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Abstract. One is given a diffusion process and two payoffs which depend
on the process and on two stopping times t,, t2. Two players are to choose
their respective stopping times t,, t2 so as to achieve a Nash equilibrium
point. The problem whether such times exist is reduced to finding a
"regular" solution («|, u2) of a quasi-variational inequality. Existence of a
solution is established in the stationary case and, for one space dimension,
in the nonstationary case; for the latter situation, the solution is shown to be
regular if the game is of zero sum.

Introduction. We consider in this paper a nonzero-sum stochastic differen-
tial game with two players, where the decision variables of the players are
stopping times. The system evolves according to a stochastic differential
equation. The player who decides to stop first prevents the other from
continuing and payoffs are computed for each of them. We are looking for a
Nash equilibrium point. The model is a natural generalization of the two
player zero-sum game studied in Friedman [14]. In Chapter 1 we give
sufficient conditions for existence of a Nash equilibrium point. These condi-
tions are stated in terms of functions ux(x, t), u2(x, t) which represent the
payoffs for the Nash equilibrium point when the system starts at time t in
position* E R":

Suppose there exist functions «,, u2 satisfying the following system of
differential inequalities:

(0.1)        U¡(x, T) = h,(x),

(0.2)        u, < <fc,
(0 3) Íf Uj = *J Î0TJ ^ ''tHen "' = *"

if Uj < <bj forj =± i, then

Received by the editors June 13, 1975.
AMS (MOS) subject classifications (1970). Primary 93E05, 49C10; Secondary 35J99, 35K60,

35K99, 60G40, 60H10, 93E20.
Key words and phrases. Stochastic differential games, stochastic differential equations, stopping

time, payoff, Nash point, variational inequality, quasi-variational inequality, free boundary
problem, nonzero-sum game, zero-sum game.

(') This work was partially supported by National Science Foundation Grant GP-35347X.
© American Mathematical Society 1977

275

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



276 ALAIN BENSOUSSAN AND AVNER FRIEDMAN

9 U¡
--g7+^(0"l <¿>

(0.4) 9h
(«/-*/)(- -£ +^(0«/-//)-o,

where /4 (í) is a second order elliptic differential operator in x and <f>¡, i//,-, /■, A,
are given functions (in terms of which the game is defined); suppose also that
the u¡ satisfy some regularity conditions. Then there exists a Nash equilibrium
point for the initial problem.

In Chapter 2 we study the existence of solutions for (0.1)-(0.4) in the
stationary case (i.e., the w, do not depend on /). We formulate the problem as
a quasi-variational inequality, and then prove an existence theorem based
upon the study of fixed points of a monotone increasing mapping. The
regularity as well as the uniqueness of the solution is left open, the latter
being probably false.

In Chapter 3 we study the existence of a solution for (O.I)-(0.4) in the
(nonstationary) case n = I. Here again an existence theorem is established
using a fixed point theorem for a monotone increasing mapping. Under
suitable conditions it is proved that the free boundary consists of two
monotone and continuous curves x = s¡(t), sx(t) < s2(t).

The fixed point theorem used in Chapters 2, 3 is due to Tartar [23]. It was
also applied in [20] in order to solve a parabolic quasi-variational inequality
arising from a Stefan problem of melting of ice with variable latent heat.

In Chapters 4, 5 we use the method of nonlinear Volterra integral equations
in order to solve parabolic free boundary problems in one space dimension.
In Chapter 4 we consider a Stefan type problem involving two "tempera-
tures" f?, and 92. By classical methods ([12], [13]) one establishes the existence
of a unique regular solution as long as 9lx, 92x are a priori bounded. When
the initial "temperatures" are nonnegative, a priori bounds can be obtained
without difficulty (see the proof of Theorem 4.1). When the initial "tempera-
tures" take also negative values, it is harder to establish the necessary a priori
estimates (see proofs of Theorems 4.3, 4.4). Our results in this case are
extensions of the works of Van Moerbeke [24] and Friedman [16].

We also derive in Chapter 4 an estimate on s2(t) — sx(t) as / -* co.
In Chapter 5 we apply the methods of Chapter 4 to a somewhat different

system of Stefan type problem which corresponds to the zero-sum game (in
the case n = 1); this system is in some sense a special case of the system
studied in Chapter 4. We deduce that not only are the functions ux(x, t) and
u2(x, t) regular (which is already known for general n > 1, by Friedman [14])
but also the free boundaries are regular curves.
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NONZERO-SUM STOCHASTIC DIFFERENTIAL GAMES 277

Chapter 1. The Differential Game With Stopping Times and
Characterization of a Nash Point by a System of Differential

Inequalities

1.1. Assumptions; notation. Let (Í2, üP, P) be a probability space and ÍF(,
t > 0, be an increasing family of sub o-algebras of $. Let b(t) be an
«-dimensional (standard) Brownian motion with respect to the family £Fr Let
g(x, t) be an «-vector defined on R" x [0, oo) and let o(x, t) be an n x n
matrix defined on R" X [0, oo), such that

(1.1) g is continuous and bounded,
(1.2) \g(x, t) - g(x', 0| < C\x - x'\ for all x, x'   (C constant),
(1.3) a is continuous and bounded,
(1.4) da(x, t)/dx is measurable and bounded,
(1.5) o~x is continuous and bounded.
We denote by yx,(s), s > t, the solution of the stochastic differential

equation

(1.6)     dyxl(s) = g(yxt(s), s) ds + o(yxl(s), s) db(s),      yxt(t) = x.

In the following all the stopping times which we use are considered to be
stopping times with respect to %.

Let T be a positive number and \e\.f¡(x, t), (b¡(x, t), \¡/¡(x, t) (i = 1, 2) be
functions such that

f¡, <p¡, uV are continuous and bounded
(1 7) in Rn X [0, T], f E L\R" X (0, T)),

i//,- < <#>,  for all x, t in R" X [0,  T]
(i = 1, 2).

1.2. Definition of a Nash point in the nonstationary case. We consider two
players such that each of them may decide to stop the process yxt starting at
time t < T. Given two functions hx(x), h2(x) satisfying
(1 -8) h¡ are continuous and bounded,
we define the payoff functions JxI(tx, t2), where t, are stopping times such
that / < t. < T, as follows:

J'xt (Ti> T2) = E f''' "T2f(yM s)& + Xr,<r>(.MT/)' Ti)

(1.9) + XTl>Tj,r>^,(^(^)> Tj) + Xr^-rMyAT))

U + i)
where Xa 's iae indicator function of A.

Our problem is to find a Nash point for the Jxl, i.e., to find f,, f2 such that
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278 ALAIN BENSOUSSAN AND AVNER FRIEDMAN

(1.10)     Jx\ (f„ f2) < Jx\ (t,, t2),       /x2 (f „ f2) < 7* (fv T2)    for any Tj> Tj.

1.3. System of differential inequalities. For ? fixed, / E [0, 7], we define the
second order differential operator A (t) by

(i.ii)     A(t)w=- s U(*-o-¿i7- 2 $(*.<)£
iV=l ¿ ox,-ox,     y., ox,

where the a0(x, t) are the components of the matrix a(x, t) = oo*(x, t),
a* = transpose of a, and gj(x, t) are the components of g(x, t). Let Q = R"
X (0, T).

We introduce the following problem: Find two functions ux(x, t), u2(x, t)
such that

(1.12) u, is continuous and bounded in Q, u¡ E L2(0, T; HX(R"));

(1.13) ut(x, T) - h,(x)       (xERn);

(1.14) u¡(x, t) < 4>t(x, t) in Q;
(I 15) ^ ty(*> r) = $j(x> 0 f°r7 ^ ' and some (x, t) in Q,

then «,(*, /) = $¡(x, t);

if 2,. = {(x, t) E Q; Uj(x, t) < 4>j(x, t) îorj ¥° /}, then

(1.16) ti -A(t)u¡ E L2(2,),        - -£ +yi (/)«, < /,   a.e. in 2,,dt     "w»/--v~//> 3/

(«/ - </>,)
3«,

-■97+^(0«/-/ = 0   a.e. in 2,

We will refer to (1.12)—( 1.16) as the system of differential inequalities
(associated with the stochastic differential game).

To u¡ we correspond a set C, defined by

(117) C, = {(x, t) E Q; u¡(x, t) < <¡>,(x, t)},
which by virtue of the continuity properties of the functions u¡ and $¡ is an
open subset of Q. (Notice that Cx = 22, C2 = 2,.)

1.4. Sufficiency criterion for existence of a Nash point. We define the exit
time of C¡ by

f, = inf{i; r < < T,yxl(s) g C¡}    if such numbers s exist,
(1.18)

= T   otherwise.
Theorem 1.1. Let the assumptions (1.1)-(1.5), (1.7) and (1.8) hold. If there

exist functions «,, u2 satisfying (1.12)-(1.16), then for any x, t, the f, given by
(I.IS) form a Nash point for the payoff functions Jxl. Furthermore,

(1.19) »,(x, t) - Jxt (f„ f2).
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nonzero-sum stochastic differential games 279

Proof. We shall use the following slight extension of Ito's formula. Let

<ï>(x, f) E L2(0, T;Hl(R")), 3$
3/ -A(t)4> ZL2(Q),

$ continuous and bounded on Q. Then for any stopping time 9, t < 9 < T,
and for any e > 0 we have

E$(yxl(9),9) = E${yxt(9 f\(t + e)), 9 A (t + e))
0-20)

+ £/ 1?-^(0* (>>*(*).')*•
For the proof of (1.20) see [3], [4]. Let us note that t, (j ¥= i) is the exit time
of 2,. If we restrict ourselves to stopping times 9 such that t < 9 < t,, then
we may apply (1.20) with functions O such that

3$
dt ■A(t)$ E L2(2,).ieL^OJ;//1^")),

Indeed, for any X > 0 let 2A = {(x, t) E 2,., dist((x, /), 32,.) > X), yx = exit
time from 2\ Since we can modify $ outside 2X so that the modified
function satisfies the regularity properties of (1.20), we conclude that (1.20) is
valid with 9 replaced by 9 A 7x- Taking A|0, (1.20) follows.

Let t < t,, t2 < T be stopping times. We shall prove that

(1.21) ux(x, t) < Jx\(tx, t2),       u2(x, t) < J2(ix, r2).

Let j = \ if / = 2 and j = 2 if / = 1. Applying (1.20) with $ = «, and
0 = t,. A t}, we get

^"¿(>'x/(T/ A f,), T,- A Tj)
(1 22) = £M'(^'(T' A fJ A (/ + e))' T' A fJ A (/ + £))

+ */T'*\      {^+A(t)u](yxl(s),s)ds.
JrtArjA(t + e)\   °< /

From (1.16) it follows that

•'tjAtvAíí+OV       dí /
(1.23)

Jr,ArjA(t+t)

From (1.13) and (1.14) we also have

ds.

(1.24)
"i{yATi A Ty), T,- A f,)  <  <t>,(yxl(T¡), Ti)Xrl<fj
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280 ALAIN BENSOUSSAN AND AVNER FRIEDMAN

Using (1.23), (1.24) in (1.22), letting e -h> 0 and noting that

Eui{y*(Tt A fj A(t + t), t, A tj A (f + e))) -» u,(x, t)

since u¡ is continuous and bounded, we obtain (1.21).
It remains to prove that

(1.25) u,(x,i) = Jxl(rx,r2).

We use similar arguments to those above.
From (1.16) we get, if y i= i,

E(f'AfJ        {-^+A(t)u)(yxl(s),s)ds
(1.26) W(".A      3' )

= E(/iAyi(yxl(s),s)ds.
nArj

From (1.13), (1.14) and the fact that if <?, < t, then

w,(A»(f/). f/) - ft(X»(ff). f|)'
we get (1.24) with equality instead of inequality and f, instead of t¡. Taking
t,. = r, in (1.22), using (1.26) and (1.24) (with equality), and letting e -»0, we
obtain (1.25), which completes the proof of the theorem.

1.5. Stationary case. We now assume that
(1.27) g, a,f¡, <j>i, \¡/¡ do not depend ont; T = +00.
We introduce a constant (discount factor) a > 0 and define the payoff

Jx(tx,t2) = E (TlATie-°%(yx(t)) dt + %<TjUyÂ^)e-"'

(1.28) + X^rMy^)6'^

U*i),
whereyx(t) denotesyx0(t). As in §1.3, we introduce functions ux(x), u2(x) (not
depending on time) such that

(1.29) u¡ is continuous and bounded, u¡ E Hx (Rn);
(1.30) u,<$,   (xERn);
(1.31) if Uj(x) = 4>j(x) iorj =fc i and some x, then u¡(x) = \¡>¡(x);

if 2( = [x E R"; Uj(x) < fyf»} (j * i), then

(1.32) Au, E L2(2,.),       Au, < f,   a.e. in 2,.,
(u,-4>,)(AUl-f,)-0   a.e. in 2,..

Here,
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nonzero-sum stochastic differential GAMES 281

(1.33) Aw = - -   2 a¡j(x) 3-3- - 2 &(*) ̂  +w
z (l/=l ax¡axj      /=, ox,-

where (a^) is the matrix oa*(x) and g¡(x) are the components of g. We define

(1.34) C,. = {xE R"; u,(x) < $,(*)}
and state without proof a theorem analogous to Theorem 1.1:

Theorem 1.2. Under the assumptions of Theorem 1.1 and (1.27), if there exist
functions ux(x), u2(x) satisfying (1.29)—(1.32), and if f,- = inf{s > 0, yx(s) g
C¡), then the pair (f,, i2) forms a Nash point for the payoff functions (1.28).
Furthermore,

(1.35) ui(x) = J'x(ix,T2).

It is assumed here that ix, f2 are well defined, i.e., thsityx(s) g. C, for some
time 5 = s¡ (i = 1, 2).

Remark. The results of this chapter can be extended to N-person nonzero-
sum game with payoffs

Jxl (t„ ...,rN) = E yh      JNfi(yxt(s\ s) ds + Xr^Aj^MyM' r,)

+ *»rw*.T>SM*t{y*(/\jj)' At,-)

+ XT]-rN = rht(yxt(T))

In the condition (1.15) one has to assume that Uj(x, t) = <j>j(x, t) for some
j ¥= i, and in the definition of 2, in (1.16) Uj(x, t) < <pj(x, t) for all j ¥= i. A
Nash equilibrium point (f,,..., rN) is defined by

7,.(f„ ..., iN) < J,(t„ ..., f,_„ t,,t,.+ 1, ...,iN)       (1 < 1 < N)

for any rx.rN. Theorems 1.1, 1.2 and their proofs readily extend to this
case.

Chapter 2. Stationary Quasi-Variational Inequalities

In this Chapter we consider the stationary case for any dimension n.

2.1. Assumptions; notation. Consider a second order differential operator

(2.1) Aw=-\   2=i ¿-(^fl ) + i «;|| +a0w,
where

(2 2) Í ay(x)> aj(x) are functions in LX(R" ),
1 a0(x) > a > 0; ai} = a,,.
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282 ALAIN BENSOUSSAN AND AVNER FRIEDMAN

When
1 ^aij

(2.3) a.(x) = 2^ Jx~- ~8jW'       a°W = a'

we get the operator^ of (1.33). We shall make the assumptions:

(2.4) 2 aijijii > J 2 £2   I0r aU real £;> V positive constant,

1        ^(2.5) üj is differentiable and a0(x) - -? 2 -t- > ß > 0       (ß constant).
Z   7   dXj

Let F = HX(R"). We define on the Hilbert space V a bilinear continuous
form a(u, v):

(2.6) a(w, v) = ? 2 I   ûff-oT" "ST" ö*+ 2 I   aiT^vdx+ l   aouv dx-2 T¡ Jr"   dxJ dx¡       j Jr"  dxJ       Jr"

Noting that

27 'M= •<*") = ï2¿^ |J dx+íR\ao-\2 4)"2dx
> ßf u2 dx,

JR,

we conclude that
(2.8) a(«) = 0 implies m = 0.
We consider functions/, <p,., uV (/ = 1, 2) satisfying (1.7) and (1.27). For ux, u2
in L2(R") define the sets

A,(«,) = f v E V; v < <b¡ a.e. and a.e. in x,
(2.9) if u¡(x) > <bj(x) then v(x) = &(x)}       (j *= i).

Clearly K,(u) is a closed convex subset of V. It is not empty since v — ̂ ¡E
K¡(Uj). We denote by (, ) the scalar product in L2(R") and by ((, )) the scalar
product in V.

2.2. System of Q.V.I. We consider the following problem: find ux, u2 in V
such that

"ie^i(«2)> «2e*a(«i)>
(2.10) a(ux, v - ux) > (/,, o - m,)     for every v E Kx (u2),

a(u2, v - u2) > (f2, v - u2)    for every v E K2 (ux).

We call (2.10) a system of quasi-variational inequalities (Q.V.I.). We can
formulate (2.10) as one Q.V.I, in V2 = V X V, defining for u = (ux, u2),
v = (vx, i>2), the bilinear form
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2
«(«,») = 2 a(u¡> v¡)

1 = 1

and setting/= (fx,f2),
K(u)= [v = (vx,v2);vx G Kx(v2),v2E K2(vx)}.

With this notation (2.10) is equivalent to

(2.11) à (u, v - u) > (f, v - u)   for every v E K(u), u G K(u).

In (2.11) by (/, v - u) we mean 22=,(./-, v, - u¡).
Now (2.11) is a Q.V.I, as defined in [2], [4], [5], [6]. Systems of Q.V.I, have

already been considered by Bensoussan-Lions [7]. However, the situation here
differs from the one considered by these authors, because the convex set K(u)
is decreasing with u instead of increasing. Let us state this more precisely. We
consider in V2 the natural order relationship
(2.12) v> v'   if v¡(x) > v'i(x) a.e., for / = 1, 2.
One easily checks that
(2.13) K(v) c K(v')   ifü > v'.
We say that the convex set decreases, and that the Q.V.I. (2.11) is a decreasing
Q.V.I. For such Q.V.I, the general existence results of Bensoussan-Lions [7]
and of Tartar [23] cannot be applied. Decreasing Q.V.I, have already been
considered by Bensoussan-Lions [8], but with assumptions on the continuity
of K(v) with respect to v, which are not satisfied here.

Before giving existence results for (2.10), we shall show how (2.10) is related
to (1.29)-(1.32). We have

Theorem 2.1. Let (2.3) hold. Suppose there exists a solution (ux, u2) of (2.10)
such that the functions u¡ are continuous and bounded. Define 2,- as in ( 1.32) and
suppose that 2, has a smooth boundary, that the complement of 2,- is not of
measure 0, and that Au¡ G L2(2,). Then the u/s form a solution o/ (1.29)—(1.32).

Proof. Let S¡ be the complement of 2,-. Since u¡ E K¡(Uj) (j ^ i), we have
h,(x) = \¡/¡(x) a.e. in S¡. By continuity we have u¡ = ^ everywhere in S¡, which
proves (1.31).

Noting that if v G K¡(Uj),j i= i, then v = u¡ on S¡ and we get from (2.10)

(2.14)

dx
"        3«,.  3(0-«,)       »       3«,

¿i""^ ~^x,— + ¿f* Jx~k(v- "'> + a°U¿ü - *)

>f f(v-U¡)dx.J*i

Integrating by parts in the first integral and noting that v = u, on 3 2,- we get,
since Au¡ G L2(2,),
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284 ALAIN BENSOUSSAN AND AVNER FRIEDMAN

(2.15) f (Au, - f,)(v - «,) dx> 0   for any v E K,(u.) (j * i).

Let 0 be an open ball such that 0 is contained in 2,.. Then we can find a
family of smooth functions 9e, 0 < 9e < 1, such that 9e = 0 outside 2(. and
9e(x) -> 1 in 0, 9e -» 0 outside 0 if e -> 0. We may take in (2.15) v = u, - 9t, e
small, which is admissible. We then get

f9e(Au, - f) dx+ f     9e(Au, -f,)dx<0.

Letting e|0, we obtain fe(Au, - f) dx < 0, and since 0 is arbitrary,
(2.16) Au, -f,<0   a.e. in 2,..

Now let 0 be as above and take in (2.15) the admissible function v = §,9e
+ (1 - 9t)u,. Then

Ç(Au,-f,)l($,9e-u,) + (l-9t)u,]dx

+ /      (Au,-f,)[4>,9e-9eu,]dx>0.

Letting ej,0, we get ¡G(Au, — f,)(<¡>, — u,) dx > 0. But from (2.16) and u, < <¡>¡,
we also have the reverse inequality. Hence

(2.17) f(Au,-f,)(<p,-u,)dx=0.

Since again 0 is arbitrary, the last relation in (1.32) follows. We have thereby
completed the proof of (1.29)-(1.32).

Remark. Theorem 2.1 extends to the case of N-person game. In the
definition (2.9), K,(uj) should be replaced by K,(ux,..., «,_,, u,+x,..., m^)
and the assertion v(x) = \p,(x) a.e. is required to follow from Uj(x) > <bj(x)
for some j =£ i.

2.3. Existence theorem. We shall now give an existence rsult for a system of
Q.V.I. (2.10), making the following restrictive assumptions:

f¡, <p¡, i//, are continuous and bounded;

(2.18) /E L2(R"),  <b, E V, *, E V, ^ < <b„
and a(\p„ x) - (//,  x) < 0  for any
x e v, x > o (/ - l, 2).

Notice that the last inequality holds if \f>, E H2(R") and Aty, < /,.
Theorem 2.2. Let the assumptions (2.2)-(2.5), (2.18) hold. Then there exists a

solution ux, u2 of the Q.V.I. (2.10) satisfying u, > \p, for i = 1, 2. Moreover
there exist two pairs of solutions («,, ¿72) and (¿7,, u2) such that if ux, u2 is a
solution then

(2.19)       uV, < «j <«,<«,< ^,,       \¡/2 < u2 < u2 < m2 < <p2.
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Proof. We shall define several mappings. Let wx, w2 G L2{R"). Recall that
(2 201       ^2 (W{) = {v G ^; ü < <f>2 a-e- anc^ a-e- if wi > 4»itnen v = ^2)'

^1 (w2) = [v E V; v < <bx a.e. and a.e. if vv2 > <b2 then 0 = ¡px).

In L2(R") we define a mapping T2 as follows: for a given w, G L2(R"),
u2 = r2w, is the solution of the variational inequality
(2.21) a(u2, v - u2)> (f2, v - u2)   for any 0 G K2(wx), u2 E K2 (wx).

The solution of (2.21) exists and is unique (cf. [21]).
Next we define a mapping r,: for a given vv2 G L2(R"), ux = Txw2 is the

solution of the variational inequality

(2.22) a(ux, v - ux) > (fx, v - ux)   for all v E Kx (w2), ux E Kx (w2).

We define a mapping Sx in L2(R") by Sx = TXT2, i.e.,
(2.23) ux = Sxwx = TxT2wx.
We also define S2 = T2TX. It is clear that if ux is a fixed point for Sx, then («,,
T2ux) is a solution of the Q.V.I.; further, T2ux is then a fixed point for S2
(and, conversely, if w2 is a fixed point for S2, then r,w2 is a fixed point for S,,
(Txu2, u2) is a solution of the Q.V.I., and Txu2 is a fixed point for Sx).

The crucial fact to be proved below is that

Sx (resp. S2) is increasing in the sense
,.. - ... that if h>, < wj a.e. (resp. w2 < w2 a.e.)

then Sxwx < S^vv', a.e. (resp. S2w2 <
S2w2 a.e.).

We shall first verify that
(2.25) u2 = T2wx > \p2   for all w„       ux = Txw2 > \px   for all w2.
We note that since u/, G Kx(w2), max(uV,, ux) E Kx(w2). Using v — max(i//,, ux)
as a test function in (2.22) and noting that max(^,, ux) = ux + (ux — \px)~, we
get

a(ux, («, - i//,)" ) > (/„ («, - tx)~ ),
or

«((«I - *l)" ) - û(^l. ("1 - *l)" ) + (/l- («1 - ti)' ) < 0'

which with (2.18) implies a((ux - \¡/x)~) = 0; hence by (2.8), w, > u\. A
similar argument shows that u2 > if2.

Now let wx < w\, and write u2 = T2wx and ux « r,r2w, = 5,^! (similarly
define w2 and w', for h>',). We shall first prove that
(2.26) u2 > u'2.

Since w, < wi, we have K2(w[) c /^(^i)- Therefore u2, u'2 E K2(wx), and also
max(t<2, u2) E K2(wx). Now from u'2 E K2(w\) it follows that if w\ > <¡>x,
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min(w2, u'2) < u'2 - \p2. But from (2.25) we also have min(«2, u'2) > \p2; hence
min(u2, u'2) = t|/2 if w\ > <p,. Since n\\n(u2, u'2) < u'2 < <b2, it follows that
min(w2, u'2) E K2(w\). We can thus take max(w2, u'2) as a test function in (2.21)
and min(w2, u'2) as a test function in (2.21)' (i.e. (2.21) for w'x). Noting that

max(H2, u2) = u2 + (u2 - u2)+,       min(w2, u2) = u2 - (u2 - u2)  ,

we get

a(u2, (u'2 - u2)+ ) > (f2, (u'2 - u2)+ ),

-a(u'2, (u'2 - u2)+ ) > -(f2, (u'2 - u2)+ )

and, by addition, a((u'2 - u2)+) < 0 which with (2.8) implies (u2 — u2)+ = 0;
hence (2.26). Now since u2 > u'2, we have Kx(u2) c Kx(u'2). Therefore ux and
u'x E Kx(u'2); hence max(i/,, u'x) E Kx(u'2). Taking (2.25) into account, we
prove by a similar argument as above that min(w,, u'x) E Kx(u/). We use
n\a\(ux, u\) (resp. min(M,, u'x)) as a test function in the variational inequality
for u{ (resp. ux) and, by addition, we obtain ux < u\, which proves (2.24).
From (2.25) it follows that

(2.27) Si4>i > *„
i.e., \j/x is a lower solution of the equation Sxux = ux in the terminology of
Tartar [23]. By construction of Sx and Tx,

(2.28) Sx<bx < <bx,
i.e., 4>i is an upper solution. Since i//, < <p,, we can use a general theorem of
Tartar [23], which asserts that Sx has a fixed point between \px and <f>,.
Moreover there exists a maximal and a minimal solution. In other words,
there exist ux and u~x such that

\px < ux < ¿7, < <p,, Sxux = m„ Sxux =
(2.29) ¿7¡,   and if w, = 5,t/,, »//, < m, < <i>,

then w, < h, < ¿7,.

Defining ¿72 = T2ux and m2 = T2UX, we see that («,, ¿72) and (¿7,, u2) are two
pairs of solutions for the Q.V.I.

Let now «,, u2 be a solution. By (2.25), ip, < h, < <i>, (and \p2 < u2 < <b2).
We thus have »[ = Sxux and, according to (2.29), u, < w, < «,. Therefore
r2¿7! < u2 < r2w, which proves (2.19) and completes the proof of the theo-
rem.

Chapter 3. Parabolic Quasi-Variational Inequalities in
One Space Dimension

3.1. The problem. In this chapter we shall solve the following problem:
Find functions ux(x, t), u2(x, t) and curves sx(t), s2(t) with

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NONZERO-SUM STOCHASTIC DIFFERENTIAL GAMES 287

j,(0)--l,   s2(0) = l,   sx(t)<s2(t)       (0<t<T)

such that

uu ~ u\xx < f\ an(* «1 = ^1    if x < sx(t), 0 < t < T,

uu ~ uixx — f\ and «i < </>i   if sx (') < x < s2(t), 0 < t < T,
a, -t^,   ifx > j2(i),0< / < r,

ux(x,0) = hx(x)   if — 1 < jc < 1 ;

(3.1)

(3.2)

U2t - u2xx <  fl and «2 = ^2     if X > S2(t), 0 < t <  T,

u2t - u2xx = f2 and u2 < $2   if sx (t) < x < s2(t), 0 < t < T,

u2 = ¡p2   ifx < sx(t), 0< t < T,

u2(x, 0) = A2(x)   if -1 < x < 1.

This system is a parabolic quasi-variational inequality in one space dimen-
sion. It can, in fact, be easily reformulated in the more standard Q.V.I.
terminology, using convex cones Kx(u2(-, /)), ^2(m,(-, /))•

Assume now that

h,(x) > 0   if -1< x < 1 (i = 1, 2),
A,(x) = 0   ifx < -1,
h2(x) = 0   if x > 1,

(3.3) a(x, t) =V2 ,       g(x, t) = 0,
f (x, t) = f¡ (x, T - t),   ¿>,.(x, /) - Ux, T - t),
Ux, t) = ¿-(x, T - t),
Ux, ') < Ux, t)       (i = 1, 2).

Suppose there exists a sufficiently "strong" solution of (3.1), (3.2) in the
sense that

uu, uix, uixx are in L2 and u¡ is continuous in the region
sx(t) < x < s2(t), 0 < / < T.

From Theorem 1.1 we then deduce that there exists a Nash equilibrium point
(t*, t*) with t* being the exit time from the set

Ci = {(x,t);ui(x,t)<Ux,t)}.

In this chapter we shall prove the existence of a "weak" solution of (3.1),
(3.2). It will be shown, in fact, that there exists a "maximal" solution (¿7,, ¿72)
and a "minimal" solution («,, u2), i.e., for any other solution («,, u2),
ux < ux < u~x, u2> u2> U2, where the functions are defined.

Set
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(3.4)

y, = */ - 4>»     k,(x) = fax, 0) - h,(x).
Throughout this chapter it is always assumed that

y,„ y,x, y,xx are continuous and bounded for (x, t) E R ' X [0, T],

kix are continuous for x E Rx,
kXxx is uniformly continuous for — 1 < x < oo,
k2xx is uniformly continuous for — co < x < 1,
y,(x, t)>0   for all (x, t),
k,(x) > 0   if -1 < x < 1,
kx(x) = 0   if jc < — 1,       kx(x) = yx(x,0)iîx> I,
k2(x) = y2(x, 0)   if x < -1, Â:2(x) = 0   if jc > 1,

and that
(3.5) ¡¡>„, $/jt, ̂  are continuous,       $„ - ^ - f, = -1.

The last condition implies, of course, that u„ — u,xx < f, a.e. on the set
«, = <£,. Notice also that if ux = \px on the curve x = s2(t), then we can always
define ux for x > s2(t) by ux = \px. A similar remark applies to u2. Hence,
setting

W, = $, - UX, W2 = <r'2- U2,

the system (3.1), (3.2) reduces to

*u - wXxx = -1 and w, > 0

(3.6)
w, = 0

(3-7)

ifs,(r)< x < j2(/),0< t < T,
if jc <5,(/),0< t < T,
if* = 52(r), 0< r < r,
if -1 < x < 1;
ifi,(/) < x < s2(f),0< r < r,
ifx > í2(í),0< í < T,
ifx = 5,(0, o< r < r,
if — 1 < JC < 1.

w, = Yl
w,(x, 0) = kx(x)
w2, - W2XX = -1 and w2 > 0

w2 = 0
w2= y2

w2(x, 0) = k2(x)

We shall prove later on the existence of a "weak" solution of (3.6), (3.7)
with sx(t), s2(t) (the free boundary curves) having the following properties:

sx(t) is continuous and strictly monotone decreasing,
s2(t) is continuous and strictly monotone increasing.

We outline the idea of the proof: Given a monotone curve jc = s2(t), we
solve the variational inequality (3.6) and show that its free boundary is a
curve jc = ox(t). Next we solve the variational inequality (3.7) with sx(t)
replaced by ox(t), and show that its free boundary is a curve jc = s2(t). We
have thus constructed a mapping W, s~2 = Ws2. It will be shown (using

(3.8)
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Tartar's fixed point theorem [23]) that W has fixed points; these points
represent solutions of the Q.V.I. (3.6), (3.7). Some technical difficulties arise
due to the fact that the monotone curves s2 on which W is defined may not be
continuous.

3.2. Auxiliary variational inequality. Let s(t) be a monotone increasing
function with Holder continuous first derivative s{t), for 0 < t < T, such
that 5 (0)= l.Set

G= [(x,t); -co < x < j(/),0< t < T).

Consider the variational inequality: Find w such that

w > 0     ifx <s(r),0< t < T,

wr wx, wxx are in L2(G),

fs{l) [w,(x, t) - Wxx(x, t)][v(x) - w(x, t)] dx

(3.9) > - f*(0 [v(x) - w(x, /)] dx
•'-co

for a.a. / G (0, T), for any v G Lco(R ' ), v > 0 a.e.,

w = yx    ifx = s(t), 0 < t < T,
w(x,0) = kx(x)   ifx < 1.

Lemma 3.1. There exists a unique solution w of (3.9) with compact support;
further, w„ wx, wxx belong to Lp(G)for any 1 < p < oo.

First proof. Let ße(t) be a family of C°° functions of t (-co < t < oo,
0 < £ < 1) such that

&(/)<0,      &(0)=-l,      &'(0>0,
ft(r)-»0   if/>0,e-*0,       ¿8e(/)-»-oo   if í < 0,e^0.

Set GR = G n {x; x > - /?} for any R > 1, and consider the parabolic
problem

w, - wJCJC + /?e(w)= -1 inGR,

(3.10) w(*,0)-*,(*) if-/î<x<l,
w(s(t),t) = yx(s(t),t) if0< t<T,
w(-R,t) = 0 if 0 < t < T.

Denote the solution by w = weR. One can show (cf. [9], [17], [19]) that

(3.11) -1 < ßt(w) <0.
Hence
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(3.12) |W/ - WjtJC|<   1.

By the Lp estimates for parabolic equations (see, for instance, [22]) we then
deduce that

(3.13) ff[\wt\p+\wx\p+\wxx\p]dxdt < C       (\<p<oo)

where C is a constant independent of e. Actually, in the Lp estimates one
usually assumes that the domain GR is cylindrical, i.e., s(t) = const. There-
fore in order to obtain (3.13) we first perform a transformation

(3-14) y = sfi)'       *(*■')-*(*•')
and note that

ys(t) _
w„,(3.15) Wl - wxx - w, - -j^y- wy - -        „„.

We then apply the interior Lp estimates to w(y, t) in some region — R < y <
1, 0 < t < T. This yields the Lp estimates (3.13) in the region G' = (0 < x
< s(t), 0 < / < T), provided R was suitably chosen, depending on the
function s. (We assume that R > R.) We also have, by interior Lp estimates,
the estimate (3.13) in GR — G'. Combining these estimates, (3.13) follows.

Recall that in (3.13), w stands for weR. Taking e|0 through such a sequence
that weR is weakly convergent in the norm LP(GR) together with the deriva-
tives 3/3/, 3/3x, 32/3x2, we find that the weak limit wR = lim wtR in the
unique solution of the variational inequality

w > 0   in GR,
w„ wx, wxx are in LP (GR ),    1 < p < oo,

f*(0 (w, - wxx)(v -w)dx>- fsil) (v - w) dx a.e. in t g[0, T],

(3.16) J-R J-R
for any v G L00(Rx), v > 0 a.e.,

w = yx    if x = s(t), 0 < t < T,
w(x,0) = kx(x)   if -R < x < 1,
w(-R, t) = 0   if 0 < t < T.

By [10], there exists a number R0 sufficiently large such that if R > R0 then

w = wR = 0   if - R < x < - R0, 0 < t < T.
Hence, by uniqueness,

wR,(x, t) = wR(x, t)   if -R < x < s(t), 0< t <T,R' > R.

It follows that w = lim wR is the asserted unique solution of (3.9).
Second proof. Performing the transformation (3.14), and using (3.15), the
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variational inequality (3.9) reduces to the variational inequality:

iv > 0      in G,
wrwy,wyy are in L2(G),

Cx   \~ 1     -        ^(0 - 1 /•'

(3.17)
s\t)   »       s(t)

for a.a. t E (0, T), for any o E L™(Rx ), v > 0 a.e.,

tf(i,0-yi(*(0.0 >fo</<r,
*(*0)-*iOO   ify < 1,

where G = {(y, t); -oo < y < 1,0 < t < T}.
Let G;, = G n [y,y > - R) and consider the parabolic problem:

1   -      ys(t)
wyy - -~T^Wy + &(*)=-!     in GR

'     s2(t)   yy      s(t)    y^^n>-    '    '""*'

(3.18) w(l,0-Yi(40.0 ifo<?< r,
iv(>>,0) = *,(.y) if-Ä<y<l,
iv(-Ä, 0 = 0 if 0 < t < T.

Denote its solution by w = weR. Since the coefficients of the parabolic
operator in (3.18) are Holder continuous, the Lp parabolic estimates (cf.
(3.13)) are valid. We can now proceed as in the first proof and show that
when ejO in a suitable way, the solutions wtR converge weakly in Lp(GR) to a
function wR (together with the derivatives 9/6/, 9/9jc, 92/9jc2), and wR is a
solution of the variational inequality obtained from (3.17) by replacing G by
GR, /La, °y /'-« and by replacing the last condition in (3.17) by the last two
conditions of (3.18).

The techniques of [10] show that the support of wR remains bounded as R
increases to infinity. Hence wR. = wR in GR if R' > R, R sufficiently large. It
follows that w = lim wR is the desired solution.

Remark 1. From the first proof, w = limÄ limE weR. From the second
proof, w(jc, 0 = w(y, t) and vv = limÄ lime weR. Both relations will be needed
in §3.3.

Remark 2. From (3.12) and the maximum principle applied tow = weR we
deduce that

(3.19) |w,iÄ| < A

where A is a constant independent of e, R and of s(t). Taking ejO, R\oo we
deduce that
(3.20) 0< w(x,t) < A
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with the same A, which is independent of the curve s(t).
Remark 3. We can write, for w = weR,

(3.21) (w - yx)r (w - yx)xx= -1 - ßt(W) - y„ + yXxx = B
where, by (3.11), B is bounded by a constant A0 independent of e, R and the
curve s(t). Multiplying (3.21) by w - y, and integrating over GR, we obtain,
after using (3.19) and taking ejO,

-ff(w-yi)(»-yi)xxdxdt<Ax
Gr

where w = wR and Ax is a constant independent of R and of the curve s(t). If
R is sufficiently large then w = wx = 0 on x = — R. Hence, integrating by
parts we find, after letting R -> oo, that

(3.22) f f w¡(x, t) dx dt < A
G

where Ä is a constant independent of the curve s(t).

3.3. Further properties of w. We shall need the conditions:

(3.23) yXx > 0, y„ > 0   if x > 1,       kXx > 0   if - 1 < x < 1.

Lemma 3.2. The function wx(x, t) is continuously differentiable in G and
wx>0.

Proof. The function w = wtR(y, t), occurring in the second proof of
Lemma 3.1, satisfies

(3.24)
y* (0 i

-w„ -   --w    + ße(w)= -I.m y  s\t) yy
Differentiating this equation with respect to /, multiplying by |w,|''~2w/
(2 < p < oo) and integrating over GR, we find (cf. [15]) that

(3.25) /; ¥*** dy< C       (0<t<T)

where C is a constant independent of e, R. We can now apply the elliptic Lp
estimates to the elliptic operator ysw /s + w /s2 and conclude that

(3.26)
J-R

_3_ -
3y w,e.R

yl -    ■    ■ yyl

P~

3yIWe,Ä dy< C       (0<t<T)

where C is a constant independent of e, R.
Taking ej,0, R^<x>, we deduce from (3.25), (3.26), after performing the

transformation (3.14), that
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(3.27) / [h(*, Of + K(*> Of +K(*. 0|'] dx<c       (0 < t < T).
_Since/? is arbitrary, the Sobolev inequality implies that w is continuous in
G, and that the function jc-» wx(x, t) is uniformly Holder continuous in x,
with exponent and coefficient that are independent of /. By the proof of
Corollary 2.7 of [19] we then deduce that wx is continuous in G.

Set
ß = {(jc, 0 e G; w(x, 0 > 0},     ßT = ß n {/ < r}.

The conditions on y, in (3.23) together with the fact that s(t) is increasing in /
imply that
(3.28) WC*(0> 0 = ïi(s(0' 0 *s increasing in /.

Since kXx > 0, kx(l) = y^l, 0), we also have that

(3-29) w(s(0,0 > kx(x)   if jc < 1.
We now apply the maximum principle to the function w in ßT. Since

w, - wxx = -I <0 in il and since w = 0 in that part of the parabolic
boundary of ß that lies in G, we deduce (using (3.28), (3.29)) that the
maximum of w in ßT is attained at (s(t), t). Consequently,

wx(s(t), t) > 0   if0<T<r.

Next,
wx(x, 0) = kXx > 0   if -1 < jc < 1.

Finally, w^ = 0 on the free boundary. Since wx is continuous in ß and

K), - te)„- 0 in n-
the maximum principle applied to w^ in Í2 yields wx > 0 in ß. Since w,. = 0 in
G \ ß, the proof of the lemma is complete.

We shall need the following additional assumptions:

(3.30) kXxx(x) - 1 > 0   if -1< jc < 1;
there is a function yx (jc, /) with continuous derivatives
ÍWir.Vixx such that

y,(jc, 0 = Yi(*, 0   if ̂  > 1,
(3 31) y,(x,0)<A:I(jc)   if jc < 1,

lim   y, (jc, 0 < 0   uniformly in t, 0 < t < T,

y\xx - Hi > i  if jc e ä ', o < r < r.
For example, we can take y,(jc, 0 = kx(x) + (x - 1)/ if y,(x, /) = kx(x) +

(x - l)t when jc > 1, provided kXxx(x) > x whenever jc > 1.

Lemma 3.3. Under the additional assumptions (3.30), (3.31),
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(3.32) w(x,t)> yx(x,t)   if 1 < x < s(t), 0 < t < T,
(3.33) wx - yXx < 0    ifx = s(t), 0 < / < T.

Proof. Consider the function

"(*.')■  Wt,R(X-t)-ïl(x,t)

in the region GR. From the last relation in (3.31) it follows that

«I -  "xx  >   ~&K.*)  >  0     inGR-
Also, for any 8 > 0,

« = 0 ifx = s(/), 0 < t < T,
u(x,0) > 0 if -/? < x < 1,
u(-R,t) > -8   if 0 < / < r,

provided 7? is sufficiently large (depending on 8, but not on e). By the
maximum principle, u > — 8 in GR. Taking e —» 0, R -> oo we get

w — yx > — 8   in G.
Since 5 is arbitrary, w > yx in G. By the strong maximum principle we
actually then have w > yx in ñ. This gives (3.32). The inequality (3.33) is an
immediate consequence of (3.32).

Lemma 3.4. Under the additional assumptions (3.30), (3.31), wt > 0 a.e.

Proof. Consider first the case where y,, kx, s are in C3 and

(3.34) Yi,(l,0)i(0) + YI,(l,0)-*lA(l)-a

This is a consistency condition for the equation

(3-35) ft wt>R - £-2 w„ + ße K,Ä) = -1

at the point (1,0), since ße(0) = - 1. At (- R, 0) the consistency condition for
(3.35) is also satisfied. We can now apply the Schauder estimates [13] to
deduce that 3wEfi/3x, S^^/Sx2, 3w£Ä/3/ are continuous in GR.

Differentiating the relation

(3.36) w^R(s(t),t)-yx(s(l),t) = 0,

we get

* (0 ¿ K* - Yi)(í(0. 0 + "97 w£,a(í(0. 0 = Yu(*C), ')•
Since w£Ä -» w (weakly in LP(GR) together with the first derivatives and,

therefore, uniformly in GR), we can apply the Schauder boundary estimates
(the consistency condition at (1, 0) is used here) to deduce that
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uniformly in /, 0 < t < T.
Using Lemma 3.3 we find that

¿K*- YtX*(0*0 <j
if 0 < e < 60, Ä > /?0 for some e0, R0 depending on 8/A ; here 5 is an
arbitrary positive number and A = max0<,<r5(/).

Using this inequality in (3.36), and recalling that y,, > 0, we get

(3.37) -| we¡R (5(0, 0 > -S       (0<e<e0,R> R0).

Setting £ = dwe R/dt and differentiating (3.35) with respect to t, we get

(3.38) É,-£« + /3'Kk)É-0   inGÄ.
Since ße(0) = - 1 and since (3.30) holds,

£(jc,0) = -1 - &(*,(*)) + A:1xc(jc) > 0   if -/? < jc < 1.

On x = - R, £ = 0. On x = 5(0, £ > - 8, by (3.37). Since £ is continuous in
Gj,, we can apply the maximum principle to conclude that £ > — 8 in GR.
Taking e -> 0, R -> oo the assertion of the lemma follows.

We have assumed in the above proof that y,, kx, s are in C3 and (3.34)
holds. In the general case, we approximate y,, A:,, 5 by C3 functions y™, k",
sm satisfying all the assumptions of Lemma 3.4 and (3.34). For the corre-
sponding variational inequality, the solution wm satisfies 9wm/9/ > 0. By
uniqueness, wm->w (uniformly, say) as m -> oo, and the assertion of the
lemma readily follows.

We now introduce the free boundary curve jc = o(t) of the variational
inequality (3.9):

o(0 = inf(jc; jc < 5(0, w(jc, 0 > 0),       0 < / < T.

Lemma 3.5. Let s(t) be a monotone increasing function with Holder continu-
ous derivative, for 0 < t < T, such that s(0) = 1. Let yx, kx satisfy the
conditions in (3.4), (3.23), (3.30), (3.31). Then there exists a unique solution w
with compact support of (3.9); w and wx are continuous in G, wx > 0, w, > 0
a.e. in G. Furthermore, the function o(t) is continuous and monotone decreasing
int,0< t < T.

Proof. All the assertions of the lemma, except those regarding o(t), follow
from Lemmas 3.1, 3.2, 3.4. Since wx > 0, w, > 0 a.e. in G, the strong
maximum principle implies that wx > 0, w, > 0 in ß. It follows that (jc,
0 E ß if and only if o(t) < x < s(t) and o(t) is monotone decreasing.
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Clearly a(t) is upper semicontinuous function. Hence o(t) is right continu-
ous. It remains to prove that o(t) is left continuous. If this is not the case then
there is a point t0 E [0, T) such that o(t0 + 0) < o(t0). Introduce the line
segment / = ((x, t0); a(t0 + 0) < x < o(t0)}. Then / is a part of the
boundary of ß. Since D = {(x, t); o(t0 + 0) < x < o(t0), t0 < t < T) is
contained in ß, wt — wxx = - 1 in D, w = 0 on /; it follows that w is smooth
in flu/. But then w, = -1 + wxx = -1 < 0 on /. It follows that
w(x, t) < 0 at the points (x, t) of ß such that o(t0 + 0) < x < o(t0) and
such that t > t0, t — t0 is sufficiently small. This is impossible since w > 0 in
a.

3.4. The case where s(t) is not smooth.

Lemma 3.6. Let the conditions of Lemma 3.5 hold and let s'(t) be a monotone
increasing function with Holder continuous derivative for 0 < t < T such that
s'(0) «■ 1. Denote by w'(x, t) the solution of the variational inequality (3.9) with
s(t) replaced by s'(t), and denote by x = o'(t) the corresponding free boundary.
Ifs'(t) > s(t)for0 < t < T, then
(3.39) w'(x, t) > w(x, t)   for all 0 < x < s(t), 0 < t < T,
(3.40) o'(t) < o(t)   for all 0 < t < T.

Proof. We compare the solution wtR of (3.10) with the corresponding
solution w't R when 5 is replaced by s'.On x = — R and on / = 0, w'eR — weR
= 0. Next, by the proof of Lemma 3.3, for any 8 > 0, w'eR > y, — 5 on
x = s(t) provided R is sufficiently large, depending only on 8. Since weR = y,
on x = s(t), we have we'Ä - weR > — 8 on x = s(t). Applying the maximum
principle to w'eJt — weR, we find that w'eR — weR > — 8 in GR. Taking e -» 0,
i?^oo we conclude that w' - w > - 8 in G. Since 5 is arbitrary the
assertion (3.39) follows. Clearly, (3.40) is a consequence of (3.39).

We shall now consider the variational inequality (3.9) in case s(t) is any
monotone increasing function with i(0) = 1. We shall construct a "gener-
alized" solution as a limit of solutions wn of variational inequalities corre-
sponding to smooth curves sn(t). In order to define sn(t), we define s(t) = 1 if
t <0,

ro = |ceXp[l/(|r - 1|- 1)]    if|*-l|<l,
|0 if|/-l|>l,
pn(t) = np(nt)   if n = 1, 2,. ..,

where c is a positive constant such that fR<p(t) dt = 1.
Let

(3.41) sn(t) = ( pn(t - t)5(t) di= f     pn(t - t)s(t) dr.
•>RX Jt-2/n
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We can write

(3.42) 5„(0 =/ P„(t)5(í - t) dT=f2p(r)s(t - r/n) dr.

From (3.41) we see that 5„(0 is a C°° function, and from (3.42) we see that
5„(0 is a monotone increasing function in t, sn(0) - 1, and

(3.43) s„(t) < 5n+1(0.
Denote by wn the solution of the variational inequality (3.9) corresponding

to 5 = s„ and denote by jc = on(t) the corresponding free boundary curve. By
Lemma 3.6,
(3.44) w„ < wn+x   if - oo < jc < 5„(0, 0 < t < T,
(3.45) on+x(t) < on(t)   ifO</< T.

Set
(3.46) w(x, t) = lim w„(x, t)   if -oo < jc < 5(0, 0 < t < T,

(3.47) o(t) = lim on(t)   if 0 < t< T.

Let 5*(0 be any C00 function such that s^t) < s(t) - 8 if 0 < t < T, for
some 8 > 0, and such that yx(x, t) > 0 in a G-neighborhood of

r* = {(5*(o,0;o< '< r}.
By Remark 2 at the end of §3.2, \w„\ < A in some G-neighborhood N of T*,
where .4 and N are both independent of n. By the proof of Lemma 3.3,
wn > yx > 0 in N and, consequently, wm — wnxx = — 1 in N. By standard
results on parabolic equations we then deduce (if kXxx is Holder continuous)
that wnx, wnt, wnxx are continuous and uniformly bounded in some smaller
G-neighborhood of T*.

We can now consider wn as a solution of the variational inequality (3.9)
with 5(0 replaced by 5*(0- From the proof of Lemma 3.1 we get, for any
1 < p < oo,

(3.48) r('\ \wnx\p + \wmf + \wnxxf] dx<C   if 0 < / < T,
•'-00

where C is a constant independent of n; by approximation, this inequality
holds also when kXxx is not assumed to be Holder continuous.

We can now use the Sobolev inequality to deduce that
(3 49Ï w" 1S umf°rmly Holder continuous in (jc, /),

uniformly with respect to n,
(3 50) w"x xs uniformly Holder continuous in jc,

uniformly with respect to t, n.

In view of (3.46) we then have
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(3.51) w„ -» w uniformly in G*,
,~ r^\ wx is Holder continuous in x, uniformly in t, where

G* = {(x, /); - oo < x < s*(t), 0 < t < T).

Notice also that

(3.53) P*(,)[Kf +H' +K/1 dx< C   if 0 < / < T.
From (3.52) and the proof of Corollary 2.7 in [19] we also deduce that

(3.54) wx is continuous in G*.

Definition. We shall call the function w(x, t) a generalized solution of
the variational inequality (3.9). The curve x = a(t) will be called the free
boundary.

Notice that if w were continuous up to the curve x = s(t) and if wx, wt, wxx
were in L2 in a G-neighborhood of this curve, then w would be a solution of
the variational inequality (3.9) in the usual sense.

Lemma 3.7. Let s(t) be a monotone increasing function for 0 < t < T, with
s(0) = 1, and let yx, kx satisfy the conditions in (3.4), (3.23), (3.30), (3.31). Then
(3.55) o(i) = inf{x; w(x, t) > 0},

w(x, t) = 0 if x < o(t), and the function o(t) is monotone decreasing and
continuous for 0 < t < T.

Proof. Let
ß= {(x,/) G G;w(x,t) >0},

ß„ = {(x,t) EG;wn(x,t)>0},

ß0= {(x,/)G G;x>o(t)}.

In view of (3.44), (3.46), ß„ C ß. Hence
CO

(3.56) ß0= U ß„cß.
B-l

On the other hand, w„(o„(t), t) = 0. Taking n -> oo we get w(a(t), t) = 0.
Observing that wx > 0 a.e. (since wnx > 0 a.e.) we deduce that w(x, í) = 0 if
x < o(t). This, together with (3.56), completes the proof of (3.55).

It is clear that o(t) is monotone decreasing in /. The proof that o(t) is
continuous is the same as in the proof of Lemma 3.5.

Remark. On x = s(t) the generalized solution w may not be continuous.
From Remark 3 at the end of §3.2, when applied to wn with n -> oo, we see
that a: w2 dx dt< oo.
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We conclude this section with a comparison lemma.

Lemma 3.8. Let the condition of Lemma 3.7 hold and let s'(t) be a monotone
increasing function for 0 < t < T, with s'(0) = 1. Denote by w'(x, t) the
generalized solution of (3.9) corresponding to s', and denote its free boundary
curve by x = o'(t). Ifs'(t) > s(t)for 0 < t < T, then

w'(x, 0 > vv(jc, 0   if - oo < jc < 5(0, 0 < t < T,
o'(t) < o(t)   ifO < t < T.

Proof. Denote by s'n the functions defined by (3.41) when 5 is replaced by
s'. Then s'„(t) > s„(t). Now apply Lemma 3.6 to the pair 5„(0, s'„(t) and take
n —> oo.

3.5. Existence of solutions for the Q.V.I. Let o(t) be a monotone decreasing
function for 0 < t < T, with o(0) = - 1. Consider the variational inequality:
Find iv(jc, 0 such that

(3.57)

w > 0     ¡fjt> o(0, 0< t < T,
w„ wx, wxx are in L2(G)   where G = ((jc, 0; 0(0 <*<<», 0 < / < T),
r°° i —    — — z*00
I    (w, - wxx)(v - w) dx > - I    (v - w) dx    for a.a. t E (0, T),

Jo(t) Jo(t)

for any v = u(jc) E L°°(Rx),v > Oa.e,
w = y2   if jc = o(0,0 < t < T,
w(x,0) = k2(x)     if jc > -1.

We shall assume that

(3.58)     y2x < 0, y2, > 0   if jc < - 1,       k2x < 0   if - 1 < jc < 1.

Then we can prove an analog of Lemma 3.2, namely, if o(t) has Holder
continuous first derivatives then wx < 0.

Next we assume

(3-59) k2xx(x)- 1 >0   if -1 < jc < 1;
there is a function y2(jc, /) with continuous derivatives
Ya*. Ya,. Ya« such that

y2(jc, 0 = y2(*,0   if Jc < -1,
(3.60) y2(jc,0)< A:2(jc,0)   if jc > -1,

lim y2(jc, 0 < 0   uniformly in /, 0 < t < T,
x-»oo

yixx - y, > i  if jc e /? ', o < r < r.
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Then we can establish, analogously to Lemmas 3.3, 3.4, that

w(x, t) > y2(x, t)   if o(t) < x < -1,0< t < T,

ñx - 72x > 0   if x - a(t), 0< t <T,

w, > 0   a.e.
Next one can establish an analog of Lemma 3.5 for the variational

inequality (3.57).
Consider now the case where a(t) is merely assumed to be monotone

decreasing with o(0) = -1. Define o(t) = -1 if / < 0, and

o„(0 = ( , Pn(t - t)o(t) dr.
jRi

Denote by w„ the solution of (3.57) when o(t) is replaced by on(t), and denote
by x = s„(t) the corresponding free boundary. Since o„+x(t) < a„(t), we have,
by an analog of Lemma 3.6,

»ñ, < »W       s» < W
Let

w(x, t) = lim w„(x, t),       s(t) = lim sn(t).
v       '      7i-»oo       v       ' v '      n-KX

We call w the generalized solution of the variational inequality (3.57), and we
call x = s(t) the free boundary curve for (3.57).

An analog of Lemma 3.7 is valid. In particular,

w(x, /) > 0   if o(t) < x < s(t),

w(x,t) = 0   ifx>i(/),
s(t) is monotone increasing and continuous for 0 < / < T.

Definition of W. Let 2 denote the class of all monotone increasing
functions s(t), 0 < t < T, with i(0) = 1. For any 5 G 2, denote by x = o(t)
the free boundary of the generalized solution of the variational inequality
(3.9). Denote by x = s(t) the free boundary of the generalized solution of the
variational inequality (3.57). Then the mapping j -> i is denoted by W, i.e.,
s= Ws.

Notice that every í G 2 determines a generalized solution w of (3.9) and a
free boundary x = o(t) which, in turn, determines a generalized solution w of
(3.57).

Definition. If for some s G 2, Ws = í then the corresponding pair (w, w)
is said to form a generalized solution of the Q.V.I. (3.6), (3.7). The curves
x = s(t), x = o(t) a.re called the free boundary curves.

In view of Lemma 3.7 (and the analogous result for (3.57)), the free
boundary curves are continuous.

The set 2 is partially ordered by the relation:
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5, «< 52   if and only if sx (t) < 52(0 for 0 < r < T.

Notice that every subset of elements sa in 2 has an upper bound s in 2,
namely, 5(0 = supa 5o(0, and a lower bound s in 2, namely, 5(0 = infa 5a(0-

By Lemma 3.8 and its counterpart for the variational inequality (3.57) we
see that if sx < s2 then Wsx < Ws2, i.e., W is a monotone increasing
mapping.

Now, from the methods of [10] it follows that the support of the solution w
of (3.57) (for any smooth function 0) is bounded uniformly with respect to 0.
Consequently there is a constant H such that s(t) < H whenever s = Ws,
5 E 2. Defining

s ( A = Í 0     if t = 0.
lW      [H    if 0 < / < T,

we conclude that sx > Wsx.
If 52(0 = 1 then clearly s2 •< Ws2.
Thus, W satisfies the conditions in Lemma 2 of Tartar [23]. We deduce

from this lemma that W has a maximal fixed point 5* and a minimal fixed
point 5* in the interval (sx, s2). Since every fixed point must lie in this interval,
we conclude that
(3.61)    5* > s„    Ws* = 5*,    Ws* « j„,   if Ws = s then s* > s > s,.

Denote by (w>*, w*) the generalized solution of (3.6), (3.7) corresponding to
5*, and denote by (w+, w¿ the generalized solution of (3.6), (3.7) correspond-
ing to 5„. We then have:

Theorem 3.1. Let the conditions (3.4), (3.23), (3.30), (3.31) and (3.58)-(3.60)
hold. Then:

(i) There exist generalized solutions (w*, w*), (w„ wj of (3.6), (3.7) with the
corresponding free boundary functions (s*, 0*) and (s¿, o^).

(ii) // (w, w) is any generalized solution of (3.6), (3.7) with the corresponding
free boundary functions (s, 0), then
(3.62) s+ < s < s*,       o* < 0 < 0„,

(3.63) w+ < w < w*,       w* < vv < iv+,

each inequality in (3.63) is valid in the set where both sides are defined.
(iii) For any solution (w, w) the free boundary functions s(t), o(t) are

continuous functions for 0 < r < T; s(t) is monotone increasing and o(t) is
monotone decreasing.

Chapter 4. Stefan Type Free Boundary Problem for Systems

In Chapters 2, 3 we have solved Q.V.I, by a fixed point theorem for a
monotone increasing operator. In Chapter 5 we shall use a method of integral
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equations in order to find a unique regular solution with regular free
boundaries of the parabolic Q.V.I, of Chapter 3 in the special case of
zero-sum game. This method of integral equations is based on the fact that
the Q.V.I, (for zero-sum game) can be reformulated as a Stefan problem of
melting of ice; for the case of one player, this fact was first noted by Van
Moerbeke [24].

In this chapter we study (by the method of integral equations) a Stefan type
free boundary problem for a system with two "temperatures," 9X and 92. The
system in Chapter 5 is somewhat different (and, in some sense, it is a special
case); it can be studied by the same methods as in this chapter.

4.1. Existence and uniqueness; the increasing case. Let gx(x), g2(x) be
functions defined for -1 < x < 1 and let X,(x, /), A2(x, t) be functions
defined for — oo < x < oo, / > 0, satisfying:

(4 11 Si(x) are continuously differentiable and > 0 for — 1 < x < 1;

\gix\< C;g,(-l) = 0,g2(l) = 0;

(4 2) \(x> 0 are continuously differentiable and > 0;

|Ato|,|^|<C;XI(l,0)-ÍI(l),Aa(-l,0)-&(-l).
We consider the following problem: find functions 9x(x, t), 92(x, t), sx(t), s2(t)
such that

sx(t)<s2(t),       5,(0)= -1,       i2(0)«l,

3ft      320,
(4-3) lu"¿    iîsl(t)<x<s2(t),t>0,

(4.4)

(4.5)

9¡(s¡(t), t) = 0   if / > 0;

9X = X,   if x > s2(t), t > 0,
92 = X2   if x < sx(t),t > 0,

0,(x,O) = g,(x)   if — 1 <x < 1;

s¡(t) is continuously differentiable for / > 0,
,. -x 30,/3x is continuous for t > 0, x < s2(t),

302/3x is continuous for / > 0, x > sx(t),

30,/3/, 320,/3x2 are continuous for t > 0, x G (sx(t), s2(t)).

The main result of this section is the following
Theorem 4.1. Under the assumptions (4.1), (4.2) there exists a unique solution

(0„ 02, sx, s2) of (4.3)-(4.6); furthermore sx(t) decreases and s2(t) increases as t
increases.
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Since (-l)'s,(t) is increasing, we are dealing here with (what we call) the
increasing case. Later on we shall prove a more general theorem whereby
(— 1)'í,(0 is not necessarily increasing.

The proof of Theorem 4.1 is based on the method by Friedman [12], [13,
Chapter 8]. Some details will be omitted.

Lemma 4.1. Let sx(t), s2(t) be two curves satisfying, for 0 < t < a,

sx(t) < s2(t), 5,(0 " continuously differentiable,
5,(0)= -1,52(0)= +1.

Let u(x, t) be a solution of

tF = 0    ifxE(sx(t),s2(t)),0<t<o,

and let 9w/9jc be continuous for x E [5,(0, i2(0]> 0 < í < 0. Then we have, for
x E (sx(t), 52(0), 0 < t < 0, the integral representation of u,

u(x, t) = ¡^K(x, t; £, 0)h(£, 0) ¿£

(4.7)
+ / 52(t)A:(jc, t; 52(t), t)w(52(t), t) dr

Jo

- f sx(r)K(x, t; 5,(t), t)u(sx(t), r) dr

+ fU(x, t; £, r) || (£, t) - «(£ t) || (x, t; £, t)
-.Mt)

dr
í,(t)

where

K(x, t; £, r) =
2nx'2(t - r)1/2

= exp
2 i(x - 0

4(/ - T)

The proof follows by using Green's formula with u, K (see [12], [13]).
Suppose now that there is a solution of the problem (43)-(4.6). Let

(4.8)

(4.9)

(4.10)

(4.11)

90,
ül(0 = 5(0 =--¿(5,(0,0.

9c?2
»a(0- -S2(t) = -^(s2(t),t),

w,(0 = 90,
"9Jc

9jc

(*(0.0.
90,

wi(0 = -97 (ia(0. 0-
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We apply (4.7) to u = 0X, differentiate with respect to jc, let x -^ 5,(0 or
jc -* 52(0 and use a standard jump relation [12], [13, p. 217]. Making use of
(4.3)-(4.5), we arrive at the formulas:

-}¿vx(t)=f^K(sx(t),r,a,o)el(i;)dii

+ f'K(sx(t), t; s2(r), r)[-XXx(s2(r), t)u2(t) + Xlr(s2(r), t)] dr

(4.12) °t
+ ('Kx(sx(t),t;sx(r),r)vx(T)dT

-i'Kx(sx(t),f,s2(r),r)wx(r)dr.

-^i(t)=f^K(s2(t),t;î,0)gx(t)d^

+ Çk(s2(i), t; s2(r), r)[-\Xx(s2(r), t)u2(t) + A,T(52(r), r)] dr
(4.13) J°

+ ftKx(s2(t),t;sx(r),r)vx(r)dr

- f'Kx(s2(t),t;s2(r),r)wx(r)dr.

A similar argument applied to 02 leads to

¿v2(t)~f**K(s2(t),t;iO)g2(S)dt

-jyK(s2(t), r; sx(r),r)[X2x(sx(r),r)vx(r) + X2r(sx(r), r)] dr
(4.14) tl

+ f'Kx(s2(t),t;s2(r),r)v2(r)dr

- f'Kx(s2(t),f,sx(r),r)w2(r)dr,

±w2(t)=f^K(sx(t),t;iO)e2(t)dt

-f'K(sx(t), t; 5,(t), t)[A2jc(5,(t), t)o,(t) + X2t(5,(t), t)1 dr
(4.15) J° J

+ /"/Cc(5,(0,';52(t),t)ü2(t)í/t

-Í'KxM),nSx(T),T)w2(T)dT.J0
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The equations (4.12)—(4.15) form a system of nonlinear integral equations of
Volterra type in vx, v2, wx, w2, noting that sx and s2 are given by

(4.16) *,(0-/o,(t)*-1,•'0

(4.17) s2(t) = - f'v2(r) dr + 1.

Lemma 4.2. There exists a positive number o depending only on C (cf. (4.1)
and (4.2)) such that there exists a unique continuous solution (vx(t), v2(t), wx(t),
w2(t), sx(t), s2(t)) of (4.12)-(4A7) for 0 < t < a.

The proof is similar to the proof in the case of the Stefan problem [12].
Suppose now that we have a solution of (4.12)—(4.17). We wish to show that

this solution yields a solution of the original free boundary problem
(4.3)-(4.6) with

0,(x, t) = f + ]K(x, t; £, 0)g,(£) di~ f'v2(r)K(x, t; s2(r), r)Xx(s2(r), r) dr

(4.18) +/ \-K(x,t;s2(r), t)w,(t) + K(x,t; sx(r),r)vx(r)]dr

+ Çkx (x, t;s2(r), t)A, (s2(r), r) dr,

02(x, t) = [ + ]K(x, t; Í, 0)g2(¿) di- f'vx(r)K(x, t, sx(r), r)X2(sx(r), r) dr

(4.19) + J'[K(x,t;s2(r),r)v2(r) - K(x,t;sx(r),r)w2(r)]dr

- f Kx(x, f, sx(r), r)X2(sx(r), r) dr.

Lemma 4.3. Let (vx, v2, wx, w2, sx, s2) be a continuous solution o/(4.12)-(4.17)
for 0 < t < o such that s2(t) - sx(t) > const > 0. Then 0,, 02 defined by
(4.18), (4.19) together with sx, s2 form a solution of the free boundary value
problem (4.3)-(4.6) for 0 < t < o.

The proof is an easy extension of the proof in [12] for the Stefan problem.
Using the maximum principle we can show that the solution of (4.3)-(4.6)

asserted in Lemma 4.3 satisfies:
(4.20) si(04 and ̂ (OT as t increases.

Proof of Theorem 4.1. We shall prove the following a priori inequalities:
For any solution of (4.3)-(4.6) in an interval 0 < t < t0

(4.21) sx(t)> -M       (0< t < t0),
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(4-22) S2(t)< N (0 < t < t0),

where M, N are positive constants independent of /0.
Using Lemmas 4.2, 4.3 and (4.20) we can then proceed step-by-step to

establish the existence of a unique solution of (4.3)-(4.6); the inequalities
(4.21), (4.22) guarantee that the i-interval in each step is bounded from below
by a positive constant; cf. [12].

We shall estimate sx(t) at any point t = t near t0, t < t0. Let R be the
rectangle given by sx(t) < x < 1, 0 < t < t.

Let w be the solution of the heat equation in R satisfying the boundary
conditions:

w = 0   for x = sx (t ), 0 < t < t,

w = 0   fort = 0ands,(r) < x < -1,

w = gx   for / = 0 and - 1 < x < 1,

w = k   forx = 1,0 < / < /,
where A; is a constant such that

k >   max    g, + max X,
-Kx<I G

where the set G is defined by sx(t) < x < s2(t), 0 < / < t. By the maximum
principle w > 0, for x = 1, 0 < t < t. Also w > 0 in R; therefore w > 0, for
x = sx(t), 0 < t < t. The maximum principle then shows that w > 9X in the
region sx(t) < x < 1, 0 < t < t. Noting that (w - 9x)(sx(t), t) = 0, we con-
clude that

3¿(w-0,)>O   at (¿.(/V"),

i.e.,

(4-23) -il(0 = ^(sx(i),i)<^(sx(i),i).

We also have

(4.24) !^,(>V)<M
where M is a constant independent of t and of the position of sx(t). This can
be easily checked by using the explicit representation of w in terms of the
Green function in the rectangle R (given, for instance, in [13]). The assertion
(4.21) follows from (4.23), (4.24). The proof of (4.22) is similar.

4.2. Asymptotic estimates. In this section we give asymptotic estimates on
the behavior of function s2(t) - sx(t) as t -» oo, namely, we shall prove

Theorem 4.2. Let the assumptions (4.1), (4.2) hold and let
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(4.25) lim sup A,(x, r) < 1 - a       (/ «■ 1, 2; a positive constant),
/->oo     x

(4.26) lim Í inf A,(x, /) + inf A2(x, /)] > y > 0       (y constant).
t—»00

Then there exist positive constants y,, y2 such that

sM) - s At)
(4.27) y, < —-— < y2   /or a// r > 1.

v7
To get the lower bound we actually do not need the condition (4.25); it

suffices to assume that the A, are bounded.
Proof. We shall first establish an identity, which is interesting by itself.

Multiplying the equation 9Xxx = 0,, by x - s2(t) and integrating over the
domain sx(t) < x < s2(t), 0 < t < o, we get

(4.28) f fS2('\x - s2(t))9Xxx dx dt=rfS2('\x - s2(t))9Xl dx dt.
Jo  Js^l) ->0  •'si(f)

By integration by parts,

[dt¡SÁ'\x-s2(t))9Xxxdx

(4.29) J°      J°M
-f [(MO- *a(0)*i(0-M*2(0.')]<*.

f f(x - s2(t))0u(x, t) dx dt= fS2(°\x - s2(o))9x (x, o) dx
Jsi(°)

(4.30)
- J' (x - l)g,(x) dx +f' ¡9x(x, t)s2(t) dx dt.

Next, we have

(4.31) f P2(°(x - sx(t))92xx dx dt=ffS2i'\x - sx(t))02l dx dt.

By integration by parts,

fdt(S2%-sx(t))02xxdx
(4.32) J°      J^l)

-jT[-(*a(0 - sx(t))s2(t) + X2(sx(t), /)] A,

//"(x - sx(t))92l(x, t) dx dt = fS2(o)(x - sx(o))92(x, o) dx
Si(a)

(4.33)
-f_   (x + \)g2(x) dx+jJ92(x, t)sx(t) dx dt.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



308 ALAIN BENSOUSSAN AND AVNER FRIEDMAN

Since by (4.28) the right-hand sides of (4.29), (4.30) are equal and, by (4.31),
the right-hand sides of (4.32), (4.33) are equal, we get, by adding,

(\sx - S2)(ix - ¿a) *- P[A,(J2(0> 0 + *2v*l(0' 0] dt
+ 1,

+ ' -1f     [(l-x)gx(x) + (l + x)g2(x)]dx
J -I

- f2(<,)[(J2(ö) - x)9x(x,a) + (jc - 5,(0))02(jc,0)1 dx

+ ff(9xs2- 92sx)dxdt,

or

\ (s2(o) - sx(o)f= 2 + j°(Xx + X2) dt + f^[(l - x)gx + (1 + x)g2] dx

(4.34) -{') ° [(si(a) - x)°i (x> °) + (x~ *i(0))02(*> «)] dx
JS\(o) J

+ f(S2i')(0xsm2-93sx)dxdt.

Let us now establish the lower bound in (4.27). We note that the double
integral in (4.34) is > 0. Since 9, < M (M constant), we get from (4.34)

i(52(0) - sx(o)f+ M(s2(o) - 5,(0))2> ya-N

where y, N are positive constants, from which follows the left-hand side of
(4.27).

To prove the right-hand side, let t* be such that

X,(x, t) < 1 - a   if - oo < jc < oo, / > t*.

We claim that there exists a r0 > t* such that

(4.35)   9, (jc, 0 < 1 - ß,       0 < ß < a if 5,(0 < JC < 52(0, t > t0.

Indeed, let M > g,(x), M > 1 — a. Consider the solution w of the heat
equation in -oo < jc < oo, t > t*, with initial conditions

w(x t)=iM iîsx(t*)<x<s2(t*),
K'}      [l-a    if jc < 5,(r*)orjc > s2(t*).

In the domain 5,(0 < jc < 52(0, t > t* we have, by the maximum principle,
w > 9,. Now, with s,(t*) = ot„
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M
«i   (4ir(/ - /*)) I/2

exp (* - «r dï

•r•^ — rx

1 - a
■'«2   (4ir(t - '*))

1 - a

1/2
exp

exp

4(1 - /*)

(* - if '
' 4(t - t*)

'      (x-S)2
4(t - t*)

da

dt
-» (4rr(t - t*))l/2

Therefore

w(x, t) < 1 - a + M(a2 - a,)/ (4ir(t - t*))X/2.

Taking t > t0 where f0 - t* is sufficiently large, we obtain the assertion
(4.35).

We can now write an identity similar to (4.34), when x G (sx(t), s2(t)),
t0 < t < o (instead of 0 < t < a):

\ (s2(o) - sx(o))2= I (s2(t0) - sx(t0)f + f°(Xx + X2) dt

+ P2('o)[(i2('o) - x)0, (x, t0) + (x- sx(t0))92(x, t0)] dx
•'ii Co)

~ J       \(s2(°) - x)9x (x, o) + (x - sx (o))92 (x, o) ] dx
•'ii(f)

+ //(0,i2- 02sx)dxdt.

Using (4.35) we get

\ (s2(a) - sx(o)f< 2(1 - a)o + 0(1) + (1 - ß) f°(s2 - sx)(s2 - sx) dt.

Hence
'»o

ß(s2(o) - sx(o))2/2 < 2(1 - a)o + 0(1),

which completes the proof of (4.27).

4.3. The decreasing case. In this section we shall extend Theorem 4.1 to the
case where the functions gx, g2, Xx, X2 are nonpositive. Thus, we assume:

(a i(?\ %i(x) are continuously differentiable and < 0 for -1 < x < 1;

|fc|<C,ft(-l)-0,fc(l)-0;
(4 371 ^i(x, 0 are continuously differentiable and < 0;

\Xix\, |A,,| < C, A,(l, 0) = g,(l), A2(-1, 0) = g2(- 1).
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We shall also assume:

inf     gx(x)> -1, inf     g2(jc)> -1,
(4.38) — 1 < jc < 1 -1<jc<I

inf        Xx(x,t)>-1, inf X2(x,t)>-1.
-\<x<\,t>0 — I < jc< I, r>0      v

Let \(0, \(0 be functions satisfying X,(t) < a,(jc, A < X,(t) < 0 and let

Ti = -[\(t)dt-f\l-x)gx(x)dx,

T2= - f\(t) dt - i' (I + x)g2(x) dx,

/•oo-. r 1
r, = - / xx(t)dt-    (i-x)gx(x)dx,

f2 = - f °\(0 àt - Ç (1 + x)g2(x) dx.

Notice that 0 < T, < T, < oo (/ = 1, 2).

Theorem 4.3. t/zii/er the assumptions (4.36)-(4.38), there exists a unique
solution (0,, 02, sx, s2) of (4.3)-(4.6) for all 0 < t < T* for some T* E (0, oo];
further, sx(t) increases and s2(t) decreases as t increases. If
(4.39) r, + T2 > 4
then T* < oo, and if
(4.40) f, + f2 < 2
then T* = oo.

Proof. Let us first show that if there is a solution for 0 < r < tQ, such that
(4.41) 52(0 - sx(t) > const > 0   for 0 < r < f0,

then
(4.42) 5,(0 < M   ifO < í < t0,
(4.43) -N<s2(t)   iî0< t<t0,

where M, N are positive constants.
To prove (4.42) it is sufficient to verify this inequality at any point t < t0

with the property thati,(0 < sx(t) if 0 < t < t.
We shall need the following lemma.

Lemma 4.4. Let a, b, 0, o, t be positive numbers such that 9 = t - o, a < b.
Let \p(r) = a — a + b(r — o) where a is a real number and r varies in the
interval [o, t]. Let W = {(£, t); i//(t) < £ < oo, o < r < /}. Let w be the
bounded solution of
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dw S2^ . „,-5- = —- in W,
3t      a^2

w(i, o) = 0   if a - a < £ < a,

w(i o) - *(£)    i/a < £ < 00 (-*0 < *(í) < 0),

w(^(t), t) = 0   ifa<r<t.

o<-|| (*(').')

311

M(t)

*(t)-[

'•  (4tt(í - t))I/2
exp

b\t - r)
dr+ k0C(9)

exp
WO - €)
4(t - o)

¿É
''"    (4w(t - a))

ant/ C(0) « a constant independent of a, b, k.

The proof is given in the Appendix.
Notice that (4.44) implies that

0 < -3w(ifl(/),i)/3£< k0b + C(9).
We shall apply Lemma 4.4 with

t = t,o = t -8,b = sx (t), a = sx(t - 8), sx(t) = a - a + bS, 8 > 0,

k = min(inf gx, inf X,) — e,       -1 < k < 0.
Notice, by (4.38), that e > 0 can indeed be chosen so that -1 < k < 0. By
the maximum principle, w < 0. Hence w(sx(r), r) < 0,(s,(t), r) if t — 8 < t
< /".Next

w(£,i-8) < 0,(£,/"-«)   if5,(r"-8) <£< s2(i-8).

Finally, if 8 is sufficiently small (depending on e) then

w(s2(r), r) < Xx(s2(r), r) = 0, (î2(t), t)   for t-8 < r < t.

By the maximum principle we conclude that w < 9X if sx(r) < £ < s2(t),
0 < t < t. Since w(s,(/), /) = 9x(sx(t), t), it follows that

3(01-w)(5,(ô,i")/3|>O.

Consequently,
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b = i,(0 - - ^«l(*l(').0 < - ^"('iCV) < -*(* + C(0))
by Lemma 4.4, i.e., (1 + k)b < C(0). Since 1 + k > 0, we get b < const.
This completes the proof of (4.42). The proof of (4.43) is similar.

We can now proceed to complete the proof of existence and uniqueness for
(4.3)-(4.6) as in the case of Theorem 4.1. As long as (4.41) holds for a
constant arbitrarily small, the solution can be continued in a unique way. By
letting the constant go to 0 we arrive at a maximal interval 0 < t < T* where
the solution of (4.3)-(4.6) exists and is unique. In general, T* < oo. If
T* < oo then we must have sx(T* - 0) = s2(T* - 0), whereas if T* = oo
then 5,(0 < s2(t) for all 0 < t < oo.

We shall now assume that (4.39) holds and prove that T* < oo.
Let 0 < 0 < T*. Multiplying the heat equation for 0, by jc - 52(0 and

integrating with respect to (jc, /), over the region sx(t) < x < s2(t), 0 < / < 0,
we get

920
/ *0* " S'{,)) i? *"£'. "C'^ -sM) TT *

where

/(*)-
/,(*)    if -1 < jc < 5,(0),
0 if * 1(0) < Jc < s2(o),

l2(x)    iîs2(o)<x<l

and /, is the inverse function to s¡.
Integrating by parts, we obtain

f (5,(0 - *a(0)ii(0 dt-f\(s2(t), t) dt
Jo Jo

= f^(x-s2(l(x)))9x(x,l(x))dx

- T1 (jc - l)g,(Jc) dx+ C \'{x)s2(t)9x (jc, 0 dt dx,
J-\ J-lJQ

or,

-fxx(s2(t),t)dt = f(s2(t) - sx(t))sx(t)dt•'0 ^0

+ I       (jc - s2(o))9x (jc, 0) dx
(4.45) •'»if«)

+ f   (l-x)gx(x)dx+ H [Sli,)9x (jc, 0 dx
J-l JQ  \jsi(t)

S2(t) dt.
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By the maximum principle, -1 < 0, < 0. Using also the inequalities i, > 0,
s2 < 0, we find that the sum of the first and last integrals on the right-hand
side of (4.45) is

< f°(s2(t) - sx(t))(sx(t) - s2(t)) dt=2-\ (s2(o) - sx(o)f.

The second integral on the right is

< f ^foi» - x) dx= -z (s2(o) - sx(o)f.
JSt(a) 2

Consequently

- (\M), t)dt<2+ (  (1 - x)gx(x) dx.

Similarly,

- (\M), t)dt<2 + [   (1 + x)g2(x) dx.
•'o •'-i

If T* = oo then the last two inequalities hold also with o = oo. But then
T, + T2 < 4, which contradicts (4.39).

It remains to prove that if (4.40) holds then T* = oo. Suppose that T* < oo
and take of 7* in (4.45). Then the second integral on the right converges to
zero. Noting that the last integral on the right-hand side of (4.45) is nonnega-
tive, we find that

(4.46) -f\(t) dt- Ç (1 - x)gx(x) dx> urn f(s2(t) - sx(t))sx(t) dt.
Jq j-X o\t* Jo

Similarly,

(4.47) - (\(t) dt- f1 (1 + x)g2(x) dx> lim f°(sx(t) - s2(t))s2(t) dt.
Jq J-X a\T* Jq

Since

/ (s2 - si)h dt+ j (sx - s2)s2 dt=2- 2 (s2(o) - sx(o)f->2

as o}T*, we obtain, upon adding (4.46), (4.47), f, + f2 > 2, which con-
tradicts (4.40).

4.4. The general case. In this section we shall consider the general case
where the functions g¡, X¡ need not have the same sign everywhere. More
specifically we shall assume:

,    ... S¡x(x) are continuously differentiable for - 1 < x < 1,

\gix\< C,andg,(-I) = 0,g2(l) = 0;
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A,(jc, 0 are continuously differentiate and \X,X\, \X„\ < C;
(4-49)       A,(l,0) = g,(l),     A2(-l,0)g2(-l);

gx(a¡) = 0     for a0 = -1 < a, < a2 < • • ■ < ak < 1,
g,(jc) ^ 0      if -1 < jc < 1 and jc + a, for all /,

(4.50)        gi(x) changes sign as jc crosses a, (I < / < k),
g2(ß,) = 0    for ft, - 1 > ßx > ß2 > • • • > ß, > -1,
g2(jc) i- 0     if -1 < jc < 1 and jc ̂  jß, for all /,
g2(x) changes sign as jc crosses ß, (I < i < I).

Theorem 4.4. Under the assumptions (4.48)-(4.50) and (4.38), there exists a
unique solution (0„ 02, 5„ s2) of (4.3)-(4.6) for all 0 < t < T for some T E (0,
oo); further sx(t) and s2(t) are both piecewise monotone functions, and s2(T — 0)
= sx(T — 0) in case T < oo.

From the proof it will follow that the direction of monotonicity of 5,(0
(52(0) changes at most k (I) times.

Proof. One can prove the local existence and uniqueness of a solution in
precisely the same way as in Theorem 4.1. Thus, all that remains to be shown
is the piecewise monotonicity of 5,(0 and the a priori bound on s,(t).

Denote by y, the curve defined by 0, = 0, initiating at (ot„ 0); these curves
are constructed in Friedman [16] and Van Moerbeke [24].

Suppose g,(jc) > 0 if — 1 < x < a,. We claim that as long as y, does not
intersect jc = 5,(0 the function 5,(0 is monotone decreasing. Indeed, by the
maximum principle applied to 0, in the region bounded by x = 5,(0, yi and
t = 0 we find that 0, takes its minimum on the boundary jc = 5,(0- Hence

*i(0--M*i(0.')<fc
One can derive a priori bound on sx(t) (as long as jc = 5,(0 does not intersect
y,) by the method of §4.1.

Consider next the case where g,(jc) < 0 if -1 < jc < a,. Using an argu-
ment similar to one given above we deduce that sx(t) > 0 as long as x = sx(t)
does not intersect y,. To find a priori bound on sx(t) we use Lemma 4.4 (as in
the proof of Theorem 4.3). However, here we may simply take o = 0, i.e.,
5 = i.

Denote by r, the first time y, intersects jc = sx(t). For / > /, we have to
take into account the curve y2. As long as y2 does not intersect jc = 5,(0, the
function 5,(0 is monotone (with the direction of monotonicity reversed to the
direction of monotonicity in the interval 0 < / < /,). Furthermore, one can
estimate s\(t) as before. If y2 intersects jc = 5,(0 at time t2, then for / > t2 we
have to consider the curve y3; etc.

The monotone behavior of 52(0 and the a priori bounds on i2(0 can be
obtained in a similar manner.
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Notice that as long as s2(t) — sx(t) remains positive, we can continue with
the construction of the solution step-by-step in /. After time t = tk when the
last yk intersects x = sx(t) (1 < k0 < A), the derivation of the a priori bound
on sx(t) is slightly different than before, in the monotone decreasing case.
Indeed, when we apply Lemma 4.4 we now have to take t = t, o = t — 8
with 8 sufficiently small (cf. the proof of Theorem 4.3). The same discussion
applies to the curve x = i2(/).

Chapter 5. Zero-Sum Stochastic Game with Stopping Times

5.1. Formal derivation of the Stefan problem. For zero-sum game,

f2 =   -f\ =   ~f, 4>2 =   ~^l "   _<í>' ^2 "   -<t>l "   ~4>-
This case has been already studied by Friedman [14], as far as the existence
and uniqueness are concerned. We want here to relate this problem to the
methods of Chapter 4 and study the corresponding Stefan problem.

Let Q = {(x, t); - oo < x < oo, 0 < / < T) and consider a function w(x,
t) satisfying
(5.1) u is continuous in Q, (u, + uxx) E Lf0C(Q),
(5.2) ifl < m < <¡>   in g,
(5.3) if u > i|> then -u, - uxx < /,
(5.4) if u < <b then - u, - uxx > f,
(5.5) w(x, T) = h(x)   if-oo<x<oo.

We assume throughout this section that <f>, ifl are in C2(0),/is in C(Q), h,
h' are continuous for all x, and h" is continuous in [- 1, 1]. It is easy to check
that ux = u and u2= — u satisfy all the sufficient conditions of Theorem 1.1;
consequently, a solution of (5.1)—(5.5) provides a Nash equilibrium point.

The existence and uniqueness of the solution of (5.1)—(5.5) follows from the
general theory of parabolic variational inequalities of Lions-Stampacchia [21]
(see also [14], [15]). The connection between parabolic variational inequalities
and Stefan problems has been developed by Duvaut [11], Friedman [16] and
Friedman and Kinderlehrer [19]; all these authors worked with one-sided
inequality.

We shall first derive formally the Stefan problem corresponding to
(5.1)—(5.5). For convenience, we shall change the time from / into T — t. If u
satisfies:

(5.6) « is continuous in Q, (u, - uxx) E L2oc(Q),
(5.7) ifl < « < (J),
(5.8) if « > ifl then u, - uxx < /,
(5.9) if u < <b then u, - uxx > f,
(5.10) u(x,0) = h(x),
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then m(jc, T - t) satisfies (5.1)—(5.5) with/(jc, 0, <#>(*, 0, ^(*> 0 replaced by
/(jc, T - 0, <Í>(JC, T - t), >Kjc, T - t).

Let 5,(0 and 52(0 be the two boundaries separating respectively u < <b
from u = <p and u > \p from u = \p respectively. Let us assume that these
functions satisfy

(5.11) 5,(0 < J2(0.*i(0) = -Ua(0)L
(5.12) i, < 0, s2 > 0.
Let /,(jc), /2(jc) be the inverse functions of 5,(0, s2(t) respectively. We define
9(x, t) by the following relations:
(5.13) 0 = 0   if* < -l,i < lx(x),

(5.14) <f> - m = [     9(x,r)dr   if x < 1, t > /, (jc),
;/iW

(5.15) <¡>- u = f'0(jc, r)dr - h(x)   if - 1 < jc < 1, t > 0,
•'o

<¡> - u = ['   9(x,r)dr + <b(x, l2 (jc)) - uV(jc, l2 (x))
Jh(x)

(5.16)
(*)

if jc > l,r > /2(jc),

(5.17) 9 = <t>,-$,   iîx> l,t < l2(x).

One easily checks that

(5.18) *,-«,= 0-
We shall assume:
(5.19) A = 0   forjc<-l,       A<0   if jc > — 1 ;

h(x)>\p(x, 0)   forje E[-l,+1],

(5.20) /,(*) = ¡p(x,0)   forje > 1,
4>(jc, 0) = 0   forje > 1;

(5.21) f-<bt + <i>xx = l.
From the regularity conditions (5.6) it follows that a.e. in t, ux is continuous
in jc. Therefore on the free boundaries we have

(5.22) «„(*i(0.')-*«(*l(0.0.
(5.23) ux(s2(t),t) = U^(t\t).
Differentiating (5.14) in jc and taking t •- /,(jc), we get, taking (5.22) into
account,

(5.24) 0(5,(0,0 = 0.
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Differentiating (5.16) with respect to x, we get

<bx(x, t) - ux(x, t) = -i2(x)9(x, l2(x)) + (<bx - tx)(x, l2(x))

(5.25) . et
+ !2(x)(4>l-h)(x,I2(x)) + [     9x(x,r)dr.

Taking t = /2(x) and using (5.23), we get
(5.26) 9(s2(t),t) = (<b,-4',)(s2(t),t).

In the region where (5.14) holds, we get by differentiating twice in x,

(txx - "xx)(x, t)=~ h (x)9x (x, /, (x)) + f   9XX (x, t) dr.
Jl\ W

Therefore, using the fact that 0(x, /,(x)) = 0 (i.e., (5.24)) we get, taking (5.21)
into account,

1 = - /, (x)9x (x, lx (x)) - /'    (0T - 9XX )(x, r) dr

from which we deduce

(5.27) Ox(sx(t),t)--sx(t),
(5.28) 0, - 9XX = 0   if x < -1, / > /, (x).
From (5.15) we deduce by similar calculations

1 +/>r - 9xx)(x,r)dr+ 0(x,O) = -h"(x);
hence

(5.29) 9(x,0)=-(l + h"(x))    ifxG(-l, +1)
(5.30) 9,-9xx=0 ifxG(-l, +l),/>0.
Next, using (5.26) in (5.25), and differentiating (5.25) with respect to x, we get

(<Pxx - "xx)(x, t) = (<bxx - txx)(x, l2(x)) + i2(x)(<bxl - tx,)(x, l2(x))

-Í2(x)9x(x,l2(x))+f'   9xx(x,r)dr.
Jh(x)

After some rearrangement,

(5 31) l + ^'~Xp,~ (<i>" * *«»(*• '*(*» +l\x){e* ~ °**){X' T) dT

= 4 (*)((** - <U(*. h(x)) - 9x(x, l2(x))).
Setting

(5.32) A = <i>, -*„        -p= I + ^ - ^ - ,pxx + rpxx,
we get from (5.31)
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(5.33) 6x(s2(t), t) - Xx(s2(t), t) = s2(t)p(s2(t), 0-

(5.34) 9t- 9XX = 0   if jc > 1, r > /2(jc).

5.2. Verification theorem. We can now state our Stefan problem: find
functions 0(jc, /), 5,(0, s2(t) such that

(5.35) 5,(0 < î2(0.       5.(0) = -1,       í2(0) = +1,
(5.36) 90/9/ -920/9jc2 = 0   if jc E (sx(t), s2(t)), t > 0,
(5.37) 0(5,(0,0 = 0-       >>0,
(5.38) 0(52(O,O = M*2(O>').       t>0,
(5.39) ^(5,(0,0 --ii(0.       >>0,
(5.40) 9x(s2(t),t) = Xx(s2(t),t) + p(s2(t),t)i2(t),       t>0,

(5.41) 0(jc,O) = g(jc),       jcE[-1,+1],
5,, 52 are continuously differentiable for t > 0,

(5.42) 9, 9x, 9t are continuous in (jc, 0,

9XX is continuous for jc E (5,(0, s2(t)), t > 0.

We shall make the following assumptions:

(5.43) *(*)- -0+ *'(*))> *       g(-l) = 0,
g is continously differentiable in [ — 1, +1 ] ;

(5.44) A is continuously differentiable,    \XX\ < C,   \X,\ < C,   X > 0;
(5.45) X(x, 0) > g(x)   if -1< x < 1,       A(l, 0) = g(l);
(5.46) 0 < a < p < C0, p, < 0       (a, C0 positive constants).

Suppose now that there exists a solution of (5.35)-(5.42). Since g > 0, X > 0,
it follows from the maximum principle that 0 > 0. Since 0 = 0 on x = 5,(0,
we see that 0^(5,(0, 0 > 0; hence from (5.39) we get

(5.47) 5,(0 < 0.
Consider next the function w = 9 — \. Clearly, w = 0 on (s2(t), t), w = —A
< 0 on (5,(0, 0 and w - g - X(x, 0) < 0 for / = 0. Since

w, - wxx = 9, - 9XX -X,+ Xxx = p, < 0,

it follows from the maximum principle that w < 0. Since w = 0 on (i2(0,
0, we have

(0, - K)(s2(t), 0 > o.
Since ju > 0, we get from (5.40) that

(5.48) ¿2(0 > 0-
We next define i<(jc, 0 from 0(jc, 0 by using formulas (5.14)—(5.16) and
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(5.49) u = <i>   for x < -1, t < /, (x),
(5.50) m = ifl   forx > 1, / < /2(x),
and_check that it is indeed a solution of (5.6)—(5.10). Clearly u is continuous
in Q. We next have <f>, - w, = 0 which proves that w, is continuous. Next

«^ = «f»x   for x < -1, / < /[ (x),

<k - ux = f '   0x(x, t) rfr   for x < - 1, t > /, (x),
-7, (*)

$x- ux= f'9x(x, r) dr - h'(x)   for -1 < x < 1, t > 0,

<f>* - ux = ('   0x (x, t) dr + <bx(x, l2 (x)) - ^(x, /2 (x))

f or x > 1, í > /2(x),
ux = ipx   forx > I, t < l2(x);

it follows that ux is continuous. Next,

(5.51) uxx = <bxx   forx< -l,/</,(x),

(5.52) $    _ „    - 1 + f '   0   (*, T) dr   for x < - 1, / > /, (x),
Jh(x)

(5.53) $    - M;cjc = [l9xx(x, r) dr - h"(x)   for -1 < x < 1, / > 0,
•'o

<Pxx - »xx = f    <U*' r) Jt + 1 + (<?>, - ,fl,)(x, /2(x))

forx > 1, t > l2(x),
(5.54) ÁX)

(5.55) »„-*„    forx> l,i>/2(x),

from which it easily follows that uxx G L,2oc. Since 0 > 0 and h < 0, (b > ifl,
formulas (5.14)-(5.16) and (5.49), (5.50) imply that u < <b.

Now from above we know that w = 0 - X < 0; hence

(« - ^,) - & - 0 - \¡>, - A - 0 > 0.
But (u - ifl)(i,(0, 0 > 0, (u - iA)(j2(/), 0 = 0, (« - ifl)(x, 0) = Ä -
ifl(x, 0) > 0 for x G [-1, 1]. Therefore u - $ > 0 for .$,(/) < x < s2(/),
/ > 0. From formulas (5.52), (5.53), (5.54) we get
(5.56) ut -uxx=f   if sx(t) < x < s2(t), t > 0,

and
u,-uxx-f~ <?l-4>xx-f= -KO   ifx< -l,/</,(x),

(5-57)  «, - uxx-f=xb, - rPxx-f=p > 0    ifx > 1,/ < /2(x).
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Hence (5.8), (5.9) are proved. Finally (5.10) follows from the definition of u
and from the assumptions on A. We have thus proved

Theorem 5.1. Under the assumptions (5.19)—(5.21) and (5.43)-(5.46), a
solution 0, 5„ 52 of (5.35H5.42) yields by formulas (5.14)-(5.16) and (5.49),
(5.50) a solution o/(5.6)-(5.10).

5.3. Solution of the Stefan problem. Setting
vx(t) = sx(t),       v2(t)= -s2(t),

we can derive integral equations for vx, v2 in a way similar to what we did in
Chapter 4. Using the general formula (4.7) with u = 0 we get, taking into
account (5.37)-(5.40),

0(jc,O = f + 1tf(jc,r;£,0)g(£)¿£- ['v2(r)K(x,t; s2(r),r)X(s2(r),r) dr
J-i Jo

(5.58)       +}o'K(x> '; J2(T)' T)[K(h(T), t) - v2(r) p(s2(r), r)] dr

+ J K(x,t;sx(r),r)vx(r)dr-J X(s2(r), r) -jt (jc, t; s2(r), r) dr.

Differentiating in jc and letting jc -» 5,(0, s2(t) respectively we get (cf. the
derivation of (4.12))

- jvx(t) -f**K(sx(t),t; £, 0)¿(£) ¿£

+ f^Kx(sx(t), t; s2(r), r)[Xx(s2(r), r) - p(s2(r), r)v2(r)] dr

(5-59) °
+ 1 Kx(sx(t),t;sx(r),r)vx(r)dr

+ j^K(sx(t), t; s2(r), r)[-Xx(s2(r), t)ü2(t) + \(s2(r), r)] dr,

j[\»(«í(0.0-»2(')/»(*i(0.0]

= [+,a:(52(0,';£,0)í(£)í/£

(5.60) +/ **(*a(0> 'ï S2(T). t)[X,(52(t), t) - p(s2(r), r)v2(r)] dr

+ f'Kx(s2(t),t;sx(r),r)vx(r)dr

+ ^K(s2(l), t; s2(r), r)[ -Xx(s2(r), t)o2(t) + A,(52(r), r)] dr.
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Since p > a > 0, equations (5.59), (5.60) are two nonlinear integral equations
of Volterra type, when one adds

(5.61) 5,(/)= f'vx(r)dr- 1,
•'o

(5.62) s2(t) m 1 - f'v2(r) dr.
Jo

Existence uniqueness and monotonicity properties of the free boundaries can
be established by the methods of §4.1. Hence

Theorem 5.2. Under the assumptions of Theorem 5.1, there exists a unique
solution of (5.59)-(5.62). Defining 9 by (5.58), the triple (0, sx, j2) is a solution of
the Stefan problem (5.35)-(5.42).

Remark 1. Theorem 4.2 can be extended to the present case. Thus, in
particular, if

p > 1,        lim  sup A(x, /) < 1,
r-»oo     x

then there is a positive constant y such that

*2(0 - sx(t)
- < y   if t > 0.V7

The proof is obtained from an identity similar to (4.34).
Remark 2. Theorems 4.3, 4.4 extend to the case where the function g(x)

takes also negative values. Here we need to apply the methods of §§4.3, 4.4.
In case A = const, Lemma 4.4 can be applied and the extension of Theorems
4.3, 4.4 does not present any difficulties.

Appendix: Proof of Lemma 4.4

By Green's formula

(A.1)        w(x, s) = f°°K(x, s; £, o)k(£) d£+ fSK(x, s; t(r), t)u(t) dr
Ja Jo

where v(r) = -3w(ifl(r), t)/3|. The condition w(<fl(s), s) = 0 can be ex-
pressed in the form

fSK(t(s),s;t(r),r)v(r)dr
(A.2)

r        MS) f    (*(') -1)21        f(s)
I    2^2(s - a)1/2 eXP{       4(5-a)   p     27T'/2'

i.e.,
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1 f       b2exp   - -7-(s-r)\v(r)dr=f(s).
o  (s - t)1/2

Note that/(a) = 0.
By Abel's method (see Van Moerbeke [24]) we can solve v(r) in terms of

f(s) as follows: We multiply both sides of (A.3) by (/ - s)l/2exp(b2s/4) and
integrate with respect to s, o < s < t, and then differentiate both sides with
respect to t. We find that

(A.4)

i.e.,

(A.5)

rr J„
1

- W2(s-r)
«p(-2)*M£H*

b2(s - r), .      b'   C*     J\'t
^'^i0J—yT2"\ 4

1   rs     f'(r) t      b2(s - t)

dr

dr
(S - T)'

= IX(S) + I2(s).

By direct computation we find that Ix(t) is equal to the first term on the
right-hand side of the second inequality of (4.44). Hence it remains to prove
that

(A.6) I2(t)<k0C(9).
To prove (A.6) we compute

f'(r) = - jH*(i){ - \ (T - a)"3/2 + I (t - a)-5/2(¿ - >fl(T))2

+ |(r-a)-3/2(|-^(T))}

• exp
4(t - a)

¿É-

In the last braces, the first term is negative and the other two terms are
positive. Hence

f'(r) < *0jT{ I (T - o)"5^ - ^(T))2 + | (T - a)-V2(c _ ^(T)) j

exp
4(t - a)

2   1

¿t
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By integration by parts,

f(r)<jk0 -i r00(t - 0)     I    exp
•'a

(¿ - *(*))

4(t - 0)
dt

+ 2[b(r - o)x/2 + {-(r - oyx(a - 4>(r))]

exp
4(t - 0)

Setting t - 0 = jc we get

/'(o + *)

<^kJ27TX/2xx/2 + 2[bx~x/2 + {x-\a - 6jc)]exp
(a - bx)2

4Jc

Substituting this into /2(0 we obtain

k0    r9      x\/i

ri2m Jn
(A.7)

0  jc(0 - jc)- W/2 exp

A2(0 - jc)

(a - bx)2
4Jc

dx

exp
62(0 - jc)

k0b  ç9

■n   Jq   xi
1

:'/2(0 - jc)1/2

We have

exp
(a - bx)

~4x

2 1

exp

4

¿>2(0 - jc)

dx

dx

(A.8)

Next,

J, <
2/co

1 " .'/2 •

V r*       11/2 = 2* I exp i(»»-w + i)
0 x(9-x)'"

2m  J0  x(9 - jc)1/2 [      4 \ x  )

dx

dx,
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where m — a/b. (Recall that m < 0.)
Suppose first that m < 30/4. Using the inequality

(2xf2
b exp

we get

b2 (o     o    u. ™2\-—   0 - 2m H-
4 \ x  / (m2 + x(0 - 2m)) 1/2

exp(-I),

£0mexp[-(l/2)]   re
J-y < -—-   j

Jn

d.X
VI m h  xl/2(9- x)x/2(m2 + x(9-2m)) 1/2

Since

m2 + x(9 - 2m) > min(m2, (9 - mf) > min{w2, (0/4)2},

(A.9) j2<JL-kç) expi _ 1 \   if m <

If m > 30/4, we first consider

30
4  "

Jo
0/2 1

X(0 - X)-   v\'/2
bexp\-Ç(9-2m + ^-)\dx

^ cm      i /   ¿2m2\    r   ¿>2        ,2
(A-10)     i     x(0-x)'/2      XPl""8x-)eXP["40(ö-W) í/x

<
re/2

Jo x(0 - x)1/2
¿exp

\     32x /
dx.

Since

(A.11)
j; <

,       I    b292 \   . 4x'/2      /     1 \
èeXpl-l2x-j<-0-eXpl-2j'

1        (9/1  dx     4
(0/2)1/2

Consider next
•9

con dx     4       I     1 \ . 8       /     1 \
i      vT"9exp[-2)<-9^{-2)-

(A.12)    J2 = (' -X—-Kbexp - ¥- [9 - 2m + ^-)
V J9/2 x<9 - x)x/2 4 V x )>B/2 x(9 - x)1/2

Since m > 30/4,

dx.

>j(9-x).

Hence
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(A.14)      y2" < ± fa Jg
■b exp

'8/2 (9 - jc)1/2

From (A.10MA.12) and (A.14) it follows that

V2    .   2

£(*-*) dx < | 2V2T

J2 < 2A:0 V2    ,   2        /     1 \V^+ ^eXP(-2J

Combining this with (A.9) we get

..     .   30if m > — .4

(A. 15) /, < 2/c, V2    ,   2        /MlW  +-eXPl-2j}

It remains to evaluate J3. Clearly,

fe0  re 1 r     ¿2/ 2\
J, = — I   -— A exp ——   0 - 2m -\-

3      m JQ  X\/*(Q - X)V*       V[      4 \ x  )

Suppose first that m < 30/4. Then

r s k° r9        1J3 < — I   -— A exp
m J0  xui,ö     ..Ni/2

¿x.

(A. 16)
c'/2(0 - jc)1/:

^0   fe 1

A2 //) n2- — (0 - m)

21 fir Jn jc>/2(0-,)'/26eXp|'
Aj0
16 Jjc <

dx

2k2kQ (      1 \

If m > 30/4, we first consider

^n       v1

1-T7T A exp
'0      x'/2(0 - jc)1/2

(A.17)        < (
Jn

8/2 -A exp

i(

b29
32jc

0 - 2m + nL
x

dx

dx
Jo     xx/2(9 - x)x/2

4exp(-l/2)   r8/2__dx__     8exp(-l/2)
< 8 Jo     (9- x)x/2 S

If m < 30/4 then we have, by (A. 13),

1

01/2

Jñ
A exp -$(-*.♦*)'

(A. 18) <

V2 jc'/2(0 - jc)1/2
Jjc

V2 (0 - jc)1/2

2V2^ V2   = 4Vg
01/2 '    01/2    *

Combining the estimates (A. 16), (A.17) we find that

dx
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y, <
4¿o

,,1/201/2
-^-H) ..     .   30ifm>T

In view of (A. 16), the last inequality is satisfied also in case m < 30/4.
Combining this inequality with (A. 15), (A.8), and using (A.7), the assertion
(A.6) follows.

Added in proof. (1) It was pointed out by Robert Jensen that the estimate
(4.42) can be derived without recourse to Lemma 4.4. Instead of working with
the function w introduced in Lemma 4.4, we work with

w(£,t) = k0{exp[-b(£ -a + a) + b2(r - a)] - l}.

(2) In a recent paper Smoothness of the free boundary in the Stefan problem
with supercooled water , Robert Jensen proved the existence of a global
solution for the Stefan problem corresponding to the variational inequality

u > 0,   (u, - uxx)(v - u) > -(v - u) for every v > 0,
u(x, 0) = h(x)

provided h'(x) changes sign just once. His method can be applied to extend
Theorem 5.2 (beyond the last remark of §5) to the case when no restrictions
are made on the number of sign changes of the function g(x) (defined in
(5.43)).
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