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1. INTRODUCTION

Images and other signals are usually represented in com-
puters in the form of their samples taken on a uniform
sampling grid. However, in many applications, sampled
data are collected in irregular fashion and/or it may fre-
quently happen that some samples of the regular sam-
pling grid are lost or unavailable. In these cases, it is nec-
essary to convert irregularly sampled signals to regularly
sampled ones or to restore missing data. Typical examples
are filtering “salt-and-pepper”-type noise in images trans-
mitted through communication channels with error detec-
tion coding, reconstruction of surface profiles in geophys-
ics and in optical metrology, restoration of image
sequences acquired in the presence of camera or object vi-
brations or through a turbulent medium, and image su-
perresolution from multiple chaotically sampled frames,
to name a few.

There are two approaches to treat this problem. One
approach is empirical in nature and is based on simplistic
numerical interpolation procedures such as, for instance,
Shepard’s interpolation by means of a weighted summa-
tion of known samples in close vicinity of sought samples
with weights inversely proportional to the distance be-
tween them [1]. A review of these methods can be found in
[2].

The second approach is based on generalizations of the
classical Whittaker–Kotelnikov–Shannon sampling
theory to nonuniform sampling. In this approach, it is as-
sumed that the available signal samples are obtained
from a continuous signal that belongs to a certain ap-
proximation subspace M (subspaces of band-limited sig-
nals, splines subspaces, etc.) of the parent Hilbert space
(usually, L2 Hilbert space of finite energy functions) and it
is required that the interpolation procedure has to deter-
mine a continuous signal that satisfies two constraints:
(1) the interpolated signal has to belong to the subspace

M and (2) its available samples have to be preserved.
Conditions for the existence and uniqueness of the solu-
tion are dependent on the signal model (underlying ap-
proximation subspace) and on the set of given samples.
For the band-limited case, Landau proved that a neces-
sary and sufficient condition for the unique reconstruction
of a continuous band-limited 1D signal with bandwidth W

from its irregularly spaced samples is that the density of
its samples should exceed the Nyquist rate 1/W [3]. It is
also shown that this condition is necessary for
D-dimensional signals with band-limited Fourier spec-
trum. These results have been generalized to other shift-
invariant subspaces by Aldourbi and Grochenig [4]. A
comprehensive presentation of this approach can be found
in [5].

An attractive alternative approximation model is asso-
ciated with spline subspaces [6]. However, due to their lo-
calized nature, their use for the recovery of large gaps in
data is limited. A practical numerical algorithm for inter-
polation and approximation of 2D signals, based on mul-
tilevel B-splines, is suggested by Wolberg and colleagues
[7]. The algorithm approximates 2D functions from sparse
data by an iterative procedure based on lattice control
points. At each iteration, the values of available samples
are preserved (if possible) or approximated. At the next it-
eration, a denser grid of control points is created to ap-
proximate the reconstruction error, and the process con-
tinues iteratively. A similar spline-based algorithm, which
uses nonuniform splines for interpolation, was suggested
by Margolis and Eldar [8].

All of the mentioned methods are theoretically oriented
at the approximation of continuous signals, specified by
their sparse samples. There are also publications that
consider discrete models. However, those publications
treat only various special cases. Fereira considers discrete
signal recovery from sparse data in the assumption of sig-
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nal band-limitation in the discrete Fourier transform
(DFT) domain [9]. Hasan and Marvasti suggest a method
for recovery of discrete signals suffering from missing
data during data transmission using error-detecting cod-
ing. For signal recovery, they suggest using the discrete
cosine transform (DCT) -domain band-limitation assump-
tion [10]. In [11], the problem of nonuniform sampling in
the Fourier domain in multidimensional polar coordi-
nates, is addressed in connection with image reconstruc-
tion from projections. In another publication, Averbuch
and Zheludev discuss image reconstruction from projec-
tions with omissions using biorthogonal wavelet over-
complete basis functions [12].

In this paper, we suggest a general framework for re-
covery of discrete signals that originate from continuous
signals, from incomplete sets of their samples. The basis
of this framework is the following assumptions:

• Continuous signals are represented in computers by
their samples. In sampling a continuous signal, say, a�x�,
the physical coordinates of the samples are known with a
certain accuracy. The ratio N=X /�x of the signal support
interval X and the sample position accuracy �x defines
the signal’s regular uniform sampling grid with N sam-
pling positions. If all these N samples were known, they
would be sufficient for representing the continuous signal.

• Available are K�N samples of this signal, taken at
irregular positions of the signal regular sampling grid.

• The goal of the processing is to generate, out of this
incomplete set of K samples, a complete set of N signal
samples in such a way as to secure the most accurate, in a
certain metric, approximation of the discrete signal that
corresponds to the signal that would be obtained if the
continuous signal it is intended to represent were densely
sampled in all N positions. For the certainty, we will use
L2 metrics.

The mathematical foundation of the framework is pro-
vided by the discrete sampling theorem for band-limited
discrete signals that have only a few nonzero coefficients
in their representation over a certain orthogonal basis.
This theorem is introduced in Section 2. The rest of the
paper is as follows. In Section 3 we discuss the validity of
the assumptions put in the basis of the presented ap-
proach. In Section 4 we briefly describe algorithms for sig-
nal recovery from sparse sampled data. In Section 5,
properties of certain transforms that are specifically rel-
evant for signal recovery from sparse data are analyzed,
and experimental illustrations of precise signal recon-
struction from sparse data are provided. Finally, in Sec-
tion 6 we discuss application issues and illustrate the
discrete-sampling-theorem-based methodology of discrete
signal recovery on the examples of image superresolution
from multiple frames and image recovery from sparse
projection data. Section 7 summarizes the paper.

2. DISCRETE SAMPLING THEOREM

Let AN be a vector of N samples �ak�k=0,. . .,N−1 that com-
pletely define a discrete signal, �N be an N�N orthogo-
nal transform matrix,

�N = ��r�k��r=0,1,. . .,N−1 �2.1�

composed of basis functions �r�k�, and �N be a vector of
signal transform coefficients ��r�r=0,. . .,N−1 such that

AN = �N�N =��
r=0

N−1

�r�r�k��
k=0,1,. . .N−1

�2.2�

Assume now that only K�N signal samples �ak̃�k̃�K̃ are

available, where K̃ is a K-size nonempty subset of indices
�0,1, . . . ,N−1�. These available K signal samples define a
system of K equations:

�ak = �
r=0

N−1

�r�r�k��
k�K̃

�2.3�

for signal transform coefficients ��r� of certain K indices r.

Select now a subset R̃ of K transform coefficients indi-

ces �r̃�R̃� and define a “KofN”-band-limited approxima-

tion ÂN
BL to the signal AN as

ÂN
BL = �âk = �

r̃�R̃

�r̃�r̃�k�� . �2.4�

Rewrite this equation in a more general form,

ÂN
BL =�âk = �

r=0

N−1

�̃r�r�k�� , �2.5�

and assume that all transform coefficients with indices

r�R̃ are set to zero:

�̃r =��r, r � R̃

0, otherwise
� . �2.6�

Then the vector ÃK of available signal samples �ak̃� can be
expressed in terms of the basis functions ��r�k�� of trans-
form �N as

ÃK = KofN� · �̃K = �ak̃ = �
r̃�R̃

�r̃�r̃�k̃�� , �2.7�

where K�K subtransform matrix KofN� is composed of

samples �r̃�k̃� of the basis functions with indices �r̃�R̃�

for signal sample indices k̃�K̃, and �̃K is a vector com-
posed of the corresponding subset ��r̃� of complete signal
transform coefficients ��r�. This subset of the coefficients
can be found as

�̃K = ��̃r� = KofN�
−1 · ÃK, �2.8�

provided that matrix KofN�
−1 inverse to the matrix KofN�

exists, which in general is conditioned for a specific trans-

form by positions k̃�K̃ of available signal samples and by

the selection of the subset �R̃� of transform basis func-
tions.

By virtue of Parceval’s relationship for orthonormal

transforms, the band-limited signal ÂN
BL approximates the

complete signal AN with mean square error (MSE):
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MSE = �AN − ÂN�2 = �
k=0

N−1

	ak − âk	2 = �
r�R

	�r	
2. �2.9�

This error can be minimized by an appropriate selection
of the K basis functions of the subtransform KofN�. In or-
der to minimize the error, one must know the energy com-
paction ordering of basis functions of the transform �N. If
in addition one knows, for a class of signals, a transform
that features the best energy compaction in the smallest
number of transform coefficients, one can, by selection of
this transform, secure the best band-limited approxima-
tion of the signal �ak� for the given subset �ãk� of its
samples.

In this way, we arrive at the following discrete sam-
pling theorem which can be formulated in these two state-
ments:

Statement 1. For any discrete signal of N samples de-
fined by its K�N sparse and not necessarily regularly ar-
ranged samples, its band-limited, in terms of certain
transform �N, approximation defined by Eq. (2.5) can be
obtained with mean square error defined by Eq. (2.9) pro-
vided that positions of the samples secure the existence of
the matrix KofN�

−1 inverse to the subtransform matrix
KofN� that corresponds to the band limitation. The ap-
proximation error can be minimized by using a transform
with the best energy compaction property.

Statement 2. Any signal of N samples that is known to
have only K�N nonzero transform coefficients for certain
transform �N (�N-transform band-limited signal) can be
fully recovered from exactly K of its samples provided
that positions of the samples secure the existence of the
matrix KofN�

−1 inverse to the subtransform matrix KofN�

that corresponds to the band limitation.

3. VALIDTY OF THE ASSUMPTIONS

The applicability of the above results depends on the va-
lidity of the assumption that band-limited, in a certain
basis, approximation of signals is an acceptable solution
in image recovery. We believe that this assumption is vali-
dated by a consensus in the signal processing and image
processing community regarding signal compression,
where such transforms as DCT and certain wavelets are
known for their very good energy compaction properties
for wide variety of signals in image and audio processing.
These transforms are used successfully for compression
by means of replacement of signals by their band-limited
approximations. Recent advances in compressive sensing
[13] also are based on the signal’s “band-limitedness” as-
sumption. Haar transform and Walsh transform were
found to have good energy compaction properties for bi-
level images such as drawings and documents. An impor-
tant application, in which the assumption of image band-
limitedness is supported by the physical reality, is
computed tomography, in which slice projections can very
frequently be regarded in the inverse Radon transform
domain as band-limited signals, because outer parts of
slices are usually known to be empty.

4. ALGORITHMS FOR SIGNAL RECOVERY
FROM SPARSE NONUNIFORMLY
SAMPLED DATA

Implementation of signal recovery from sparse nonuni-
formly sampled data according to Eq.(2.8) requires matrix
inversion, which is generally a very computationally de-
manding procedure, though for some transforms, such as
DFT, DCT, Walsh, Haar, and others that feature fast Fou-
rier transform (FFT)-type algorithms, pruned versions of
these algorithms can be used [14–16]. In applications, one
can also be satisfied with signal reconstruction with a cer-
tain limited accuracy and apply for the reconstruction of a
simple iterative reconstruction procedure of the
Gershberg–Papoulis [17] type shown in the flow diagram
of Fig. 1. We used this algorithm in the experiments re-
ported in this paper. One can find a review of other itera-
tive and noniterative algorithmic options in [9].

5. ANALYSIS OF TRANSFORMS

A. Discrete Fourier Transform
Consider the KofNDFT

LP -trimmed DFTN matrix:

KofNDFT
LP =�exp
i2	

k̃r̃LP

N
�� �5.1�

that corresponds to a DFT KofN low-pass band-limited
signal. Due to the complex conjugate symmetry of DFT of
real signals, K has to be an odd number, and the set of
frequency domain indices of KofNDFT-low-pass band-
limited signals in Eq. (5.1) is defined as

r̃LP � R̃LP = ��0,1, . . . ,�K − 1�/2,N − �K − 1�/2, . . . ,N − 1�.

�5.2�

For such a case, the following theorems hold:
Theorem 1. KofN-low-pass DFT band-limited signals

of N samples with only K nonzero low-frequency DFT co-
efficients can be precisely recovered from exactly K of
their samples taken in arbitrary positions.

Proof. As follows from Eqs. (2.3)–(2.8), the theorem is
proved if the matrix KofNDFT

LP is invertible. A matrix is in-
vertible if its determinant is nonzero. In order to check
whether the determinant of the matrix KofNDFT is non-
zero, permute the order of columns of the matrix as fol-
lows:

Fig. 1. Flow diagram of the iterative signal recovery procedure.
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r5 � R5 = ��N − �K − 1�/2, . . . ,N − 1,0,1, . . . ,�K − 1�/2�

�5.3�

and obtain the matrix

KofNDFT
DFTsh =�exp�i2	

k̃r5

N
��

= �exp�i2	
N − �K − 1�/2

N
k̃�
�k̃ − r̃̃̃ ��

��exp�i2	
k̃r̃̃̃

N
�� , �5.4�

where

r̃̃̃ � R̃
˜̃

= ��0, . . . ,K − 1�. �5.5�

The first matrix in this product of matrices is a diago-
nal matrix, which is obviously invertible. The second one
is a version of Vandermonde matrices, which are also
known to have a nonzero determinant if, as in our case,
its ratios for each row are distinct [18].

As permutation of the matrix columns does not change
the absolute value of its determinant, Eq. (5.4) implies
that the determinant of KofN-trimmed DFTN matrix of

Eq. (5.1) is also nonzero for arbitrary set K̃= �k̃� of posi-
tions of K available signal samples.

One can easily see that for DFT KofN-high-pass band-
limited signals for which

KofNDFT
HP =�exp
i2	

k̃r̃HP

N
�� , �5.6�

where

r̃HP � R̃HP = ���N − K + 1�/2,�N − K + 3�/2, . . . ,�N + K

− 1�/2�, �5.7�

a similar theorem holds
Theorem 2. KofN-high-pass DFT band-limited signals

of N samples with only K nonzero high-frequency DFT co-
efficients can be precisely recovered from exactly K of
their arbitrarily taken samples.

Note that due to the complex conjugate symmetry of
DFT of real signals, K in this case has to be odd whatever
N is.

Obviously, the above Theorems 1 and 2 can be extended
to a more general case of signal DFT band limitation
when indices �r̃� of nonzero DFT spectral coefficients form
arithmetic progressions with common difference other
than one, such as, for instance,

r̃mLP � R̃mLP = �0,m, . . . ,m
�K − 1�

2
,N − m

�K − 1�

2
, . . . ,N

− m
�K − 1�

2
+

�K + 1�

2
� . �5.8�

B. Discrete Cosine Transform
N-point DCT of a signal is equivalent to 2N-point shifted
discrete Fourier Transform (SDFT) with shift parameters
�1/2,0� of a 2N-sample signal obtained from the initial
one by its mirror reflection [16]. KofN-trimmed matrix of
SDFT �1/2,0�

KofNSDFT =�exp
i2	
�k̃ + 1/2�r̃

2N
�� �5.9�

can be represented as a product

KofNSDFT =�exp
i2	
k̃r̃

2N
��exp
i	

r̃

2N
�
�k − r���

= KofNDFT�exp
i	
r̃

2N
�
�k − r�� �5.10�

of a 2N-point DFT matrix and a diagonal matrix
�exp�i	r̃ /2N�
�k−r��. The latter one is invertible, and the
invertibility of the KofN-trimmed DFT2N matrix
KofNDFT can be proved, for the above-described band
limitations, as was done above for the DFT case. There-
fore, theorems for DCT similar to those for DFT hold.

These theorems hold also for 2D DFT and DCT trans-
forms provided that the band-limitation conditions are
separable. The case of nonseparable band limitation re-
quires further study. In the discussion of experiments
that follows, we will compare separable and nonseparable
band limitation in the DCT domain. Note that working in
the DFT or the DCT domain results, in the case of low-
pass band limitation, in signal discrete sinc-interpolation
[19].

We illustrate the above reasoning by some simulation
examples. The plots in Fig. 2 illustrate exact reconstruc-
tion of a DFT-band-limited signal (solid curue) for two
cases, when all the signal samples are randomly placed
within signal support [Fig. 2(a)] and when all available
signal samples form a compact group [Fig. 2(b)]. Figure
2(c) illustrates restoration of the same signal with ran-
domly placed samples by means of the iterative algo-
rithm, while Fig. 2(d) shows standard deviation of signal
restoration error as a function of the number of iterations.
Note that the speed of convergence of the iterative algo-
rithm depends heavily on the realization of sample posi-
tions and, for some samples, realizations of sample posi-
tions might be very slow.

Figures 3 and 4 illustrate precise restoration from
sparse data of images band-limited in the DCT domain by
a square (separable band limitation) and by 90° circle sec-
tor (a pie piece, inseparable band limitation). In these ex-
periments, image restoration using a multilevel B-spline
interpolation algorithm was used as a benchmark [7]. For
the implementation of the algorithm, a code kindly pro-
vided by G. Wolberg was used.

The image presented in Fig. 3 is a 64�64 pixel test im-
age, low-pass band-limited in the DCT domain by a
square of 14�14 samples [Fig. 3(b)]. It has only 14�14
=196 nonzero DCT spectral components out of the 64
�64 ones. This image was sampled at 196 random posi-
tions obtained from a standard Matlab pseudorandom
number generator. One can see from the figure that the
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Fig. 2. (Color online) Restoration of a DFT low-pass band-limited signal by matrix inversion for the cases of (a) random and (b) com-
pactly placed signal samples and (c) restoration by the iterative algorithm. Plot (d) shows the standard deviation of the signal restoration
error as a function of the number of iterations. The experiment was conducted for test signal length of 64 samples; bandwidth of 13
frequency samples (�1/5 of the signal base band).

Fig. 3. Recovery of an image band limited in the DCT domain
by a square: (a) initial image with 3136 “randomly” placed
samples in positions shown by white dots; (b) the shape of the im-
age spectrum in the DCT domain; (c) image restored by the itera-
tive algorithm after 100,000 iterations with restoration peak
signal-to-error standard deviation (PSNR) 4230; (d) image re-
stored by B-spline interpolation with restoration PSNR 966; (e)
iterative algorithm restoration error (white, large errors; black,
small errors); (f) restoration error standard deviation versus
number of iterations for the iterative algorithm and that for the
B-spline interpolation.

Fig. 4. Recovery of an image band limited in the DCT domain
by a circle sector: (a) initial image with 3964 “randomly” placed
samples in positions shown by white dots; (b) the shape of the im-
age spectrum in the DCT domain; (c) image restored by the itera-
tive algorithm after 100,000 iterations with restoration PSNR
21.5; (d) image restored by B-spline interpolation with restora-
tion PSNR 7.42; (e) iterative algorithm restoration error (white,
large errors; black, small errors); (f) restoration error standard
deviation versus number of iterations of the iterative algorithm
for the iterative algorithm and that for the B-spline
interpolation.
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iterative algorithm provides a quite accurate restoration
of the initial image, though precise restoration may re-
quire a quite large number of iterations. An important pe-
culiarity of the 2D case is that the convergence of the it-
eration is very nonuniform within the image. Usually, the
restoration error rapidly becomes very small almost ev-
erywhere in the image, and only in some parts, where
sample density happens to be low, do the restoration er-
rors remain substantial and converge to zero quite slowly.

Image band-limitation by a square is separable, and, as
was shown earlier, it does not impose any limitations on
the positions of sparse samples. However, it is not isotro-
pic. In the case of isotropic band limitation in the DCT do-
main by a circle sector (a pie piece), the situation is quite
different. Experiments show that the speed of conver-
gence of the iterative algorithm drops dramatically in this
case. Hundreds of thousands of iterations are needed to
make the overall standard deviation of the restoration er-
ror low enough, though again, restoration error remains
substantial only in limited areas of the image. B-spline in-
terpolation error is also high in this case, though it is
more uniform over the image. The convergence speed of
the iterative algorithm in the case of isotropic circle sector
band limitation can be substantially improved if the num-
ber of available image samples exceeds the number of
nonzero DCT spectral coefficients, which is redundant
from the point of view of the discrete sampling theorem.
This is illustrated in Fig. 4. The image presented in Fig. 4
is a 64�64 pixel test image low-pass band-limited in the
DCT domain by a circle sector. It has 196 nonzero DCT
spectral components, out of the 64�64 signal’s samples,
all located within a circle sector shown in white in Fig.
4(b). In contradistinction to the image in Fig. 3, this one
was sampled at 248 random positions. The redundancy
248/196=1.27 in the number of samples with respect to
the number of nonzero spectral coefficients is approxi-
mately equal to the ratio of the area of the square to the
area of the circle sector inscribed into this square. As one
can see from Fig. 4(f), with such a redundancy iterative
restoration converges much faster, though overall restora-
tion error even after 100,000 iterations remains higher
than that for the separable band limitation by a square
illustrated in Fig. 3. The same holds for B-spline interpo-
lation restoration, shown in Fig. 4(d). Once again, one can
see that the convergence of the iterative algorithm is non-
uniform over the image and that relatively large restora-
tion error occurs only in a small area of the image where
the density of available samples happens to be low.

In some applications, there is a natural and substantial
redundancy in the number of available image samples
with respect to the image’s bandwidth. One such case is
illustrated in Fig. 5, where an example of image restora-
tion from its level lines is given. A 256�256 pixels image,
shown in the figure, is band limited in the DCT domain by
a circle sector and contains 302 nonzero spectral coeffi-
cients. The image was sampled in 6644 samples on a set
of its level lines (8 levels), which resulted in 22-fold re-
dundancy with respect to the image spectrum. As one can
see from the figure, such a redundancy accelerated the
convergence of the iterative algorithm very substantially
and, after a few tens of iterations, enabled restoration

that is much superior to that provided by the B-spline in-
terpolation.

C. Wavelets and Other Bases
The main peculiarity of wavelet bases is that their basis
functions are most naturally ordered in terms of two com-
ponents: scale and position within the scale. Scale index
is analogous to the frequency index for DFT. Position in-
dex tells only of the shift of the same basis function within
the signal on each scale. Therefore, band limitation for
DFT translates to scale limitation for wavelets. Limita-
tion in terms of position is trivial: it simply means that
some parts of the signal are not relevant. Commonly, dis-
crete wavelets are designed for signals whose length is an
integer power of 2 �N=2n�. For such signals, there are s

�n scales and possible band limitations.
The simplest special case of wavelet bases is Haar ba-

sis. Signals with N=2n samples and with only K lower in-
dex nonzero Haar transform (the transform coefficients
�K , . . . ,N−1� are zero) are �s̃= �⌊log2�K−1�⌋+1�� band-
limited, where ⌊x⌋ is an integer part of x. Such signals are

Fig. 5. Recovery of an image band-limited in the DCT domain
by a circle sector from its level lines: (a) initial image with level
lines (shown by white lines); (b) image restored by the iterative
algorithm after 1,000 iterations with restoration PSNR 35,000
(note that the restoration error is concentrated in a small area of
the image); (c) image restored by B-spline interpolation with res-
toration PSNR 29.4; (d) iterative algorithm restoration error
(white, large errors; black, small errors); (e) restoration error
standard deviation versus number of iterations for the iterative
algorithm and that for the B-spline interpolation.
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piecewise constant within intervals between basis func-
tion zero crossings. The shortest intervals of the signal
constancy contain 2n−s̃ samples. As one can see from Fig.
6(a), for any two samples that are located on the same in-
terval, all Haar basis functions on this and lower scales
have the same value. Therefore, having more than one
sample per constant interval will not change the rank of
the matrix KofN. The condition for perfect reconstruction
is therefore to have at least one sample on each of those
intervals.

For other wavelets as well as for other bases a general
necessary, sufficient, and easily verified condition for the
invertibility of KofN -trimmed transform submatrix is not
known to the present authors. Standard linear algebra
procedures for determining matrix rank can be used for
testing invertibility of the matrix.

For Walsh basis functions, the index corresponds to the
“sequency,” or to the number of zero crossings of the basis
function. The sequency carries a certain analogy to the
signal frequency. Basis functions ordering according to
their sequency, which is characteristic of Walsh trans-
form, preserves for many real-life signals the property of
decaying transform coefficients’ energy with their index.
Therefore, for Walsh transform the notion of low-pass
band-limited signal approximation, similar to the one de-
scribed in Subsection 5.A for DFT can be used. On the
other hand, as one can see from Fig. 6(b), Walsh basis
functions, similarly to the Haar basis function, can be
characterized by the scale index, which specifies the
shortest interval of signal constancy. Signals with N=2n

samples and band limitation of K Walsh transform coeffi-
cients have the shortest signal-constancy intervals of 2n−s̃

samples, where s̃= �⌊log2�K−1�⌋+1�. A necessary condition
for perfect reconstruction is to have K signal samples
taken on different intervals. Unlike the Haar transform
case, not all the intervals are needed to be sampled but
only K intervals out of the total number of intervals. For a
special case of K equal to a power of 2, there are K inter-
vals, each of which has to be sampled to secure perfect re-
construction. This is the case when the reconstruction

condition for Walsh transform is identical to that for Haar
transform.

Figure 7 illustrates the case of recovery of an image
band limited in the Haar transform domain. Two ex-
amples are shown: arrangement of sparse samples, for
which signal recovery is possible (a) and that for which
signal is not recoverable (b). Note that when the Haar re-
construction is possible, it is reduced to the trivial
nearest-neighbor interpolation.

An example of perfect reconstruction of Walsh-
transform-domain band-limited signal of N=512 and
band limitation K=5 is illustrated in Fig. 8. In this ex-
ample, the resulting KofN Walsh matrix is

	KofNWalsh	K=5 = �
1 − 1 1 − 1 − 1

1 − 1 − 1 1 1

1 1 1 1 1

1 1 − 1 − 1 − 1

1 1 1 1 − 1

� , �5.11�

and its rank is equal to 5. One should note that in this
particular example, perfect reconstruction in the Haar
transform domain is not possible since one of the shortest
intervals of the signal constancy contains no samples.

6. APPLICATION EXAMPLES

A. Image Superresolution from Multiple Differently
Sampled Video Frames
One of the potential applications of the above signal re-
covery technique is image superresolution from multiple
video frames with chaotic pixel displacements due to at-
mospheric turbulence, camera instability, or similar ran-
dom factors [20]. By means of elastic registration of a se-
quence of frames of the same scene, one can determine,
for each image frame and with subpixel accuracy, pixel
displacements caused by random acquisition factors. Us-
ing these data, a synthetic fused image can be generated
by placing pixels from all available video frames in their
proper positions on the correspondingly denser sampling
grid according to their found displacements. In this pro-
cess, some pixel positions on the denser sampling grid will
remain unoccupied, especially when a limited number of

Fig. 6. (Color online) First eight basis functions of the 64-point
(a) Haar and (b) Walsh transforms. Intervals of function con-
stancy are outlined by dashed–dotted lines. Functions that be-
long to the same scale are outlined by dashed boxes.

Fig. 7. (Color online) Two cases of sparse sampling of an image
band-limited in the Haar transform: (a) not-recoverable case, (b)
recoverable case (sample points are marked with dots). Image
size 64�64 pixels; band limitation 8�8 (scale 3).
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image frames is fused. These missing pixels can then be
restored using the above-described iterative band-limited
interpolation algorithm.

In the implementation of the algorithm, the denser
sampling grid of the fused image is formed accordingly to
the subpixel accuracy, with which positions of pixels are
measured in the sequence of turbulent frames. In our ex-
periment, the size of the fused image sampling grid was
8� that of initial frames. The bandwidth limitation of the
superresolved image depends on the spread of image
samples acquired in the process of fusion and on the num-
ber of frames used for fusion. In our experiments, we set
the final size of the fused-image sampling grid to be twice
that of the original frames. The simulation result of itera-
tive recovery of unavailable image samples is presented
in Fig. 9, which shows (a) one of the low-resolution turbu-
lent frames, (b) image fused from 50 frames, and (c) the
result of iterative interpolation achieved after 50 itera-
tions. The figure clearly demonstrates a substantial im-
provement of image resolution and quality.

B. Image Reconstruction from Sparse Projections in
Computed Tomography
The discussed sparse-data recovery algorithm can find a
straightforward application in tomography, where it fre-
quently happens that a substantial part of the slices that
surrounds the body slice is known to be an empty field.
This means that slice projections (sinograms) are Radon
transform band-limited functions. Therefore, whatever
number of projections is available, a certain number of
additional projections that are commensurable, according
to the discrete sampling theorem, with the size of the
slices empty zone can be obtained, and a corresponding

resolution increase in the reconstructed images can be
achieved using the described iterative band-limited recon-
struction algorithm. Another option is recovery of projec-
tion data that might be missing because of sensor faults
or for other reasons.

In order to demonstrate the applicability of the discrete
sampling theorem for image recovery from sparse projec-
tions, one needs a discrete Radon transform and its alge-
braically exact inverse. While the theory defines the con-
tinuous Radon integral transform and its inverse, the
discrete equivalent is not a trivial problem. In our experi-
ments we used a stable forward and inverse Radon trans-
form described in [21] and the code found in [22]. The ap-
plicability of the suggested framework for image
reconstruction from sparse projections is illustrated in
Fig. 10. By simple segmentation of the initial image
shown in Fig. 10(a) it was found that the outer 55% of the
image area is empty. Then the same percentage of projec-
tion samples selected randomly using the Matlab random
number generator were zeroed, after which the iterative
reconstruction algorithm was run. The results, shown in
Fig. 10(c)–10(f), show that while direct image reconstruc-
tion with missing samples fails completely [Fig. 10(c)],

Fig. 8. (Color online) Example of perfect reconstruction in the
Walsh domain.

Fig. 9. Iterative image interpolation in the superresolution pro-
cess: (a) a low-resolution frame, (b) image fused by elastic image
registration from 50 frames, (c) the result of iterative interpola-
tion of image (b) after 50 iterations.

Fig. 10. (Color online) Recovery of missing samples of a sino-
gram: (a) original image and (b) its Radon transform (sinogram),
(c) image reconstructed from the sinogram, (d) image corrupted
by the loss of 55% of its randomly selected samples; (e) a sino-
gram recovered from (d) using the iterative band-limited interpo-
lation algorithm, and (f) plot of the standard deviation of the slice
reconstruction error as a function of the iteration number.
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virtually perfect recovery of 55% of the missing samples of
sinograms is possible with the iterative reconstruction al-
gorithm after several hundreds of iterations.

Figure 11 illustrates that recovery of completely miss-
ing projections is also possible. Every second projection of
the image shown in Fig. 10(a) was removed, and then all
initial projections were recovered by the iterative algo-
rithm, which made use of the fact that the outer 55% part
of the image area is known to be empty. In this case the
standard deviation of the reconstruction error is not as
low as in the previous case, which perhaps can be attrib-
uted to the incomplete reversibility of the truncated Ra-
don transforms. However, the achieved low reconstruction
error of about 10−3 allows us to suggest that for such
cases, when half or more of the image area is known to be
empty, one can achieve image reconstruction with super-
resolution that corresponds to double the number of avail-
able image projections.

7. CONCLUSION

The paper addresses the problem of reconstruction of dis-
crete signals from their irregular samples and recovery of
missing data. Considering that positions of available sig-
nal samples are always specified with a certain accuracy
that defines the maximal number of signal samples suffi-
cient for signal representation, we suggest a new ap-
proach to optimal recovery of discrete signals from irregu-
larly sampled or sparse data based on the discrete
sampling theorem introduced in Section 2. The discrete
sampling theorem refers to discrete signals band limited
in the domain of a certain transform and states that KofN

band-limited discrete signals of N samples, which have

only K�N nonzero transform coefficients, can be pre-
cisely recovered from their K sparse samples provided
that positions of the available samples satisfy certain
limitations depending on the transform. This theorem
also provides a tool for optimal, in terms of root-mean-
squared error, approximation of arbitrary discrete signals
specified by their sparse samples with KofN-band-limited
signals, given appropriate selection of the signal repre-
sentation transform.

Two algorithms for discrete sampling theorem based
signal reconstruction are considered: direct matrix inver-
sion and Gershberg–Papoulis iterative algorithm.

Properties of different transforms, such as discrete
Fourier, discrete cosine, Haar, Walsh, and wavelet trans-
forms, that are relevant to application of the discrete
sampling theorem are discussed and, in particular, it is
shown that precise reconstruction of 1D KofN-DFT band-
limited and KofN-DCT band-limited signals is always
possible from sparse samples regardless of sample posi-
tions on the signal dense grid. The same holds for two-
dimensional signals, given separable band-limitation con-
ditions. For nonseparable band limitation, such as
limitation by a circle sector in the DCT domain, experi-
mental evidence is obtained that exact image recovery
may not be possible for arbitrarily placed samples and
that a redundant number of samples is required.

Applications of the discrete-sampling-theorem-based
approach to image recovery from sparse data are illus-
trated on examples of image superresolution from mul-
tiple randomly sampled frames and image reconstruction
from sparsely sampled projections. For the latter case, it
is shown that in applications where object slices contain
areas that a priori are known to be empty, reconstruction
of slice images from a given set of projections is possible
with superresolution.

ACKNOWLEDGMENTS

The authors thank G. Wolberg, Department of Computer
Science, City College of New York, USA, for his help with
respect to the B-spline interpolation and A. Averbuch,
School of Computer Science, Tel-Aviv University, Israel,
for his help with respect to the discrete stable forward
and inverse Radon transforms. This work was partially
supported by Tampere International Center for Signal
Processing, Tampere University of Technology (Tampere,
Finland), by the Ran Naor Highway Safety Research Cen-
ter Foundation at the Technion, Israel, and by the Domes-
tic Nuclear Detection Office in the U.S. Department of
Homeland Security (DHS) grant CBET-0736232.

REFERENCES
1. D. Shepard, “A two-dimensional interpolation function for

irregularly-spaced data,” in Proceedings of the 1968 ACM
23rd National Conference (ACM, 1968), pp. 517–523.

2. S. K. Lodha and R. Franke, “Scattered data techniques for
surfaces,” in Proceedings of the IEEE Conference on
Scientific Visualization (IEEE, 1997), Vol. 38, No. 157, pp.
181–200.

3. H. Landau, “Necessary density conditions for sampling and
interpolation of certain entire functions,” Acta Math. 117,
37–52 (1967).

Fig. 11. (Color online) Recovery of missing image projections:
(a) original projections (sinogram) of the test image of Fig. 10(a),
(b) sinogram with every second projection removed, (c) sinogram
recovered from (b) using the iterative interpolation algorithm,
and (d) plot of the standard deviation of the image reconstruction
error as a function of the iteration number.

574 J. Opt. Soc. Am. A/Vol. 26, No. 3 /March 2009 Yaroslavsky et al.



4. A. Aldroubi and K. Grochenig, “Non-uniform sampling and
reconstruction in shift-invariant spaces,” SIAM Rev. 43,
585–620 (2001).

5. F. Marvasti, ed., Nonuniform Sampling (Kluwer Academic/
Plenum, 2001).

6. M. Unser, “Splines: a perfect fit for signal and image
processing,” IEEE Signal Process. Mag. June 1999, pp.
22–38.

7. S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data
interpolation with multilevel B-splines,” IEEE Trans.
Visualization. Comput. Graphics 3, 228–244 (1997).

8. E. Margolis and Y. C. Eldar, “Interpolation with non-
uniform B-splines,” in Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing
(IEEE, 2004), Vol. 2, pp. 577–580.

9. P. J. S. G. Ferreira, “Iterative and noniterative recovery of
missing samples for 1-D band-limited signals,” in
Nonuniform Sampling, F. Marvasti, ed. (Kluwer Academic/
Plenum, 2001), pp. 235–278.

10. M. Hasan and F. Marvasti, “Application of nonuniform
sampling to error concealment,” in Nonuniform Sampling,
F. Marvasti, ed. (Kluwer Academic/Plenum, 2001), pp.
619–646.

11. A. Averbuch, R. Coifman, M. Israeli, I. Sidelnikov, and Y.
Shkolinsky, “Irregular sampling for multi-dimensional
polar processing of integral transforms,” in Advances in
Signal Transforms: Theory and Applications, J. Astola and
L. Yaroslavsky, eds. (Hindawi, 2007), pp. 143–198.

12. A. Averbuch and V. Zheludev, “Wavelet and frame
transforms originated from continuous and discrete
splines,” in Advances in Signal Transforms: Theory and
Applications, J. Astola and L. Yaroslavsky, eds. (Hindawi,
2007), pp. 1–54.

13. Compressed sensing resources: http://www.dsp.ece.rice.edu/
cs/. Last accessed December 18, 2008.

14. Y. Katiyi and L. Yaroslavsky, “Regular matrix methods for
synthesis of fast transforms: general pruned and integer-
to-integer transforms,” in Proceedings of IEEE
International Workshop on Spectral Methods and Multirate
Signal Processing (IEEE, 2001), pp. 17–24.

15. Y. Katiyi and L. Yaroslavsky, “V/HS structure for
transforms and their fast algorithms,” in Proceedings of the
IEEE 3rd International Symposium on Signal Processing
and Analysis (IEEE, 2003), Vol. 1, pp. 482—487.

16. L. Yaroslavsky, Digital Holography and Digital Signal
Processing (Kluwer Academic, 2004).

17. A. Papoulis, “A new algorithm in spectral analysis and
band-limited extrapolation,” IEEE Trans. Circuits Syst. 22,
pp. 735–742 (1975).

18. R. A. Horn and C. R. Johnson, Topics in Matrix Analysis
(Cambridge U. Press, 1991).

19. L. Yaroslavsky, “Fast discrete sinc-interpolation: a gold
standard for image resampling,” in Advances in Signal
Transforms: Theory and Application, J. Astola and L.
Yaroslavsky, eds., EURASIP Book Series on Signal
Processing and Communications (Hindawi, 2007), pp.
337–405.

20. L. P. Yaroslavsky, B. Fishbain, G. Shabat, and I. Ideses,
“Super-resolution in turbulent videos: making profit from
damage,” Opt. Lett. 32, 3038–3040 (2007).

21. A. Averbuch, R. Coifman, D. Donoho, M. Israeli, and Y.
Shkolinsky, “A framework for discrete integral
transformations II—the 2D discrete Radon transform,”
SIAM J. Sci. Comput. (USA) 30, 764–784 (2008).

22. Standford University, Statistics Department,
David Donoho’s homepage,
http://www.stat.stanford.edu/~donoho/.

Yaroslavsky et al. Vol. 26, No. 3 /March 2009/J. Opt. Soc. Am. A 575

http://www.dsp.ece.rice.edu/cs/
http://www.dsp.ece.rice.edu/cs/
http://www.stat.stanford.edu/~donoho/

