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Abstract— Aggregation of individual wavelengths into wave-
bands for their subsequent switching and routing as a single
group is an attractive way for scalable and cost-efficient optical
networks. We analyze the implications of this waveband hierar-
chy for a single optical node by analyzing two issues: the proper
selection of waveband sizes and the assignment of wavebands for
a limited set of input-output patterns of traffic. We formulate
a general model and propose optimal algorithmic solutions for
both problems. The performance of resulting sets of non-uniform
wavebands is studied for several representative cases (a single
node, an optical ring network, an optical mesh network). The
results demonstrate improved optical throughput and reduced
cost of switching and routing when using non-uniform waveband
hierarchy.

I. INTRODUCTION

The continuing increase of data traffic keeps the pressure
on the backbone telecommunication networks requiring more
diverse and more intelligent allocation of capacity. Optical
networking has become a key technology in accommodating
the rapidly expanding Internet traffic. New optical networks
are expected to support the increasing network load by em-
ploying both sophisticated transmission (wavelength division
multiplexing division (WDM)) and switching technologies
(optical switches and cross-connects) [1]. While WDM tech-
nology increases the transmission capacity of fiber links by
two-to-three orders of magnitude, it comes at the expense
of managing the wavelengths (separating, combining, adding,
dropping, routing, switching, and converting), which have to
be handled by the switching equipments. Switching is thus
becoming a cost-performance bottleneck.

In IP networks, concerns about performance and scal-
ability of switching prompted the development of layered
mechanisms that provide various levels of traffic aggregation
supported by DiffServ [2] and MPLS standards [3]. In the case
of optical networking, the same cost and scalability concerns
translate into creation of multiple switching granularities, such
as wavelengths and wavebands [4], [5]. The optical paths
thus form a hierarchy, in which a higher-layer path (wave-
band) consists of several lower layer paths (wavelengths).
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The potential cost benefits of wavelength aggregation into
wavebands was demonstrated in [6] and further analyzed in
[7]. A waveband path occupies only two (input and output)
ports of an optical switch in a node. Path hierarchy reduces
node costs since a waveband can be switched optically as a
single unit, thus reducing the number of expensive optical-
electrical-optical (OEO) ports that are required for processing
individual wavelengths.

Cost-efficient implementation of optical hierarchy has to be
delivered by appropriately designed routing, aggregation and
assignment algorithms. Routing and wavelength assignment
algorithms were extensively studied in the general context of
optical networking ([1] and its references). The organization
of wavelengths into wavebands can be further improved by
using non-uniform wavebands (containing different number of
wavelengths), as proposed in [8], [9]. Non-uniform wavebands
provide more flexibility for wavelength aggregation, which
can be used for more efficient switching and routing mech-
anisms [10].

The paper is organized in the following way. In the next
section, we provide a general background for the problem. In
Section III, we formalize the model and formulate two prob-
lems of waveband hierarchy: the proper selection of waveband
sizes and the assignment of wavebands for a limited set of
input-output patterns of traffic. We further propose optimal
algorithmic solutions for both problems in the same section.
We then explore the node-level and network-level performance
of non-uniform wavebands (for ring and mesh networks) in
Sections V and VI respectively. Finally, we conclude the paper
with an outline of future work.

II. PROBLEM BACKGROUND

Emerging hybrid hierarchical optical cross-connects [11],
[12] may become an attractive solution for next generation
optical networks due to reduction in the switching cost. On the
node level, these systems combine the flexible non-uniform
wavebands with two promising technologies: a hybrid of
all-optical (OOO) and optical-electronic-optical (OEO) cross-
connects and the hierarchical processing of wavelengths ag-
gregated into wavebands. On the network level, they provide
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diverse provisioning and protection of various types of traffic.
In the next three subsections, these key components are
described in more detail.

A. Hybrid Technology

Currently, optical networks are at the stage of circuit switch-
ing. The circuits in optical networks are being handled by
optical add-drop multiplexers (OADMs) and optical cross-
connects (OXCs). These critical network elements sit at junc-
tion points in optical backbones and enable carriers to string
together wavelengths in order to provide end-to-end connec-
tions. Over the last few years, the equipment vendors have
been developing two distinct and competing versions of cross-
connects: OEO (opaque) and all-optical (transparent). OEO-
based cross-connects (XC) convert the incoming optical signal
into electrical signal for subsequent switching and grooming;
the electrical signal is regenerated as a new optical signal at the
output port. OEO-based XCs are based on mature and reliable
technology. They can provide a variety of functions such
as optical 3R (regeneration, reshaping, retiming), grooming
and wavelength conversion. However, these rich functionalities
need to be supported by expensive hardware, which, being
protocol-dependent and bit-rate dependent, cannot scale well.
OEO-based XCs are also characterized by large footprint and
large power consumption, generating significant amount of
heat.

In contrast, an all-optical XC transparently switches the
incoming optical signal through the switching fabric where the
optical signal remains in optical domain when it emerges from
an output port. A variety of technologies can be used for the
switching fabric like MEMS, liquid crystal, planar lightwave
circuit, electrohologram. All-optical XCs are less expensive
than OEO-based XCs: they have a smaller footprint, consume
less power and generate less heat. However, the absence of
optical 3R functions (required to clean up accumulated optical
impairments) and wavelength conversion (required to resolve
wavelength contention) restricts the capabilities of pure all-
optical XCs. The absence of signal visibility makes it harder to
monitor performance in all-optical XC. All-optical XCs have
the advantage of being highly scalable: multiple wavelengths
can be handled using the same port. Being naturally protocol-
independent and bit-rate independent, they are able to carry
services in their native format, providing a future-proof alter-
native for OEO-based systems.

The hybrid technology (employing both types of cross-
connects, OEO and all-optical) is emerging [13] as an in-
evitable convergence point leveraging the advantages of both
technologies (Figure 1). Since optical networks are dominated
by rapidly growing long-distance data traffic, most of the
traffic passing through the optical nodes (as much as 75%
percent) consists of transit traffic. A hybrid cross-connect can
use the all-optical component to route the transit traffic while
the OEO component is used for aggregating and adding the
local traffic. Electronics is thus used to perform necessary and
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Fig. 1. Hybrid hierarchical cross-connect node.

expensive processing of the traffic, while optics is used for
inexpensive and transparent forwarding. Merging the best of
both technologies, the resulting single platform for supporting
all-optical and OEO fabrics can be managed as a single
integrated unit, further improving the performance.

Figure 1 illustrates a general architecture of a hybrid OXC
with M input and M output fibers, each carrying N wave-
lengths, λ1, . . . , λN . Most of the incoming wavelengths are
being switched by the all-optical (OOO) part of the hybrid,
while the OEO part of the hybrid handles add/drop traffic
along with contention resolution and signal regeneration.

B. Hierarchical Technology

As already mentioned, cost and scalability concerns in opti-
cal networks leads to the creation of multiple switching granu-
larities, such as wavelengths and wavebands. Standard routing
protocols cause many traffic flows to run alongside each other
over the same path of links. This creates an opportunity to
aggregate express optical wavelengths into wavebands (also
called “fat pipes” or “super channels”) that can be optically
(transparently) switched through the network for the most
part of their path, without being demultiplexed into separate
wavelengths at every node. The optical paths thus form a
hierarchy in which higher-layer paths (wavebands) consist
of several segments of lower-layer paths (wavelengths). The
resulting hierarchy of wavelengths and wavebands is a mixed
one: logical wavebands coexist with individual wavelengths on
the same fiber, thus providing better efficiency. The potential
cost benefits of wavelength aggregation into wavebands were
demonstrated in literature [4], [6], [14], [15]. Furthermore, the
hierarchical technology is emerging as one of the key solutions
for the looming scalability problem of optical networks. All-
optical XCs (or the all-optical part of hybrid XCs) can switch
large wavebands rather than individual wavelengths, without
any extra cost (as opposed to OEO-based XCs that are bit-
rate-dependent).

Treating multiple wavelengths within a waveband as a single
unit reduces the size and complexity of the optical switching
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matrices. In addition, optical amplifiers can operate on an
entire waveband without any knowledge of the individual
wavelengths. Hierarchical OXC also cuts costs in DWDM
mux-demux and transmit-receive subsystems that are used
before the input and after the output of the cross-connect.

In Figure 1, the incoming traffic of each fiber is being split
into K wavebands, which are then being switched by the
OOO. Since K < N , this arrangement reduces the size of
the all-optical part of the switch.

To quantify the advantages of hierarchical technology, we
assume that some of the wavelengths can be aggregated into
wavebands consisting of G wavelengths each (Figure 2). Each
waveband consists of contiguous wavelengths∗, i.e. the mth
waveband contains all the wavelengths with numbers from
(m − 1)G + 1 to mG . We define the cost of routing in
hierarchical optical network as the total cost of the ports
(both OEO and OOO ones) required for routing the traffic
flows. For this we assume an optical port costs five times less
than an OEO port, which is the unit of cost. Thus the cost
of a wavelength segment consisting of N links is equal to
2G(N+1), while the cost of a waveband segment aggregating
this wavelength segment is equal to 4G+2(N+2)/5. Figure 2
illustrates the cost computation for a wavelength segment
consisting of N = 5 links and for granularity G = 4.
Cost-efficient implementation of optical hierarchy has to be
delivered by appropriately designed routing and aggregation
algorithms [7]. While routing and wavelength assignment
algorithms have been studied extensively in the general context
of optical networking ([1] and its references), the hierarchical
approach adds another layer: appropriate routing, wavelength
and waveband assignment algorithms are needed.

C. Non-Uniform Wavebands and Waveband Deaggregator

The aggregation of wavelengths into uniform wavebands
(each comprised of G wavelengths) introduces aggregation
overhead, which is adversely affecting the performance of
hierarchical nodes as discussed next. Furthermore, with the

∗In general, the wavelengths do not need to be contiguous.
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Fig. 3. Example of uniform and non-uniform wavebands.

deaggregator being fixed, uniform wavebands cannot properly
aggregate a varying traffic scenario.

Consider an optical switching node with M output fibers
and suppose that the input fiber carries N wavelengths to be
switched to any of M outputs. Depending on the breakdown
of wavelengths among the output fibers, the efficiency of their
aggregation into wavebands may vary. Consider the example in
Figure 3. It shows an input fiber carrying N = 8 wavelengths
that have to be switched into M = 4 output fibers (shown
as four pipes in the right side of Figure 3). The numbers of
wavelengths to be switched to the four output fibers are equal
to (3,1,2,2). In Figure 3, the wavelengths to be switched to the
same output fiber are painted in the same color as that of the
output fiber; for example, the upper three “light” wavelengths
are to be switched to the uppermost “light” output, one “dark”
wavelength is to be switched to the “dark” output just below
the uppermost “light” output, etc. We assume that the wave-
band granularity G = 2: the wavelengths can be aggregated
into preconfigured uniform wavebands of the size of two
wavelengths each. In this example, two switching solutions can
be employed. In the first approach (OEO solution, shown in
the upper part or Figure 3), two expensive OEO ports are used
to switch two of the wavelengths in the OEO layer, while three
wavebands are used to switch the remaining wavelengths. In
the second approach (all-optical solution, shown in the lower
part of Figure 3), five wavebands are used to switch all the
traffic in the all-optical domain.

However, the same wavelength demand (3,1,2,2) could
have been switched optically if the wavebands had been pre-
configured in the way shown as non-uniform solution (shown
in the middle part of Figure 3): two wavebands containing two
wavelengths each, one waveband containing three wavelengths
and one waveband containing one wavelength.

Figure 4 illustrates all breakdowns of N = 8 wavelengths
between M = 2 output fibers and the equipment costs
required to carry those wavelengths (for uniform and non-
uniform wavebands). Depending on the particular approach,
uniform wavebands approach requires up to five wavebands
(all-optical solution) or three wavebands and two OEO ports
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wavelengths                        uniform  wavebands                   non-uniform wavebands
directed to                                         2λλλλ+ 2λλλλ+ 2λλλλ+ 2λλλλ 1λλλλ+ 1λλλλ+ 2λλλλ+ 4λλλλ

1st fiber        2nd fiber All-optical cost  OEO cost                                          cost

0                  8      0   2+2+2+2    4wb    4wb                     0      1+1+2+4    4wb
1                  7      2   2+2+2+2    5wb       3wb+2oeo              1      1+2+4        4wb
2                  6      2       2+2+2        4wb       4wb              2     1+1+4        4wb
3                  5         2+2       2+2+2        5wb       3wb+2oeo         1+2    1+4         4wb
4                  4          2+2       2+2            4wb       4wb              4     1+1+2         4wb
5                  3     2+2+2       2+2            5wb       3wb+2oeo           1+4      1+2            4wb
6                  2       2+2+2       2                4wb       4wb 1+1+4      2                 4wb
7                  1        2+2+2+2       2                5wb       3wb+2oeo     1+2+4      1                4wb
8                  0        2+2+2+2       0                4wb       4wb 1+1+2+4      0                4wb
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(OEO solution) to carry all possible traffic loads, whereas
the approach based on non-uniform wavebands consistently
requires only four wavebands for all traffic distributions.

This example gives rise to the following two issues. The
first one is how to preconfigure a minimum set of wavebands
that can be used to represent an arbitrary breakdown of input
flow of N wavelengths into M output fibers. We call it the
waveband selection problem. The second issue is how to assign
these preconfigured wavebands for optical switching of N
wavelengths into M output fibers. We call it the waveband
assignment problem. Both problems are formally defined and
solved in the sequel.

In the next section, we will concentrate on the waveband
selection and waveband assignment problems. Both can be
formally defined in the context of partition theory. We will
therefore start with standard definitions related to set partition,
which we will then use in order to formulate a description of
these problems. To the best of our knowledge, the current work
is the first to formulate and solve the above problems. It is
related to certain well-known problems [16] such as postage-
stamp problem, knapsack problem, and change-making prob-
lem. The closest one is the k-payment problem [17], which
was motivated by electronic cash model, where exact repre-
sentation of each payment by the corresponding set of coins
is required. Our problem, in contrast, is motivated by optical
switching, where the hardware cost depends on the size of
switching matrix, while the switched wavebands (coins) may
or may not be completely occupied by wavelengths (units)
unlike the k-payment problem. As a result, our problem
requires its own solution as it will be discussed next.

III. FORMAL MODEL AND MAIN RESULTS

Definition 1. An ordered sequence is a list of integers
{v1, v2, . . . , vM}, where 0 ≤ v1 ≤ v2 ≤ . . . ≤ vM .

Definition 2. An (N,M)-partition is a sequence
{v1, v2, . . . , vM}, where v1 + v2 + . . . + vM = N . If

{v1, v2, . . . , vM} is an ordered sequence, the partition is
ordered.

Example. The ordered sequence {1, 1, 2, 4, 5} is an ordered
(13, 5)-partition. More details on partitions are contained
in [18] and its references.

Definition 3. An ordered (N,K)-partition
B = {b1, b2, . . . , bK} covers the (N,M)-partition
V = {v1, v2, . . . , vM} if B can be partitioned into M
disjoint sub-sequences {b11, b12, . . . , b1p1

}, {b21, b22, . . . , b2p2
},

. . ., {bM
1 , bM

2 , . . . , bM
pM

}, where p1 + p2 + . . . + pM = K and





v1 = b11 + b12 + . . . + b1p1
,

v2 = b21 + b22 + . . . + b2p2
,

...
vM = bM

1 + bM
2 + . . . + bM

pM
.

Example. The (20, 6)-partition {1, 1, 2, 4, 5, 7} covers the
(20, 3)-partition {2, 7, 11} since

11 = 7 + 4, 7 = 5 + 2, 2 = 1 + 1.

Definition 4. An (N,M)-cover is an ordered partition that
covers all (N,M)-partitions.

Example. The (6, 3)-partition B = {1, 2, 3} is a (6, 2)-
cover, since all ordered (6, 2)-partitions can be covered by B
in the following way:






{0, 6} is covered as 6 = 3 + 2 + 1
{1, 5} is covered as 1 = 1, 5 = 3 + 2
{2, 4} is covered as 2 = 2, 4 = 3 + 1
{3, 3} is covered as 3 = 2 + 1, 3 = 3.

(1)

Definition 5. An (N, k)-partition that is an (N,M)-cover
is called an (N,M, k)-cover and is denoted by B(N,M, k).

Example. The already mentioned (6, 3)-partition B =
{1, 2, 3} is a (6, 2, 3)-cover.

Optimization problem. Given N and M , find the minimum
k such that there exists an (N,M, k)-cover.

Example. As (1) demonstrates, k ≤ 3, since there exists a
(6, 2, 3)-cover B = {1, 2, 3}. On the other hand, k > 2, since
no ordered (6, 2)-partition B = {a, 6−a} can cover all (6, 2)-
sequences (for instance, the ordered sequence {a, 6−a}, where
a < 6, cannot cover the (6, 2)-sequence {a + 1, 6 − a − 1}).
Therefore, k(6, 2) = 3.

Assignment problem. Given an (N,M)-partition V =
{v1, v2, . . . , vM} and B(N,M, k) = {b1, b2, . . . , bk}, find
the partition of B(N,M, k) into M disjoint sub-sequences
{b11, b12, . . . , b1p1

}, . . . , {bM
1 , bM

2 , . . . , bM
pM

}, where p1 + p2 +
. . . + pM = k and






v1 = b11 + b12 + . . . + b1p1
,

v2 = b21 + b22 + . . . + b2p2
,

...
vM = bM

1 + bM
2 + . . . + bM

pM
.

For example, (1) shows the solution of the assignment
problem for the (6, 2, 3)-cover B = {1, 2, 3} and any ordered
(6, 2)-partition V .

The solutions of the optimization and assignment problems
are presented in the next two subsections.
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A. Optimization Problem

Lemma 1. The smallest M − 1 elements bj of any
(N,M, k)-cover B(N,M, k) are equal to 1, i.e.,

bj = 1, where j = 1, ...,M − 1.

Proof of Lemma 1. Consider the (N,M)-partition V =
{1, ..., 1, N −M −1}, where vj = 1, for all j = 1, . . . ,M −1.
These M − 1 values vj can only be covered by the elements
of B(N,M, k) that are equal to 1. This proves Lemma 1.

Lemma 2. The largest element bk of (N,M, k)-cover
B(N,M, k) satisfies the inequality bk ≤ �N/M�.

Proof of Lemma 2. Let N/M = �N/M�+r/M , where 0 ≤
r ≤ (M−1). Then �N/M� = N/M+(M−r)/M . Therefore,
we can construct the (N,M)-partition V = {v1, . . . , vM},
where v1 = . . . = vM−r = �N/M� and vM−r+1 = . . . =
vM = �N/M�. This partition cannot be covered by any
(N,M, k)-cover B if any of its elements bk is larger than
�N/M�. This proves Lemma 2.

Lemma 3. The largest element vM in any ordered (N,M)-
partition V = {v1, . . . , vM} satisfies the inequality vM ≥
�N/M�.

Proof of Lemma 3. Since vM is the largest element, v1 +
. . . + . . . + vM ≤ MvM . If vM < �N/M� then MvM < N
and the sequence {v1, . . . , vM} cannot sum to N . This proves
Lemma 3.

Lemma 4. Let sp be the sum of the first p elements of an
(N,M, k)-cover B = {b1, . . . , bk}: sp = b1 + . . . + bp. Then
sp ≥ (M − 1)(bp+1 − 1), for any p ≥ M − 1.

Proof of Lemma 4. Suppose that this inequality does not
hold for some p i.e.,

sp < (M − 1)(bp+1 − 1). (2)

Consider the partition {bp+1 − 1, bp+1 − 1, ..., bp+1 − 1, N −
(M − 1)(bp+1 − 1)}. None of the last elements bi of
B(N,M, k) with i > p can be used for covering the first
M − 1 elements of the partition (since they all are larger
than bp+1). However, the sum of the first M − 1 elements is
(M − 1)(bp+1 − 1) and, by assumption 2, the first p elements
of B(N,M, k) are insufficient to cover the sum. Therefore,
the sequence B(N,M, k) is not a cover, which contradicts
the definition of B(N,M, k). Lemma 4 is therefore proven.

Now consider an ordered sequence C = {c1, c2, . . . , cr},
which is an (N,M)-cover. According to Lemma 1, c1 = ... =
cM−1 = 1. From Lemma 4, sp ≥ (M − 1)(cp+1 − 1), for
any p ≥ M − 1. Therefore, cp+1 ≤ 1 + sp/(M − 1). Since
sp+1 ≡ sp + cp+1 ≤ sp + 1 + sp/(M − 1), we have

sp ≥ (M − 1)(sp+1 − 1)
M

.

Since sp are integers, we can write

sp ≥
⌈

(M − 1)(sp+1 − 1)
M

⌉
. (3)

We proceed with the following theorem.

Theorem 1. An optimal (N,M)-cover can be generated by
selecting the maximum of all s to be equal to N and assigning
sp for all p ≥ M − 1 using the recursive formula

sp =
⌈

(M − 1)(sp+1 − 1)
M

⌉
. (4)

Proof of Theorem 1. Consider two sequences Sc =
{sc

M , sc
M−1, . . .} and Sb = {sb

M , sb
M−1, . . .}, with their first

elements sc
M = sb

M = N and the other elements generated
by sequential application of inequality (3) and equality (4),
respectively. Suppose that

sc
m ≤ sb

m, for all m. (5)

Then the sequence Sc cannot have less elements than Sb.
The same is true for the corresponding sequences C =
{cM , cM−1, . . .} and B = {bM , bM−1, . . .} generated by the
differences cj = sc

j − sc
j−1 and bj = sb

j − sb
j−1 of adjacent

elements in Sc and Sb: the sequence C cannot have less
elements than B. Therefore, in order to prove optimality of
B, it is sufficient to prove (5).

If Sc = Sb, then (5) holds and Theorem 1 is proven.
Suppose that Sc and Sb are different and (5) is not true.
Consider the smallest j for which sc

j < sb
j . By definition of

j, sc
j+1 = sb

j+1 + ∆ where ∆ ≥ 1. From equation (4) and
inequality (3), we have






sb
j =

(M − 1)(sb
j+1 − 1)

M
+ δb; δb ∈ [0, 1).

sc
j =

(M − 1)(sc
j+1 − 1)

M
+ δc; δc ≥ 0.

(6)

Subtracting the first line from the second one and substitut-
ing sc

j+1 = sb
j+1 + ∆, we have

sc
j − sb

j =
(M − 1)∆

M
+ δc − δb.

Since (M − 1)∆/M > 0 and δc − δb > −1, the inequality
sc

j − sb
j > −1 holds. Since sc

j − sb
j is an integer, sc

j − sb
j ≥ 0,

which contradicts the assumption sc
j < sb

j . Theorem 1 is then
proven.

Let the sequence of k numbers C = {c1, . . . , ck} be an
optimal (N,M)-cover. By the sum definition of Lemma 4,
sk = N . From inequality (3), we have

sk−1 ≥ (M − 1)(N − 1)
M

,

which means that

ck = sk − sk−1 ≤ N − (M − 1)(N − 1)
M

=
N + M − 1

M
.

Since ck is an integer, this inequality is equivalent to ck ≤
�N/M�. By Theorem 1, an optimal cover is generated by
selecting the equality at this point, so ck = �N/M�. Denoting
N ′ = N − ck = sk−1, we can proceed with the next element
of C as ck−1 = (N ′ + M − 1)/N ′. Therefore, sequential
application of equality (4) in Theorem 1 generates an optimal
cover.
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Formally, the optimal cover B can be constructed using
the following algorithm.

Algorithm 1. Waveband Cover Construction (WCC).

1) Input the parameters N and M .
2) Create the set B = {∅}.
3) Assign N ′ = �N/M�.
4) Add the element N ′ to the set B.
5) Assign N = N − N ′.
6) If N = 0, stop. Else go to step 3.

B. Assignment Problem

Theorem 2. The (N,M, k)-cover B(N,M, k) =
{b1, . . . , bk} can be generated from a smaller
(N − bk,M, k − 1)]-cover B(N − bk,M, k − 1) as
B(N,M, k) = {B(N − bk,M, k − 1), bk} where
bk ≤ �N/M�.

Proof of Theorem 2. We have to prove that any ordered
(N,M)-partition V = {v1, v2, . . . , vM} can be covered by
B(N,M, k). By Lemma 3, vM ≥ �N/M�, so we can assign
bk to the vM . This generates v′

M = vM − bk < vM and the
new sequence V ′ = {v1, v2, . . . , vM−1, v

′
M}, which sums to

N − bk. By the definition of covers, B(N − bk,M, k − 1)
covers V ′. This proves Theorem 2.

Definition 6. A cover B(N,M, k) = {b1, . . . , bk} is regular
if all its subsequences {b1, . . . , bj}, j < k, are recursively
generated using Theorem 2.

Figure 5 illustrates the construction of regular covers
starting from the (4,3)-cover B = {1, 1, 2} using Ferrer’s
diagrams [18]. At each step k, the current (N,M)-cover
{b1, . . . , bk−1} can be augmented by a new element bk ≥
bk−1, where bk ≤ �(N + bk)/M�.

The optimal cover generated by the Waveband Cover Con-
struction algorithm is regular. According to Theorem 2, all
sub-sequences {b1, . . . , bj} of a regular cover B(N,M, k)
are (N −

∑k
j+1 vi,M, j)-covers. This means that the largest

element bj+1 of the cover can be assigned to any element vi

element of cover B v1 v2 v3 assignment

b1 = 3 5 3 1 b1 → v1
b2 = 2 2 3 1 b2 → v2
b3 = 2 2 1 1 b3 → v1
b4 = 1 0 1 1 b4 → v1
b5 = 1 0 0 1 b5 → v3

TABLE I

ASSIGNMENT OF B(9, 3, 5) = {3, 2, 2, 1, 1} TO {5, 3, 1}.

of V = {v1, . . . , vM}, in which it fits (i.e., bj+1 ≤ vi) and the
solution of assignment problem is guaranteed. Note that the
elements bj have to be assigned in descending order, as there
is no guarantee that an arbitrary sub-sequence of B(N,M, k)
is a cover.

The assignment can be performed using a sorted binary
heap structure as follows. Assume that the values bj in
B(N,M, k), where j = 1, . . . , k, are stored in descending
order. The input (N,M)-partition V = {v1, v2, . . . , vM} is
stored as a heap, something that requires O(M) time for heap
construction. At the jth step of assignment, the following
steps are taken.

Algorithm 2. Waveband Cover Assignment (WCA).

1) The topmost element Vt of the heap is deleted from the
heap.

2) The element bj is assigned to Vt.
3) The element Vt − bj , if it is non-zero, is inserted into

the heap.

The jth step that includes a deletion and an insertion to the
heap requires O(log2 M) time. Since these steps are carried
k times in order to assign all bj for j = 1, . . . , k, the overall
assignment can be completed in O(k log2 M) time.

Example. Consider the cover (9, 3, 5)-cover B =
{b1, . . . , b5} = {3, 2, 2, 1, 1}. The assignment for the (9, 3)-
partition {v1, v2, v3} = {5, 3, 1} is demonstrated in Table I.
Each row of the table shows the assignment of bj to the
largest element vi of the remaining elements {v1, v2, v3} and
the resulting update of vi as vi = vi − bj .

Note that the elements bj of the cover are assigned in
descending order of their values. If they were assigned in the
order b2 → v1, b3 → v1, b4 → v1, b5 → v2, the last element
v1 = 3 could not be used to cover the remaining elements
{v1, v2, v3} = {1, 1, 1}.

IV. NON-UNIFORM WAVEBAND DE-AGGREGATOR AND

IMPLEMENTATION RESTRICTIONS

Non-uniform optical wavebands can be realized by a wave-
band (de)aggregator subsystem that can realize and process
non-uniform wavebands.

In order to maintain the best optical performance, the
preferred way to separate waveband and wavelengths is a
three-port filter, which allows some of the wavelengths to pass
through and reflects the rest. A three-port optical wavelength
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Fig. 6. Three-port filters and waveband deaggregators.

selective component is shown in the upper part of Figure 6.
The component consists of three optical fibers, a self-focused
GRIN lens, and a thin-film interference filter. The upper part of
Figure 6 shows wavelength band separation, where a wideband
DWDM filter passes a band of three wavelengths to output
fiber 1 and reflects all others back into output fiber 2.

Three-port filters can be aggregated into a multi-stage
system (waveband deaggregator), which delivers the de-
sired waveband/wavelength separation. The architecture of
the waveband deaggregator is essentially a cascade of (non-
uniform) bandpass operations and recombinations, as illus-
trated in the lower part of Figure 6 (where the incoming
set of 40 wavelengths is being separated into four fixed
wavebands B1, . . . , B4 containing 18, 6, 8 and 8 wavelengths
respectively). The waveband sizes are thus determined by the
bandpass operations.

Traditional wavelength-division multiplexers and demulti-
plexers (also called WDM MUXs and WDM DEMUXs) are
the subsystems that combine (couple) and separate (split)
different optical wavelengths. A WDM DEMUX separates the
wavelength band on an incoming fiber into a number of wave-
length subsets. These wavelength subsets can be uniform or
non-uniform fixed groups (wavebands), as shown in Figure 6.
A DEMUX subsystem may produce both fixed and arbitrary
wavelength subsets. Non-uniform waveband deaggregators can
be used instead of DEMUX in hybrid hierarchical optical
cross-connects (shown in Figure 1), further reducing the cost
of the optical node by employing a flexible set of wavebands
containing different number of wavelengths.

As we already showed in Figure 6, wavebands can be
created by a cascade of three-port filters. Not all the waveband
sizes that are produced by our WCC algorithm can be cost
efficient for our three-port filters. For example, it may be
significantly cheaper to employ filters creating the wavebands
of size 8 than use filters creating the wavebands of size 7.
In general, the waveband sizes may have to be chosen from
a set D = {d1, d2, d3, . . . dn}, where we further assume that
d1 ≤ . . . ≤ dn. For example, cost considerations may make

all waveband sizes but {1, 2, 4, 6, 8, 10} impractical. In such
cases, the original Waveband Cover Construction algorithm
can be modified by changing step 3 in the following manner:

Algorithm 3. Modified Waveband Cover Construction
(MWCC).

3) Assign N ′ = �N/M�. If N ′ /∈ D, choose the largest
element di ∈ D that is smaller than N ′ and assign N ′ =
di.

The above algorithm still produces a valid optimal cover
that can be verified similarly to the proof of Theorem 1. The
Waveband Cover Assignment algorithm remains unchanged,
as can be shown from Theorem 2.

V. PERFORMANCE OF SWITCHING NODES WITH

NON-UNIFORM WAVEBANDS

In order to compare the performance of non-uniform wave-
bands versus that of uniform wavebands, we consider a switch
with a single input port receiving N wavelengths that are
switched to M output ports. In this model, input wavelengths
that are aggregated into wavebands are switched optically in
OOO. A valid aggregation of L wavelengths into a waveband
has to meet the following two conditions.

1) There exists an unused waveband of size L.
2) All L wavelengths are switched to the same output ports.

We denote the number of input wavelengths to the hierarchical
node by N . We also denote the number of wavelengths that
can be aggregated into wavebands and switched in OOO by
P . The switching throughput S is then defined as P/N . The
switching throughput thus refers to the ratio of the wavelengths
that can be transparently switched to the total number of input
wavelengths. The switching throughput is the key component
of the aggregation benefit: if more traffic can be switched
transparently, the number of expensive OEO ports can be
reduced.

For a more detailed analysis of the effect of switching
throughput, we consider a single node with different numbers
of output ports (4, 6, and 8) serving an input fiber with
40 input wavelengths. The input wavelengths are randomly
switched to the output ports based on two different traffic
patterns: uniform (as in [19]) and Zipf. In the case of
uniform traffic pattern, any wavelength at the input port has
the same probability to be switched into any of the output
ports. In the case of Zipf traffic pattern, the probability of a
wavelength to be switched to a given output port is based on
the weight associated with the port; the weights are selected
in a way that fits a Zipf distribution. To make a fair and
realistic comparison of uniform and non-uniform wavebands,
we analyze sets of uniform and non-uniform wavebands
containing the same number K of elements. In the case of
uniform wavebands of size G, the switching throughput is
calculated in the following way. Let bi denote the number of
wavelengths to be switched to the ith output port. The number
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number of wavebands switching

wavebands throughput
4 output ports

K=4 NU 13 9 9 9 60.90%
U 10 10 10 10 55.75%

K=5 NU 9 9 9 7 6 81.10%
U 8 8 8 8 8 67.60%

K=8 NU 10 7 7 5 4 3 2 2 95.70%
U 5 5 5 5 5 5 5 5 80.45%

K=10 NU 10 8 5 5 4 3 2 1 1 1 99.90%
U 4 4 4 4 4 4 4 4 4 4 84.20%

6 output ports
K=4 NU 15 9 8 8 36.98%

U 10 10 10 10 17.78%
K=5 NU 9 9 8 8 6 59.93%

U 8 8 8 8 8 42.28%
K=8 NU 7 7 6 6 5 4 3 2 90.00%

U 5 5 5 5 5 5 5 5 70.97%
K=10 NU 8 7 6 6 4 3 2 2 1 1 94.90%

U 4 4 4 4 4 4 4 4 4 4 77.60%
8 output ports

K=4 NU 14 14 6 6 30.00%
U 10 10 10 10 4.70%

K=5 NU 14 8 6 6 6 42.00%
U 8 8 8 8 8 18.07%

K=8 NU 7 7 6 5 5 4 3 3 83.70%
U 5 5 5 5 5 5 5 5 59.25%

K=10 NU 7 6 5 5 4 4 3 3 2 1 90.70%
U 4 4 4 4 4 4 4 4 4 4 69.93%

Fig. 7. Switching throughput for uniform traffic.

P of wavelengths that can be aggregated into wavebands is
given by the formula P = N − (b1 + . . . + bm)mod G and
determines the switching throughput S = P/N . In the case
of non-uniform wavebands of sizes g1, . . . , gK , we aggregate
the wavelengths into wavebands using the descending
order best-first-fit packing algorithm. In this algorithm, the
waveband sizes gi and numbers bi of wavelengths to be
switched in the corresponding output ports i, are first sorted
in descending order. Subsequently, we aggregate wavelengths
into wavebands using the following packing algorithm:

Algorithm 4. Waveband Packing (WP).
For each gi, where i = 1, 2, . . . , k:
1) Let bmax be the maximum over all numbers bi

2) If bmax ≥ gi then
Aggregate gi wavelengths out of bmax
Assign bmax = bmax − gi.

As a result of the WP algorithm, the switching throughput
is given by S = P/N , where P = b1 + . . . + bm. For each
set of parameters, 300 different input-to-output ports switching
combinations are generated, based on the corresponding traffic
pattern (uniform or Zipf). The resulting throughput is obtained
by averaging the simulated switching combinations.

The results for uniform traffic distribution are shown in
Figure 7. They demonstrate that non-uniform wavebands con-
sistently deliver superior switching throughput, which trans-
lates into a significant increase in aggregation benefits of the
hierarchical optical switching. As the number of wavebands
increases, the switching throughput for both uniform and non-
uniform wavebands also increases. However, the difference
between their throughput is larger when higher number of

number of wavebands switching

wavebands throughput
4 output ports

K=4 NU 15 10 9 6 76.25%
U 10 10 10 10 62.50%

K=5 NU 11 10 9 6 4 100.00%
U 8 8 8 8 8 63.00%

K=8 NU 9 9 9 6 4 1 1 1 100.00%
U 5 5 5 5 5 5 5 5 81.25%

K=10 NU 9 9 9 6 2 1 1 1 1 1 100.00%
U 4 4 4 4 4 4 4 4 4 4 90.00%

6 output ports
K=4 NU 15 12 8 5 25.00%

U 10 10 10 10 17.78%
K=5 NU 12 8 8 7 5 82.50%

U 8 8 8 8 8 35.24%
K=8 NU 9 8 8 5 3 3 2 2 100.00%

U 5 5 5 5 5 5 5 5 75.00%
K=10 NU 9 8 8 5 3 3 1 1 1 1 100.00%

U 4 4 4 4 4 4 4 4 4 4 80.00%
8 output ports

K=4 NU 15 12 7 6 21.00%
U 10 10 10 10 4.70%

K=5 NU 15 8 7 6 4 80.00%
U 8 8 8 8 8 30.00%

K=8 NU 12 7 7 4 3 3 2 2 93.75%
U 5 5 5 5 5 5 5 5 62.50%

K=10 NU 8 7 7 5 4 3 2 2 1 1 100.00%
U 4 4 4 4 4 4 4 4 4 4 65.00%

Fig. 8. Switching throughput for Zipf traffic.

wavebands are used. For example, with 4 output ports, at k =
4, the difference between the throughputs is 5.15% whereas
at k = 10, the difference is 15.7%. As the number of output
ports increases, the switching throughput decreases since the
routing of wavelengths becomes more diverse (wavelength
divergence) and less suitable for aggregation. For example,
consider M = 4 and M = 8 with k = 10. In this case,
the difference between the throughputs is 15.7% for M = 4,
while it is 20.77% for M = 8. This example illustrates that
non-uniform wavebands can handle wavelength divergence in
a more efficient manner than uniform wavebands.

The results for Zipf traffic distribution are shown in Fig-
ure 8 and are similar to those obtained for uniform traffic
distribution. In general, the switching throughput under the
more realistic Zipf traffic distribution is higher than the one
obtained for uniform traffic distribution.

VI. NON-UNIFORM WAVEBANDS IN RING NETWORKS

In this section, we consider the Waveband Cover Assign-
ment algorithm in the case of a single hub metropolitan ring
topology. Specifically, we consider the ring network that is
used as an access network, where all the traffic is from the
access nodes in the ring to the hub. Our objective here is to
aggregate the lightpaths from access nodes to the hub into
wavebands, in a way that minimizes the overall port costs.
We assume that a lightpath from a node to the hub can
follow either clockwise or anti-clockwise direction, depending
on wavelength availability. Given the traffic demand from all
access nodes and the corresponding routes, we perform the
following waveband aggregation.
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Fig. 9. Simulated optical ring topology.

Consider a ring with M access nodes and a single hub. For
each access node, let L1 and L2 be the two incoming and out-
going links (all links are assumed to be able to accommodate
N = 160 wavelengths), in the clockwise and counterclockwise
directions, respectively (Figure 9). For a given access node i
we denote by T1(i) the traffic load (number of wavelengths)
from node i to the hub using the link L1; similarly, we define
T2(i) as shown in Figure 9. As a result, we have two sets
(clockwise and counter-clockwise) of traffic flows denoted by
Sj = {Tj(i)|i = 1, . . . ,M}, for j = 1, 2 (shown in Figure 9).
We next consider the waveband aggregation for each of the
two sets Sj . Denote by D the number of all wavelengths for
a given set Sj ; in other words, D = Tj(1) + . . . + Tj(M).

If D = N , the problem of aggregating N wavelengths
converging to a single hub from M access points is similar
to the problem of arbitrarily breaking down N wavelengths
into M ports. Therefore, we can construct a pre-configured
set of wavebands B (as discussed in Section III) to cover
any breakdown of wavelengths. Given the set of wavebands
B, we can assign the wavebands to each traffic flow Tj(i),
for i = 1, . . . , N , using the WCA algorithm described in
Section III. We follow the same methods for aggregation in
the case of the other set Sj . Because of the way of band
construction and assignment, it is ensured that each traffic
wavelength path is aggregated into a waveband that originates
at the corresponding access node and extends to the hub node.
As a result, the only OEO ports used are those at the source
(access) nodes for add/drop purpose; the remainder of the
paths are completely in the optical domain.

If D < N , the problem is slightly modified in the following
way. We assign imaginary traffic load R = N − D from the
node closest to the hub. The problem then becomes the same as
the one analyzed in the previous paragraph and can be solved
in the same way. For computing the overall performance, we
exclude the wavebands that are assigned to the imaginary
traffic from cost computation.

We simulated the performance of the proposed approach on
four rings of different sizes (M=10,20,30 and 40). The port

M=40
Uniform wavebands (53): 
3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3 3  3  3  3  3  3
3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3 3  3  3
Non-uniform wavebands (53):
8  8  8  7  7  7  6  6  6  5  5  5  5  4  4  4  4  4  3  3  3  3 3  3  2  2  2  2  
2  2  2  2  2  2  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 1  1  1  

M=30
Uniform wavebands (40):
4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  
4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  
Non-uniform wavebands (44):
11  10  10  9  8  8  7  7  6  6  6  5  5  5  4  4  4  3  3  3  3
3  2  2  2  2  2  2  2  2  1  1  1  1  1  1  1  1  1  1  1  1  1 1

M=20
Uniform wavebands (32):
5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5  5 5  5  5  5  5  5  5  5  5  5  5

Non-uniform wavebands (33):
16  15  13  12  11  10  9  8  7  6  6  5  5  4  4  3  3  3  2  2 2  2  2  1  1  1  1  1  1  1  1  1  1 

M=10
Uniform wavebands (20):
8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8 
Non-uniform wavebands (19):
32  26  21  17  13  11  8  7  5  4  4  3  2  2  1  1  1  1  1

Fig. 10. Comparable sets of uniform and non-uniform wavebands.

cost is discussed in section II.B. For simplicity, we assumed
the traffic is routed along the shortest path to the hub node.

For each of the four rings, we simulated multiple instances
of traffic matrices by assuming that each node sends to the hub
node a random number of wavelengths. Two types of traffic
distributions were simulated, referred to as uniform (where the
random number of wavelengths is uniformly distributed in an
appropriately selected segment) and Zipf (where the random
number of wavelengths is generated by Zipf distribution).
Different traffic loads were simulated as well, ranging from
20% to 90% (the load was defined as the average occupancy
of bottleneck links to the hub node).

We compared the performance of non-uniform wavebands
with that of uniform wavebands. For a fair comparison, the size
of uniform wavebands was selected so that the total number
of uniform wavebands be close to that of non-uniform wave-
bands. Note that it is not always possible to make the numbers
of elements in both sets of wavebands to be the same, since
the total number of wavelengths (40) may not be divisible by
the number of elements in the set of non-uniform wavebands.
Figure 10 shows uniform and non-uniform wavebands that
were simulated for our four rings.

Our simulation results are shown in Figures 11 and 12.
These figures show the cost benefit (relative cost reduction,
as compared to the uniform wavebands) that can be achieved
using non-uniform wavebands. For all simulated scenarios
(ring sizes, loads and traffic distributions), the cost benefit
provided by non-uniform wavebands is consistently within
the range 25%-30%. This cost benefit is smaller than the
average value observed in Section V. The node-level benefit of
non-uniform wavebands demonstrated in Section V becomes
smaller in network-level scenarios due to relative aggregation
efficiency of ring networks observed in [7]. As a result of this
efficiency (there is little routing diversity in ring networks),
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Fig. 11. Ring networks: aggregation cost benefit for uniform traffic
distribution.
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Fig. 12. Ring networks: aggregation cost benefit for Zipf traffic distribution.

uniform waveband aggregation performs sufficiently well, so
the additional performance improvement provided by non-
uniform wavebands is relatively smaller.

VII. NON-UNIFORM WAVEBANDS IN MESH NETWORKS

In the previous section, we used non-uniform wavebands to
aggregate wavelength flows from the access nodes to the hub.
The same approach can be also applied with a few modifica-
tions to the case of a general mesh topology . Let us consider a
specific node i that receives non-zero wavelength flows from a
number M(i) of sources. The wavelength path for each flow
connects the node i through one of its incidence links. We
denote by N(i) the maximum number of wavelengths paths
that use any of the incidence links of node i.

Using these definitions, we can find Nmax = maxi[N(i)],∀i
and Mmax = maxi[M(i)]. We use our WCC algorithm with
N = Nmax and M = Mmax to find the optimal set of non-
uniform wavebands to be used in the hybrid nodes of the mesh
network.

Since the waveband cover construction is obtained for the
worst case scenario, we can always use one or more wavebands

to aggregate traffic from all sources to the single destination,
by following our Waveband Cover Assignment algorithm, as
we did in the case of a ring network. This strategy will
not work with multiple destinations for the following reason.
Consider two nodes i and j receiving traffic flows from a
source s and assume that the wavelength paths for these flows
share a common link. There might arise a case where the same
waveband needs to be assigned to traffic from s → i and
s → j, something that will make the waveband assignment
infeasible.

We can deal with this case if we assume that wavebands do
not have to be completely filled: a waveband of size G does
not necessarily have to have exactly G active wavelengths.
The assumption of incomplete wavebands is a natural step
in network evolution: by provisioning incomplete wavebands,
the benefits of all-optical layer can be obtained from the
start, while the wavebands can be filled as the traffic load
increases. Under this assumption, we can modify our WCA
algorithm that assigns the maximum size waveband that is
available in the entire path from source to destination. The
formal description is as follows.

First, we create the set of wavebands B using our WCC
algorithm. Next, for any undirected link l of the network, we
denote by A(l) the set of available wavebands in the link.
Initially, A(l) = B for all links in the network. Let T [i, j]
denote the total number of wavelengths used by the traffic
flow from node i to node j. We next perform the following
steps for assignment.

Algorithm 5. Waveband Assignment in Mesh Networks
(WAM).

1) Find imax, jmax for which T [i, j] is the maximum.
2) If T [imax, jmax] <= 0 stop; else goto step 3.
3) Let L be the set of links from imax → jmax.
4) Find the largest waveband size Bmax available in all

links in L.
5) Assign Bmax to traffic from imax → jmax.
6) Update T [imax, jmax] = T [imax, jmax] − Bmax.
7) Exclude the waveband Bmax from all links in L.
8) Goto step 1.

We simulated the WAM algorithm in a general US net-
work (shown in Figure 13) with relative traffic distribution
proportional to the population in the source nodes. Four scaled
versions of the traffic distribution were simulated (matching
the doubling of traffic volume every year). The port cost using
wavebands is discussed in section II.B.

We further compared the cost benefits that could be obtained
by replacing OEO cross-connects with hybrid hierarchical
nodes with both uniform and non-uniform wavebands. The
results are shown in Figure 14.

In consistency with the previous sections, the results illus-
trate the competitive cost reduction provided by non-uniform
wavebands under different traffic load conditions. In particular,
the advantage becomes greater as the traffic load increases.
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VIII. CONCLUSION

We presented a formal model for describing the effect of
waveband aggregation in a single optical node. For this model,
we formulated two complementary problems and provided an
optimal algorithmic solution for both of them. We analyzed
the switching performance of non-uniform wavebands for the
case of a single node. Further, we applied the concept of
non-uniform wavebands to aggregate wavelength traffic in
the case of metro-access ring and mesh network. Detailed
simulation results showed significant cost reduction in the
case of both ring and mesh network by using non-uniform
wavebands rather than uniform wavebands.

Our future plans involve exploring the wavelength and
waveband routing problem in general network topology with

the goal of minimizing the port cost. The wavelength con-
tinuity constraints and assignment restrictions add further
challenge to the waveband selection and assignment problem.
We plan to incorporate these constraints while investigating the
wavelength and waveband assignment problem in both offline
and online traffic scenarios.
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