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Abstract 24 

An exploration-exploitation trade-off, the arbitration between sampling a lesser-known 25 

against a known rich option, is thought to be solved using computationally demanding exploration 26 

algorithms. Given known limitations in human cognitive resources, we hypothesised the presence 27 

of additional cheaper strategies. We examined for such heuristics in choice behaviour where we 28 

show this involves a value-free random exploration, that ignores all prior knowledge, and a novelty 29 

exploration that targets novel options alone. In a double-blind, placebo-controlled drug study, 30 

assessing contributions of dopamine (400mg amisulpride) and noradrenaline (40mg propranolol), 31 

we show that value-free random exploration is attenuated under the influence of propranolol, but 32 

not under amisulpride. Our findings demonstrate that humans deploy distinct computationally 33 

cheap exploration strategies and where value-free random exploration is under noradrenergic 34 

control.  35 
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Introduction  36 

Chocolate, Toblerone, spinach or hibiscus ice-cream? Do you go for the flavour you like 37 

the most (chocolate), or another one? In such an exploration-exploitation dilemma, you need to 38 

decide whether to go for the option with the highest known subjective value (exploitation) or opt 39 

instead for less known or valued options (exploration) so as to not miss out on possibly even higher 40 

rewards. In the latter case, you can opt to either chose an option that you have previously enjoyed 41 

(Toblerone), an option you are curious about because you do not know what to expect (hibiscus), 42 

or even an option that you have disliked in the past (spinach). Depending on your exploration 43 

strategy, you may end up with a highly disappointing ice cream encounter, or a life-changing 44 

gustatory epiphany.  45 

A common approach to the study of complex decision making, for example an exploration-46 

exploitation trade-off, is to take computational algorithms developed in the field of artificial 47 

intelligence and test whether key signatures of these are evident in human behaviour. This 48 

approach has revealed humans use strategies that reflect an implementation of computationally 49 

demanding exploration algorithms (1, 2). One such strategy, directed exploration, involves 50 

awarding an ‘information bonus’ to choice options, a bonus that scales with uncertainty. This is 51 

captured in algorithms such as the Upper Confidence Bound (UCB) (3, 4) and leads to an 52 

exploration of choice options the agent knowns little about (1, 5) (e.g. the hibiscus ice-cream). An 53 

alternative strategy, sometimes termed ‘random’ exploration, is to induce stochasticity after value 54 

computations in the decision process. This can be realised using a fixed parameter as a source of 55 

stochasticity, such as a softmax temperature parameter (6, 7), which can be combined with the 56 

UCB algorithm (1). Alternatively, one can use a dynamic source of stochasticity, such as in 57 

Thompson sampling (8), where stochasticity adapts to an uncertainty about choice options. This 58 
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exploration is essentially a more sophisticated, uncertainty-driven, version of a softmax. By 59 

accounting for stochasticity when comparing choice options’ expected values, in effect choosing 60 

based on both uncertainty and value, these exploration strategies increase the likelihood of 61 

choosing ‘good’ options that are only slightly less valuable than the best (e.g. the Toblerone ice-62 

cream if you are a chocolate lover).  63 

The above processes are computationally demanding, especially when facing real-life 64 

multiple-alternative decision problems (6, 9, 10). Human cognitive resources are constrained by 65 

capacity limitations (11), metabolic consumption (12), but also because of resource allocation to 66 

parallel tasks (e.g. (13, 14)). This directly relates to an agents’ motivation to perform a given task 67 

(11, 15, 16), as increasing an information demand in one process automatically reduces its 68 

availability for others (12). In real-world highly dynamic environments, this arbitration is critical 69 

as humans need to maintain resources for alternative opportunities (i.e. flexibility; (11, 17, 18)). 70 

This accords with previous studies showing humans are demand-avoidant (17, 19) and suggests 71 

that exploration computations tend to be minimised. Here, we examine the explanatory power of 72 

two additional computationally less costly forms of exploration, namely value-free random 73 

exploration and novelty exploration. 74 

Computationally, the least resource demanding way to explore is to ignore all prior 75 

information and to choose entirely randomly, de facto assigning the same probability to all options. 76 

Such ‘value-free’ random exploration, as opposed to the two previously considered ‘value-based’ 77 

random explorations (for simulations comparing their effects cf. Figure 1 – Figure supplement 2) 78 

that add stochasticity during choice value computation, forgoes any costly computation (i.e. value 79 

mean and uncertainty), known as an ϵ-greedy algorithmic strategy in reinforcement learning (20). 80 
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Computational efficiency, however, comes at the cost of sub-optimality due to occasional selection 81 

of options of low expected value (e.g. the repulsive spinach ice cream).  82 

Despite its sub-optimality, value-free random exploration has neurobiological plausibility. 83 

Of relevance in this context is a view that exploration strategies depend on dissociable neural 84 

mechanisms (21). Influences from noradrenaline and dopamine are plausible candidates in this 85 

regard based on prior evidence (9, 22). Amongst other roles (such as memory (23), or energisation 86 

of behaviour (24, 25)), the neuromodulator noradrenaline has been ascribed a function of indexing 87 

uncertainty (26–28) or as acting as a ‘reset button’ that interrupts ongoing information processing 88 

(29–31). Prior experimental work in rats shows boosting noradrenaline leads to more tabula-rasa-89 

like random behaviour (32), while pharmacological manipulations in monkeys indicates reducing 90 

noradrenergic activity increases choice consistency (33).  91 

In human pharmacological studies, interpreting the specific function of noradrenaline on 92 

exploration strategies is problematic as many drugs, such as atomoxetine (e.g. (34)), impact 93 

multiple neurotransmitter systems. Here, to avoid this issue, we chose the highly specific β-94 

adrenoceptor antagonist propranolol, which has only minimal impact on other neurotransmitter 95 

systems (35–37). Using this neuromodulator, we examine whether signatures of value-free random 96 

exploration are impacted by administration of propranolol. 97 

An alternative computationally efficient exploration heuristic to random exploration is to 98 

simply choose an option not encountered previously, which we term novelty exploration. Humans 99 

often show novelty seeking (38–41), and this strategy can be used in exploration as implemented 100 

by a low-cost version of the UCB algorithm. Here a novelty bonus (42) is added if a choice option 101 

has not been seen previously (i.e. it does not have to rely on precise uncertainty estimates). The 102 
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neuromodulator dopamine is implicated not only in exploration in general (43), but also in 103 

signalling such types of novelty bonuses, where evidence indicates a role in processing and 104 

exploring novel and salient states (39, 44–47). Although pharmacological dopaminergic studies in 105 

humans have demonstrated effects on exploration as a whole (48), they have not identified specific 106 

exploration strategies. Here, we used the highly specific D2/D3 antagonist, amisulpride, to 107 

disentangle the specific role of dopamine and noradrenaline on different exploration strategies.  108 

Thus, in the current study, we examine the contributions of value-free random exploration 109 

and novelty exploration in human choice behaviour. We developed a novel exploration task 110 

combined with computational modeling to probe the contributions of noradrenaline and dopamine. 111 

Under double-blind, placebo-controlled, conditions we tested the impact of two antagonists with 112 

a high affinity and specificity for either dopamine (amisulpride) or noradrenaline (propranolol). 113 

Our results provide evidence that both exploration heuristics supplement computationally more 114 

demanding exploration strategies, and that value-free random exploration is particularly sensitive 115 

to noradrenergic modulation.  116 
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Results 117 

Probing the contributions of heuristic exploration strategies 118 

We developed a novel multi-round three-armed bandit task (Figure 1; bandits depicted as 119 

trees), enabling us to assess the contributions of value-free random exploration and novelty 120 

exploration in addition to Thompson sampling and UCB (combined with a softmax). In particular, 121 

we exploited the fact that both heuristic strategies make specific predictions about choice patterns. 122 

The novelty exploration assigns a ‘novelty bonus’ only to bandits for which subjects have no prior 123 

information, but not to other bandits. This can be seen as a low-resolution version of UCB, which 124 

assigns a bonus to all choice options proportionally to how informative they are, in effect a graded 125 

bonus which scales to each bandits’ uncertainty. Thus, to capture this heuristic, we manipulated 126 

the amount of prior information with bandits carrying only little information (i.e. 1 vs 3 initial 127 

samples) or no information (0 initial samples). A high novelty exploration predicts a higher 128 

frequency of selecting the novel option (Figure 1f). This is in contrast to high exploration using 129 

other strategies which does not predict such a strong effect on the novel option (cf. Figure 1 - 130 

Figure supplement 5).  131 

Value-free random exploration, captured here by 𝜖-greedy, predicts that all prior 132 

information is discarded entirely and that there is equal probability attached to all choice options. 133 

This strategy is distinct from other exploration strategies as it is likely to choose bandits known to 134 

be substantially worse than the other bandits. Thus, a high value-free random exploration predicts 135 

a higher frequency of selecting the low-value option (Figure 1e), whereas high exploration using 136 

other strategies does not predict such effect (cf. Figure 1 - Figure supplement 3). A second 137 

prediction is that choice consistency, across repeated trials, is substantially affected by value-free 138 

random exploration. Given that value-free random exploration splits its choice probability equally 139 
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(i.e. 33.3% of choosing any bandit out of the three displayed), an increase in such exploration 140 

predicts a lower likelihood of choosing the same bandit again, even under identical choice options 141 

(Figure 1e). This contrasts to other strategies that make consistent exploration predictions (e.g. 142 

UCB would consistently explore the choice option that carries a high information bonus; Figure 1 143 

- Figure supplement 4). 144 

We generated bandits from four different generative processes (Figure 1c) with distinct 145 

sample means (but a fixed sampling variance) and number of initial samples (i.e. samples shown 146 

at the beginning of a trial for this specific bandit). Subjects were exposed to these bandits before 147 

making their first draw. The ‘certain-standard bandit’ and the (less certain) ‘standard bandit’ were 148 

bandits with comparable means but varying levels of uncertainty, providing either three or one 149 

initial samples (depicted as apples; similar to the horizon task (7)). The ‘low-value bandit’ was a 150 

bandit with one initial sample from a substantially lower generative mean, thus appealing to a 151 

value-free random exploration strategy alone. The last bandit, with a mean comparable with that 152 

of the standard bandits, was a ‘novel bandit’ for which no initial sample was shown, primarily 153 

appealing to a novelty exploration strategy (cf. Materials and Methods for a full description of 154 

bandit generative processes). To assess choice consistency, all trials were repeated once. In the 155 

pilot experiments (data not shown), we noted some exploration strategies tended to overshadow 156 

other strategies. To effectively assess all exploration strategies, we opted to present only three of 157 

the four different bandit types on each trial, as different bandit triples allow different explorations 158 

to manifest. Lastly, to assess whether subjects’ behaviour captured exploration, we manipulated 159 

the degree to which subjects could interact with the same bandits. Similar to previous studies (7), 160 

subjects could perform either one draw, encouraging exploitation (short horizon condition) or six 161 

draws encouraging more substantial explorative behaviour (long horizon condition) (7, 34). 162 
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163 
Figure 1. Study design. In the Maggie’s farm task, subjects had to choose from three bandits 164 

(depicted as trees) to maximise an outcome (sum of reward). The rewards (apple size) of each 165 

bandit followed a normal distribution with a fixed sampling variance. (a) At the beginning of each 166 

trial, subjects were provided with some initial samples on the wooden crate at the bottom of the 167 

screen and had to select which bandit they wanted to sample from next. (b) Depending the 168 

condition, they could either perform one draw (short horizon) or six draws (long horizon). The 169 

empty spaces on the wooden crate (and the suns’ position) indicated how many draws they had 170 

left. The first draw in both conditions was the main focus of the analysis. (c) In each trial, three 171 

bandits were displayed, selected from four possible bandits, with different generative processes 172 

that varied in terms of their sample mean and number of initial samples (i.e. samples shown at the 173 

beginning of a trial). The ‘certain-standard bandit’ and the ‘standard bandit’ had comparable means 174 

but different levels of uncertainty about their expected mean: they provided three and one initial 175 

sample respectively; the ‘low-value bandit’ had a low mean and displayed one initial sample; the 176 

‘novel bandit’ did not show any initial sample and its mean was comparable with that of the 177 

standard bandits. (d) Prior to the task, subjects were administered different drugs: 400mg 178 

amisulpride that blocks dopaminergic D2/D3 receptors, 40mg propranolol to block noradrenergic 179 

β-receptors, and inert substances for the placebo group. Different administration times were chosen 180 

to comply with the different drug pharmacokinetics (placebo matching the other groups’ 181 

administration schedule). (e) Simulating value-free random behaviour with a low vs high model 182 

parameter (𝜖) in this task shows that in a high regime, agents choose the low-value bandit more 183 

often (left panel; mean ± SD) and are less consistent in their choices when facing identical choice 184 
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options (right panel). (f) Novelty exploration exclusively promotes choosing choice options for 185 

which subjects have no prior information, captured by the ‘novel bandit’ in our task. For details 186 

about simulations cf. Materials and Methods. For details about the task display cf. Figure 1 – 187 

Figure supplement 1. For simulations of different exploration strategies and their impact of 188 

different bandits cf. Figure 1 – Figure supplement 2-5.  189 

 190 

Testing the role of catecholamines noradrenaline and dopamine 191 

In a double-blind, placebo-controlled, between-subjects, study design we assigned subjects 192 

(N=60) randomly to one of three experimental groups: amisulpride, propranolol or placebo. The 193 

first group received 40mg of the 𝛽-adrenoceptor antagonist propranolol to alter noradrenaline 194 

function, while the second group was administered 400mg of the D2/D3 antagonist amisulpride 195 

that alters dopamine function. Because of different pharmacokinetic properties, these drugs were 196 

administered at different times (Figure 1d) and compared to a placebo group that received a 197 

placebo at both drug times to match the corresponding antagonists’ time. One subject (amisulpride 198 

group) was excluded from the analysis due to a lack of engagement with the task. Reported 199 

findings were corrected for IQ and mood, as drug groups differed marginally in those measures 200 

(cf. Appendix 2 Table 1), by adding WASI (49) and PANAS (50) negative scores as covariates in 201 

each ANOVA. Similar results were obtained in an analysis that corrected for physiological effects 202 

as from the analysis without covariates (cf. Appendix 1). 203 

Increased exploration when information can subsequently be exploited 204 

Our task embodied two decision-horizon conditions, a short and a long. To assess whether 205 

subjects explored more in a long horizon condition, in which additional information can inform 206 

later choices, we examined which bandit subjects chose in their first draw (in accordance with the 207 

horizon task (7)), irrespective of their drug group. A marker of exploration here is evident if 208 

subjects chose bandits with lower expected values, computed as the mean value of their initial 209 
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samples shown (trials where the novel bandit was chosen were excluded). As expected, subjects 210 

chose bandits with a lower expected value in the long compared to the short horizon (repeated-211 

measures ANOVA for the expected value: F(1, 56)=19.457, p<.001, η2=.258; Figure 2a). To 212 

confirm that this was a consequence of increased exploration, we analysed the proportion of how 213 

often the high-value option was chosen (i.e. the bandit with the highest expected reward based on 214 

its initial samples) and we found that subjects (especially those with higher IQ) sampled from it 215 

more in the short compared to the long horizon, (WASI-by-horizon interaction: F(1,54)=13.304, 216 

p=.001, η2=.198; horizon main effect: F(1, 54)=3.909, p=.053, η2=.068; Figure 3a), confirming a 217 

reduction in exploitation when this information could be subsequently used. Interestingly, this 218 

frequency seemed to be marginally higher in the amisulpride group, suggesting an overall higher 219 

tendency to exploitation following dopamine blockade (cf. Appendix 1). This horizon-specific 220 

behaviour resulted in a lower reward on the 1st sample in the long compared to the short horizon 221 

(F(1, 56)=23.922, p<.001, η2=.299; Figure 2c). When we tested whether subjects were more likely 222 

to choose options they knew less about (computed as the mean number of initial samples shown), 223 

we found that subjects chose less known (i.e. more informative) bandits more often in the long 224 

horizon compared to the short horizon (F(1, 56)=58.78, p<.001, η2=.512; Figure 2b).  225 

Next, to evaluate whether subjects used the additional information beneficially in the long 226 

horizon condition, we compared the average reward (across six draws) obtained in the long 227 

compared to short horizon (one draw). We found that the average reward was higher in the long 228 

horizon (F(1, 56)=103.759, p<.001, η2=.649; Figure 2c), indicating that subjects tended to choose 229 

less optimal bandits at first but subsequently learnt to appropriately exploit the harvested 230 

information to guide choices of better bandits in the long run. Additionally, when looking 231 
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specifically at the long horizon condition, we found that subjects earned more when their first draw 232 

was explorative versus exploitative (Figure 2 - Figure supplement 1c-d; cf. Appendix 2 for details).  233 

 234 

235 
Figure 2. Benefits of exploration. To investigate the effect of information on performance we 236 

collapsed subjects over all three treatment groups. (a) The expected value (average of its initial 237 

samples) of the first chosen bandit as a function of horizon. Subjects chose bandits with a lower 238 

expected value (i.e. they explored more) in the long horizon compared to the short horizon. (b) 239 

The mean number of samples for the first chosen bandit as a function of horizon. Subjects chose 240 

less known (i.e. more informative) bandits more in the long compared to the short horizon. (c) The 241 

first draw in the long horizon led to a lower reward than the first draw in the short horizon, 242 

indicating that subjects sacrificed larger initial outcomes for the benefit of more information. This 243 

additional information helped making better decisions in the long run, leading to a higher earning 244 

over all draws in the long horizon. For values and statistics cf. Appendix 2 Table 3. For response 245 

times and details about all long horizons’ samples cf. Figure 2 – Figure supplement 1. *** =p<.001. 246 

Data are shown as mean ± SEM and each dot/line represent a subject. 247 

 248 

Subjects demonstrate value-free random behaviour  249 

Value-free random exploration (analogue to 𝜖-greedy) predicts that 𝜖	% of the time each 250 

option will have an equal probability of being chosen. In such a regime (compared to more 251 

complex strategies that would favour options with a higher expected value with a similar 252 

uncertainty), the probability of choosing bandits with a low expected value (here the low-value 253 

bandit; Fig. 1e) will be higher (cf. Figure 1 – Figure supplement 3). We investigated whether the 254 

frequency of picking the low-value bandit was increased in the long horizon condition across all 255 

subjects (i.e. when exploration is useful), and we found a significant main effect of horizon (F(1, 256 
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54)=4.069, p=.049, η2=.07; Figure 3b). This demonstrates that value-free random exploration is 257 

utilised more when exploration is beneficial. 258 

Value-free random behaviour is modulated by noradrenaline function 259 

When we tested whether value-free random exploration was sensitive to neuromodulatory 260 

influences, we found a difference in how often drug groups sampled from the low-value option 261 

(drug main effect: F(2, 54)=7.003, p=.002, η2=.206; drug-by-horizon interaction: F(2, 54)=2.154, 262 

p=.126, η2=.074; Figure 3b). This was driven by the propranolol group choosing the low-value 263 

option significantly less often than the other two groups (placebo vs propranolol: t(40)=2.923, 264 

p=.005, d=.654; amisulpride vs propranolol: t(38)=2.171, p=.034, d=.496) with no difference 265 

between amisulpride and placebo: (t(38)=-0.587, p=.559, d=.133). These findings demonstrate that 266 

a key feature of value-free random exploration, the frequency of choosing low-value bandits, is 267 

sensitive to influences from noradrenaline. 268 

To further examine drug effects on value-free random exploration, we assessed a second 269 

prediction, namely choice consistency. Because value-free random exploration ignores all prior 270 

information and chooses randomly, it should result in a decreased choice consistency when 271 

presented identical choice options (cf. Figure 1 – Figure supplement 2 & 4, compared to more 272 

complex strategies which are always biased towards the rewarding or the information providing 273 

bandit for example). To this end, each trial was duplicated in our task, allowing us to compute the 274 

consistency as the percentage of time subjects sampled from an identical bandit when facing the 275 

exact same choice options. In line with the above analysis, we found a difference in consistency 276 

by which drug groups sampled from different option (drug main effect: F(2, 54)=7.154, p=.002, 277 

η2=.209; horizon main effect: F(1, 54)=1.333, p=.253, η2=.024; drug-by-horizon interaction: F(2, 278 

54)=3.352, p=.042, η2=.11; Figure 3c), driven by the fact that the propranolol group chose 279 
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significantly more consistently than the other two groups (pairwise comparisons: placebo vs 280 

propranolol: t(40)=-3.525, p=.001, d=.788; amisulpride vs placebo: t(38)=1.107, p=.272, d=.251; 281 

amisulpride vs propranolol: t(38)=-2.267, p=.026, d=.514). Please see Appendix 1 for further 282 

discussion and analysis of the drug-by-horizon interaction. Taken together, these results indicate 283 

that value-free random exploration depends critically on noradrenaline functioning, such that an 284 

attenuation of noradrenaline leads to a reduction in value-free random exploration. 285 

 286 

Figure 3. Behavioural horizon and drug effects. Choice patterns in the first draw for each horizon 287 

and drug group (propranolol, placebo and amisulpride). (a) Subjects sampled from the high-value 288 

bandit (i.e. bandit with the highest average reward of initial samples) more in the short horizon 289 

compared to the long horizon indicating reduced exploitation. (b) Subjects sampled from the low-290 

value bandit more in the long horizon compared to the short horizon indicating value-free random 291 

exploration, but subjects in the propranolol group sampled less from it overall, and (c) were more 292 

consistent in their choices overall, indicating that noradrenaline blockade reduces value-free 293 

random exploration. (d) Subjects sampled from the novel bandit more in the long horizon 294 

compared to the short horizon indicating novelty exploration. Please note that some horizon effects 295 

were modulated by subjects’ intellectual abilities when additionally controlling for them (cf. 296 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.02.20.958025doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.958025


 

 15 

Appendix 2 Table 4). Horizontal bars represent rm-ANOVA (thick) and pairwise comparisons 297 

(thin). † =p<.07, * =p<.05, ** =p<.01. Data are shown as mean ± SEM and each line represent one 298 

subject. For values and statistics cf. Appendix 2 Table 4. For response times and frequencies 299 

specific to the displayed bandits cf. Figure 3 – Figure supplement 1-2.  300 

 301 

Novelty exploration is unaffected by catecholaminergic drugs 302 

Next, we examined whether subjects show evidence for novelty exploration by choosing the 303 

novel bandit for which there was no prior information (i.e. no initial samples), as predicted by 304 

model simulations (Figure 1f). We found a significant main effect of horizon (F(1, 54)=5.593, 305 

p=.022, η2=.094; WASI-by-horizon interaction: F(1, 54) =13.897, p<.001, η2=.205; Figure 3d) 306 

indicating that subjects explored the novel bandit significantly more often in the long horizon 307 

condition, and this was particularly strong for subjects with a higher IQ. We next assessed whether 308 

novelty exploration was sensitive to our drug manipulation, but found no drug effects on the novel 309 

bandit (F(2, 54)=1.498, p=.233, η2=.053; drug-by-horizon interaction: F(2, 54)=.542, p=.584, 310 

η2=.02; Figure 3d). Thus, there was no evidence that an attenuation of dopamine or noradrenaline 311 

function impact novelty exploration in this task.  312 

Subjects combine computationally demanding strategies and exploration heuristics 313 

To examine the contributions of different exploration strategies to choice behaviour, we 314 

fitted a set of computational models to subjects’ behaviour, building on models developed in 315 

previous studies (1). In particular, we compared models incorporating UCB, Thompson sampling, 316 

an 𝜖-greedy algorithm and the novelty bonus (cf. Materials and Methods). Essentially, each model 317 

makes different exploration predictions. In the Thompson model, Thompson sampling (8, 51) leads 318 

to an uncertainty-driven value-based random exploration, where both expected value and 319 

uncertainty contribute to choice. In this model higher uncertainty leads to more exploration such 320 

that instead of selecting a bandit with the highest mean, bandits are chosen relative to how often a 321 
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random sample would yield the highest outcome, thus accounting for uncertainty (2). The UCB 322 

model (3, 4), capturing directed exploration, predicts that each bandit is chosen according to a 323 

mixture of expected value and an additional expected information gain (2). This is realised by 324 

adding a bonus to the expected value of each option, proportional to how informative it would be 325 

to select this option (i.e. the higher the uncertainty in the options’ value, the higher the information 326 

gain). This computation is then passed through a softmax decision model, capturing value-based 327 

random exploration. Novelty exploration is a simplified version of the information bonus in the 328 

UCB algorithm, which only applies to entirely novel options. It defines the intrinsic value of 329 

selecting a bandit about which nothing is known, and thus saves demanding computations of 330 

uncertainty for each bandit. Lastly, the value-free random 𝜖-greedy algorithm selects any bandit 𝜖 331 

% of the time, irrespective of the prior information of this bandit. For additional models cf. 332 

Appendix 1.  333 

We used cross-validation for model selection (Figure 4a) by comparing the likelihood of 334 

held-out data across different models, an approach that adequately arbitrates between model 335 

accuracy and complexity. The winning model encompasses uncertainty-driven value-based 336 

random exploration (Thompson sampling) with value-free random exploration (𝜖-greedy 337 

parameter) and novelty exploration (novelty bonus parameter	𝜂). The winning model predicted 338 

held-out data with a 55.25% accuracy (SD=8.36%; chance level =33.33%). Similarly to previous 339 

studies (1), the hybrid model combining UCB and Thompson sampling explained the data better 340 

than each of those processes alone, but this was no longer the case when accounting for novelty 341 

and value-free random exploration (Figure 4a). The winning model further revealed that all 342 

parameter estimates could be accurately recovered (Figure 4b; Figure 4 – Figure supplement 3). 343 

Interestingly, although the 2nd and 3rd place models made different prediction about the complex 344 
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exploration strategy, using a directed exploration with value-based random exploration (UCB) or 345 

a combination of complex strategies (hybrid) respectively, they share the characteristic of 346 

benefitting from value-free random and novelty exploration. This highlights that subjects used a 347 

mixture of computationally demanding and heuristic exploration strategies. 348 

349 
Figure 4. Subjects use a mixture of exploration strategies. (a) A 10-fold cross-validation of the 350 

likelihood of held-out data was used for model selection (chance level =33.3%; for model selection 351 

at the individual level cf. Figure 4 – Figure supplement 1). The Thompson model with both the 𝜖-352 

greedy parameter and the novelty bonus 𝜂 best predicted held-out data (b) Model simulation with 353 4! simulations predicted good recoverability of model parameters (for correlations between 354 

behaviour and model parameters cf. Figure 4 – Figure supplement 2); 𝜎" is the prior variance and 355 𝑄" is the prior mean (for parameter recovery correlation plots cf. Figure 4 – Figure supplement 3). 356 

1 stands for short horizon-, and 2 for long horizon-specific parameters. For values and parameter 357 

details cf. Appendix 2 Table 5.  358 

 359 

Noradrenaline controls value-free random exploration 360 

To more formally compare the impact of catecholaminergic drugs on different exploration 361 

strategies, we assessed the free parameters of the winning model between drug groups (Figure 5, 362 

cf. Appendix 2 Table 6 for exact values). First, we examined the 𝜖-greedy parameter that captures 363 

the contribution of value-free random exploration to choice behaviour. We assessed how this 364 

value-free random exploration differed between drug groups. A significant drug main effect (drug 365 

main effect: F(2, 54)=6.722, p=.002, η2=.199; drug-by-horizon interaction: F(2, 54)=1.305, p=.28, 366 
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η2=.046; Figure 5a) demonstrates that the drug groups differ in how strongly they deploy this 367 

exploration strategy. Post-hoc analysis revealed that subjects with reduced noradrenaline 368 

functioning had the lowest values of 𝜖 (pairwise comparisons: placebo vs propranolol: 369 

t(40)=3.177, p=.002, d=.71; amisulpride vs propranolol: t(38)=2.723, p=.009, d=.626) with no 370 

significant difference between amisulpride vs placebo: (t(38)=.251, p=.802, d=.057). Critically, 371 

the effect on 𝜖 was also significant when the complex exploration strategy was a directed 372 

exploration with value-based random exploration (2nd place model) and, marginally significant, 373 

when it was a combination of the above (3rd place model; cf. Appendix 1). 374 

The 𝜖-greedy parameter was also closely linked to the above behavioural metrics (correlation 375 

between the 𝜖-greedy parameter with draws from the low-value bandit: 𝑅#$%&'()=.828, p<.001; 376 

and with choice consistency: 𝑅#$%&'()=-.596, p<.001; Figure 4 – Figure supplement 2), and 377 

showed a similar horizon effect (horizon main effect: F(1, 54)=1.968, p=.166, η2=.035; WASI-378 

by-horizon interaction: F(1, 54)=6.08, p=.017, η2=.101; Figure 5a). Our findings thus accord with 379 

the model-free analyses and demonstrate that noradrenaline blockade reduces value-free random 380 

exploration. 381 

  382 
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 383 

 384 

Figure 5. Drug effects on model parameters. The winning model’s parameters were fitted to 385 

each subject’s first draw (for model simulations cf. Figure 5 – Figure supplement 1). (a) Subjects 386 

had higher values of 𝜖 (value-free random exploration) in the long compared to the short horizon. 387 

Notably, subjects in the propranolol group had lower values of 𝜖 overall, indicating that 388 

attenuation of noradrenaline functioning reduces value-free random exploration. Subjects from 389 

all groups (b) assigned a similar value to novelty, captured by the novelty bonus η, which was 390 

higher (more novelty exploration) in the long compared to the short horizon. (c) The groups had 391 

similar beliefs 𝑄" about a bandits’ mean before seeing any initial samples and (d) were similarly 392 

uncertain 𝜎" about it (for gender effects cf. Figure 5 – Figure supplement 2). Please note that 393 

some horizon effects were modulated by subjects’ intellectual abilities when additionally 394 

controlling for them (cf. Appendix 2 Table 6). ** =p<.01. Data are shown as mean ± SEM and 395 

each dot/line represent one subject. For parameter values and statistics cf. Appendix 2 Table 6. 396 

 397 

No drug effects on other parameters 398 

The novelty bonus	𝜂 captures the intrinsic reward of selecting a novel option. In line with the 399 

model-free behavioural findings, there was no difference between drug groups in terms of this 400 
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effect (F(2, 54)=.249, p=.78, 𝜂*=.009; drug-by-horizon interaction: F(2, 54)=.03, p=.971, 401 

𝜂*=.001). There was also a close alignment between model-based and model-agnostic analyses 402 

(correlation between the novelty bonus	𝜂 with draws from the novel bandit: 𝑅#$%&'()=.683, 403 

p<.001; Figure 4 – Figure supplement 2), and we found a similarly increased novelty bonus effect 404 

in the long horizon in subjects with a higher IQ (WASI-by-horizon interaction: F(1, 54) =8.416, 405 

p=.005, 𝜂*=.135; horizon main effect: F(1, 54)=1.839, p=.181, 𝜂*=.033; Figure 5b). 406 

When analysing the additional model parameter, we found that subjects had similar prior 407 

beliefs about bandits, given by the initial estimate of a bandit’s mean (prior mean 𝑄": F(2, 408 

54)=.118, p=.889, 𝜂*=.004; Figure 5c) and their uncertainty about it (prior variance 𝜎": horizon 409 

main effect: F(1, 54)=.129, p=.721, 𝜂*=.002; drug main effect: F(2, 54)=.06, p=.942, 𝜂*=.002; 410 

drug-by-horizon interaction: F(2, 54)=2.162, p=.125, 𝜂*=.074; WASI-by-horizon interaction: F(1, 411 

54)=.022, p=.882, 𝜂*<.001; Figure 5d). Interestingly, our dopamine manipulation seemed to affect 412 

this uncertainty in a gender-specific manner, with female subjects having larger values of 𝜎" 413 

compared to males in the placebo group, and with the opposite being true in the amisulpride group 414 

(cf. Appendix 1). Taken together, these findings show that value-free random exploration was most 415 

sensitive to our drug manipulations.  416 
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Discussion 417 

Solving the exploration-exploitation problem is non trivial, and one suggestion is that 418 

humans solve it using computationally demanding exploration strategies (1, 2), taking account of 419 

the uncertainty (variance) as well as the expected reward (mean) of each choice. Although tracking 420 

the distribution of summary statistics (e.g. mean and variance) is less resource costly than keeping 421 

track of full distributions (52), it nevertheless carries considerable costs when one has to keep track 422 

of multiple options, as in exploration. Indeed, in a three-bandit task such as that considered here, 423 

this results in a necessity to compute 6 key-statistics, drastically limiting computational resources 424 

when selecting among choice options (10). Real-life decisions often comprise an unlimited range 425 

of options, which results in a tracking of a multitude of key-statistics, potentially mandating a 426 

deployment of alternative more efficient strategies. Here, we demonstrate that two additional, less 427 

resource-hungry heuristics are at play during human decision-making, value-free random 428 

exploration and novelty exploration.  429 

By assigning intrinsic value (novelty bonus (42)) to an option not encountered before (53), 430 

a novelty bonus can be seen as an efficient simplification of demanding algorithms, such as UCB 431 

(3, 4). It is interesting to note that our winning model did not include UCB, but instead novelty 432 

exploration. This indicates humans might use such a novelty shortcut to explore unseen, or rarely 433 

visited, states to conserve computational costs when such a strategy is possible. A second 434 

exploration heuristic that also requires minimal computational resources, value-free random 435 

exploration, also plays a role in our task. Even though less optimal, its simplicity and neural 436 

plausibility renders it a viable strategy. We show through converging behavioural and modelling 437 

measures that both value-free random and novelty exploration were deployed in a goal-directed 438 

manner, coupled with increased levels of exploration when this was strategically useful. 439 
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Importantly, these heuristics were observed in all best models (1st, 2nd and 3rd position) even though 440 

each incorporated different exploration strategies. This suggests that the complex models made 441 

similar predictions in our task, and demonstrates that value-free random exploration is at play even 442 

when accounting for other value-based forms of random exploration (1, 7), whether fixed or 443 

uncertainty-driven.  444 

Exploration was captured in a similar manner to previous studies (7), by comparing in the 445 

same setting (i.e. same prior information) the first choice in a long decision horizon, where reward 446 

can be increased in the long term through information gain, and in a short decision horizon where 447 

information cannot subsequently be put to use. This means that by changing the opportunity to 448 

benefit from the information gained for the first sample, the long horizon invites extended 449 

exploration (7), what we find also in our study. This experimental manipulation is a well-450 

established means for altering exploration and has been used extensively in previous studies (7, 451 

21, 34, 54). Nevertheless, there remains a possibility that a longer horizon may also affect the 452 

psychological nature of the task. In our task, reward outcomes were presented immediately after 453 

every draw, rendering it unlikely that perception of reward delays (i.e. delay discounting) is 454 

impacted. Moreover, a monetary bonus was given only at the end of the task, and thus did not 455 

impact a horizon manipulation. We also consider our manipulation was unlikely to change effort 456 

in each horizon, because the reward (i.e. size of the apple) remains the same at every draw, 457 

resulting in an equivalent reward-effort ratio (55–58). However, this issue can be addressed in 458 

further studies, for example, by equating the amount of button presses across both conditions.  459 

Value-free random exploration might reflect other influences, such as attentional lapses or 460 

impulsive motor responses. We consider these as unlikely to a significant factor at play here. 461 

Indeed, there are two key features that would signify such effects. Firstly, these influences would 462 
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be independent of task condition. Secondly, they would be expected to lead to shorter, or more 463 

variable, response latencies. In our data, we observe an increase in value-free exploration in the 464 

long horizon condition in both behavioural measures and model parameters, speaking against an 465 

explanation based upon simple mistakes. Moreover, we did not observe a difference in response 466 

latency for choices that were related to value-free random exploration (cf. Appendix 1), further 467 

arguing against mistakes. Lastly, the sensitivity of value-free random exploration to propranolol 468 

supports this being a separate process, and previous studies using the same drug did not find an 469 

effect on task mistakes (e.g. on accuracy (59); (33, 58–60)). However, future studies could explore 470 

these exploration strategies in more detail including by reference to subjects’ own self-reports. 471 

It is still unclear how exploration strategies are implemented neurobiologically. 472 

Noradrenaline inputs, arising from the locus coeruleus (63) (LC) are thought to modulate 473 

exploration (2, 64, 65), though empirical data on its precise mechanisms and means of action 474 

remains limited. In this study, we found that noradrenaline impacted value-free random 475 

exploration, in contrast to novelty exploration and complex exploration. This might suggest that 476 

noradrenaline influences ongoing valuation or choice processes that discards prior information. 477 

Importantly, this effect was observed whether the complex exploration was an uncertainty-driven 478 

value-based random exploration (winning model), a directed exploration with value-based random 479 

exploration (2nd place model) or a combination of the above (3rd place model; cf. Appendix 1). 480 

This is consistent with findings in rodents where enhanced anterior cingulate noradrenaline release 481 

leads to more random behaviour (32). It is also consistent with pharmacological findings in 482 

monkeys that show enhanced choice consistency after reducing LC noradrenaline firing rates (33). 483 

It would be interesting for future studies to determine, in more detail, whether value-free random 484 
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exploration is corrupting a value computation itself, or whether it exclusively biases the choice 485 

process.  486 

We note that pupil diameter has been used as an indirect marker of noradrenaline activity 487 

(66), although the link between the two it not always straightforward (36). Because the effect of 488 

pharmacologically induced changes of noradrenaline levels on pupil size remains poorly 489 

understood (36, 67), including the fact that previous studies found no effect of propranolol on pupil 490 

diameter (36, 68), we opted against using pupillometry in this study. However, our current findings 491 

align with previous human studies that show an association between this indirect marker and 492 

exploration, but that study did not dissociate between the different potential exploration strategies 493 

that subjects could deploy (69). Future studies might usefully include indirect measures of 494 

noradrenaline activity, for example pupillometry, to examine a potential link between natural 495 

variations in noradrenaline levels and a propensity towards value-free random exploration. 496 

The LC has two known modes of synaptic signalling (63), tonic and phasic, thought to have 497 

complementary roles (31). Phasic noradrenaline is thought to act as a reset button (31), rendering 498 

an agent agnostic to all previously accumulated information, a de facto signature of value-free 499 

random exploration. Tonic noradrenaline has been associated, although not consistently (70), with 500 

increased exploration (64, 71), decision noise in rats (72) and more specifically with random as 501 

opposed to directed exploration strategies (34). This later study unexpectedly found that boosting 502 

noradrenaline decreased (rather than increased) random exploration, which the authors speculated 503 

was due to an interplay with phasic signalling. Importantly, the drug used in that study also affects 504 

dopamine function making it difficult to assign a precise interpretation to the finding. A 505 

consideration of this study influenced our decision to opt for drugs with high specificity for either 506 

dopamine or noradrenaline (59), enabling us to reveal highly specific effects on value-free random 507 
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exploration. Although the contributions of tonic and phasic noradrenaline signalling cannot be 508 

disentangled in our study, our findings align with theoretical accounts and non-primate animal 509 

findings, indicating that phasic noradrenaline promotes value-free random exploration.  510 

Aside from this ‘reset signal’ role, noradrenaline has been assigned other roles, including 511 

a role in memory function (23, 73, 74). To minimise a possible memory-related impact, we 512 

designed the task such that all necessary information was visible on the screen at all times. This 513 

means subjects did not have to memorise values for a given trial, rendering the task less susceptible 514 

to forgetting or other memory effects. Another role for noradrenaline relates to volatility and 515 

uncertainty estimation (26–28), as well as the energisation of behaviour (24, 25). Non-human 516 

primates studies demonstrate a higher LC activation for high effort choices, suggesting that 517 

noradrenaline release facilitates energy mobilisation (24). Theoretical models also suggest that the 518 

LC is involved in the control of effort exertion. Thus, it is thought to contribute to trading off 519 

between effortful actions leading to large rewards and “effortless” actions leading to small rewards 520 

by modulating “raw” reward values as a function of the required effort (25). Our task can be 521 

interpreted as encapsulating such a trade-off: complex exploration strategies are effortful but 522 

optimal in terms of reward gain, while value-free random exploration requires little effort while 523 

occasionally leading to low reward. Applying this model, a noradrenaline boost could optimise 524 

cognitive effort allocation for high reward gain (25), thereby facilitating complex exploration 525 

strategies compared to value-free random exploration. In such a framework, blocking 526 

noradrenaline release should decrease usage of complex exploration strategies, leading to an 527 

increase of value-free random exploration which is the opposite of what we observed in our data. 528 

Another interpretation of an effort-facilitation model of noradrenaline is that a boost would help 529 

overcoming cost, i.e. the lack of immediate reward when selecting the low-value bandit, essentially 530 
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providing a significant increase to the value of information gain. In line with our results, a decrease 531 

would interrupt this boost in valuation, removing an incentive to choose the low-value option. 532 

However, this theory is currently limited by the absence of empirical evidence for noradrenaline 533 

boosting valuation.  534 

Noradrenaline blockade by propranolol has been shown previously to enhance 535 

metacognition (75), decrease information gathering (59), and attenuate arousal-induced boosts in 536 

incidental memory (36). All of these findings, including a decrease in value-free random 537 

exploration found here, suggests propranolol may influence how neural noise affects information 538 

processing. In particular, the results indicate that under propranolol behaviour is more 539 

deterministic and less influenced by ‘task-irrelevant’ distractions. This aligns with theoretical 540 

ideas, as well as recent optogenetic evidence (32), that propose noradrenaline infuses noise in a 541 

temporally targeted way (31). It also accords with studies implicating noradrenaline in attention 542 

shifts (for a review cf. (76)). Other theories of noradrenaline/catecholamine function can link to 543 

determinism (64, 65), although the hypothesized direction of effect is different (i.e. noradrenaline 544 

increases determinism). This idea can be extended also to tasks where propranolol has been shown 545 

to attenuate a discrimination between different levels of loss (with no effect on the value-based 546 

exploration parameter, referred to in these studies as consistency) (62) and a reduction in loss 547 

aversion (60). This hints at additional roles for noradrenaline on prior information and task-548 

distractibility during exploration in loss frame environments. Future studies investigating 549 

exploration in loss contexts might provide important additional information on these questions.  550 

It is important to mention here that β-adrenergic receptors, the primary target of 551 

propranolol, have been shown (unlike 𝛼-adrenergic receptors) to increase synaptic inhibition 552 

within rat cortex (77), specifically through inhibitory GABA-mediated transmission (78). 553 
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Additionally 𝛽-adrenergic receptors are more concentrated in the intermediate layers in the 554 

prefrontal area (79), within which inhibition is favoured (80). Thus inhibitory mechanisms might 555 

account for noradrenaline-related task-distractibility and randomness, or the role of β-adrenergic 556 

receptors in executive function impairments (81). This raises the question of whether blocking β-557 

adrenergic receptors might lead to an accumulation of synaptic noradrenaline, and therefore act 558 

via α-adrenergic receptors. To the best of our knowledge, evidence for such an effect is limited. A 559 

second question is whether the observed effects are a pure consequence of propranolol’s impact 560 

on the brain, or whether they reflect peripheral effects of propranolol. When we examined 561 

peripheral markers (i.e. heart rate) and behaviour we found no evidence for an effect on any of our 562 

findings, rendering such influences unlikely. However, future studies using drugs that exclusively 563 

targets peripheral, but not central, noradrenaline receptors (e.g. (82)) are needed to answer this 564 

question conclusively.  565 

Dopamine has been ascribed multiple functions besides reward learning (83), such as 566 

novelty seeking (46, 84, 85) or exploration in general (43). In fact, studies have demonstrated that 567 

there are different types of dopaminergic neurons in the ventral tegmental area, and that some 568 

contribute to non-reward signals, such as saliency and novelty (44). This suggests a role in novelty 569 

exploration. Moreover, dopamine has been suggested as important in an exploration-exploitation 570 

arbitration (21, 86, 87), although its precise role remains unclear, given reported effects on random 571 

exploration (88), on directed exploration (45, 89), or no effects at all (90). A recent study found 572 

no effect following dopamine blockade using haloperidol (87), which interestingly also affects 573 

noradrenaline function (e.g. (91, 92)). Our results did not demonstrate any main effect of dopamine 574 

manipulation on exploration strategies, even though blocking dopamine was associated with a 575 

trend level increase in exploitation (cf. Appendix 1). We believe it unlikely this reflects an 576 
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ineffective drug dose as previous studies have found neurocognitive effects with the same dose 577 

(36, 59, 93, 94).  578 

One possible reason for an absence of significant findings is that our dopaminergic 579 

blockade targets D2/D3 receptors rather than D1 receptors, a limitation due a lack of available 580 

specific D1 receptor blockers for use in humans. An expectation of greater D1 involvement arises 581 

out of theoretical models (95) and a prefrontal hypothesis of exploration (89). Interestingly, we 582 

observed a weak gender-specific differential drug effect on subjects’ uncertainty about an expected 583 

reward, with women being more uncertain than men in the placebo setting, but more certain in the 584 

dopamine blockade setting (cf. Appendix 1). This might be meaningful as other studies using the 585 

same drug have also found behavioural gender-specific drug effects (96). Upcoming, novel drugs 586 

(97) might be able help unravel a D1 contribution to different forms of exploration. Additionally, 587 

future studies could use approved D2/D3 agonists (e.g. ropinirole) in a similar design to probe 588 

further whether enhancing dopamine leads to a general increase in exploration.  589 

In conclusion, humans supplement computationally expensive exploration strategies with 590 

less resource demanding exploration heuristics, and as shown here the latter include value-free 591 

random and novelty exploration. Our finding that noradrenaline specifically influences value-free 592 

random exploration demonstrates that distinct exploration strategies may be under specific 593 

neuromodulator influence. Our current findings may also be relevant to enabling a richer 594 

understanding of disorders of exploration, such as attention-deficit/hyperactivity disorder (22, 98) 595 

including how aberrant catecholamine function might contribute to its core behavioural 596 

impairments.   597 
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Materials and Methods 598 

Subjects 599 

Sixty healthy volunteers aged 18 to 35 (mean =23.22, SD =3.615) participated in a double-600 

blind, placebo-controlled, between-subjects study. The sample size was determined using power 601 

calculation taking effect sizes from our prior studies that used the same drug manipulations (36, 602 

59, 75). Each subject was randomly allocated to one of three drug groups, controlling for an equal 603 

gender balance across all groups (cf. Appendix 1). Candidate subjects with a history of 604 

neurological or psychiatric disorders, current health issues, regular medications (except 605 

contraceptives), or prior allergic reactions to drugs were excluded from the study. Subjects had 606 

(self-reported) normal or corrected-to-normal vision. The groups consisted of 20 subjects each 607 

matched (cf. Appendix 2 Table 1) for gender and age. To evaluate peripheral drug effects, heart 608 

rate, systolic and diastolic blood pressure were collected to at three different time-points: ‘at 609 

arrival’, ‘pre-task’ and ‘post-task’, cf. Appendix 1 for details. At 50 minutes after administrating 610 

the 2nd drug, subjects were filled in the PANAS questionnaires (50) and completed the WASI 611 

Matrix Reasoning subtest (49). Subjects differed in mood (PANAS negative affect, cf. Appendix 612 

1 for details) and marginally in intellectual abilities (WASI), and so we control for these potential 613 

confounders in our analyses (cf. Appendix 1 for uncorrected results). Subjects were reimbursed 614 

for their participation on an hourly basis and received a bonus according to their performance 615 

(proportional to the sum of all the collected apples’ size). One subject from the amisulpride group 616 

was excluded due to not engaging in the task and performing at chance level. The study was 617 

approved by the UCL research ethics committee and all subjects provided written informed 618 

consent. 619 

Pharmacological manipulation 620 
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To reduce noradrenaline functioning, we administered 40mg of the non-selective β-621 

adrenoceptor antagonist propranolol 60 minutes before the task (Fig 1D). To reduce dopamine 622 

functioning, we administered 400mg of the selective D2/D3 antagonist amisulpride 90 minutes 623 

before the task. Because of different pharmacokinetic properties, drugs were administered at 624 

different times. Each drug group received the drug on its corresponding time point and a placebo 625 

at the other time point. The placebo group received placebo at both time points, in line with our 626 

previous studies (36, 59, 75). 627 

Experimental paradigm 628 

To quantify different exploration strategies, we developed a multi-armed bandit task 629 

implemented using Cogent (http://www.vislab.ucl.ac.uk/cogent.php) for MATLAB (R2018a). 630 

Subjects had to choose between bandits (i.e. trees) that produced samples (i.e. apples) with varying 631 

reward (i.e. size) in two different horizon conditions (Figure 1a-b). Bandits were displayed during 632 

the entire duration of a trial and there was no time limit for sampling from (choosing) the bandits. 633 

The sizes of apples they collected were summed and converted to an amount of juice (feedback), 634 

which was displayed during 2000 ms at the end of each trial. Subjects were instructed to endeavour 635 

to make the most juice and that they would receive a cash bonus proportional to their performance. 636 

Overall subjects received £10 per hour and a mean bonus of £1.12 (std: £0.06). 637 

Similar to the horizon task (7), to induce different extents of exploration, we manipulated 638 

the horizon (i.e. number of apples to be picked: 1 in the short horizon, 6 in the long horizon) 639 

between trials. This horizon-manipulation, which has been extensively used to modulate 640 

exploratory behaviour (21, 34, 54, 99), promotes exploration in the long horizon condition as there 641 

are more opportunities to gather reward.  642 
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Within a single trial, each bandit had a different mean reward 𝜇 (i.e. apple size) and 643 

associated uncertainty as captured by the number of initial samples (i.e. number of apples shown 644 

at the beginning of the trial). Each bandit (i.e. tree) 𝑖 was from one of four generative processes 645 

(Figure 1c) characterised by different means 𝜇+ and number of initial samples. The rewards (apple 646 

sizes) for each bandit were sampled from a normal distribution with mean 𝜇+, specific to the bandit, 647 

and with a fixed variance, 𝑆*=0.8. The rewards were those sampled values rounded to the closest 648 

integer. Each distribution was truncated to [2, 10], meaning that rewards with values above or 649 

below this interval were excluded, resulting in a total of 9 possible rewards (i.e. 9 different apple 650 

sizes; cf. Figure 1 - Figure supplement 1 for a representation). The ‘certain standard bandit’ 651 

provided three initial samples and on every trial its mean 𝜇,' was sampled from a normal 652 

distribution: 𝜇,'	~	𝑁(5.5, 1.4). The ‘standard bandit’ provided one initial sample and to make sure 653 

that its mean 𝜇' was comparable to	𝜇,', the trials were split equally between the four following: 654 

{𝜇' = 𝜇,' + 1;	𝜇' = 𝜇,' − 1;	𝜇' = 𝜇,' + 2;	𝜇' = 𝜇,' − 2}. The ‘novel bandit’ provided no 655 

initial samples and its mean 𝜇) was comparable to both 𝜇,' and 𝜇' by splitting the trials equally 656 

between the eight following:{𝜇) = 𝜇,' + 1;	𝜇) = 𝜇,' − 1;	𝜇) = 𝜇,' + 2;	𝜇) = 𝜇,' − 2;	𝜇) =657 

𝜇' + 1;	𝜇) = 𝜇' − 1;	𝜇) = 𝜇' + 2;	𝜇) = 𝜇' − 2}. The ‘low bandit’ provided one initial sample 658 

which was smaller than all the other bandits’ means on that trial: 𝜇- = 𝑚𝑖𝑛(𝜇,', 𝜇', 𝜇)) − 1. We 659 

ensured that the initial sample from the low-value bandit was the smallest by resampling from each 660 

bandit in the trials were that was not the case. To make sure that our task captures heuristic 661 

exploration strategies, we simulated behaviour (cf. Figure 1). Additionally, in each trial, to avoid 662 

that some exploration strategies overshadow other ones, only three of the four different groups 663 

were available to choose from. Based on the mean of the initial samples, we identified the high-664 
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value option (i.e. the bandit with the highest expected reward) in trials where both the certain-665 

standard and the standard bandit were present.  666 

There were 25 trials of each of the four three-bandit combination making it a total of 100 667 

different trials. They were then duplicated to measure choice consistency, defined as the frequency 668 

of making the same choice on identical trials (in contrast to a previous propranolol study where 669 

consistency was defined in terms of a value-based exploration parameter (60)). Each subject 670 

played these 200 trials both in a short and in a long horizon setting, resulting in a total of 400 trials. 671 

The trials were randomly assigned to one of four blocks and subjects were given a short break at 672 

the end of each of them. To prevent learning, the bandits’ positions (left, middle or right) as well 673 

as their colour (8 sets of 3 different colours) where shuffled between trials. To ensure subjects 674 

distinguished different apple sizes and understood that apples from the same tree were always of 675 

similar size (generated following a normal distribution), they needed to undergo training prior to 676 

the main experiment. In training, based on three displayed apples of similar size, they were tasked 677 

to guess between two options, namely which apple was most likely to come from the same tree 678 

and then received feedback about their choice. 679 

Statistical analyses  680 

All statistical analyses were performed using the R Statistical Software (100). For 681 

computing ANOVA tests and pairwise comparisons the ‘rstatix’ package was used, and for 682 

computing effect sizes the ‘lsr’ package (101) was used. To ensure consistent performance across 683 

all subjects, we excluded one outlier subject (belonging to the amisulpride group) from our analysis 684 

due to not engaging in the task and performing at chance level (defined as randomly sampling 685 

from one out of three bandits, i.e. 33%). Each bandits’ selection frequency for a horizon condition 686 

was computed over all 200 trials and not only over the trials where this specific bandit was present 687 
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(i.e. 3/4 of 200 = 150 trials). In all the analysis comparing horizon conditions, except when looking 688 

at score values (Figure 2c), only the 1st draw of the long horizon was used. We compared 689 

behavioural measures and model parameters using (paired-samples) t-tests and repeated-measures 690 

(rm-) ANOVAs with a between-subject factor of drug group (propranolol group, amisulpride 691 

group, placebo group) and a within-subject factor horizon (long, short). Information seeking, 692 

expected values and scores were analysed using rm-ANOVAS with a within-subject factor 693 

horizon. Measures that were horizon-independent (e.g. prior mean), were analysed using one-way 694 

ANOVAs with a between-subject factor drug group. As drug groups differed in negative affect 695 

(cf. Appendix 2 Table 1), which, through its relationship to anxiety (102) is thought to affect 696 

cognition (103) and potentially exploration (104). We corrected for negative affect (PANAS) and 697 

IQ (WASI) in each analysis by adding those two measures as covariates in each ANOVA 698 

mentioned above (cf. Appendix 1 for analysis without covariates and analysis with physiological 699 

effect as an additional covariates). We report effect sizes using partial eta squared (η2) for 700 

ANOVAs and Cohen’s d (d) for t-tests (105). 701 

Computational modelling 702 

We adapted a set of Bayesian generative models from previous studies (1), where each 703 

model assumed that different characteristics account for subjects’ behaviour. The binary indicators 704 

(c./, c0) indicate which components (value-free random and novelty exploration respectively) 705 

were included in the different models. The value of each bandit is represented as a distribution 706 

𝑁(𝑄, 𝑆) with 𝑆 = 0.8, the sampling variance fixed to its generative value. Subjects have prior 707 

beliefs about bandits’ values which we assume to be Gaussian with mean 𝑄" and uncertainty 𝜎". 708 

The subjects’ initial estimate of a bandit’s mean (𝑄"; prior mean) and its uncertainty about it (𝜎"; 709 

prior variance) are free parameters.  710 
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These beliefs are updated according to Bayes rule (detailed below) for each initial sample (note 711 

that there are no updates for the novel bandit).  712 

Mean and variance update rules  713 

At each time point	𝑡, in which a sample 𝑚, of one of the bandits is presented, the expected 714 

mean 𝑄 and precision 𝜏 = 1

2!
	of the corresponding bandit 𝑖 are updated as follows: 715 

𝑄+,451 = 𝜏+,4 ∗ 	𝑄+,4 + 𝜏'%67 ∗ 𝑚𝜏+,4 +	𝜏'%67 	716 

𝜏451+ = 𝜏'%67 +	𝜏4+ 	717 

where 𝜏'%67 = 1

8!
	is the sampling precision, with the sampling variance 𝑆 = 0.8 fixed. Those 718 

update rules are equivalent to using a Kalman filter (106) in stationary bandits.  719 

We examined three base models: the UCB model, the Thompson model and the hybrid 720 

model. The UCB model encompasses the UCB algorithm (captures directed exploration) and a 721 

softmax choice function (captures a value-based random exploration). The Thompson model 722 

reflects Thompson sampling (captures an uncertainty-driven value-based random exploration). 723 

The hybrid model captures the contribution of the UCB model and the Thompson model, 724 

essentially a mixture of the above. We computed three extensions of each model by either adding 725 

value-free random exploration (c./, c0) = (1,0), novelty exploration (c./, c0) = (0,1) or both 726 

heuristics	(c./, c0) = (1,1), leading to a total of 12 models (see the labels on the x-axis in Figure 727 

4a; (c./, c0) = (0,0) is the model with no extension). For additional models cf. Appendix 1. A 728 

coefficient 𝑐4&=1 indicates that a ϵ-greedy component was added to the decision rule, ensuring that 729 

once in a while (every ϵ % of the time), another option than the predicted one is selected. A 730 

coefficient 𝑐)=1 indicates that the novelty bonus 𝜂 is added to the computation of the value of 731 

novel bandits and the Kronecker delta 𝛿 in front of this bonus ensures that it is only applied to the 732 
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novel bandit. The models and their free parameters (summarised in Appendix 2 Table 5) are 733 

described in detail below. 734 

Choice rules 735 

UCB model. In this model, an information bonus 𝛾 is added to the expected reward of each option, 736 

scaling with the option’s uncertainty (UCB). The value of each bandit 𝑖 at timepoint t is: 737 

𝑉+,4 	= 𝑄+,4 + 𝛾𝜎+,4 + 𝑐)𝜂𝛿[+:)(;$-] 738 

The probability of choosing bandit 𝑖 was given by passing this into the softmax decision function: 739 

𝑃(𝑐4 = 𝑖) = e=>",$∑ e=>",$?

∗ (1 − 𝑐4&𝜖) + 𝑐4& 𝜖3 740 

where	𝛽 is the inverse temperature of the softmax (lower values producing more 741 

stochasticity), and the coefficient 𝑐4& adds the value-free random exploration component. 742 

Thompson model. In this model, based on Thompson sampling, the overall uncertainty can be seen 743 

as a more refined version of a decision temperature (1). The value of each bandit 𝑖 is as before: 744 

𝑉+,4 = 𝑄+,4 + 𝑐)𝜂𝛿[@:)(;$-]	745 

A sample 𝑥+,4~𝑁(𝑉+,4 , 𝜎+,4* ) is taken from each bandit. The probability of choosing a bandit 746 

𝑖 depends on the probability that all pairwise differences between the sample from bandit 𝑖 and the 747 

other bandits 𝑗 ≠ 𝑖 were greater or equal to 0 (see the probability of maximum utility choice rule 748 

(107)). In our task, because three bandits were present, two pairwise differences scores (contained 749 

in the two-dimensional vector u) were computed for each bandit. The probability of choosing 750 

bandit	𝑖 is:  751 

𝑃(𝑐4 = 𝑖) = 𝑃O∀𝑗: 𝑥+,4 > 𝑥A,4S ∗ (1 − 𝑐4&𝜖) + 𝑐4& 𝜖3 752 
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𝑃(𝑐4 = 𝑥+) = T T ɸO𝑢;𝑀+,4 , 𝐶+,4S	𝑑𝑢	B

"

B

"

∗ (1 − 𝑐4&𝜖) + 𝑐4& 𝜖3 753 

where ɸ is the multivariate Normal density function with mean vector 754 

𝑀+,4 = 𝐴+ [𝑉1,4𝑉*,4𝑉C,4\		756 

and covariance matrix  755 

𝐶+,4 = 𝐴+ [𝜎1,4 0 00 𝜎*,4	 00 0 𝜎C,4\𝐴+D 	 757 

Where the matrix 𝐴+ computes the pairwise differences between bandit 𝑖 and the other bandits. For 758 

example, for bandit	𝑖 = 1:  759 

𝐴1 = ]1 −1 01 0 −1^ 760 

Hybrid model. This model allows a combination of the UCB model and the Thompson model. The 761 

probability of choosing bandit	𝑖 is:  762 

𝑃(𝑐4 = 𝑖) = ]𝑤𝑃EFG(𝑐4 = 𝑖) + (1 − 𝑤)𝑃DH(67'()(𝑐4 = 𝑖)^ ∗ (1 − 𝑐4&𝜖) + 𝑐4& 𝜖	3	 763 

where 𝑤	specifies the contribution of each of the two models. 𝑃EFG and 𝑃DH(67'() are 764 

calculated for 𝑐4&=0. If 𝑤=1, only the UCB model is used while if 𝑤=0 only the Thompson model 765 

is used. In between values indicate a mixture of the two models.  766 

All the parameters besides 𝑄" and 𝑤 were free to vary as a function of the horizon (cf. 767 

Appendix 2 Table 5) as they capture different exploration forms: directed exploration (information 768 

bonus 𝛾; UCB model), novelty exploration (novelty bonus	𝜂), random exploration (inverse 769 
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temperature 𝛽; UCB model), uncertainty-directed exploration (prior variance 𝜎"; Thompson 770 

model) and value-free random exploration (𝜖-greedy parameter). The prior mean 𝑄" was fitted to 771 

both horizons together as we do not expect the belief of how good a bandit is to depend on the 772 

horizon. The same was done for 𝑤 as assume the arbitration between the UCB model and the 773 

Thompson model does not depend on horizon.  774 

Parameter estimation.  775 

To fit the parameter values, we used the maximum a posteriori probability (MAP) estimate. The 776 

optimisation function used was fmincon in MATLAB. The parameters could vary within the 777 

following bounds:	𝜎" = [0.01, 6], 𝑄" = [1, 10], 𝜖 = [0, 0.5], 𝜂 = [0, 5]. The prior distribution 778 

used for the prior mean parameter 𝑄" was the normal distribution: 𝑄"	~	𝑁(5, 2) that approximates 779 

the generative distributions. For the 𝜖-greedy parameter, the novelty bonus	𝜂 and the prior variance 780 

parameter 𝜎", a uniform distribution (of range equal to the specific parameters’ bounds) was used, 781 

which is equivalent to performing MLE. A summary of the parameter values per group and per 782 

horizon can be found in Appendix 2 Table 6. 783 

Model comparison.  784 

We performed a K-fold cross-validation with	𝐾 = 10. We partitioned the data of each subject 785 

(𝑁4&+%-' =400; 200 in each horizon) into K folds (i.e. subsamples). For model fitting in our model 786 

selection, we used maximum likelihood estimation (MLE), where we maximised the likelihood 787 

for each subject individually (fmincon was ran with 8 randomly chosen starting point to overcome 788 

potential local minima). We fitted the model using K-1 folds and validated the model on the 789 

remaining fold. We repeated this process K times, so that each of the K fold is used as a validation 790 

set once, and averaged the likelihood over held out trials. We did this for each model and each 791 
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subject and averaged across subjects. The model with the highest likelihood of held-out data (the 792 

winning model) was the Thompson sampling with	(c./, c0) = {1,1}. It was also the model which 793 

accounted best for the largest number of subjects (Figure 4 – Figure supplement 1). 794 

Parameter recovery.  795 

To make sure that the parameters are interpretable, we performed a parameter recovery analysis. 796 

For each parameter, we took 4 values, equally spread, within a reasonable parameter range (𝜎" =797 

[0.5, 2.5], 𝑄" = [1, 6], 𝜖 = [0, 0.5], 𝜂 = [0, 5]). All parameters but 𝑄" were free to vary as a 798 

function of the horizon. We simulated behaviour with one artificial agent for each 4! combinations 799 

using a new trial for each. The model was fitted using MAP estimation (cf. Parameter estimation) 800 

and analysed how well the generative parameters (generating parameters in Figure 5) correlated 801 

with the recovered ones (fitted parameters in Figure 5) using Pearson correlation (summarised in 802 

Figure 5c). In addition to the correlation we examined the spread (Figure 4 – Figure supplement 803 

3) of the recovered parameters. Overall the parameters were well recoverable. 804 

Model validation 805 

To validate our model, we used each subjects’ fitted parameters to simulate behaviour on our task 806 

(4000 trials per agent). The stimulated data (Figure 5 – Figure supplement 1), although not perfect, 807 

resembles the real data reasonably well. Additionally, to validate the behavioural indicators of the 808 

two different exploration heuristics we stimulated the behaviour of 200 agents using the winning 809 

model on one horizon condition (i.e. trials = 200). For the indicators of value-free random 810 

exploration, we stimulated behaviour with low (𝜖 = 0) and high (𝜖 = 0.2) values of the ϵ-greedy 811 

parameter. The other parameters were set to the mean parameter fits (𝜎" = 1.312, 𝜂 = 2.625, 𝑄" =812 

3.2). This confirms that higher amounts of value-free random exploration are captured by the 813 
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proportion of low-value bandit selection (Figure 1f) and the choice consistency (Figure 1e). 814 

Similarly, for the indicator of novelty exploration, we simulated behaviour with low (𝜂 = 0) and 815 

high (𝜂 = 2) values of the novelty bonus 𝜂 to validate the use of the proportion of the novel-bandit 816 

selection (Figure 1g). Again, the remaining parameters were set to the mean parameter fits (𝜎" =817 

1.312, 𝜖 = 0.1, 𝑄" = 3.2). Parameter values for high and low exploration were selected 818 

empirically from pilot and task data. Additionally, we simulated the effects of other exploration 819 

strategies in short and long horizon conditions (Figure 1 – Figure supplement 3-5). To simulate a 820 

long (versus short) horizon condition we increased the overall exploration by increasing other 821 

exploration strategies. Details about parameter values can be found in Appendix 2 Table 7.  822 
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Appendix 1 1070 

 1071 

Drug effect on response times 1072 

There were no differences in response times (RT) between drug groups in the one-way ANOVA. Neither in the 1073 

mean RT (ANOVA: F(2, 54)=1.625, p=.206, η2=.057) nor in its variability (standard deviation; F(2, 54)=1.85, 1074 

p=.16, η2=.064).  1075 

 1076 

Bandit effect on response times 1077 

There was no difference in response times between bandits in the repeated-measures ANOVA (bandit main effect: 1078 

F(1.78 , 99.44)=1.634 , p=.203 , η2=.028; Figure 3 – Figure supplement 1). 1079 

 1080 

Horizon effect on response times 1081 
There were no differences in RT between horizon conditions in the repeated-measures ANOVA with the between-1082 

subject factor drug group, the within-subject factor horizon condition and the covariates WASI and PANAS 1083 

negative score (horizon main effect: F(1, 54)=1.443, p=.235, η2=.026; drug main effect: F(2 , 54)=1.625, p=.206, 1084 

η2=.057; drug-by-horizon interaction: F(2, 54)=.431, p=.652, η2=.016. In the long horizon, the RT decreased with 1085 

each sample (sample main effect: F(1.36, 73.5)=13.626, p<.001, η2=0.201; Pairwise comparisons: sample 1 vs 2: 1086 

t(59)=20.968, p<.001, d=2.73; sample 2 vs 3: t(59)=11.825, p<.001, d=1.539; sample 3 vs 4: t(59)=7.862, p<.001, 1087 

d=1.024; sample 4 vs 5: t(59)=4.117, p<.001, d=1.539; sample 5 vs 6: t(59)=2.646, p=.01, d=1.024; Figure 2 – 1088 

Figure supplement 1b). 1089 

 1090 

PANAS 1091 

The Positive Affect and Negative Affect scale (PANAS; (50)) was completed 50 minutes after the 2nd drug 1092 
administration and 10 minutes prior to the task. Groups had similar positive affect but differed in negative affect (cf. 1093 

Appendix 2 Table 1), driven by a higher score in the placebo group (pairwise comparisons: placebo vs propranolol: 1094 

t(56)=2.801, p=.007, d=.799; amisulpride vs placebo: t(56)=-2.096, p=.041, d=.557; amisulpride vs propranolol: 1095 

t(56)=.669, p=.506, d=.383). It is unclear whether this difference was driven by the drug manipulation, but similar 1096 

studies have not reported such an effect (e.g. (36, 59, 61, 62, 75)). We controlled for a possible influence of these 1097 

measures in all our analyses. 1098 

 1099 

Physiological effects 1100 

Heart rate, systolic and diastolic pressure were obtained at 3 time points: at the beginning of the experiment before 1101 

giving the drug (‘at arrival’), after giving the drug just before the task (‘pre-task’), and after finishing task and 1102 

questionnaires (‘post-task’). The post-task heart rate was lower for participants who received propranolol compared 1103 

to the other 2 groups (1-way ANOVA: F(2, 55)=7.249, p=.002, η%=.209; cf. Appendix 2 Table 2). A two-way 1104 

ANOVA with the between-subject factor of drug group and within-subject factor of time (all three time points), 1105 

showed a time-dependent decrease in heart rate (F(1.74, 95.97)=99.341, p<.001, η%= .644), in systolic pressure (F(2, 1106 

110)=8.967, p<.001, η%=.14) and in diastolic pressure (F(2, 110)=.874, p=.42, η%=.016), indicating subjects relaxed 1107 

across the course of the study. Those reductions did not differ between drug group (drug main effect: heart rate: F(2, 1108 

55)=1.84, p=.169, η%=.063; systolic pressure: F(2, 55)=1.08, p=.347, η%=.038; diastolic pressure: F(2, 55)=.239, 1109 

p=.788, η%=.009; drug-by-time interaction: heart rate: F(3.49, 95.97)=1.928, p=.121, η%=.066; systolic pressure: F(4, 1110 

110)=1.6, p=.179, η%=.055; diastolic pressure: F(4, 110)=.951, p=.438, η%=.033).  1111 

  1112 

Task performance score 1113 

The performance did not differ between drug groups (total score: drug main effect: F(2 , 5 )=2.313, p=.109, 1114 
η2=.079) but it was increased in subjects with higher IQ scores (WASI main effect: F(1 , 54)=17.172, p<.001, 1115 

η2=.241).  1116 

In the long horizon, the score increased with each sample (sample main effect: F(3.12, 174.97)=103.469, p<.001, 1117 

η2=0.649; Pairwise comparisons: sample 1 vs 2: t(59)=-6.737, p<.001, d=0.877; sample 2 vs 3: t(59)=-3.69, p<.001, 1118 

d=0.48; sample 3 vs 4: t(59)=-5.167, p<.001, d=0.673; sample 4 vs 5: t(59)=-2.832, p=.006, d=0.48; sample 5 vs 6: 1119 

t(59)=-2.344, p=.022, d=0.673; Figure 2 – Figure supplement 1a). The increase in reward was larger in trials where 1120 

the first draw was exploratory (linear regression slope coefficient: mean=0.118, sd=0.038) compared to when it was 1121 

exploitative (linear regression slope coefficient: mean=0.028, sd=0.041; t-tests for slope coefficients: t(58)=-12.161, 1122 

p<.001, d=-1.583; Figure 2 - Figure supplement 1d), suggesting that exploration was used beneficially and subjects 1123 

benefitted from their initial exploration. 1124 

 1125 
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Dopamine effect on high-value bandit sampling frequency  1126 

The amisulpride group had a marginal tendency towards selecting the high-value bandit, meaning that they were 1127 

disposed to exploit more overall (propranolol group excluded: horizon main effect: F(1, 35)=3.035, p=.09, η2=.08; 1128 

drug main effect: F(1, 35)=3.602, p=.066, η2=.093; drug-by-horizon interaction: F(1, 35)=2.15, p=.151, η2=.058). 1129 

This trend effect was not observed when all 3 groups were included (horizon main effect: F(1, 54)=3.909, p=.053, 1130 
η2=.068; drug main effect: F(2, 54)=1.388, p=.258, η2=.049; drug-by-horizon interaction: F(2, 54)=.834, p=.44, 1131 

η2=.03).  1132 

Gender effects 1133 

When adding gender as a between-subjects variable in the repeated-measures ANOVAs, none of the main results 1134 

changed. Interestingly, we observed a drug-by-gender interaction in the prior variance 𝜎& (drug-by-gender 1135 

interaction: F(2, 51)=5.914, p=.005, η2=.188; Figure 5 – Figure supplement 2), driven by the fact that, female 1136 

subjects in the placebo group had a larger average 𝜎& (across both horizon conditions) compared to males 1137 

(t(20)=2.836, p=.011, d=1.268), whereas male subjects have a larger 𝜎& compared to females in the amisulpride 1138 

group, (t(19)=-2.466, p=.025, d=1.124; propranolol group: t(20)=-0.04, p=.969, d=.018). This suggests that in a 1139 
placebo setting, females are on average more uncertain about an option’s expected value, whereas in a dopamine 1140 

blockade setting males are more uncertain. Besides this effect, we observed a trend-level significance in response 1141 

times (RT), driven primarily by female subjects tending to have a faster RT in the long horizon compared to male 1142 

subjects (gender main effect: F(1, 51)=3.54, p=.066, η2=.065). 1143 

Horizon and drug effects without covariate 1144 

When analysing the results without correcting for IQ (WASI) and negative affect (PANAS), similar results are 1145 

obtained. The high-value bandit is picked more in the short-horizon condition indicating exploitation (F(1, 1146 

56)=44.844, p<.001, η2=.445), whereas the opposite phenomenon is observed in the low-value bandit (F(1, 1147 

56)=24.24, p<.001, η2=.302) and the novel bandit (horizon main effect: F(1, 56)=30.867, p<.001, η2=.355), 1148 

indicating exploration. In line with these results, the model parameters for value-free random exploration (𝜖: F(1, 1149 

56)=10.362, p=.002, η2=.156) and novelty exploration (𝜂: F(1, 56)=38.103, p<.001, η2=.405) are larger in the long 1150 

compared to the short horizon condition. Additionally, noradrenaline blockade reduces value-free random 1151 

exploration as can be seen in the two behavioural signatures, frequency of picking the low-value bandit (F(2, 1152 

56)=2.523, p=.089, η2=.083; Pairwise comparisons: placebo vs propranolol: t(40)=2.923, p=.005, d=.654; 1153 

amisulpride vs placebo: t(38)=-.587, p=.559, d=.133; amisulpride vs propranolol: t(38)=2.171, p=.034, d=.496), and 1154 

in the consistency (F(2, 56)=3.596, p=.034, η2=.114; Pairwise comparisons: placebo vs propranolol: t(40)=-3.525, 1155 

p=.001, d=.788; amisulpride vs placebo: t(38)=1.107, p=.272, d=.251; amisulpride vs propranolol: t(38)=-2.267, 1156 

p=.026, d=.514), as well as in the model parameter for value-free random exploration (𝜖: F(2, 56)=3.205, p=.048, 1157 

η2=.103; Pairwise comparisons: placebo vs propranolol: t(40)=3.177, p=.002, d=.71; amisulpride vs placebo: 1158 

t(38)=.251, p=.802, d=.057; amisulpride vs propranolol: t(38)=2.723, p=.009, d=.626). 1159 

 1160 
Horizon and drug effects with heart rate as covariate 1161 

When analysing results but now correcting for the post-experiment heart rate (cf. Appendix 2 Table 1) in addition to 1162 

IQ (WASI) and negative affect (PANAS), we obtained similar results. Noradrenaline blockade reduced value-free 1163 

random exploration as seen in two behavioural signatures, frequency of picking the low-value bandit (F(2, 52)= 1164 

4.014, p=.024, η%=.134; Pairwise comparisons:(placebo vs propranolol: t(40)= 2.923, p=.005, d=.654; amisulpride 1165 

vs propranolol: t(38)= 2.171, p=.034, d=.496; amisulpride vs placebo: t(38)= -.587, p=.559, d=.133), and 1166 

consistency (F(2, 52)= 5.474, p=.007, η%=.174; Pairwise comparisons: placebo vs propranolol: t(40)= -3.525, 1167 

p=.001, d=.788; amisulpride vs propranolol: t(38)= -2.267, p=.026, d=.514; amisulpride vs placebo: t(38)= 1.107, 1168 

p=.272, d=.251), as well as in a model parameter for value-free random exploration (ϵ: F(2, 52)= 4.493, p=.016, 1169 

η%=.147; Pairwise comparisons: placebo vs propranolol: t(40)= 3.177, p=.002, d=.71; amisulpride vs propranolol: 1170 

t(38)= 2.723, p=.009, d=.626; amisulpride vs placebo: t(38)=.251, p=.802, d=.057). 1171 

 1172 

Other model results 1173 

When analysing the fitted parameter values of both the 2nd winning model (UCB +	𝜖 + 𝜂) and 3rd winning model 1174 

(hybrid +	𝜖 + 𝜂), similar results pertain. Thus, a value-free random exploration parameter was reduced following 1175 

noradrenaline blockade in the 2nd winning model (𝜖: F(2, 54)=4.503, p=.016, η%=.143; Pairwise comparisons: 1176 
placebo vs propranolol: t(38)=2.185, p=.033, d=.386; amisulpride vs propranolol: t(40)=1.724, p=.089, d=.501; 1177 

amisulpride vs placebo: t(40)=-.665, p=.508, d=.151) and was affected at a trend-level significance in the 3rd 1178 
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winning model (𝜖: F(2, 54 )=3.04, p=.056, η%=.101). These results highlight our finding that value-free random 1179 

exploration is modulated by noradrenaline and additionally demonstrates this is independent of the complex 1180 

exploration strategy used as well as the value function.  1181 

 1182 

Bandit combination effect 1183 

Behavioural results were analysed additionally for each bandit combination separately. The high-value bandit was 1184 

picked more when there was no novel bandit (pairwise comparisons: [certain-standard, standard, low] vs [certain-1185 
standard, standard, novel]: t(59)=-15.122, p<.001, d=1.969 ; [certain-standard, standard, low] vs [certain-standard, 1186 

novel, low]: t(59)=12.905, p<.001, d=1.68; [certain-standard, standard, low] vs [standard, novel, low]: t(59)=18.348, 1187 

p<.001, d=2.389), and less when its value was less certain ([standard, novel, low] vs [certain-standard, standard, 1188 

novel]: t(59)=6.986, p<.001, d=.909; [standard, novel, low] vs [certain-standard, novel, low] : t(59)=5.44, p<.001, 1189 

d=.708; bandit combination main effect: F(1.81, 101.33)=237.051, p<.001, η%=.809; [certain-standard, standard, 1190 

novel] vs [certain-standard, novel, low]: t(59)=.364, p=.717, d=.047; Figure 3 – Figure supplement 2a). The novel 1191 

bandit was picked the most when the high-value bandit was less certain, then when the high-value bandit was more 1192 

certain and it was picked the least when both certain and certain standard bandits were present ([standard, novel, 1193 

low] vs [certain-standard, novel, low]: t(59)=-5.001, p<.001, d=.651; [standard, novel, low] vs [certain-standard, 1194 

standard, novel]: t(59)=-9.414, p<.001, d=1.226; [certain-standard, novel, low] vs [certain-standard, standard, 1195 

novel]: t(59)=-4.146, p<.001, d=.54; bandit combination main effect: F(2, 112)=42.44, p<.001, η%=.431; Figure 3 – 1196 

Figure supplement 2b). The low-value bandit was picked less when the high-value bandit was more certain ([certain-1197 

standard, novel, low] vs [certain-standard, standard, low]: t(59)=2.731, p=.008, d=.356; [certain-standard, novel, 1198 

low] vs [standard, novel, low]: t(59)=-1.958, p=.055, d=.255; bandit combination main effect: F(1.66, 92.74)=4.534, 1199 

p=.019, η2=.075; [certain-standard, standard, low] vs [standard, novel, low]: t(59)=1.32, p=.192, d=.172; Figure 3 – 1200 
Figure supplement 2c). 1201 

 1202 

Other effects on choice consistency 1203 

Our results demonstrate a drug-by-horizon interaction on choice consistency (F(2, 54)=3.352, p=.042, 𝜂%=.110; 1204 

Figure 3c), mainly driven by the fact that frequency of selecting the same option is increased in the long (compared 1205 

to the short) horizon in the amisulpride group, while there is no significant horizon difference in the other two drug 1206 

groups (pairwise comparison for horizon effect: amisulpride group: t(19)=2.482, p=.023, d=.569; propranolol group: 1207 

t(20)=-1.91, p=.071, d=.427; placebo group: t(20)=.505, p=.619, d=.113). It is not entirely clear why catecholamines 1208 

would increase the differentiation between the horizon conditions and this relatively weak effect should be 1209 

replicated before interpreting. 1210 

 1211 

Stand-alone heuristic models 1212 

We also analysed stand-alone heuristic models, in which there is no value computation (value of each bandit 𝑖: 𝑉' 	=1213 

	0). The held-out data likelihood for such heuristic model combined with novelty exploration had a mean of 1214 

m=0.367 (sd=0.005). The model in which we added value-free random exploration on top of novelty exploration 1215 

had a mean of m=0.384 (sd=0.006). These models performed poorly, although better than chance level. Importantly, 1216 

adding value-free random exploration improved performance. This highlights that subjects’ combine complex and 1217 

heuristic modules in exploration.  1218 
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Appendix 2 1219 

Appendix 2 Table 1.  1220 

Characteristics of drug groups. The drug groups did not differ in gender, age, nor in intellectual abilities (adapted 1221 

WASI matrix test). Groups differed in negative affect (PANAS), driven by a higher score in the placebo group 1222 

(pairwise comparisons: placebo vs propranolol: t(56)=2.801, p=.007, d=.799; amisulpride vs placebo: t(56)=-2.096, 1223 

p=.041, d=.557; amisulpride vs propranolol: t(56)=.669, p=.506, d=.383). For more details cf. Appendix 1. Mean 1224 

(SD).  1225 

 Propranolol Placebo Amisulpride  

Gender (M/F) 10/10 10/10 10/9  

Age 22.80 (3.59) 23.80 (4.23) 23.05 (3.01) F(2,56)=.404, p=.669, 𝜂!=.014 

Intellectual abilities 22.8 (1.85) 22.6 (3.70) 24.37 (2.45) F(2,56)=2.337, p=.106, 𝜂!=.077 

Positive affect 24.55 (8.99) 28.90 (7.56) 29.58 (10.21) F(2,56)=1.832, p=.170, 𝜂!=.061 

Negative affect 10.65 (.81) 12.75 (3.63) 11.16 (1.71) F(2,56)=4.259, p=.019, 𝜂!=.132 
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Appendix 2 Table 2.  1226 

Physiological effects on drug groups. The drug groups also differed in post-experiment heart rate, driven by lower 1227 

values in the propranolol group (pairwise comparisons: placebo vs propranolol: t(55)=3.5, p=.001, d=1.293; 1228 

amisulpride vs placebo: t(55)= -.394, p=.695, d=.119 ; amisulpride vs propranolol: t(55)=3.013, p=.004, d=.921). For 1229 

detailed statistics and analysis accounting for this cf. Appendix 1. Mean (SD).  1230 

 Propranolol Placebo Amisulpride  

 

Heart rate (BPM) 

At arrival 74.9 (10.8) 77,2 (12,6) 
 

77.7 (13.8) F(2, 55)=.290, p=.749, 𝜂!=.010 

Pre-task 62,6 (8,5) 

 

65,8 (8,3) 

 

64,6 (9,8) 

 
F(2, 55)=.667, p=.517, 𝜂!=.024 

Post-task 55,7 (6,7) 
 

64,4 (6,9) 
 

63,4 (10,0) 
 

F(2, 55)=7.249, p=.002, 𝜂!=.209 

 

Systolic blood 

pressure 

At arrival 117,2 (10,4) 
 

115,0 (9,7) 
 

117,9 (9,7) 
 

F(2, 55)=.438, p=.648, 𝜂!=.016 

Pre-task 109,4 (9,2) 
 

111,8 (8,6) 
 

114,9 (8,6) 
 

F(2, 55)=1.841, p=.168, 𝜂!=.063 

Post-task 109,5 (8,2) 
 

113,9 (11,3) 
 

114,6 (9,3) 
 

F(2, 55)=1.584, p=.214, 𝜂!= .054 

 

Diastolic blood 

pressure 

At arrival 71,5 (7,8) 
 

71,2 (6,7) 
 

72,3 (6,7) 
 

F(2, 55)=.115, p=.891, 𝜂!=.004 

Pre-task 68,3 (7,0) 
 

71,1 (10,6) 
 

72,0 (5,9) 
 

F(2, 55)=1.111, p=.337, 𝜂!= .039 

Post-task 70,8 (7,3) 
 

70,9 (8,0) 
 

70,3 (6,6) 
 

F(2, 55)=.037, p=.964, 𝜂!=.001 
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Appendix 2 Table 3.  1231 

Table of statistics and behavioural values of Figure 2. All of those measures were modulated by the horizon condition. 1232 

 Horizon Mean (sd) 

Two-way repeated-measures ANOVA 

Main effect of horizon 

Expected value 
short 6.368 (0.335) 

F(1, 56)=19.457, p<.001, 𝜂!=.258 
long 6.221 (0.379) 

Initial samples 
short 1.282 (0.247) 

F(1, 56)=58.78, p<.001, 𝜂!=.512 
long 1.084 (0.329) 

Score (1st sample) 
short 5.904 (0.192) 

F(1, 56)=58.78, p<.001, 𝜂!=.512 
long 5.82 (0.182) 

Score (average) 
short 5.904 (0.192) 

F(1, 56)=103.759, p<.001, 𝜂!=.649 
long 6.098 (0.222) 
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Appendix 2 Table 4.  1233 

Table of statistics and behavioural measure values of Figure 3. The drug groups differed in low-value bandit picking 1234 

frequency (pairwise comparisons: placebo vs propranolol: t(40)=2.923, p=.005, d=.654; amisulpride vs placebo: 1235 
t(38)=-.587, p=.559, d=.133; amisulpride vs propranolol: t(38)=2.171, p=.034, d=.496) and choice consistency 1236 

(placebo vs propranolol: t(40)=-3.525, p=.01, d=.788; amisulpride vs placebo: t(38)=1.107, p=.272, d=.251; 1237 

amisulpride vs propranolol: t(38)=-2.267, p=.026, d=.514). The main effect is either of drug group (D) or of horizon 1238 

(H). The interaction is either drug-by-horizon (DH) or horizon-by-WASI (measure of IQ; HW).  1239 

 

 Mean (sd) Two-way repeated-measures ANOVA 

Horizon Amisulpride Placebo Propranolol Main effect Interaction 

H
ig

h
-v

al
u
e 

b
an

d
it

 

short 54.55 (8.87) 49.38 (9.10) 50.98 (11.4) D 
F(2, 54)=1.388, 

p=.258, 𝜂!=.049 
DH 

F(2, 54)=.834, 

p=.440, 𝜂!=.030 

long 41.90 (8.47) 44.10 (13.88) 41.90 (13.57) H 
F(1, 54)=3.909, 

p=.053, 𝜂!=.068 
HW 

F(1, 54)=13.304, 

p=.001, 𝜂!=.198 

L
o
w

-v
al

u
e 

b
an

d
it

 short 3.32 (2.33) 4.28 (2.98) 2.50 (2.48) D 
F(2, 54)=7.003, 

p=.002, 𝜂!=.206 
DH 

F(2, 54)=2.154, 

p=.126, 𝜂!=.074 

long 5.45 (3.76) 5.35 (3.40) 3.45 (2.18) H 
F(1, 54)=4.069, 

p=.049, 𝜂!=.070 
HW 

F(1, 54)=1.199, 

p=.278, 𝜂!=.022 

N
o
v
el

 b
an

d
it

 

short 36.87 (9.49) 39.02 (10.94) 40.15 (12.43) D 
F(2, 54)=1.498, 

p=.233, 𝜂!=.053 
DH 

F(2, 54)=.542, 

p=.584, 𝜂!=.020 

long 46.82 (12.1) 43.62 (16.27) 48.55 (16.59) H 
F(1, 54)=5.593, 

p=.022, 𝜂!=.094 
HW 

F(1, 54)=13.897, 

p<.001, 𝜂!=.205 

C
o
n
si

st
en

cy
 

short 64.16 (12.27) 62.70 (12.59) 73.00 (11.33) D 
F(2, 54)=7.154, 

p=.002, 𝜂!=.209 
DH 

F(2, 54)=3.352, 

p=.042, 𝜂!=.110 

long 68.11 (10.34) 64.00 (8.93) 70.55 (9.91) H 
F(1, 54)=1.333, 

p=.253, 𝜂!=.024 
HW 

F(1, 54)=.409, 

p=.525, 𝜂!=.008 
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Appendix 2 Table 5.  1240 

Table of parameters used for each model compared during model selection (Figure 4). Each of the 12 columns indicate 1241 

a model. The three ‘main models’ studied were the Thompson model, the UCB model and a hybrid of both. Variants 1242 

were then created by adding the 𝜖-greedy parameter, the novelty bonus and a combination of both. All the parameters 1243 

besides 𝑄& and w were fitted to each horizon separately. Parameters: 𝑄&=prior mean (initial estimate of a bandits 1244 

mean); 𝜎&=prior variance (uncertainty about 𝑄&); 𝑤=contribution of UCB vs Thompson; 𝛾 =information bonus; 1245 

𝛽=softmax inverse temperature; 𝜖=𝜖-greedy parameter (stochasticity); 𝜂=novelty bonus. Model selection measures 1246 
include the cross-validation held-out data likelihood averaged over subjects, mean (SD), as well as the subject count 1247 

for which this model performed better over either 12 models or over the 3 best models. 1248 

  1249 

 

Model 

Thompson	 UCB	 Hybrid	

 +	𝜖	 +	𝜂	
+𝜖

+ 𝜂	
 +	𝜖	 +	𝜂	

+𝜖

+ 𝜂	
 +	𝜖	 +	𝜂	 +𝜖 + 𝜂	

P
a
ra

m
et

er
s 

Horizon 
independent 

 
𝑄"	 𝑄"	 𝑄"	 𝑄"	 𝑄"	 𝑄"	 𝑄"	 𝑄"	 𝑤, 𝑄"	 𝑤, 𝑄"	 𝑤, 𝑄"	 𝑤, 𝑄"	

Horizon 
dependent 

𝜎"	 𝜎", 𝜖	 𝜎", 𝜂	
𝜎", 𝜖,	

𝜂	
𝛾, 𝛽	

𝛾, 𝛽,	

𝜖 

𝛾, 𝛽, 

𝜂	

𝛾, 𝛽,	

𝜖, 𝜂	

𝜎", 𝛾,	

𝛽 

𝜎", 𝛾, 

𝛽, 𝜖	

𝜎", 𝛾,	

𝛽, 𝜂	

𝜎", 𝛾,	

𝛽,	

𝜖, 𝜂	

M
o
d

el
 s

el
ec

ti
o
n

 

Mean held-
out data 

likelihood 

5
50.2 
(8.1) 

 

5
52.7 
(7.1) 

 

5
52,2 
(8.7) 

 

5
55.3 
(8.4) 

 

5
52.9 
(8.0) 

 

5
52.9 
(8.0) 

 

5
53.4 
(8.1) 

 

5
55.1 
(8.8) 

 

5
53.5 
(8.1) 

 

5
53.8 
(8.4) 

 

5
55.0 
(8.4) 

 

55
5.1 (8.5) 

 

Subjects’ for 
which 

model fits 
best (out of 

12) 

0 
 
 

3 
 
 

2 
 
 

20 
 
 

0 
 
 

0 
 
 

1 
 
 

20 
 

 

0 
 
 

0 
 
 

7 
 
 

6 
 
 

Subjects’ for 
which 

model fits 

best (out of 
3 best) 

- 
 

 

- 
 

 

- 
 

 

27 
 

 

- 
 

 

- 
 

 

- 
 

 

22 
 

 

- 
 

 

- 
 

 

- 
 

 

10 
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Appendix 2 Table 6.  1250 

Table of statistics and fitted model parameters of Figure 5. The drug groups differed in 𝜖-greedy parameter value 1251 

(pairwise comparisons: placebo vs propranolol: t(40)=3.177, p=.002, d=.71; amisulpride vs placebo: t(38)=.251, 1252 

p=.802, d=.057; amisulpride vs propranolol: t(38)=2.723, p=.009, d=.626). The main effect is either of drug group (D) 1253 

or of horizon (H). The interaction is either drug-by-horizon (DH) or horizon-by-WASI (measure of IQ; HW). 1254 

 

 Mean (sd) Two-way repeated-measures ANOVA 

Horizon Amisulpride Placebo Propranolol Main effect  Interaction 

𝜖
-g

re
ed

y
 

p
ar

am
et

er
 short 0.10 (0.10) 0.12 (0.08) 0.07 (0.08) D 

F(2, 54)=6.722, 

p=.002, 𝜂!=.199 
DH 

F(2, 54)=1.305, 

p=.280, 𝜂!=.046 

long 0.17 (0.14) 0.14 (0.10) 0.08 (0.06) H 
F(1, 54)=1.968, 

p=.166, 𝜂!=.035 
HW 

F(1, 54)=6.08, 

p=.017, 𝜂!=.101 

N
o
v
el

ty
 

b
o
n
u
s 
𝜂

 short 2.07 (0.98) 2.26 (1.37) 2.05 (1.16) D 
F(2, 54)=.249, 

p=.780, 𝜂!=.009 
DH 

F(2, 54)=.03, 

p=.971, 𝜂!=.001 

long 3.24 (1.19) 3.12 (1.63) 2.95 (1.70) H 
F(1, 54)=1.839, 

p=.181, 𝜂!=.033 
HW 

F(1, 54)=8.416, 

p=.005, 𝜂!=.135 

P
ri

o
r 

v
ar

ia
n
ce

 𝜎
"
 

short 1.18 (0.20) 1.12 (0.43) 1.25 (0.34) D 
F(2, 54)=.060, 

p=.942, 𝜂!=.002 
DH 

F(2, 54)=2.162, 

p=.125, 𝜂!=.074 

long 1.41 (0.61) 1.42 (0.59) 1.21 (0.44) H 
F(1, 54)=.129, 

p=.721, 𝜂!=.002 
HW 

F(1, 54)=.022, 

p=.882, 𝜂!<.001 

P
ri

o
r 

m
ea

n
 𝑄
"
 

 

 
3.22 (1.05) 3.20 (1.36) 3.44 (1.05) D F(2, 54)=.118, p=.889, 𝜂!=.004 
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Appendix 2 Table 7 1255 

Parameter values used for simulations on Figure 1- Figure supplement 3-5. Parameter values for high and low 1256 

exploration were selected empirically from pilot and task data. Value-free random exploration and novelty exploration 1257 

were simulated with an argmax decision function, which always selects the value with the highest expected value. For 1258 

simulating the long (versus short) horizon condition, we assumed that not only the key value but also the other 1259 

exploration strategies increased, as found in our experimental data. For each simulation Q0 = 5 and unless otherwise 1260 
stated, 𝜎" = 1.5.  1261 

 Horizon Low exploration  High exploration  Additional parameters 

Value-free random exploration  
short 𝜖 = 0.1 𝜖 = 0.2 𝜂 = 0 

long 𝜖 = 0.3 𝜖 = 0.4 𝜂 = 2 

Novelty exploration  
short 𝜂 = 0 𝜂 = 1 𝜖 = 0 

long 𝜂 = 2 𝜂 = 3 𝜖 = 0.2 

Thompson-sampling exploration 
short 𝜎"= 0.8 𝜎"= 1.2 𝜂 = 0, 𝜖 = 0 

long 𝜎"= 1.6 𝜎"= 2 𝜂 = 2, 𝜖 = 0.2 

UCB exploration  

short 𝛾 = 0.1 𝛾 = 0.3 𝛽 = 5, 𝜖 = 0 

long 𝛾 = 0.7 𝛾 = 1.5 𝛽 = 1.5, 𝜖 = 0.2 
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 1262 

Figure 1 - Figure supplement 1 1263 

Visualisation of the 9 different sizes that the apples could take. The associated rewards went from 2 1264 

(small apple on the left) to 10 (big apple on the right).  1265 

  1266 
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 1267 

Figure 1 - Figure supplement 2 1268 

Comparison of value-based (softmax) and value-free (𝜖-greedy) random exploration. (a) Changing the 1269 

softmax inverse temperature affects the slope of the sigmoid while changing the 𝜖-greedy parameter (b) 1270 

affects the compression of the sigmoid. Conceptually, in a softmax exploration mode, as each bandits’ 1271 

expected value is taken into account, (c) the 2nd best bandit (medium-value bandit) will be favoured over 1272 

one with a lower value (low-value bandit) when injecting noise. In contrast, in an 𝜖-greedy exploration 1273 

mode, (d) bandits are explored equally often irrelevant of their expected value. Both simulations were 1274 

performed on trials without novel bandit. When simulating on all trials we see that this also has a 1275 

consequence on choice consistency, as (e) the 2nd best option will most probably be explored (i.e. choice 1276 

is still more consistent) in a softmax exploration mode versus (f) equal probability of exploring any of the 1277 

2 non-optimal options in an 𝜖-greedy exploration mode.  1278 
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 1279 

Figure 1 - Figure supplement 3  1280 

Simulating the effect of the different exploration strategies on the frequency of picking the low-value bandit shows 1281 

that (a) a higher value-free random exploration increases the selection of the low-value bandit, whereas neither (b) a 1282 

higher novelty exploration, (c) a higher Thompson-sampling exploration nor (d) a higher UCB exploration affected 1283 

this frequency. For simulating the long (versus short) horizon condition, we assumed that not only the key value but 1284 

also the other exploration strategies increased, as found in our experimental data (cf. Appendix 2 Table 7 for 1285 

parameter values).   1286 
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 1287 

Figure 1 - Figure supplement 4 1288 

Simulating the effect of the different exploration strategies on choice consistency shows that (a) a higher value-free 1289 

random exploration decreases the proportion of same choices, whereas neither (b) a higher novelty exploration, (c) a 1290 

higher Thompson-sampling exploration nor (d) a higher UCB exploration affected this measure. For simulating the 1291 

long (versus short) horizon condition, we assumed that not only the key value but also the other exploration 1292 

strategies increased, as found in our experimental data (cf. Appendix 2 Table 7 for parameter values). 1293 
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 1294 

Figure 1 - Figure supplement 5 1295 

Simulating the effect of the different exploration strategies on the frequency of picking the novel bandit shows that 1296 

(a) a higher value-free random exploration has little effect on the selection of the novel bandit, whereas (b) a higher 1297 

novelty exploration increases this frequency. (c) A higher Thompson-sampling exploration had little effect and (d) a 1298 

higher UCB exploration affected this frequency but to a lower extend than novelty exploration. For simulating the 1299 

long (versus short) horizon condition, we assumed that not only the key value but also the other exploration 1300 

strategies increased, as found in our experimental data (cf. Appendix 2 Table 7 for parameter values). 1301 
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 1302 

Figure 2 - Figure supplement 1 1303 

Further analysis of long horizon draws. (a) The first draw in the long horizon led to a lower reward than the short 1304 

horizon, indicating more exploration, while the subsequent draws led to a higher reward indicating that this additional 1305 

information helped making better decisions in the long run. (b) The first draws’ response time was the highest and 1306 

then decreased for each draw. Long horizon trials in which subjects started with (c) an exploitation draw (choose the 1307 

bandit with the highest expected value) led to little increase in reward (y-axis: difference between obtained reward 1308 

and highest reward of initial samples; linear regression slope coefficient: mean=0.118, sd=0.038), whereas trials in 1309 

which they started with (d) an exploration draw led to an large increase in reward (linear regression slope coefficient: 1310 

mean=0.028, sd=0.041). This larger increase in reward when starting by exploring (slope is higher: t(58)=-12.161, 1311 

p<.001, d=-1.583) indicates that the information that was gained through exploration led to higher long-term 1312 

outcomes. Data are shown as mean ± SEM and each dot represent one subject.   1313 
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 1314 

Figure 3 - Figure supplement 1  1315 

Response time analysis per bandit. There was no difference in RT depending which bandit was chosen. For details 1316 

and statistics cf. Appendix 1.   1317 
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 1318 
Figure 3 - Figure supplement 2  1319 

Proportion of draws per bandit combination (x-axis). (a) The high-value bandit was picked more when there was no 1320 

novel bandit, and less when the high-value bandit was less certain. (b) The novel bandit was picked the most when 1321 
the high-value bandit was less certain, then when the high-value bandit was more certain, and it was picked the least 1322 

when both certain and certain standard bandits were present. (c) The low-value bandit was picked less when the 1323 

high-value bandit was more certain. For statistics see Appendix 1.   1324 
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 1325 

Figure 4 - Figure supplement 1  1326 

Model comparison: further evaluations. (a) The winning model at the group level (the Thompson model with both 𝜖 1327 

and 𝜂) was also the one that accounted best for the largest number of subjects. (b) The Thompson+𝜖+𝜂 model and the 1328 

UCB+𝜖+𝜂 are equally first in subject count when comparing all models, the Thompson+𝜖+𝜂 model is therefore still 1329 

the winning model as it has the highest average likelihood of held-out data.  1330 
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 1331 

Figure 4 - Figure supplement 2  1332 

Correlations between model parameters and behaviour. The behavioural indicators of (a) value-free random 1333 

exploration (left panel: draws from the low-value bandit; right panel: consistency) correlated with the 𝜖-greedy 1334 

parameter values, and of (b) novelty exploration (draws from the novel bandit) correlated with the novelty bonus	𝜂.  1335 
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 1336 

Figure 4 - Figure supplement 3  1337 

Parameter recovery analysis details. For each of the 7 parameters of the winning model, we took 4 values, equally 1338 

spread within the parameter range. We simulated behaviour using every combination (4( = 	16384), fitted the model 1339 

and analysed how well the generative parameters (original values) correlated with the recovered ones (fitted 1340 

parameters). Pearson correlation coefficient = r. Each dot represents one simulation.   1341 
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 1342 

Figure 5 - Figure supplement 1  1343 

Simulated behaviour. We used each subjects’ fitted parameters to simulate behaviour (blue diamonds; 𝑁)*'+,-=4000) 1344 

and superposed them to the real behaviour measures (𝑁)*'+,-=400) measures. Data are shown as mean ± SEM and 1345 

each dot/line represent one agent.  1346 
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 1347 

Figure 5 – Figure supplement 2 1348 

Gender effect on prior variance parameter. Mean values (across horizon conditions) of 𝜎&	were larger for female 1349 

subjects, whereas in the amisulpride group, they were larger for male subjects. Data are shown as mean ± SEM and 1350 

each dot represent one subject.  1351 
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