Nonunivalent generalized Koebe function

By Shinji YAMASHITA

Department of Mathematics, Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji, Tokyo 192-0397 (Communicated by Heisuke HIRONAKA, M. J. A., Jan. 14, 2003)

Abstract: The function $f_{\alpha}(z) = (\{(1+z)/(1-z)\}^{\alpha} - 1)/(2\alpha)$ with a complex constant $\alpha \neq 0$ is not univalent in the disk $U = \{|z| < 1\}$ if and only if α is not in the union A of the closed disks $\{|z+1| \leq 1\}$ and $\{|z-1| \leq 1\}$. By making use of a geometric quantity we can describe how f_{α} "continuously tends to be" univalent in the whole U as α tends to each boundary point of A from outside.

Key words: Univalency; non-Euclidean disk; Schwarzian derivative.

1. Introduction. For a nonzero complex constant α let us define

$$f_{\alpha}(z) = \frac{1}{2\alpha} \left\{ \left(\frac{1+z}{1-z} \right)^{\alpha} - 1 \right\}$$

for z in $U = \{|z| < 1\}$, where the branch of the logarithm is chosen so that $\log 1 = 0$ in

$$\left(\frac{1+z}{1-z}\right)^{\alpha} = \exp\left(\alpha \log \frac{1+z}{1-z}\right)$$

The specified case of f_{α} is the Koebe function $f_2(z) = z/(1-z)^2$. In particular, $f'_{\alpha}(z) \neq 0$ for all $z \in U$.

It is a classical result of E. Hille [H] that f_{α} is univalent in U if and only if $\alpha \neq 0$ is in the union A of the closed disks $\{|z + 1| \leq 1\}$ and $\{|z - 1| \leq 1\}$. Note that z is in A if and only if $|z|^2 \leq 2|\operatorname{Re} z|$, whereas z is on the boundary ∂A of A if and only if $|z|^2 = 2|\operatorname{Re} z|$. Let ρ_{α} be the maximum of r, $0 < r \leq 1$, such that f_{α} is univalent in the non-Euclidean disk $\Delta(z,r) = \{w : |w - z|/|1 - \overline{z}w| < r\}$ for each $z \in U$. The set $\Delta(z,r)$ actually is the Euclidean disk with the Euclidean center $(1 - r^2)z/(1 - r^2|z|^2)$ and the Euclidean radius $r(1 - |z|^2)/(1 - r^2|z|^2)$. Such a $\rho_{\alpha} > 0$ for $\alpha \notin A$ does exist as will be clarified in

Theorem. Suppose that $\alpha \notin A$. If $i\alpha$ is real, then

(1.1)
$$\rho_{\alpha} = \sqrt{\lambda + 1 - \sqrt{\lambda^2 + 2\lambda}},$$

where $\lambda = 2/\sinh^2(\pi/|\alpha|)$. If ia is not real, then

(1.2)
$$\rho_{\alpha} \geqslant \sqrt{\mu + 1 - \sqrt{\mu^2 + 2\mu}},$$

where $\mu = 2 \cot^2(\pi |\operatorname{Re} \alpha|/|\alpha|^2)$. If α itself is real, then the equality holds in (1.2).

A consequence is that if $\beta \in \partial A$ and if $\alpha \notin A$ with $|\alpha - \beta| \to 0$, then $\rho_{\alpha} \to 1$. Namely, f_{α} "continuously tends to be" univalent in the whole U. This is obvious for $\beta \neq 0$ by (1.2) because $\mu \to 0$. For each sequence $\alpha_n \notin A$ with $\alpha_n \to 0$, both (1.1) and (1.2) show that $\rho_{\alpha_n} \to 1$.

2. Proof of the theorem. For z in the half-plane $H = \{z; \operatorname{Re} z > 0\}$ the set $\Delta_H(z, \rho) = \{w; |w - z|/|w + \overline{z}| < \rho\}, 0 < \rho < 1$, is the image of $\Delta(T^{-1}(z), \rho)$ by the mapping $T(\zeta) = (1 + \zeta)/(1 - \zeta)$, and $\Delta_H(z, \rho)$ has the Euclidean center $c(z) = (z + \rho^2 \overline{z})/(1 - \rho^2)$ and the Euclidean radius $r(z) = (2\rho \operatorname{Re} z)/(1 - \rho^2)$. Hence $\sin \theta = r(z)/|c(z)|$ with $0 < \theta < \pi/2$ and 2θ is the opening angle of $\Delta_H(z, \rho)$ viewed from the origin. Consequently,

(2.1)
$$\sin^2 \theta = \frac{4X\rho^2}{\rho^4 + 2(2X-1)\rho^2 + 1}$$

for $X = \cos^2(\arg z)$, $|\arg z| < \pi/2$.

The image \mathscr{D} of $\Delta_H(z,\rho)$ by log ζ is contained in the rectangular domain of width

$$\log \frac{|c(z)| + r(z)}{|c(z)| - r(z)} = \log \frac{1 + \sin \theta}{1 - \sin \theta}$$

and of height 2θ . The boundary of \mathscr{D} touches the rectangle at exactly four points.

Suppose first that $i\alpha$ is real. Then $\zeta^{\alpha} = \exp(\alpha \log \zeta)$ is univalent in $\Delta_H(z, \rho)$ if and only if

$$|\alpha|\log\frac{1+\sin\,\theta}{1-\sin\,\theta}\leqslant 2\pi$$

To obtain the maximum $\rho(z)$ of ρ one has only to solve the equation $\sin \theta = \tanh(\pi/|\alpha|)$ and $\rho = \rho(z)$

²⁰⁰⁰ Mathematics Subject Classification. Primary 30C55.

in (2.1). After a short labor one then has

$$\rho(z)^2 = \lambda X + 1 - \sqrt{\lambda^2 X^2 + 2\lambda X}.$$

The right-hand side function of X attains its minimum at X = 1, namely, if and only if z is on the real axis, so that

$$\rho_{\alpha}^{2} = \min_{z \in U} \rho(z)^{2} = \lambda + 1 - \sqrt{\lambda^{2} + 2\lambda}.$$

In the case where $i\alpha$ is not real, the function ζ^{α} is univalent in $\Delta_H(z,\rho)$ if $\theta \leq \pi |\operatorname{Re} \alpha|/|\alpha|^2$ (< $\pi/2$), or equivalently, if $\sin \theta \leq \delta$, where $\delta = \sin(\pi |\operatorname{Re} \alpha|/|\alpha|^2)$. Consequently, this time,

$$\rho(z)^2 \ge \mu X + 1 - \sqrt{\mu^2 X^2 + 2\mu X},$$

where $\rho(z)$ is again the maximum of ρ . Following the same lines as in the proof of (1.1), one finally observes (1.2). In particular, if α itself is real, then the function ζ^{α} is univalent in $\Delta_H(z, \rho)$ if and only if $\theta = \pi/|\alpha|$. It is now easy to prove that the equality holds in (1.2).

It is open to prove whether or not the equality holds in (1.2) for nonreal α .

It follows from (1.1) that $(1 - \rho_{\alpha})e^{\pi/|\alpha|} \rightarrow 2$ as $\alpha \rightarrow 0$ along the imaginary axis *B*, whereas, it follows from (1.2) that

$$0 \leqslant \limsup \frac{1 - \rho_{\alpha}}{1 - 2|\operatorname{Re}\alpha|/|\alpha|^2} \leqslant \frac{\pi}{2}$$

as α tends to a point of ∂A within the complex plane minus A and B. In particular, if c is real, then

$$\lim_{|c| \to 2+0} \frac{1 - \rho_c}{|c| - 2} = \frac{\pi}{4}.$$

If α is not in A, one can prove that

(2.2)
$$\rho_{\alpha} \leqslant \sqrt{\frac{3}{|1-\alpha^2|}}.$$

This is significant in case $|1 - \alpha^2| > 3$ or α is in

the exterior of the specified Jordan curve, namely, the lemniscate $\Gamma = \{|1 - z^2| = 3\}$. In particular, it follows from (2.2) that $\rho_{\alpha} \to 0$ as $\alpha \to \infty$. Let us return to the Theorem for a moment. If $B \ni \alpha \to \infty$, then $(1 - e^{-2\pi/|\alpha|})\rho_{\alpha} \to 0$, whereas, if α is real and if $|\alpha| \to +\infty$, then $\rho_{\alpha}/|\alpha| \to 0$.

One can observe that A is contained in the interior of Γ except for 2 and -2, and ∂A touches Γ at 2 and -2 where both curves have the common tangents {Re z = 2} and {Re z = -2}, respectively.

For the proof of (2.2) set $f = f_{\alpha}$ and $\rho = \rho_{\alpha}$ for simplicity, and further set

(2.3)
$$||f|| \equiv \sup_{z \in u} (1 - |z|^2)^2 |S_f(z)| = 2|1 - \alpha^2|,$$

where $S_f = f'''/f' - (3/2)(f''/f')^2$ is the Schwarzian derivative of f. Fix $z \in U$ and set $T(w) = (\rho w + z)/(1 + \overline{z}\rho w)$, so that the function

$$f \circ T(w) = a_0 + a_1 w + a_2 w^2 + a_3 w^3 + \cdots$$

of w is univalent in U. It then follows from the Bieberbach theorem [B], [G, p. 35, Theorem 2] that

$$\rho^{2}(1-|z|^{2})^{2}|S_{f}(z)| = |S_{f\circ T}(0)|$$
$$= 6\left|\frac{a_{3}}{a_{1}} - \left(\frac{a_{2}}{a_{1}}\right)^{2}\right| \leq 6$$

Hence $\rho^2 ||f|| \leq 6$, so that (2.2) is immediate from this and (2.3).

References

- [B] Bieberbach, L.: Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Preuss. Akad. Wiss. Sitzungsb. 940–955 (1916).
- [G] Goodman, A. W.: Univalent Functions. Vol. I. Mariner Publ. Co., Tampa (1983).
- [H] Hille, E.: Remarks on a paper by Zeev Nehari. Bull. Amer. Math. Soc., 55, 552–553 (1949).