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ABSTRACT: Climate warming exhibits asymmetric patterns over a diel time,
with the trend of nighttime warming exceeding that of daytime warming, a
phenomenon commonly known as asymmetric warming. Recently, increasing
studies have documented the significant instantaneous impacts of asymmetric
warming on terrestrial vegetation growth, but the indirect effects of asymmetric
warming carrying over vegetation growth (referred to here as time-lag effects)
remain unknown. Here, we quantitatively studied the time-lag effects (within
1 year) of asymmetric warming on global plant biomes by using terrestrial
vegetation net primary production (NPP) derived by the Carnegie–Ames–Stanford
Approach (CASA) model and accumulated daytime and nighttime temperature
(ATmax and ATmin) from 1982 to 2013. Partial correlation and time-lag
analyses were conducted at a monthly scale to obtain the partial correlation
coefficients between NPP and ATmax/ATmin and the lagged durations of NPP
responses to ATmax/ATmin. The results showed that (i) asymmetric warming
has nonuniform time-lag effects on single plant biomes, and distinguishing
correlations exist in different vegetation biomes’ associations to asymmetric
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warming; (ii) terrestrial biomes respond to ATmax (4.63 6 3.92 months) with a
shorter protracted duration than to ATmin (6.06 6 4.27 months); (iii) forest
biomes exhibit longer prolonged duration in responding to asymmetric warming
than nonforest biomes do; (iv) mosses and lichens (Mosses), evergreen needleleaf
forests (ENF), deciduous needleleaf forests (DNF), and mixed forests (MF) tend
to positively correlate with ATmax, whereas the other biomes associate with
ATmax with near-equal splits of positive and negative correlation; and (v) ATmin
has a predominantly positive influence on terrestrial biomes, except for Mosses
and DNF. This study provides a new perspective on terrestrial ecosystem re-
sponses to asymmetric warming and highlights the importance of including such
nonuniform time-lag effects into currently used terrestrial ecosystem models
during future investigations of vegetation–climate interactions.

KEYWORDS: Vegetation–atmosphere interactions; Climate prediction;
Climate variability

1. Introduction
Terrestrial net primary production (NPP) is the rate of net organic biomass accu-

mulation by plants per unit area and time (Potter et al. 1999). It serves as a crucial
component in the global carbon cycle. Variations in NPP reflect the vegetation changes
in terrestrial ecosystems, which integrate multiple environmental changes from both
nature and anthropogenic influences (Nemani et al. 2003; Potter et al. 1999). The ter-
restrial NPP is sensitive to climate change (Gang et al. 2013; Li et al. 2015; Potter et al.
2012; Su et al. 2015; Zhao et al. 2015), and the interactions between climate change and
NPP have been a hot topic. The climate condition is ever changing over a given period of
time, during which time the climate may form different impacts on vegetation growth,
referred to here as antecedent climate effects; however, there is still a lack of knowledge
regarding how antecedent climate affects present vegetation productivities.

Previous studies have provided credible evidence that there is a generally greater
tendency toward an increase in the daily minimum temperature than in the daily
maximum temperature, which exhibits not only spatial nonuniformities (Caesar et al.
2006; Easterling et al. 1997; IPCC 2014), but also temporal heterogeneities (Caesar
et al. 2006; Matiu et al. 2016; van Wijngaarden and Mouraviev 2016). These phe-
nomena are often referred to as asymmetric warming (Peng et al. 2013; Phillips et al.
2016; Su et al. 2015), which can be defined as the phenomenon of spatiotemporally
nonuniform warming tendencies in day- versus nighttime temperatures.

Currently, increasing studies have revealed the significant effects of asymmetric
warming on terrestrial ecosystem carbon budgets. For example, Su et al. (2015)
reported that terrestrial NPP is significantly higher under asymmetric warming than
symmetric warming scenarios; Tan et al. (2015) and Xia et al. (2014) found that the
asymmetry in climate warming has nonuniform effects on the Northern Hemisphere
terrestrial carbon cycling, and these uniform effects vary by regions and seasons; and
Anderegg et al. (2015) further showed that nocturnal warming dominates the carbon
losses of a tropical climate through enhanced dark respiration. Apart from these
model-based studies, there still exist many in situ studies. For example, Wan et al.
(2009) revealed that the nocturnal-warming-derived carbon losses in the temperate
steppe ecosystem can be compensated by stimulating the following daytime pho-
tosynthesis through the depletions of leaf carbohydrates in grassland (Grass) at night;
Xie et al. (2014) revealed that the increases in the aboveground biomass of rice will
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be significantly enhanced by asymmetric warming in the jointing stage, but sup-
pressed in the maturity stage; and Phillips et al. (2016) suggested that this warming
asymmetry would turn the grassland ecosystems into a carbon source, mainly by
enhancing the warming-induced carbon losses from unprotected soil.

These aforementioned experiments acknowledged the significant effects of asym-
metric warming on terrestrial vegetation, but they mostly focused on the simultaneous
impacts of asymmetric warming and did not consider the time-lag effects that the
antecedent asymmetric warming may have had on vegetation growth (Braswell et al.
1997; Potter et al. 1999; Wu et al. 2015; Xia et al. 2014). The time-lag effect is defined
as the indirect impact of an antecedent climate factor (specifically referring to
asymmetric warming in this study) on present vegetation growth, which takes a period
of time to actually occur. There are two important aspects in the time-lag effect: one is
the lagged duration that one climate factor may have on the vegetation growth, and the
other is the correlation between them at this specific lagged duration.

Determining the time-lag effects of asymmetric warming on terrestrial vegetation
growth and ascertaining the underlying mechanisms has many levels of meaning
(Braswell et al. 1997; Wu et al. 2015): first, it helps enrich the knowledge of the
climate–vegetation science, and second, it benefits environmental management be-
cause policy-makers can provide future warnings about the possible changes in the
terrestrial ecosystem resulting from the anomalous temperature fluctuations. In-
creasing bodies of evidence have shown the common existence of significant time-
lag effects of climate factors on vegetation growth (Braswell et al. 1997; Kuzyakov
and Gavrichkova 2010; Sherry et al. 2008; Wu et al. 2015; Zhang et al. 2015; Zhao
et al. 2015). The asymmetric warming is projected to be reinforced (IPCC 2014),
which is anticipated to generate enormous effects on the terrestrial green plants’
growth (Matiu et al. 2016; Peng et al. 2013; Su et al. 2015; Xie et al. 2014). However,
little is known about the time-lag effects that asymmetric warming have on different
plant biomes. Therefore, it is both urgent and important to determine the time-lag
effects of antecedent asymmetric warming on the terrestrial plant biomes.

In this study, we hypothesized that nonuniform time-lag effects exist in the
responses of the same types of vegetation biome to day- versus nighttime warming
and that distinguished time-lag effects are exhibited in the vegetation responses to
asymmetric warming across different biomes. With regards to these hypotheses, we
tried to address the following goals:

1) quantifying the lagged durations of terrestrial plant biomes when responding
to asymmetric warming and

2) determining the correlations between different plant biomes and asym-
metric warming with time-lag effects considered.

2. Materials and methods

2.1. Global datasets

2.1.1. GIMMS NDVI dataset

The Normalized Difference Vegetation Index (NDVI) is a widely used proxy of
terrestrial NPP (Nemani et al. 2003; Potter et al. 2012; Zhao et al. 2015). The
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Global Inventory Monitoring and Modeling Studies (GIMMS) group produced a
continuously updated global NDVI dataset (GIMMSNDVI) (Tucker et al. 2005); the
third-generation GIMMS NDVI (first version, NDVI.3g.v1) is now available from
July 1981 to December 2015. NDVI.3g.v1 is a new time series dataset with the most
inaccuracies (e.g., the orbital drift artifacts, sensor degradation, and cloud contam-
ination) optimally removed. NDVI.3g.v1 possesses a spatial resolution of 1/128 and a
biweekly interval (Tucker et al. 2005). The GIMMS NDVI exhibits limitations—
regional disagreements in NDVI-derived trends when compared to other satellite
NDVI products (Fensholt and Proud 2012; Song et al. 2010) and discrepancies in
reflecting true vegetation changes in some ecosystems (i.e., the Arctic zones and
tropical regions; Fensholt and Proud 2012)—but the advantages of a long-term,
hypertemporal record of continuous satellite data and the overall good correlations
(Fensholt and Proud 2012; Song et al. 2010) and spatial characteristics with true
vegetation phenological metrics (Atzberger et al. 2013) and biomass changes (Wang
et al. 2014) make the GIMMS NDVI a well-acknowledged and widely applied data
source in long-term vegetation–climate studies (Peng et al. 2013; Piao et al. 2015;
Tan et al. 2015; Wu et al. 2015). To further minimize the residual atmospheric
effects, we applied the maximum value composites (MVC) method (Holben 1986) to
the biweekly composited NDVI to construct a monthly time series.

2.1.2. Climatic datasets

Monthly climate datasets with a 0.58 resolution were taken from January 1982 to
December 2013 in the present study. The monthly average, maximum, and minimum
temperatures (TEM, Tmax, and Tmin, respectively) and the monthly total precipi-
tation (PRCP) were all obtained from the Climatic Research Unit (CRU), version
TS3.22 (Harris et al. 2014). The CRU TS3.22 is an updated gridded dataset covering
the global land areas from 608S to 808N, primarily derived from climate station
records and interpolated into 0.58 3 0.58 grids. Its earlier products were released
prior to 2013, and additional corrections were made to previous versions of CRU
TS3.21 (Harris et al. 2014). The monthly incoming shortwave solar radiation data
(SOLAR) from Princeton Global Forcings, version 2, were provided by the Ter-
restrial Hydrology Research Group at Princeton University (Sheffield et al. 2006).
The long-time meteorological forcing data are a combination of the National Centers
for Environmental Prediction and the National Center for Atmospheric Research
(NCEP–NCAR) reanalysis datasets, in which the known errors were carefully cor-
rected by observation-based datasets (Sheffield et al. 2006), and these superiorities
allow it to drive the land surface terrestrial model well (Troy and Wood 2009). The
major weaknesses of these meteorological materials are their relatively coarse spatial
resolution (0.58) and temporal resolution (monthly) (Tanarhte et al. 2012; Zhang
et al. 2013), but they have the strength of near-global coverage and are suitable for
long-term climatic trend analyses (Harris et al. 2014; Sheffield et al. 2006), which
makes them good candidates for detecting the global vegetation–climate interactions
(Peng et al. 2013; Piao et al. 2015; Tan et al. 2015; Wu et al. 2015).

2.1.3. Other datasets

We primarily focused on the effects of asymmetric warming on vegetation
growth; therefore, for the purpose of minimizing the effects from land-cover
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changes and analyzing the special responses of each vegetation biome to asym-
metric warming, we used the vegetation biomes obtained from the University of
Maryland’s Department of Geography (UMD_GVM) throughout this work. Ap-
plying decision tree classifiers, the UMD_GVM classifies 14 global biomes (Figure
1 and Table 1), with an overall accuracy between 81.4% and 90.3% (De Fries et al.
1998). It documented vegetation biomes numerically from 0 to 13, in which 0
refers to water land (i.e., the oceans and lakes), 1–5 represent forest biomes, and 6–
13 refer to nonforest biomes. The UMD_GVM has a spatial resolution of ;8 km
and has been well adopted in global-vegetation-monitoring studies (Nemani et al.
2003; Zhou et al. 2003). In addition, the global soil map originating from the
Harmonized World Soil Database (HWSD v1.2; FAO et al. 2012) is used to obtain
the global soil textures, which determine the soil water–holding ability and are an
essential input for driving the Carnegie–Ames–Stanford Approach (CASA) model.
Finally, the field NPP data from the revised Global Primary Production Data Ini-
tiative Products (GPPDI R2; Olson et al. 2013) were adopted to validate the NPP
simulated by CASA. The GPPDI R2 covers 2525 individual sites and 5164 grid
cells (0.58), and each measurement of individual points and grids provides an
annual NPP estimation (gCm22 yr21) covering the period from 1931 to 1996. It is
a well-acknowledged dataset for validating a global model-derived NPP estimation
(Gang et al. 2015; Potter et al. 2012).

2.2. Methods

CASA model for this study, we first simulated the global terrestrial NPP through
the CASA model to indicate the vegetation growth, and we calculated the accu-
mulated monthly daytime and nighttime temperatures (ATmax and ATmin) to

Figure 1. Global land-cover classification product from UMD_GVM. Vegetation bi-
omes are introduced in Table 1.

Earth Interactions d Volume 22 (2018) d Paper No. 8 d Page 5

Unauthenticated | Downloaded 08/20/22 09:54 AM UTC



reflect the asymmetric warming condition. The partial correlation and time-lag
analyses were then conducted collectively on a monthly scale to obtain the partial
correlation coefficients (PCC) between NPP and ATmax/ATmin and the lagged
duration of NPP responses to ATmax/ATmin among different plant biomes. Fi-
nally, the frequency and magnitude of the lagged duration and PCC were further
investigated within different vegetation biomes. It is worth mentioning that the
statistical analyses in this study were based on the vegetation growing season,
defined as the months when the monthly average temperature was higher than 08C,
and NDVI was higher than 0.2 (Wu et al. 2015), so the correlation and the time-
lagged effects were specified to those of vegetation growth responses to ambient
temperatures during the growing season.

2.2.1. NPP estimation

The CASA model is a light-use efficiency (LUE)-based model and was first
developed by Potter et al. (1993). It can be driven by easily obtained datasets (i.e.,
TEM, PRCP, SOLAR, land covers, and soil properties) and has the advantage of
being based on satellite data (NDVI), which makes it a good candidate for vast
ecosystem productivity simulations. In detail, CASA computes NPP using the
following formula:

NPP5 0:53 SOLAR3 FPAR3 T13T23Ws3 emax. (1)

The fraction of photosynthetically active radiation (FPAR) absorbed by vegetation
is a function of NDVI, T1 denotes the limitation of extreme low and high tem-
peratures on LUE, and T2 reflects the LUE when the temperature rises above or
falls below the optimum temperature (8C) when the NDVI reaches its maximum
values throughout the year; T1 and T2 are regulated by TEM and the optimum
temperature. Ws is moisture pressure on vegetation growth and is a function of
TEM and PRCP, and emax (gC�MJ21) is the maximum light-use efficiency for
plants under optimal living conditions. The detailed calculation steps for each
parameter strictly followed the descriptions documented by Potter et al. (1993).

Table 1. The list of vegetation biomes provided by UMD_GVM and their acronyms
that were used in this study.

UMD_GVM vegetation biomes Acronym

1 Evergreen needleleaf forest ENF

2 Evergreen broadleaf forest EBF

3 Deciduous needleleaf forest DNF

4 Deciduous broadleaf forest DBF

5 Mixed forest MF

6 Woodland WoodL

7 Wooded grassland WoodG

8 Closed shrubland CShrub

9 Open shrubland OShrub

10 Grassland Grass

11 Cropland Crop

12 Bare ground BareG

13 Mosses and lichens Mosses
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2.2.2. Calculation of accumulated temperature

Most previous studies (Braswell et al. 1997; Musau et al. 2016; Sherry et al. 2008;
Wu et al. 2015) only included a point on a time scale, rather than a time range, when
investigating the time-lag effects of antecedent temperature on present plant growth.
That is, suppose the air temperature has a time-lag effect of 2 months on the veg-
etation growth in the present month: these studies only studied the associations
between the condition of temperature of 2 months ago and the vegetation status in the
present month, without considering the climate conditions of the previous month and
1 month ago, which may also have significant impacts on the vegetation variations in
the present month. Consequently, these studies ignored the important fact that the
present growth and development of plants tend to be affected by a time range of
antecedent temperatures (Peng et al. 2010; Zeng et al. 2013). This problem was
managed by calculating the accumulated temperature in this study (Zeng et al. 2013).

Accumulated temperature is the temperature surplus with respect to a given base
temperature (Tbase) and is accumulated over a period of time (i.e., month, season, or
year). The accumulated temperature can indicate the thermal requirement for plant
growth over a period of time, and it closely relates to the life-stage transitions of
plants and contributes to the determination of the spatial distribution and productivity
of green plants (Garcia-Mozo et al. 2000; Wang et al. 2013). Here, we computed the
accumulated monthly Tmax (ATmax) and Tmin (ATmin) as Equations (2) and (3),
respectively. It is noteworthy that the accumulated temperatures make no sense until
the Tbase is specified; as it is considered the best temperature factor for predicting
plant development over vast regions (Garcia-Mozo et al. 2000; Piao et al. 2015), 08C
is chosen as Tbase. In addition, the accumulation period is defined as the supposed
time-lag duration that antecedent asymmetric warming may have on vegetation
growth. The longest time-lag duration is defined as 12 months, as previous studies
showed that vegetation commonly undergoes time-lag effects within 1 year of the
ambient environment (Sherry et al. 2008; Zhang et al. 2015):

ATmax(m, i)5
P

k5i

k50

[Tmax(m2 k)2 Tbase](0 � k � i � 12), (2)

ATmin(m, i)5
P

k5i

k50

[Tmin(m2 k)2 Tbase](0 � k � i � 12), (3)

where m is the month–year series from January 1982 to December 2013, i is the
supposed protracted duration, k is the scale of the month prior to the present month
m, and Tbase equals 08C. Note that following Garcia-Mozo et al. (2000)’s study, we
assumed there is no addition to the ATmax or ATmin when Tmax or Tmin dropped
below Tbase; therefore, the ATmax and ATmin are always positive.

2.2.3. Partial correlation analyses

Partial correlation analysis is a favorable measurement for studying the asso-
ciations between two factors (X, Y) while eliminating the effects of a list of in-
terferential variables (Z 5 [Z1, Z2. . ., Zn]). This approach has been effectively
employed when detecting the correlations between vegetation growth and a single
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climate element (Peng et al. 2013; Wu et al. 2015). In this study, we applied this
method to obtain the associations between ATmax and NPP while controlling the
variables of ATmin, SOLAR, and PRCP; likewise, we obtained the associations
between ATmin and NPP while controlling the variables of ATmax, SOLAR, and
PRCP (Peng et al. 2013). The PCC can be described as the following formula:

RXY �Z 5
RXY 2RXZ 3RYZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(12R2
XZ)3 (12R2

YZ)
p , (4)

where RXY�Z refers to the PCC between X and Y after controlling a set of variables
(Z 5 [Z1, Z2. . ., Zn]), and RXY , RYZ , and RXZ refer to the simple correlation coef-
ficients of X, Y, and Z. If we intend to acquire the association between ATmax and
NPP, then RXY �Z is the PCC between these two elements after excluding the influences
from Z 5 [ATmin, PRCP, SOLAR], and RXY , RYZ , and RXZ denote the ordinary cor-
relations among variables ATmax (i.e., the independent variable of X), NPP (i.e., the
dependent variable of Y), and Z. The PCC statistically ranges from21 to 1, where 1 is a
fully positive correlation, 0 is no correlation, and 21 is a fully negative correlation.

2.2.4. Analyses of time-lag effects

Following previous studies (Braswell et al. 1997; Wu et al. 2015), we first
obtained the corresponding PCC (R0, R2, . . ., R12) between ATmax/ATmin and
NPP at each supposed lagged duration. When the PCC (Rk; 0� k� 12) reached its
maximum determination coefficient (R2), that value was taken as the most favor-
able PCC [Rbest; Equation (5)] between ATmax/ATmin and NPP, and k was con-
sidered the best time lag [BTL; Equation (6)] for NPP in relation to ATmax/ATmin:

Rbest 5Rk, when R2
k 5MaximumfR2

1,R
2
2,. . . ,R

2
k . . . ,R

2
12g, (5)

BTL5 k, when R2
k 5MaximumfR2

1,R
2
2,. . . ,R

2
k . . . ,R

2
12g. (6)

3. Results and analysis

3.1. Global predicted NPP and validation

We compared the field-based NPP from the GPPDI R2 dataset with the 32-yr
average annual NPP predicted by the CASA model (Figure 2). It can be seen from
Figure 2 that strong similarities can be found between the measured and predicted
NPPs for the ‘‘Natural Tall Vegetation’’ (Figure 3a; R2

5 0.77, p, 0.001) and the
‘‘Natural Short Vegetation’’ (Figure 3b; R2

5 0.69, p , 0.001), and moderate
agreements can be found between the measured and simulated NPPs for the
‘‘Developed and Mosaic Lands’’ (Figure 3c; R2

5 0.51, p, 0.001) and ‘‘Others’’
(Figure 3d; R2

5 0.45, p , 0.001). Combining all the samples of the vegetation
classes, we got a result (Figure 3e) with R2 as high as 0.81 (p , 0.001). These
results suggested our last predicted NPP is comparable to the observed NPP,
though some errors still exist in our NPP estimate (as indicated by RMSE values).
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Figure 2. Comparison of observed and estimated NPP for the vegetation classes of (a)
the ‘‘Natural Tall Vegetation’’ (height of vegetation exceeding 2m; includes
ENF, EBF, DNF, DBF, MF andWoodL); (b) the ‘‘Natural Short Vegetation’’ (height
of vegetation less than 2m; includes WoodG, Grass, CShrub and OShrub);
(c) the ‘‘Developed and Mosaic Lands’’ (includes Crop), (d) ‘‘Others’’ (in-
cludes BareG and Mosses); and (e) all vegetation classes combined. These
vegetation classeswere reclassified following the studyby Friedl et al. (2002).
The vegetation biomes are introduced in Table 1. The field-based NPP orig-
inates from the GPPDI R2 dataset after removing the samples with missing
data or undergone land-cover transformations, and predicatedNPP is based
on the average annual NPP values from 1982 to 2013.We randomly obtained
300 samples to perform this validation, with 100 points for the Natural Tall
Vegetation and for the Natural Short Vegetation, and 50 points for the De-
veloped and Mosaic Lands and for Others. The R 2, RMSE, and n represent
determination coefficient, the root-mean-square error, and sample number
in the comparisons between the field NPP and predicated NPP.
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Furthermore, we compared the global annual results of the model-estimated
NPP in this study to those obtained in previous research (Table 2). Table 2 shows
that the annual global NPP was estimated to be approximately 51.53 (49.48–54.08)
PgC yr21 from 1982 to 2013 in this study, which is close to the published model-
based results of some previous studies (Cramer et al. 1999; Li et al. 2015; Liao and

Figure 3. Spatial patterns of the BTLs for terrestrial NPP when responding to (a) ATmax
and (b) ATmin for the period from 1982 to 2013. White areas refer to places
with no data, and dark gray areas refer to places with no significant
correlations.

Table 2. Comparison of the model-estimated annual global NPP between this study
and previous studies.

Study period NPP average/range (PgC yr21) Model References

1986–2005 50.6 10 CMIP5 models Li et al. (2015)

1982–98 (44.4–66.3) 17 global models Cramer et al. (1999)

1982–99 54.51 GLO-PEM model Nemani et al. (2003)

2000–09 53.52 (51.67–54.69) MODIS NPP algorithm Zhao and Running (2010)

2002–10 51.6 (54.9–49.9) TEM model Liao and Zhuang (2015)

1982–2013 51.53 (49.48–54.08) CASA model This study
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Zhuang 2015; Nemani et al. 2003; Zhao et al. 2015). These validations suggest that
our last predicted NPP is a credible result.

3.2. Lagged duration of vegetation responses to asymmetric
warming

The spatial patterns of the BTL that the terrestrial NPP responds to ATmax (Figure 3a)
and ATmin (Figure 3b) are shown in Figure 3. Overall, a lagged duration of ;5
months is exhibited in the responses of the NPP to both temperature elements, but
ATmax (4.636 3.92 months) has a more immediate impact on the NPP than ATmin
does (6.06 6 4.27 months). Most polar and boreal biomes respond to ATmax with
a;2-to-3-month delay, but the green plants in northern cold-temperate regions tend
to have lagged responses to ATmax that last for more than half a year; the green
plants in warm-temperate and tropical regions, however, are inclined to respond to
ATmax with instantaneous hysteretic impacts (0–3 months). Regarding the lagged
time of ATmin on the NPP (Figure 3b), we found that the majority of vegetated
pixels over northern cold and boreal zones (45.58–65.58N) were covered by lagged
times of 9–12 months, and there are clear latitudinal gradients (0–9 months) over the
tropical regions (i.e., the Brazilian Plateau and Africa).

We compared the spatial correlations (Table 3) between the plant biomes map
(Figure 1) and the lagged duration results (Figures 3a,b). According to Table 3, a
narrow correlation (R 5 0.26) is exhibited between Figure 3a and Figure 3b,
indicating that high spatial heterogeneities are exhibited in the protracted duration
of NPP responses to ATmax versus ATmin. Interestingly, there is a somewhat
strong negative spatial correlation of Figure 1 to Figure 3a and Figure 3b, with
R 5 20.55 and R 5 20.65, respectively. This result indicates that the hysteretic
effects found in this study correspond well to vegetation biomes, and the negative R
values suggest that the larger the series number a biome has, the faster its response to
asymmetric warming; that is, the forest biomes (number series of 1–5) tend to have
longer lagged responses to asymmetric warming than nonforest biomes (number
series of 6–13) do.

We further compared the frequency (Figure 4) and average (Figure 5) of BTLs
among different vegetation biomes. It can be seen in Figure 4 that most of the grids

Table 3. Spatial correlation matrix among the plant biomes maps (Figure 1), lagged
months of terrestrial NPP responding to ATmax (Figure 3a), and ATmin (Figure 3b).
These spatial correlations were obtained by using the ArcGIS geoprocessing tool-
Band Collection Statistics. A correlation matrix that indicates the correlation be-
tween the cell values from one raster layer to that from another can be yielded by
using this tool. Correlation ranges from 21 to 11, wherein the negative (positive)
values indicate that the changes in the cell values of one layer inversely (directly)
correlate to the other, and a correlation of zeromeans that two layers are independent
of one another.

ATmax ATmin Vegetation biomes

ATmax 1 0.26 20.55

ATmin 0.26 1 20.65

Vegetation biomes 20.55 20.65 1
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Figure 4. Frequency of different BTLs of terrestrial NPP in responding to (a) ATmax and
(b) ATminwithin different plant biomes. Only significant (p value < 0.05) pixels
are taken into consideration. Vegetation biomes are introduced in Table 1.
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in all biomes have delayed effects longer than 1 month in responding to ATmax and
ATmin; quite a few biomes are inclined to have lags of up to 12 months. As shown
in Figure 5, most of the biomes’ lags are pronounced, with average time-lag du-
rations of 4 to 7 months. Additionally, forest biomes as a whole respond to ATmax
and ATmin with average time lags of 5.296 4.06 months and 7.056 4.49 months,
respectively; nonforest biomes, however, exhibit shorter-term responses to these
two temperature factors (4.41 6 3.87 months for ATmax and 5.78 6 4.16 months
for ATmin), which further confirms that the forest biomes, rather than nonforest
biomes, have longer lagged responses to asymmetric warming.

In terms of the BTLs of vegetation productivities to ATmax (Figures 4a, 5), eye-
catching percentages of more than 40% exist in the pixels of nearly all biomes that
are covered by lagged durations of 0–3 months, and the top five biomes are mosses
and lichens (Mosses; 81.10%), deciduous needleleaf forests (DNF; 80.32%), bare
ground (BareG;78.76%), woodlands (WoodL; 65.16%), and wooded grasslands
(WoodG; 63.01%). A large percentage of pixels in DNF (59.70%) have 3-month
lagged effects, with mean lagged time of 4.00 6 2.97 months. Considerable

Figure 5. The average BTLs of terrestrial NPP when responding to ATmax (light gray
bar) and ATmin (dark gray bar) within different plant biomes. Only signif-
icant (p value < 0.05) pixels are considered. Vegetation biomes are
introduced in Table 1.
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numbers of pixels for mixed forests (MF;19.58%), evergreen needleleaf forests
(ENF; 16.40%), and deciduous broadleaf forests (DBF; 14.16%) are covered by
prolonged durations of 12 months, with average lagged months of 5.95 6 4.49,
5.51 6 4.19, and 5.00 6 4.22 months, respectively. The pixels of evergreen
broadleaf forests (EBF) that have protracted lag durations of 0–3 months and 7–
9-month durations account for 39.58% and 29.18% of the total grids in EBF, re-
spectively, with an overall average prolonged duration of 5.24 6 3.81 months. In
addition, 47.98% of Mosses show 2-month time lags, and 34.67% of BareG exhibit
no delay impacts; the mean time lags for them are 3.30 6 3.05 and 2.76 6 3.35
months, respectively. WoodL andWoodG seem relatively alike in the distributions of
the frequency of different time lags; the same cases are found in closed shrublands
(CShrub) and open shrublands (OShrub) and Grass and croplands (Crop), and each
pair is inclined to have equal average lags (4.096 3.63 and 3.756 3.00 months for
WoodL and WoodG; 5.056 3.96 and 4.826 3.99 months for CShrub and OShrub;
and 5.14 6 4.21 and 4.94 6 4.25 months for Grass and Crop).

According to Figure 4b and Figure 5, NPP responds to ATmin with significant
time-lag effects as well. First, similar to ATmax, a considerably large proportion
(larger than 30%) of grids in all biomes (except for ENF and MF) have 0–3-month
delays when responding to ATmin, with the highest percentages appearing in
BareG (71.83%), Mosses (62.30%), and EBF (46.71%); the total average lagged
months for these three vegetation biomes were 3.076 3.41, 4.676 4.16, and 4.65
6 3.92 months, respectively. Second, MF and ENF have remarkable frequencies of
grids that exhibit hysteretic effects of 12 months (45.04% for MF and 39.01% for
ENF), which constitute strikingly high frequencies of pixels that are covered by
lagged impacts of 10–12 months in MF (58.36%) and ENF (56.76%), followed by
DNF (49.23%). The average delays for these biomes are 8.66 6 4.21 months for
MF, 8.43 6 4.24 months for ENF, and 7.65 6 4.41 months for DNF. In addition,
somewhat large percentages of the grids for DBF (20.16%), Grass (20.55%), and
Crop (15.32%) are found to be covered by time-lag durations of 12 months, with
overall delays averaging at 6.27 6 4.18, 6.56 6 4.16, and 5.79 6 3.41 months,
respectively. Finally, it seems that the time-lag frequency patterns of WoodL to
ATmin tend to be analogous to that of WoodG; this is also the case for CShrub to
OShrub, and the mean time lags of these four biomes are 5.946 4.05, 5.506 3.16,
4.96 6 4.10, and 5.65 6 4.03 months, respectively.

3.3. Partial correlations between vegetation and asymmetric
warming

We obtained the spatial distributions of optimal PCC (Rbest) between NPP
and ATmax, ATmin (Figures 6a,b). Figure 6a suggests that the positive corre-
lations between NPP and ATmax are particularly strong in the biomes over
northern boreal and polar regions and in some northern cold and boreal zones
(i.e., the Great Plains), as well as in high-altitude areas (i.e., the Tibetan Plateau).
The negative correlations between NPP and ATmax spread widely and strongly
over arid regions in the northern cold-temperate and tropical ecosystems (i.e., the
Amazon basin and the dry zones in Africa). Figure 6b shows mostly the reverse of
the pattern in Figure 6a; that is, the terrestrial NPP relates to ATmin negatively over
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the high-altitude areas (i.e., the Tibetan Plateau) and most places in northern mid- to
high latitudes (i.e., the boreal and polar zones). On the contrary, NPP associates with
ATmin positively over the vast, arid, warm-temperate and tropical regions.

Post hoc comparisons of the density analyses of the most favorable PCCs
across different vegetation biomes (Figures 7a,b) illustrate that an overwhelming
majority of pixels in DNF (89.74%), followed by Mosses (86.80%), ENF
(74.33%), and MF (72.26%), respond positively to ATmax (Figure 7a), whereas
most grids in BareG (75.47%) and WoodG (72.90%) are characterized by neg-
ative correlations with ATmax. In addition, a near-equal split of positive and
negative correlations exists in the responses of all other biomes to ATmax. Ad-
ditionally, Figure 7b shows that ATmin has an overall positive impact on the
productivity of most biomes, with the exceptions of Mosses and DNF, because
the grids in Mosses (67.33%) have a dominantly negative correlation with
ATmin, and there is a nearly half-to-half distribution of positive and negative
coefficients between DNF and ATmin.

Figure 6. Spatial patterns of optimal PCC (Rbest) between terrestrial NPP and
(a) ATmax and (b) ATmin for the period from 1982 to 2013. White areas
refer to places with no data, and dark gray areas refer to places with no
significant correlations.
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Figure 7. Violin plots of optimal PCC (Rbest) between terrestrial NPP and (a) ATmax
and (b) ATmin within different plant biomes. The bold inner line of each
box represents the average correlation. Average correlations from posi-
tive tonegativeare labeled in numerical order.Only significant (p value < 0.05)
pixels are shown. Vegetation biomes are introduced in Table 1.
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4. Discussion
In contrast to previous studies (Peng et al. 2013; Su et al. 2015; Tan et al. 2015;

Xia et al. 2014), we focused on the time-lag effects of asymmetric warming ex-
hibits on the vegetation NPP, which were obtained by using the CASA model.
Our results showed that asymmetric warming has universal time-lag effects on
global plant growth, single vegetation biome exhibits distinguishing responses to
asymmetric warming, and different biomes respond to asymmetric warming
nonuniformly.

4.1. Lagged duration of vegetation biomes to asymmetric warming

ATmax and ATmin can indirectly influence the ecophysiological process and fur-
ther regulate the carbon sequestration and consumption in plants, mainly by changing
the enzyme activities for photosynthetic and autotrophic respiration (Foote and
Schaedle 1976; Turnbull et al. 2002), shifting the phenology (Piao et al. 2015), and
altering the availabilities of the soil nutrient (Chapin et al. 1995) and water content
(Peng et al. 2013). These effects will take some time to be reflected in the vegetation
growth (Wu et al. 2015; Xia et al. 2014). Additionally, the climate-anomaly tolerance
(Bita and Gerats 2013) and acclimation (Slot and Kitajima 2015) abilities of green
plants allow them to adapt to and copewith the fluctuations in ambient temperature for
a certain time. Therefore, green plants exhibit certain plasticity to ambient temperature
dynamics and certain tolerance to long-term exposure to passive feedback between
climate warming and the carbon cycle (Wu et al. 2015; Xia et al. 2014). Furthermore,
there exist complicated mechanisms that allocate the photosynthetic carbon uptake
between above- and belowground parts of vegetation, likely through the temperature-
induced dynamics in enzyme activity and phloem viscosity within plants (Barthel et al.
2014) and variations in the soil nutrient availability and moisture content (Li et al.
2011; Newman et al. 2006), while there are certain time intervals in the dynamic
allocation of the carbon being transported between leaves and rhizospheres (Barthel
et al. 2014; Kuzyakov and Gavrichkova 2010; Newman et al. 2006). Finally, the long-
term tradeoff processes between plant growth and soil carbon (C) and/or nitrogen (N)
availability (Vuki�cevi�c et al. 2001; Zhang et al. 2016) and the long-term turnover time
of deep soil moisture to surface were also recommended to affect the temperature-
induced time-lag effects (Braswell et al. 1997). These might be the most important
mechanisms underlying the ubiquity of hysteretic impacts of asymmetric warming
(ATmax and ATmin) on vegetation productivity (NPP).

In this study, we also suggest that there exist heterogeneous delay effects in the
responses of terrestrial NPP to ATmax and ATmin across global plant biomes, which
may owe to the different mechanisms of ATmax versus ATmin on vegetation growth
and the uniqueness of different plant biomes (e.g., life form and structure, environ-
mental adaption, and morphological, biochemical, physiological, and behavioral
characteristics) (Pan et al. 2013; Woodward et al. 2004; Xu et al. 2015). We found that
during the growing season, the polar and boreal biomes have a tendency to respond to
asymmetric warming immediately, which might be the reason that the plant growth
there was primarily limited by temperature and was very sensitive to the variations in
ambient temperature (Nemani et al. 2003; Wu et al. 2015); this finding was consistent
with the results of Braswell et al. (1997), who showed the boreal regions were inclined
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to show zero-lag responses to temperature anomalies. Additionally, we showed that
evergreen plants (ENF and EBF) have slightly longer time-lag effects than deciduous
plants (DNF and DBF) do in responding to ATmax. This may be because evergreen
plants, rather than deciduous plants, have higher levels of temperature warming ac-
climation abilities and more vigorous homeostasis to photosynthesis temperature
fluctuation (Yamori et al. 2014), which allows evergreen plants to better adapt to
ambient temperature fluctuations. The deciduous plants were very sensitive to tem-
perature fluctuations, and they have developed the leaf-on and leaf-off strategies in
responding to temperature (Piao et al. 2015; Polgar and Primack 2011), while the
climate warming has extended the length of the vegetation growing season at both the
start of leaf-on days and the end of leaf-off days (Polgar and Primack 2011;Wang et al.
2017). These phenological changes have brought about a greater degree of carbon
sequestered, at the cost of larger soil nutrient decreases to deciduous forests than
evergreen forests (Newman et al. 2006; Richardson et al. 2010; Richardson et al. 2009).
This subtle difference tends to make the deciduous forests respond more tightly to the
temperature fluctuations than evergreen forests do. Broadleaf forests generally require
higher levels of maintenance respiration than needleleaf trees do (Reich et al. 1998), so
the former requires a greater adaption to nighttime warming to cope with the loss in
carbon, which probably results in the shorter prolonged duration in EBF and DBF to
ATmin than in ENF and DNF. In addition, we noted that the forest biomes (i.e., ENF,
DNF, EBF, DBF, and MF) exhibit slightly larger percentages of pixels with delays
longer than 6 months and larger average lagged time when responding to asymmetric
warming than nonforest biomes; this result is supported by the study of Peng et al.
(2010), who also found that larger areas of evergreen and deciduous forests have longer
lagged durations in responding to air temperature than do the vegetation biomes of
grass, crop, and shrub. Distributed mostly in the boreal and polar regions, the growth of
Mosses and DNF is mainly restricted by temperature, and their photosynthesis is
sensitive to daytime warming; thus, they are found to have the greatest proportion of
pixels covered by 0–3 lagged months and show quite short average time-lag effects to
ATmax. Growing in a relatively favorable living environment (Pan et al. 2013;
Woodward et al. 2004), the MF may thrive with a longer period of moderate warming,
so compared with other biomes, the MF has the longest mean time-lag duration in
response to both asymmetric warming factors. Finally, our study was carried out based
on the coarse-resolution data (;8km); therefore, some vegetation is still presented in
the bare ground. We found that the BareG biome is negatively correlated with the
temperature, which is likely due to the temperature-induced enhancement in the soil
drought condition. The BareG biome may have formed a mechanism to quickly re-
cover from the anomalies in temperature (Braswell et al. 1997; Wu et al. 2015);
therefore, it is not surprising that the BareG biome has the largest proportion of pixels
with zero delay impacts and shows the shortest average hysteretic duration in re-
sponding to both asymmetric warming temperature parameters.

4.2. Partial correlations of vegetation biomes to asymmetric warming

A biome is composed of similar life forms and commonly occurs in similar
environmental and geographical conditions; it is unique in its morphological,
physiological, and behavioral characteristics (Gang et al. 2013; Pan et al. 2013;
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Woodward et al. 2004). These distinguishing features make biomes respond to
climate warming with distinctive peculiarities (Gang et al. 2013; Lucht et al. 2006).
DBF usually survives in temperate zones, characterized by seasonally distinctive
temperature and soil moisture (Pan et al. 2013); such seasonality might explain the
double extreme PCC between DBF and ATmax. The EBF is a hot and moist biome
that exists mainly in tropical regions, and it has been well established that the
biomass of tropical forests responds in opposition to recent climate warming
(Potter et al. 2012; Xu et al. 2015; Zhao and Running 2010), which is again
confirmed here (Figures 6a, 7a). We also found that the negative correlations be-
tween the EBF and ATmax are mainly distributed in the Amazonian rain forest
and the arid zones in Africa, likely due to the increasing drought severity (Zhao and
Running 2010). WoodL generally spreads over the latitudinal belt of 508–708N and
tropical savanna areas (Pan et al. 2013), and the plant growth in the former region is
restricted by insufficient heat; on the contrary, the vegetation growth in the latter
region is typically limited by the pronounced dry season throughout the year, so
ATmax exhibits opposite effects on WoodL. WoodG is the grasslands with scat-
tered woody plants and is generally distributed in fire-prone areas, such as the
northern and southern fire belts of Africa and northern and eastern Australia (Verón
et al. 2012), so ATmax negatively correlates with WoodG by reducing the soil
moisture. Needleleaf forests are cold-resistant and drought-tolerant biomes
(Pidwirny 2006), and they are prevalent in high-elevation alpine chains and boreal
zones, where vegetation growth is mainly limited by temperature (Nemani et al.
2003; Wu et al. 2015); therefore, predominantly positive correlations between ENF
and/or DNF and ATmax can be found. MF is a tree ecoregion that is dominated by
two or more tree species and generally grows in Northern Hemisphere climate
zones (408–608N) with a moderate temperature and appropriate annual rainfall
(Loveland and Belward 1997); appropriate warming contributes to the growth of
MF, so the MF is positively associated with ATmax. The shrub, grass, and crop
communities can be divided into C3, C4, and CAM plants, wherein the C3 plants
adapt best to cool and wet environments. The other two, however, adapt best to hot,
sunny, and dry environments (Bareja 2012), and these contrary growing habits may
help explain the reverse correlations within OShrub, CShrub, Grass, and Crop to
ATmax. This result is supported by Braswell et al. (1997), who also reported
opposite correlations exhibited in the responses of C3 and C4 grasslands, savannas,
and cultivation lands to temperature.

ATmin mainly influences vegetation growth via dominantly enhanced, dark
autotrophic respiration (Turnbull et al. 2002), which was thought to have passive
effects on the carbon subsidence in green plants (Anderegg et al. 2015; Peng et al.
2013). Interestingly, in this study, we found that there are dominant positive cor-
relations between ATmin and NPP across biomes, except for DNF and Mosses
(Chapin et al. 1995; Peng et al. 2013; Slot and Kitajima 2015; Tan et al. 2015). This
may be because of the synthetically positive influences from nocturnal warming,
that is, the strengthened photosynthesis in the following daytime periods [by de-
pleting leaf carbohydrates (Turnbull et al. 2002; Wan et al. 2009), easing the frost
risk, and enlarging the plant growing season (Gu et al. 2008; Kim et al. 2012)] and
the nighttime respiration acclimation and adaption abilities of plants, which pre-
vent the carbon loss in the plant and thus maintain growth. This finding is supported
by some former research: for instance, Piao et al. (2007) reported that nighttime
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warming had significantly extended the vegetation growing season, which may
eventually increase the growth in vegetation. Yang et al. (2016) found that an
increasing nocturnal temperature can enhance the drought-resistance abilities of
plant communities and stimulate terrestrial carbon sequestration, and Wan et al.
(2009) detected that through depleting leaf carbohydrates in a nocturnal environ-
ment, passive grassland carbon sequestration can be actually overcompensated for
by the following daytime photosynthesis.

Our study provides a new perspective on terrestrial vegetation productivity re-
sponses to asymmetric warming. Together with previous studies (Peng et al. 2013;
Su et al. 2015; Tan et al. 2015; Xia et al. 2014), the present study highlights the
importance of considering the time-lag effects and nonuniformity of vegetation
responses to asymmetric warming when investigating the vegetation–climate in-
teractions (for a list of parameters and abbreviations used in this study, refer to
Table 4). However, it is also important to mention that there are some uncertainties
in the present study. First, some bias may still remain in the input datasets; for
example, the GIMMS NDVI was reported to have limited abilities in reflecting true
vegetation changes over the tropical and Arctic ecosystems (Fensholt and Proud
2012), whereas the CRU was criticized for its overestimates and underestimates
over the regions with poor station coverage (i.e., Africa; Zhang et al. 2013) and
high spatial variability (i.e., in arid, cold, and mountainous places; Tanarhte et al.
2012). Second, we unified the UMD_GVM dataset throughout the whole study to
minimize the effects from land-cover changes, but there still exist land-cover
changes that occurred in recent years that could not be eliminated, which could

Table 4. The abbreviations and the full names of the parameters that are used in this
study, listed in alphabetical order.

Abbreviation Full name

ATmax Accumulated monthly daytime temperature

ATmin Accumulated monthly nighttime temperature

BTL Best time lag

CASA Carnegie–Ames–Stanford Approach model

CRU Climatic Research Unit

GIMMS Global Inventory Monitoring and Modeling Studies group

GPPDI R2 The revised Global Primary Production Data Initiative Products

MVC Maximum value composites method

NCEP–NCAR National Centers for Environmental Prediction–National Center for Atmospheric

Research

NDVI Normalized difference vegetation index

NDVI.3g.v1 The first version of the third-generation GIMMS NDVI

NPP Net primary production

PCC Partial correlation coefficients

PRCP Monthly total precipitation

R
2 Determination coefficient

Rbest Optimal partial correlation coefficients

SOLAR Incoming shortwave solar radiation data

Tbase Threshold temperature value for accumulated temperature

TEM Monthly average temperatures

Tmax Monthly maximum temperatures

Tmin Monthly minimum temperatures

UMD_GVM Vegetation biome map obtained from the University of Maryland Department of

Geography
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increase the uncertainties of our results. Third, the CASA model used in this study
may not adequately predict the changes in vegetation production because it ne-
glects the feedbacks of CO2 fertilization (Thomas et al. 2016), nitrogen (N) de-
position (Finzi et al. 2007), and mineralization (Chapin et al. 1995) to NPP (Potter
et al. 1999; Zhao et al. 2005), which limits CASA to investigate the potential lag
mechanisms against CO2 and N fluctuations. The last estimated NPP may not fully
reflect the true conditions of vegetation production, as revealed by the discrep-
ancies between estimated NPP and the field NPP (Figure 2), especially in the
biomes of Crop and Mosses, which are likely due to the unpredictable artificial
managements (i.e., the irrigation and fertilization) to cropland (Rost et al. 2009)
and the inabilities of GIMMS NDVI to reflect the true vegetation vigor of Mosses
(Fensholt and Proud 2012). These situations tend to bias our results to some degree.
Furthermore, the vegetation–climate relationship, strictly speaking, is not a linear
relationship, so the linear statistical analyses in this paper are not wholly sufficient
to depict the interrelationship between NPP and daytime versus nighttime warm-
ing. Finally, the quantitative impacts of human activities (Li et al. 2017; Liu et al.
2017) and natural hazards (Tchebakova et al. 2009; Verón et al. 2012) on vegetation
productivity were not considered in the present study. In short, our knowledge of
the mechanisms behind the lagged responses of vegetation to asymmetric warming
is still poor; therefore, further study is required for a full understanding of the
mechanisms behind the time-lag effects of asymmetric warming on terrestrial bi-
omes’ productivity, and improving the input data’s accuracy, integrating various
studies, and combining multimodel results will be extremely helpful.

5. Conclusions
In this study, we obtained the global time-lag effects (within 1 year) of terrestrial

productivity responding to asymmetric warming by using the CASA-modeled NPP
and ATmax and ATmin from 1982 to 2013, and statistical analyses (i.e., partial
correlation and time-lag analyses) were applied here to perform the investigation.
Conclusions are as follows:

1) Asymmetric warming has nonuniform time-lag effects on single biomes,
and different biomes respond to asymmetric warming heterogeneously.

2) Generally, the biomes respond to ATmax (4.63 6 3.92 months) with a
shorter lagged duration than to ATmin (6.06 6 4.27 months).

3) On the whole, the forest biomes exhibit longer lagged durations in responding
to asymmetric warming than the other biomes do, and the average BTLs are
longest in MF and ENF and shortest in BareG and Mosses.

4) Most Mosses, ENF, DNF, and MF positively correlate with ATmax, while
WoodG is dominated by negative correlations with ATmax, and the other
biomes respond to ATmax with a near-equal split of positive and negative
correlations. Furthermore, ATmin has a predominantly positive influence
on terrestrial biomes, except for the biomes of Mosses and DNF.

5) The quite contrary mechanisms of daytime versus nighttime warming on
vegetation growth and the uniqueness of each biome (e.g., life form and
structure, environmental adaption, and morphological, biochemical, phys-
iological, and behavioral characteristics) might account for these results.
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