalization of (4), obtained by appropriate generalization of the choice of stationarity
assumptions.

Notice that (5) is exactly the objective that would result for the equivalent uniform FB optimization if the
processor Pk in Fig. 2b were replaced by pk identical copies of itself, one in each of the corresponding uniform FB
subbands as demonstrated in Fig. 2c. For a general processor Pk, this operation would be changing the system –
if the system is to be preserved a pk-input pk-output processor is needed in the uniform FB subbands as shown
in Fig. 2d. However the two systems are identical from the point of view of the minimization objective. We now
mention specific signal processing schemes satisfying the assumptions leading to (5), the corresponding processors
Pi and ‘error functions’ hi. For all these Pk the two systems in Fig. 2c in fact happen to be equivalent. Also the hi

turn out to be concave on [0,∞) so that in the special case of uniform FB classes (ni = M for all i), PCFB’s are
optimal (Section 3.1). The later sections seek to generalize this to nonuniform FB classes.

Compression: Here the processor Pi is a quantizer, modelled as an additive noise source with variance proportional
to the variance σ2

i of the (WSS) quantizer input. The proportionality constant fi(bi) depends on the number of
bits bi alloted to the quantizer, and is assumed to be independent of choice of FB. Thus hi(x) = fi(bi)x in (5). For
uniform FB’s, we need the assumption that the noises from different quantizers are all jointly WSS. For nonuniform
FB’s, we require the corresponding noises generated in the subbands of the equivalent uniform FB to be jointly WSS.
The stronger assumption of WSS and uncorrelated quantizer noises implies both these.

The special case where the quantizers are assumed to satisfy the high bit-rate assumption is worth mention: Here
fi(bi) = ci2−2bi where the constant depends on the i-th subband probability density function (pdf), and hence on
the choice of FB. This is not allowed under our formulation of (5) (the functions hi are assumed to be independent
of choice of FB); however we circumvent the problem by assuming a Gaussian input. This forces all subband pdf’s
to be Gaussian independent of the FB, so that ci = c for all i, where c is a constant independent of the FB. In
this case, under optimal allocation of the bits bi (subject to a total bitrate constraint

∑M−1
i=0 bi = B), it can be

shown (using the arithmetic mean - geometric mean inequality) that minimizing (5) is equivalent to minimizing the
weighted geometric mean GM =

∏M−1
i=0 (σ2

i )(1/ni) of the subband variances σ2
i (with the decimators ni as weights).

Equivalently, we can minimize log(GM), which again has the form of (5) with hi(x) = log(x) for all i.

Noise reduction: Here the FB input is x(n) = s(n) + μ(n) where s(n) is the pure input and μ(n) is white noise
uncorrelated to s(n). Each processor Pi is a multiplier ki that is either constant or adapted to its input statistics as
(a) a Wiener filter: ki = σ2

i

σ2
i
+η2 , or (b) a subband hard threshold operator: ki = 0 if σ2

i < η2 and ki = 1 otherwise.

Here σ2
i is the variance of the pure signal component v

(s)
i (n) in the i-th subband, and η2 is the noise variance.

Equation (5) applies in all cases, with

hi(x) =

⎧⎪⎨
⎪⎩

|1 − ki|2 x + |ki|2 η2 for constant subband multiplier ki
xη2

x+η2 for zeroth order Wiener filter ki

min(x, η2) for hard threshold ki

(6)

3. NONUNIFORM PCFB’S: DEFINITIONS AND OPTIMALITY

3.1. Review of uniform PCFB’s
Definition: Majorization. Given two (equal length) vectors a = (a0, a1, . . . , aM−1) and b = (b0, b1, . . . , bM−1),
we say that a majorizes b if after rearranging the entries of the vectors in decreasing order we have

P∑
i=0

ai ≥
P∑

i=0

bi for 0 ≤ P ≤ M − 1, with equality holding for P = M − 1 (7)
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Note that if a majorizes b, any permutation of a majorizes any permutation of b.

Definition: Uniform PCFB’s. Let C be a class of uniform orthonormal M -channel FB’s. A FB in C is said to be
a PCFB for C for the given input power spectrum if its subband variance vector (σ̂2

0 , σ̂2
1 , . . . , σ̂2

M−1) majorizes the
subband variance vector (σ2

0 , σ2
1 , . . . , σ2

M−1) of every FB in C.

The PCFB and its existence depends both on C and on the input psd. The requirement of majorization in the
PCFB definition in particular demands that the average (or the sum) of the subband variances be FB–independent.
This follows automatically from FB orthonormality: The average equals the variance of the WSS input to the FB.

PCFB optimality. PCFB’s are optimum orthonormal FB’s if the minimization objective is a concave function of
the subband variance vector. As noted earlier, this basic result leads to PCFB optimality for many FB based signal
processing schemes, motivating generalization of the PCFB concept to nonuniform FB’s. Detailed proofs of (uniform)
PCFB optimality1,2 are based on the geometric meaning of majorization. For the present purpose of generalization
to nonuniform FB’s, it suffices to note that uniform PCFB optimality is solely dependent on the following facts:

1. The objective function has form (4) where all hi are FB–independent functions concave on the interval [0,∞).

2. The PCFB subband variance vector majorizes the subband variance vectors of all FB’s in the given class C.
(Definition of PCFB’s)

3. The entries of the variance vector are allowed to be inserted in the objective (4) in any order. In other words,
if v is a variance vector realizable by the given class C, so is any permutation of v. This is true because
permuting v simply corresponds to permuting the subbands, or to redistributing the processors among them.
The subbands have no intrinsic ordering – their numbering purely denotes their association with the subband
processor. Clearly all permutations of the PCFB are PCFB’s. In general they do not all have the same value
for the objective (4); in fact a bad permutation could even give the worst possible performance. However the
best one of these (finitely many) permutations will be optimal for the entire class C.

3.2. Nonuniform PCFB’s: Definition

We seek to generalize the definition of PCFB’s to a general class N of nonuniform M -channel orthonormal FB’s
with a fixed set of decimators ni. It is desirable that the generalization reduce to the usual definition for uniform
FB’s if all the ni are equal, and that the defined PCFB’s be optimal for some reasonable class of objectives of the
form (5). From the discussion of uniform PCFB optimality, a natural approach to generalization is to define some
suitable variance vector for all FB’s in the class, and define the PCFB to be the one whose variance vector majorizes
all the variance vectors of all FB’s in the class N . This PCFB would then be optimal for all objectives of the form∑

i fi(αi) where αi are the entries of the variance vector, provided conditions analogous to facts 1,3 mentioned in
the earlier section hold. The majorization requirement demands that

∑
i αi be FB–independent; this should follow

automatically from FB orthonormality just as it happens for uniform FB’s. Otherwise it would impose too severe a
constraint on the FB class N , and PCFB’s would hardly ever exist.

Let σ2
i be the variance of the i-th subband (with decimator ni). Now FB orthonormality implies that

∑
i

σ2
i

ni
is

FB–independent, but in general
∑

i σ2
i is not (unless all the ni are equal). Thus, the usual definition of subband

variance vector (as one with entries σ2
i ) is not suitable (unless the FB’s are uniform). In fact the above considerations

leave us only two reasonable definitions of the variance vector:

• The normalized subband variance vector defined as (σ2
0

n0
,

σ2
1

n1
, . . . ,

σ2
M−1

nM−1
).

• The equivalent uniform subband variance vector, defined as the (usual) subband variance vector of the equivalent
uniform L-channel FB (for any fixed L that is a multiple of all the ni). From the construction of the equivalent
uniform FB’s (Fig. 2), with pi = L/ni, this vector has the form

(σ2
0 , σ2

0 , . . . , σ
2
0︸ ︷︷ ︸, σ2

1 , σ2
1 , . . . , σ2

1︸ ︷︷ ︸, . . . . . . , σ2
M−1, σ

2
M−1, . . . , σ

2
M−1︸ ︷︷ ︸)T

p0 elements p1 elements pM−1 elements
(8)
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Definition: Nonuniform PCFB’s. Let N be a class of orthonormal M -channel FB’s having a fixed set of
decimation rates ni, not necessarily equal. A FB in N is said to be a PCFB for N for the given input power
spectrum if its suitably defined subband variance vector majorizes the subband variance vector of every FB in C.
The variance vector in this definition could be either the normalized or the equivalent uniform subband variance
vector (defined earlier). Thus we have two definitions of nonuniform PCFB’s, one based on each of these variance
vectors.

Remarks on the nonuniform PCFB definitions.

1. Reduction to uniform PCFB’s. For the special case of uniform FB’s, where ni = M for all i, both the above
definitions reduce to the usual one by choosing L = M for the equivalent uniform variance vector and omitting
the constant scale M for the normalized variances.

2. Ambiguity in L does not matter. Let L1 = lcm{ni} and L2 = kL1 for any positive integer k. For two FB’s in
the given class, let v∗

1 and v1 be the variance vectors of their equivalent L1 channel uniform FB’s, and let v∗
2

and v2 be the respective variance vectors for the equivalent L2 channel uniform FB’s. From (8), if the entries
of v1 in descending order are (a0, a1, . . . , aL1−1) then the entries of v2 in descending order are obtained by
arranging the ai in the same order and repeating each ai k times. Thus by definition (7) of majorization, v∗

1

majorizes v1 if and only if v∗
2 majorizes v2. Hence, the definition of PCFB’s using the equivalent L channel

uniform subband variance vector is independent of which common multiple of the ni we fix L to be.

3. The two PCFB definitions are distinct. It may seem that extending the above argument will also prove that
using normalized variance vectors is equivalent to using the equivalent uniform ones. However this is not true.
The reason is that the definition of majorization (7) demands arranging the entries of the vectors in decreasing
order. This order could be different for the σ2

i (i.e. for the entries of (8)) and for the σ2
i

ni
. The distinctness of

the two definitions is shown in3 by an example of a specific class N with exactly two FB’s with decimators
2, 4, 4, for a carefully chosen family of input spectra. Each FB is the unique PCFB by one definition but not
by the other. In fact in this example the input psd can be chosen so that the PCFB defined by the equivalent
uniform variances is a PCFB not just for the two element class N , but for any class of FB’s with decimators
2, 4, 4 to which it belongs. In other words it is a PCFB for the class of unconstrained orthonormal FB’s with
2, 4, 4 as decimators.† Even then, the other FB in N is the unique PCFB for N by the alternative definition.

3.3. Nonuniform PCFB’s: Optimality

For uniform FB’s, there is no intrinsic ordering of the subbands. Permuting the subbands, or redistributing the
processors Pi among the subbands, was simply represented by evaluating the same objective function g(v) of (4) for
a different argument v, i.e. a permutation of the original subband variance vector. On the other hand, nonuniform
FB subbands are indexed by their decimation rates ni. If we interchange the processors for two subbands with
different decimators, the new performance measure must be computed by interchanging not just the corresponding
variances but also the corresponding decimators in (5). This changes the functional form of the objective, since the
objective in (5) is viewed as a function of the variances σ2

i with the ni as parameters. Free redistribution of processors
among subbands without changing the functional form of the objective is possible only among groups of subbands
with equal decimators. Thus, it is necessary to distinguish two different nonuniform FB optimization problems:

1. Finding the best FB for a fixed ordering of the subbands (i.e. of the ni). We refer to this problem as OP1.

2. Optimizing both the FB (i.e. its subband variances) and the decisions as to which subband should have which
processor Pi, i.e the choice of ordering of the subbands (or the ni). We refer to this problem as OP2.

The problem OP1 does not exist for uniform FB’s since there is no intrinsic ordering of the subbands. If OP1 is
solvable for all the (finitely many) possible orderings of the subbands, then clearly OP2 is solved by picking from
these solutions the one with the best value of the performance measure. Note that OP2 is usually of much more
interest than OP1, since fixing apriori which channel decimator should be associated with which processor Pi is quite
restrictive. However OP1 is easier to analyze, due to the fixed functional form of its objective. A summary of all the

†This is done by setting p = b in Fig. 3a of3 and using Theorem 3 in that reference.
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optimality results for nonuniform PCFB’s (to be derived next) can be found at the end of the section, and optimality
there refers only to the (more interesting) problem OP2. The derivations involve study of both problems.

Optimality of PCFB defined using equivalent uniform variance vector: We generically denote the entries
of this variance vector by αi. The objective (5) has the form

∑
i fi(αi) with the fi chosen as follows: All the

pk = L/nk equivalent uniform FB subbands derived from the k-th nonuniform FB subband (with decimator nk)
have the corresponding fi equal to hk of (5) (upto constant scale L). Thus this PCFB is a possible candidate for
solving OP1 when all hk (and hence all fi) are FB–independent and concave. However for optimality, we must be
allowed to insert the αi into the fi in any order in forming the sum

∑
i fi(αi) (condition 3 in Section 3.1). In actual

fact we are only allowed certain permutations of the αi, corresponding to groups of nonuniform subbands with equal
decimator value. Thus the PCFB solves OP1 if the best ordering of the αi happens to be one that is actually allowed.

Recall that solving OP1 for all permutations of the nk solves OP2. For a given permutation of the nk, suppose
the PCFB does not actually solve OP1, i.e. the best ordering of the αi above is not allowed. Then this ordering of the
αi gives an unattainable upper bound on the performance for the problem OP1. Sometimes we may be able to solve
OP2 using just these bounds (instead of the true optima). Indeed if a known solution to OP1 for one permutation
of the nk outperforms all these bounds computed for all the other permutations, then it also solves OP2.

In the noteworthy special case when hk = h for all i, i.e. all hk and hence all fi are identical, we see that all
orderings of the αi give the same performance measure

∑
i fi(αi). Thus in this case the PCFB will solve OP1 if

the function h is FB–independent and concave. This is true for all permutations of the nk, and the corresponding
optimal performance measures are identical too. Thus the PCFB also solves OP2. In fact the distinction between
OP1 and OP2 vanishes in this case. Identical hk usually results from similar or identical subband processors Pk.

Optimality of PCFB defined using normalized variance vector: We generically denote the entries of this
variance vector by βi = σ2

i /ni. The objective (5) has the form
∑

i f̂i(βi) where f̂i(x) = (1/ni)hi(nix). Thus, this
PCFB is a candidate for solving OP1 when the hi (and hence the f̂i) are FB–independent and concave. However,
again optimality is assured only if the βi can be inserted in the sum

∑
i f̂i(βi) in any order. In actual fact we are

only permitted to permute the βi within groups of channels having the same decimator ni. Thus, as with the earlier
definition, these PCFB’s solve OP1 if the best ordering of the βi turns out to be one that is permitted. The special
case where all f̂i are identical (which would make all orderings of the βi equally good) is not of much interest here:
It does not commonly happen since f̂i(x) = (1/ni)hi(nix) which depends on ni.

However, another special case is of interest, namely that where hi(x) = kix for some constants ki (for all i).
Here f̂i(x) = kix too, which has the speciality of being (concave and) independent of the decimators ni. In general,
to compute the performance measure after permuting two nonuniform subbands required not just permuting of the
corresponding βi, but also corresponding modifications of the f̂i since they depended on the ni. (This changed the
functional form of the objective, and gave rise to the distinction between problems OP1 and OP2.) However if
f̂i are independent of the ni, permuting the nonuniform subbands is fully equivalent to permuting the βi. Thus,
the nonuniform FB defined using the variances βi will solve OP2 (for a suitable permutation of its subbands, i.e.
ordering of the βi).

Nonuniform PCFB optimality: Summary.

• Nonuniform PCFB’s defined using the equivalent uniform subband variance vector are optimal for objectives
of the form (5) when hi = h for all i, where h is a FB–independent concave function. Such objectives occur
with similar processing in the subbands, e.g. in the high bitrate coding problem with optimal bit allocation
(h(x) = log(x)) or in the noise suppression problem using either zeroth order Wiener filters (h(x) = xη2

x+η2 ) or
hard thresholds (h(x) = min(x, η2)) in all subbands (see Section 2).

• Nonuniform PCFB’s defined using the normalized variance vector are optimal for objectives of the form (5)
where for all i, hi(x) = kix for constant ki. Such objectives occur in the coding problem with fixed bit allocation
when the high bitrate assumption is not necessarily used (ki = fi(bi), see Section 2).

• For general objectives of the form (5) where hi are FB–independent and concave, it may be possible to show
optimality of either of the PCFB’s in a specific case, using the actual specifications of the hi and numerical
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values of the PCFB subband variances. Finite procedures to do this follow from the earlier discussion. However
in general the procedure will be unsuccessful, and PCFB optimality is not assured.

3.4. Previous attempts at defining nonuniform PCFB’s
In the authors’ knowledge, the works8,14 are the only earlier attempts to define nonuniform PCFB’s. These can be
described as follows: Let N be the given class of M -channel orthonormal FB’s, all having the same set of decimators
ni. First an ordering of the subbands of all FB’s (i.e. of the ni) is decided upon. Then with σ2

i as the variance of
the i-th subband (with decimator ni), the PCFB is defined as one whose variances σ̂2

i satisfy

P∑
i=0

σ̂2
i

ni
≥

P∑
i=0

σ2
i

ni
for P = 0, 1, . . . , M − 1, with (automatic) equality for P = M − 1 (9)

While this equation is superficially similar to (7) that defines majorization, there is a very important difference: The
ai and bi of (7) are arranged in decreasing order, whereas the analogous quantities σ̂2

i

ni
and σ2

i

ni
in (9) are arranged

according to the predefined ordering of the ni. In14 the PCFB is defined only for classes of dyadic (or ‘wavelet style’)
tree–structured FB’s, and the ni are chosen in decreasing order. A construction procedure is outlined for the PCFB
thus defined, when the FB class N is the unconstrained one. In8 the PCFB is defined with respect to the ordering
of the ni, i.e. there are several PCFB’s defined as above, one for each ordering of the ni.

Consider the case when the minimization objective is as in (5) with hi(x) = kix for constant ki (for all i). Consider
the FB optimization problem OP1 defined in Section 3.3, where the ni are ordered apriori and the association between
the ni and ki is thus forcibly fixed. Let ji be the permutation such that kj0 ≤ kj1 ≤ . . . kjM−1 . Then elementary
algebra shows that the PCFB defined in8 as above, for the permutation ji of the decimators ni, is a solution for OP1.
Indeed it suffices to prove this assuming ji = i. This amounts to showing that

∑
i kiσ̂

2
i /ni ≤

∑
i kiσ

2
i /ni given (9)

and ki < ki+1. The proof follows from the fact that

M−1∑
i=0

ki
σ2

i

ni
=

M−2∑
i=0

(ki − ki+1)
i∑

l=0

σ2
l

nl
+ kM−1

M−1∑
i=0

σ2
i

ni
. (10)

In summary, the earlier definitions result in several PCFB’s, one for each permutation of the decimators ni, and
in optimality for the problem OP1 for linear objectives (i.e. hi(x) = kix in (5)). However, in general optimality for
the more interesting problem OP2 cannot be claimed unless all the PCFB’s (for all permutations of ni) exist (in
which case the best one of these would solve OP2). Apart from the very special result in14 (specific to unconstrained
dyadic tree–structured FB classes and using a particular ordering of subbands), there are no general existence results
known for these PCFB’s. Further, since the above PCFB definition does not use the concept of majorization, there
are no optimality results for more general concave functions hi besides hi(x) = kix. These observations suggest that
our definitions of Section 3.2 are more natural generalizations of the PCFB concept to nonuniform FB classes.

4. EXISTENCE OF NONUNIFORM PCFB’S

For the case of uniform FB’s, PCFB’s are known to exist for all input power spectra for only three special FB classes:
Any class of two channel FB’s, the class of M -channel orthogonal transform coders, and the class Cu of unconstrained
M -channel orthonormal FB’s (where there are no constraints on the filters besides those imposed by orthonormality,
e.g. ideal brickwall filters are allowed). For the class Cu, the PCFB is the one satisfying the two properties called
spectral majorization and total decorrelation.12 For classes of DFT and cosine–modulated FB’s, PCFB’s do not
exist for large families of input spectra.2

Much less is known about existence of nonuniform PCFB’s. For nonuniform PCFB’s defined using normalized
variances, no general existence result is currently known. Thus, in this section nonuniform PCFB’s always mean
those defined using equivalent uniform ones. Some existence results are known for these.3 Let N be any class of
nonuniform FB’s with a given set of decimators ni, and let E be the corresponding class of equivalent uniform FB’s
derived from FB’s in N . Then by definition, PCFB’s for N and E are equivalent. Now if the PCFB for some FB
class C ⊃ E lies within E , then it is also a PCFB for E . For example we could choose C = Cu, the unconstrained
class, whose PCFB has been well studied. This gives rise to the result of3 stating that any FB in N having white
and totally decorrelated subbands is a PCFB for N . The paper3 also gives examples of such PCFB’s.
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This section is devoted to a discussion and proof of an important nonexistence result for nonuniform PCFB’s.
The result is mentioned without proof in3 and is as follows:

Theorem 1: Let N u be the class of unconstrained nonuniform FB’s with a given set of decimators ni not all equal.
Let the input spectrum S(ejω) be strictly monotonic (increasing or decreasing) for a ≤ ω < a + 2π for some real a.
Then there is no PCFB for the class N u.

4.1. Discussion on Theorem 1

Existence of nonuniform PCFB’s is very delicate. As shown in Fig. 3, a slight perturbation of a monotone
input spectrum for which a PCFB for N u exists (eg, the flat or white spectrum) can change it to a spectrum that
is strictly monotone (on an interval of form [a, a + 2π)), destroying existence of the PCFB. In contrast, for the
uniform unconstrained FB class Cu, PCFB’s exist for all input spectra, and moreover usually several perturbations
are possible on the spectrum without even changing the PCFB. Of course, most objective functions defined on the
FB class have their values for each FB perturbed only slightly by small perturbations of the input spectrum. Thus,
consider the FB of Fig. 3. Being a PCFB for spectrum A, it optimizes many concave objectives as explained in
Section 3.3. For the perturbed spectrum B, the FB is no longer a PCFB, and so it will not optimize all these
objectives. However it will be quite close to optimal if the perturbation is small enough.

p
�p
�

	 ��
�

spectrum B
 Perturbation of spectrum A� strictly monotone

�

�
��

spectrum A
 monotone �decreasing� on �	� ����

for input spectrum A� �white and totally decorrelated subbands�
unconstrained nonuniform PCFB for decimators �� �� �

� �

�no unconstrained nonuniform PCFB��

Fig� �� Delicateness of existence of nonuniform PCFB for unconstrained class�

Total decorrelation and spectral majorization do not imply nonuniform PCFB’s. Total decorrelation
of subbands is evidently defined for nonuniform FB’s too, and is achieved for example if the analysis filters have
nonoverlapping supports. The notion of spectral majorization12 can also be defined for nonuniform FB’s. (It is the
condition when their subband spectra do not ‘cross each other’, just as for uniform FB’s.) Thus, as shown in Fig. 4, if
the input spectrum is monotone on [a, a+2π) then any contiguous–stacked brickwall FB with a as a filter band-edge
has subbands satisfying both these conditions. However the FB is not a PCFB for N u if the spectrum is strictly
monotone (since there is no PCFB in this case). Thus, unlike the situation for the class Cu, FB’s with subbands
satisfying spectral majorization and total decorrelation need not be PCFB’s for N u.

� � � brickwall FB

subband spectra obey total decorrelation
and spectral majorization

�no unconstrained nonuniform PCFB� ���

input spectrum� strictly monotone on ��� 	���

Fig� �� Total decorrelation and spectral majorization do not imply nonuniform PCFB�s�

4.2. Proof of Theorem 1

Without loss of generality, let n0 ≥ n1 ≥ . . . ≥ nM−1. We prove the theorem for a = 0 assuming that S(ejω) is
strictly decreasing and that n0 �= n1 (i.e. n0 > n1). The proof will show that this does not lose generality. The basic
idea of the proof is as follows: Let Eu be the class of equivalent uniform FB’s derived from FB’s in N u.
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1. We apply the sequential compaction algorithm described in5 to the uniform FB class Eu, and show that this
results uniquely in the FB denoted by FBA in Fig. 5 (more precisely, in the equivalent uniform FB derived
from FBA). From5 this means that if the class N u has a PCFB for the psd S(ejω), the PCFB must be FBA.

2. We then show that FBA is not the PCFB by proving that its equivalent uniform subband variance vector does
not majorize the variance vector of the distinct FB in N u denoted by FBB in Fig. 5. This means that there
is no PCFB.

��
n�

��
n�

��
n�

��
nM��

input spectrum S�ej��� strictly decreasing on ��� 	���

� � �

��
n�

��
nM��

� � �

�

�

FBA

FBB

��
n�

��
n�

Fig� �� Brickwall FB�s used in proving Theorem ��

n� � n� � � � � � nM��

Proof of Step 1: The sequential algorithm consists of maximizing the largest variance in the appropriate vari-
ance vector, then searching among all variance vectors having this maximum possible largest variance in order to
maximize the second–largest variance, and so on. The entries of the equivalent uniform variance vector (8) are the
nonuniform subband variances repeated appropriately many times. Hence running the algorithm on Eu is equivalent
to sequentially maximizing the nonuniform FB subband variances. The ideal compaction(M) filter12 produces the
largest possible variance in a subband with decimator M , in any orthonormal FB. For a spectrum that is strictly
decreasing on [0, 2π) the compaction(M) filter is unique, supported on [0, 2π/M ], and has output variance that is
strictly increasing in M . As n0 is the largest decimator in the FB (i.e. the largest possible M), this proves that
among all FB’s in N u, FBA maximizes the largest subband variance. (This maximum is the subband variance
produced by the filter in FBA corresponding to decimator n0.) Now all FB’s are orthonormal, and so their analysis
filters Hi(z) satisfy [Hi(ejω)H∗

j (ejω)] ↓gcd(ni,nj)= 0 for i �= j. Hence, if an analysis filter in the FB, corresponding to
decimator M , has an aliasfree(M) support, then this support does not overlap with the supports of any of the other
analysis filters. Thus we can repeat the same argument for the second–largest variance, and so on. This shows that
FBA is the unique output of the sequential compaction algorithm.

Proof of Step 2: If a filter in an orthonormal FB is ideal, supported on [c, d] and has constant magnitude on its
support (like all the filters in FBA, FBB), then the corresponding subband variance is given by direct calculation as

f(d) − f(c)
d − c

, where f(ω) =
∫ ω

0

S(ejω′
) dω′. (11)

The calculation uses the fact that the support length d−c = 2π/ni where ni is the corresponding channel decimator,
and that the constant passband magnitude of the filter is

√
ni (both these are due to orthonormality). Notice that

the variance expression (11) is the slope of the chord on the graph of y = f(ω), connecting the end points with
abscissae c, d. In our case, f is strictly concave on [0, 2π), as its derivative is S(ejω) which is strictly decreasing. For
chords of concave functions, increasing either or both of the abscissae of their endpoints can never cause the slope
to increase. As a result, for both the brickwall FB’s FBA and FBB, the subband variance is nonincreasing as the
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corresponding filter band-edges increase from 0 to 2π. Thus the largest and next–largest subband variances of FBA

are σ2
0 and σ2

1 , corresponding to decimators n0 and n1 respectively; while the largest subband variance of FBB is σ̂2
0

which corresponds to decimator n1. All these variances are identifiable as slopes of chords on the graph y = f(ω) as
in Fig. 6. Now we define L = lcm{ni} and pi = L/ni, and let vA,vB be the equivalent uniform subband variance
vectors of FBA, FBB respectively. We use the relation (8) between the subband variances of a nonuniform FB and
its equivalent uniform FB. This shows that the p1 largest variances in vB have value σ̂2

0 . On the other hand, of the p1

largest variances in vA, there are p0 variances of value σ2
0 and p1 − p0 variances of value σ2

1 . (Recall that n0 > n1, so
p1 − p0 > 0.) Now referring to the definition (7) of majorization, we will have proved that the vA does not majorize
vB if we show that

p0σ
2
0 + (p1 − p0)σ2

1 < p1σ̂
2
0 (12)

To do this, we substitute the chord slopes from Fig. 6 for the variances. Using pk = L/nk and deleting a factor of
L/(2π), we see that proving the above equation reduces to proving that

n1

n0
f(r) + (1 − n1

n0
)f(t) < f(s) (13)

(where r, s, t are as in Fig. 6). This is true by strict concavity of f , since 0 < n1
n0

< 1 and s = n1
n0

r + (1 − n1
n0

)t.

Generalizing the proof. If the input spectrum is strictly increasing rather than decreasing on [0, 2π) then very
similar arguments hold (f(ω) is now convex). Alternatively we may observe that reflecting the frequency band
ω ∈ [0, 2π) about ω = π gives a decreasing spectrum, and so a separate proof is really unnecessary. Similar
comments hold if the interval of strict monotonicity is [a, a + 2π) for some a �= 0. If after arranging the decimators
as n0 ≥ n1 ≥ . . . ≥ nM−1 it happens that n0 = n1, then we find the smallest i for which ni �= ni+1, and have ni, ni+1

play the roles played by n0, n1 respectively in the above proof. (There is such an i because the FB’s are not uniform.)

5. CONCLUSION

We have presented two different definitions of nonuniform principal component filter banks, generalizing the uniform
ones. We have studied their optimality, showing that they minimize many concave objectives just like the uniform
ones, though the form of the objective here must be somewhat more restricted in order to ensure PCFB optimality.
We have shown that there are no nonuniform PCFB’s for the unconstrained nonuniform FB classes if the input
spectrum is strictly monotone (over an interval of length 2π). From this result we conclude that nonuniform PCFB
existence is much more delicate than uniform PCFB existence, as it can be destroyed by small perturbations of the
input spectra.
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