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A new representation for diagonally implicit multistage integration methods (DIMSIMs)
is derived in which the vector of external stages directly approximates the Nordsieck vector.
The methods in this formulation are zero-stable for any choice of variable mesh. They are
also easy to implement since changing step-size corresponds to a simple rescaling of the
vector of external approximations.The paper contains an analysis of local truncation error
and of error accumulation in a variable step-size situation.
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1. Introduction

Diagonally implicit multistage integration methods (DIMSIMs) for systems of
ordinary differential equations (ODEs)

{
y′(x) = f (y(x)), x ∈ [x0,X],
y(x0) = y0,

(1.1)

f :Rm → Rm, have the form1
{
Y [n] = h(A⊗ Im)F (Y [n])+ (U ⊗ Im)y[n−1],
y[n] = h(B ⊗ Im)F (Y [n])+ (V ⊗ Im)y[n−1],

(1.2)

∗ The work of this author was assisted by the Marsden Fund of New Zealand.
∗∗ The work of this author was partially supported by the National Science Foundation under grant NSF
DMS-9208048.

1 The tensor product Δ⊗ Λ of two matrices Δ ∈ Rm1 ,m2 and Λ ∈ Rn1 ,n2 is the block-matrix



δ1,1Λ . . . δ1,m2Λ
...

...
δ1,1Λ . . . δ1,m2Λ



 .
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n = 1, 2, . . . , N , Nh = X − x0. Here, Y [n] ∈ Rms is an approximation to the vector
Y (xn−1) with components y(xn−1 + cih) ∈ Rs, i = 1, 2, . . . ,m,

F
(
Y [n]

)
=





f
(
Y [n]1

)

f
(
Y [n]2

)

...
f
(
Y [n]s

)




,

and y[n] ∈ Rmr are external approximations which propagate to the next step. These
methods were introduced by Butcher [2] and further investigated in [3,5–9].

It will always be assumed, unless explicitly mentioned, that V is a rank one
matrix of the form V = uvT , u, v ∈ Rr, such that vTu = 1. This condition guarantees
that (1.2) is zero-stable. It will also be assumed, throughout the paper, that ci %= cj ,
if i %= j. Without this assumption, many details become impossibly complicated and,
for example, theorem 2 would not hold.

The method (1.2) has order p and stage order q if

y[n−1] =
p∑

k=0
hk
(
αk ⊗ y(k)(xn−1)

)
+ O

(
hp+1

)
(1.3)

implies that

Y [n] =
q∑

k=0
hk
(
ck

k!
⊗ y(k)(xn−1)

)
+ O

(
hq+1

)
(1.4)

and

y[n] =
p∑

k=0
hk
(
αk ⊗ y(k)(xn)

)
+ O

(
hp+1

)
, (1.5)

for some vectors α0,α1, . . . ,αp ∈ Rr associated with the method. Here, ck denotes
component-wise powers of c. The conditions which guarantee that (1.2) has order p
and stage order q = p were derived by Butcher in [2]. We will collect the vectors αk
in the matrix W defined by

W = [α0 α1 . . . αp ].

Theorem 1. The vectors αk, k = 0, 1, . . . , p, in (1.3) and the matrices A, B, U , and
V satisfy (1.4) and (1.5) with q = p if and only if

ecz = zAecz + Uw +O
(
zp+1

)
, (1.6)

ezw= zBecz + V w + O
(
zp+1

)
, (1.7)

where ecz = [ec1z , . . . , ecsz]T and w =
∑p

k=0 αkz
k.
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If U = Is, it is easy to verify by expanding both sides of (1.6) into Taylor series
around z = 0 and comparing the coefficients of zk in the resulting expressions that
the vectors αk appearing in (1.3) and (1.5) have the form

α0 = e, αk =
ck

k!
− Ack−1

(k − 1)! , k = 1, 2, . . . , p.

If in addition p = q = r = s, there exists a convenient representation formula for the
coefficient matrix B in terms of the matrices A, V , and the vector c.

Theorem 2 (Butcher [2]). Let p = q = r = s and U = Is. Then DIMSIM (1.2) is of
order p and stage order q = p if and only if

B = B0 −AB1 − V B2 + V A,

where the (i, j) elements of B0, B1, and B2 are given by
∫ 1+ci

0
φj(x) dx/φj (cj), φj(1+ ci)/φj (cj), and

∫ ci

0
φj(x) dx/φj (cj),

respectively, and φj(x) =
∏

k $=j(x− ck).

This formula for B considerably simplifies the construction of DIMSIMs. Many
examples of such methods were derived in [2,3,5,6] using symbolic manipulation pack-
ages and the approach based on homotopy method, and in [7,9] using the approach
based on least squares minimization and a variant of the Fourier series method. The
implementation issues for (1.2) such as changing step-size using the Nordsieck tech-
nique, local error estimation and construction of continuous interpolants were addressed
in [8].

Although the U = Is seems to be a special case, it can, for many methods,
be regarded as a convenient choice amongst various possible representations. Since
the purpose of the r vectors making up the input data y[n−1] and the corresponding
output data y[n] is merely to carry information from step to step, it is possible to
rearrange this data by taking r independent linear combinations of the r sub-vectors
and using the resulting combinations instead of the sub-vectors themselves. This is
equivalent to choosing a non-singular matrix T and replacing the partitioned matrix
that characterizes the method

[
A U

B V

]
,

by the “transformed method”
[

A UT

T−1B T−1V T

]
.

If U is square and non-singular, then transforming it to the case U = Is is easily
achieved by the choice T = U−1.
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It is the purpose of this paper to derive a more convenient representation for (1.2)
which will be easy to implement in a variable step-size environment. In this represen-
tation the vector of external stages will directly approximate the Nordsieck vector

z(xn) =





y(xn)
hy′(xn)
...

hpy(p)(xn)




,

where y is the solution to (1.1). This representation will be zero-stable for any step-
size pattern and changing step-size will be accomplished by a simple rescaling of the
vector of external approximations.

The paper is organized with the discussion of Nordsieck representation in sec-
tion 2 and an analysis of local truncation error, for methods designed in this way,
in section 3. The accumulation of truncation error, in a variable step-size situation,
is considered in section 4 and the estimation of local truncation error in section 5.
Examples of methods, as transformed to Nordsieck form, are given in section 6 and
the results of some numerical tests are presented in section 7.

2. Nordsieck representation of DIMSIMs

Our starting point is the method (1.2) such that p = q = r = s and with
U = Is. Let us consider, in addition to y[n], an approximation η[n] ∈ Rm of order p
to
∑p

k=0 h
ktky(k)(xn) of the form

η[n] = h
(
bT ⊗ Im

)
F
(
Y [n]

)
+
(
vT ⊗ Im

)
y[n−1].

To avoid the possibility that η[n] can be written as a linear combination of the
output quantities, y[n]i , i = 1, 2, . . . , r, we assume that the matrix

[
B e

bT 1

]

is non-singular.
Define the vector t = [t0, t1, . . . , tp]T and the matrix

W̃ =

[
W

tT

]
=

[
α0 α1 . . . αp
t0 t1 . . . tp

]
.

The independence of the vectors y[n]i , i = 1, 2, . . . , s, and η[n] guarantees that W̃ is
non-singular. The relationship between t and b is given by the following result.

Theorem 3. The first component of t is given by t0 = 1 and for given t1, t2, . . . , tp
the vector b is equal to

bT = lTC−1, (2.1)
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where C is the Vandermonde matrix

C =
[
e c . . . cp−1

]

and the vector l with components lk is defined by

lk = (k − 1)!
(

k∑

j=0

tk−j
j!

− vTαk

)
, k = 1, 2, . . . , p.

Proof. It follows from theorem 1 (formula (1.7)) that

ezξ = zbT ecz + vTw + O
(
zp+1

)
,

where ξ =
∑p

k=0 tkz
k. Expanding both sides of this equation into Taylor series around

z = 0 and comparing the corresponding coefficients of zk we obtain

vTα0 = t0 (2.2)

and

bT ck

k!
=

k+1∑

j=0

tk+1−j
j!

− vTαk+1, k = 0, 1, . . . , p− 1. (2.3)

It follows from (2.2) that t0 = 1 and equation (2.3) is equivalent to (2.1). !

Put ỹ [n] = [y[n]T , η[n]T ]T and consider the method
{
Y [n] = h(A⊗ Im)F (Y [n])+ (Ũ ⊗ Im)ỹ [n−1],
ỹ [n] = h(B̃ ⊗ Im)F (Y [n])+ (Ṽ ⊗ Im)ỹ [n−1],

(2.4)

where

Ũ =
[
U 0

]
, B̃ =

[
B

bT

]
, Ṽ =

[
V 0
vT 0

]
.

Since

ỹ [n] =
(
W̃ ⊗ Im

)





y(xn)
hy′(xn)
...

hpy(p)(xn)




+ O

(
hp+1

)

we define the vector z[n] by

ỹ [n] =
(
W̃ ⊗ Im

)
z[n]. (2.5)

Observing that

ŨW̃ =
[
U 0

] [W
tT

]
= UW
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and substituting (2.5) into (2.4) we obtain
{
Y [n] = h(A⊗ Im)F (Y [n])+ (P ⊗ Im)z[n−1],
z[n] = h(G⊗ Im)F (Y [n])+ (Q⊗ Im)z[n−1],

n = 1, 2, . . . ,N , (2.6)

where P = UW , G = W̃−1B̃ and Q = W̃−1Ṽ W̃ . Since

z[n] =
(
W̃−1 ⊗ Im

)
ỹ [n] =





y(xn)
hy′(xn)
...

hpy(p)(xn)




+ O

(
hp+1

)
, (2.7)

this is the desired Nordsieck representation of DIMSIM (1.2).
To simplify Q observe that W̃ [eT , 1]T = e1, where e1 = [1, 0, . . . , 0]T ∈ Rs+1.

It follows that

Q = W̃−1
[
e

1

] [
vT 0

] [W
t

]
= e1

[
1 vTα1 . . . vTαp

]
.

The matrix G is characterized by the following theorem.

Theorem 4. The matrix G is determined by the formula

G = LC−1, (2.8)

where C is the Vandermonde matrix defined in theorem 3 and L is the matrix with
columns Lk given by

Lk = (k − 1)!
(

k∑

j=0

ej+1
(k − j)!

−Qek+1

)
, k = 1, 2, . . . , p.

Here, ei, i = 1, 2, . . . , p+ 1, is the canonical basis in Rp+1. In particular, the matrix
G is independent of t1, t2, . . . , tp.

Proof. It follows from (2.7) and theorem 1 (formula (1.7)) that

ezw̃ = zGecz +Qw̃ + O
(
zp+1

)
, (2.9)

where w̃ =
∑p

k=0 ek+1z
k. Expanding both sides of (2.9) into Taylor series around

z = 0 and comparing the corresponding coefficients of zk we obtain

Qe1 = e1 (2.10)

and

Gck

k!
=

k+1∑

j=0

ej+1
(k + 1− j)!

−Qek+2, k = 0, 1, . . . , p− 1. (2.11)
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It follows from the form of the matrix Q that the condition (2.10) is automatically
satisfied and (2.11) is equivalent to (2.8). !

On a nonuniform grid x0 < x1 < · · · < xN , xN " X, the method (2.6) takes
the form

{
Y [n] = hn(A⊗ Im)F (Y [n])+ (P ⊗ Im)ẑ [n−1],
z[n] = hn(G⊗ Im)F (Y [n])+ (Q⊗ Im)ẑ [n−1],

n = 1, 2, . . . ,N , (2.12)

where hn = xn − xn−1, and ẑ [n−1] is an approximation of order p to

ẑ(xn−1) =





y(xn−1)
hny′(xn−1)

...
hpny(p)(xn−1)



 .

Since




y(xn−1)
hny′(xn−1)

...
hpny(p)(xn−1)




=





Im 0 . . . 0
0 δnIm . . . 0
...

... . . . ...
0 0 . . . δpnIm









y(xn−1)
hn−1y′(xn−1)

...
hpn−1y

(p)(xn−1)




,

δn = hn/hn−1, ẑ [n−1] appearing in (2.12) is defined by the formula

ẑ [n−1] =
(
D(δn)⊗ Im

)
z[n−1], (2.13)

where we have used the notation

D(δn) = diag
(
1, δn, . . . , δpn

)
.

It follows from (2.13) that zero-stability properties of the method (2.12) are determined
by the eigenvalues of the matrix QD(δn)⊗ Im. Since the matrix QD(δn) has simple
eigenvalue equal to one and eigenvalue zero of multiplicity p for any ratio δn, it follows
that (2.12) is zero-stable for any variable step-size pattern. This is in contrast to the
strategy proposed in [8] for DIMSIMs of the form (1.2) where desirable zero-stability
properties were enforced by a suitable choice of some free parameters associated with
a matrix which affects the computation of rescaled quantities ŷ [n−1] corresponding to
y[n−1].

More generally, if M (ζ) = V + ζB(I − ζA)−1U denotes the stability matrix of
method (1.2), then the stability matrix of the extended method (2.6) is

M̃ (ζ) =

[
V 0
vT 0

]
+ ζ

[
B

bT

]
(I − ζA)−1

[
U 0

]
=

[
M (ζ) 0

vT + ζbT (I − ζA)−1U 0

]
.



216 J.C. Butcher et al. / Nordsieck representation of DIMSIMs

As a consequence, M̃ andM have the same eigenvalues and the linear stability proper-
ties of the method remain unchanged for constant step-sizes through the augmentation
process.

3. Local discretization error of DIMSIM in Nordsieck form

From now on we will assume that the DIMSIM has been brought to its Nordsieck
form and is thus defined in its variable step-size version by

{
Y [n] = hn(A⊗ Im)F (Y [n])+ (PD(δn)⊗ Im)z[n−1],
z[n] = hn(G⊗ Im)F (Y [n])+ (QD(δn)⊗ Im)z[n−1],

(3.1)

where A ∈ Rp×p, P ∈ Rp×(p+1), G ∈ R(p+1)×p, Q ∈ R(p+1)×(p+1), and δn = hn/hn−1.

Definition 5. The local discretization error at the point xn for DIMSIM (3.1) is given
by

Γ(xn) = z(xn)− hn(G⊗ Im)F
(
ϒ(xn)

)
− (Q⊗ Im)ẑ(xn−1), (3.2)

where the vector ϒ(xn) is defined by

ϒ(xn) = hn(A⊗ Im)F
(
ϒ(xn)

)
+ (P ⊗ Im)ẑ(xn−1). (3.3)

We recall that

z(xn) =





y(xn)
hny′(xn)

...
hpny(p)(xn)




and ẑ(xn−1) =





y(xn−1)
hny′(xn−1)

...
hpny(p)(xn−1)




.

Assuming that the solution y to (1.1) is sufficiently smooth, and that p = q, the vector
ϒ(xn) can be written as

ϒ(xn) = Y (xn−1)+ hp+1n γ(xn−1)+ O
(
hp+2n

)
, (3.4)

where hp+1n γ(xn−1) is the principal part of the error of the internal stages ϒ(xn). This
function can be computed by substituting (3.4) into (3.3). This leads to

(
Cp ⊗ Im − (A⊗ Im)(CpK ⊗ Im)− P ⊗ Im

)
ẑ(xn−1)

+ hp+1n

(
γ(xn−1)+ αp+1 ⊗ y(p+1)(xn−1)

)
= O

(
hp+2n

)
, (3.5)
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where Cp and K are defined by

Cp =

[
e c . . .

cp

p!

]
, K =





0 1 0 . . . 0

0 . . . . . . 0
... . . . . . . ...
... . . . 1
0 . . . . . . . . . 0




∈ Rp×p,

and where

αp+1 =
cp+1

(p+ 1)!
− Acp

p!
.

Using the properties of the Kronecker product [11] we write (3.5) as
(
(Cp −ACpK − P )⊗ Im

)
ẑ(xn−1)

+ hp+1n

(
γ(xn−1)+ αp+1 ⊗ y(p+1)(xn−1)

)
= O

(
hp+2n

)
. (3.6)

The first term in (3.6) vanishes in view of relation (1.6) in theorem 1 and equating to
zero the second term we obtain

γ(xn−1) = −αp+1 ⊗ y(p+1)(xn−1).

Put

a =

[
1

(p+ 1)!
1
p!

. . . 1
]T
.

We have the following theorem.

Theorem 6. The local discretization error of the method (3.1) at the point xn is given
by

Γ(xn) = hp+1n

(
ϕp ⊗ y(p+1)(xn−1)

)
+ O

(
hp+2n

)
, (3.7)

where

ϕp = a− Gcp

p!
.

Remark. Similar estimates have been derived in [4,8].

4. Accumulation of errors for non-stiff problems

We deal here with non-stiff equations so that the function f is supposed to satisfy
a Lipschitz condition of the form

∥∥f (y1)− f (y2)
∥∥ # L‖y1 − y2‖ (4.1)
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for y1, y2 ∈ Rm. We consider a more general matrix Q of rank possibly higher than
one. However, we will assume that Q has only one eigenvalue of modulus one and
multiplicity one. The preconsistency condition Qe1 = e1 then enables us to decompose
Q as

Q = e1q
T + Q̃, (4.2)

with Q̃e1 = 0, qT Q̃ = 0 and qTe1 = 1. Furthermore, if the method is zero-stable,
then ρ(Q̃) < 1 and there exists a Euclidean norm ‖ · ‖S on Rr (S is a symmetric
positive definite matrix of Rr×r normalized by the relation eT1 Se1 = 1), two positive
reals δmin < 1 and δmax > 1 and a real µ, 0 # µ < 1 such that

∥∥Q̃D(δ)
∥∥
S

# µ, for all δ ∈ [δmin, δmax]. (4.3)

We also denote

η = max
δmin!δ!δmax

∥∥D(δ)q
∥∥
S−1

.

By convention, and for any family of square matrices (Xk)k∈N, we will write

j∏

k=i

Xk = Xj · · ·Xi, i # j.

Lemma 7. Let (i, j) ∈ N× N with j " i. Then we have

j∏

k=i

(
QD(δk)

)
= e1ϑ

T
j,i +

j∏

k=i

(
Q̃D(δk)

)
,

with ϑTj,j = qTD(δj) and

ϑTj,i−1 = qTD(δi−1)+ ϑTj,iQ̃D(δi−1). (4.4)

For any δ ∈ [δmin, δmax], we have in addition

‖ϑj,i‖S−1 # η

1− µ
.

Proof. The relation

QD(δj) = e1q
TD(δj)+ Q̃D(δj)

gives immediately ϑTj,j = qTD(δj) (ϑTj,je1 = qT e1 = 1). Let us now assume that for
a given i, 0 # i+ 1 # j,

j∏

k=i+1

(
QD(δk)

)
= e1ϑ

T
j,i+1 +

j∏

k=i+1

(
Q̃D(δk)

)
,
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with ϑTj,i+1e1 = 1. Then it follows that

j∏

k=i

(
QD(δk)

)
=

(
e1ϑ

T
j,i+1 +

j∏

k=i+1

(
Q̃D(δk)

)
)
(
e1q

TD(δi)+ Q̃D(δi)
)

= e1
(
ϑTj,i+1e1

)
qTD(δi)+ e1ϑ

T
j,i+1Q̃D(δi)

+

(
j∏

k=i+1

(
Q̃D(δk)

)
)
e1q

TD(δi)+
j∏

k=i

(
Q̃D(δk)

)
.

Since ϑTj,i+1e1 = 1 and
(

j∏

k=i+1

(
Q̃D(δk)

)
)
e1 = 0,

we obtain

ϑTj,i = qTD(δi)+ ϑTj,i+1Q̃D(δi).

It follows that ϑTj,ie1 = qT e1+ϑTj,i+1Q̃e1 = 1 and relation (4.4) thus holds by induction
on i. Besides, we have

‖ϑj,i‖S−1 # η + µ‖ϑj,i+1‖S−1 ,

and the bound stated in the lemma can be obtained by induction on i. !

Remark. By convention, we shall define ϑTj,j+1 = qTD(1) = qT .

Remark. If Q is assumed to be of rank one, then Q̃ = 0 and for any (i, j) ∈ N2, i # j,
we have ϑTj,i = qTD(δi).

Lemma 8. Let Δz[n] = z[n]− z(xn) denote the error at the nth step, and let ΔF [n] be
the quantity F (Y [n])− F (ϒ(xn)). If z[n] satisfies the recursion (3.1), q1 = 1, then we
have

Δz[n] =

(
n∏

k=1

(
QD(δk)

)
⊗ Im

)
Δz[0]

+
n−1∑

i=1

(
n∏

k=i+1

(
QD(δk)

)
⊗ Im

)
(
hi(G⊗ Im)ΔF [i] + Γ(xi)

)

+ hn(G⊗ Im)ΔF [n] + Γ(xn). (4.5)
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Proof. We have on the one hand
{
Y [n] = hn(A⊗ Im)F (Y [n])+ (PD(δn)⊗ Im)z[n−1],
z[n] = hn(G⊗ Im)F (Y [n])+ (QD(δn)⊗ Im)z[n−1],

(4.6)

and on the other hand
{
ϒ(xn) = hn(A⊗ Im)F (ϒ(xn))+ (PD(δn)⊗ Im)z(xn−1),
z(xn) = hn(G⊗ Im)F (ϒ(xn))+ (QD(δn)⊗ Im)z(xn−1)− Γ(xn).

(4.7)

Subtracting (4.7) from (4.6) we thus get

Δz[n] = hn(G⊗ Im)ΔF [n] +
(
QD(δn)⊗ Im

)
Δz[n−1] + Γ(xn).

Formula (4.5) is then easily obtained by induction. !

Let ‖ · ‖2 denote the 2-norm on Rm. It can be extended to Rrm and Rsm,
respectively, by the definitions

‖g‖2S⊗Im = gT (S ⊗ Im)g for all g ∈ Rrm

and

‖g‖22 = gT g for all g ∈ Rsm.

Note that we will also use the notations ‖ ·‖S⊗M and ‖ ·‖2 for the subordinated norms
corresponding to linear operators.

Lemma 9.

‖M ⊗ Im‖S⊗Im = ‖M‖S , M ∈ L
(
Rr,Rr

)
,

∥∥(G⊗ Im)g
∥∥
S⊗Im #

∥∥S1/2G
∥∥
2‖g‖2, g ∈ Rsm,

∥∥(wT ⊗ Im
)
g
∥∥
2 # ‖w‖S−1‖g‖S⊗Im , w ∈ Rr, g ∈ Rrm.

Proof. These inequalities derive straightforwardly from standard properties on norms
and Kronecker products. !

Theorem 10. Assume that f satisfies the Lipschitz condition (4.1) and that there exist
constants Ω > 0 and H > 0 such that

∥∥Δz[0]
∥∥
S⊗Im # Ωhp+1 and

∥∥Γ(xn)
∥∥
S⊗Im # Ωhp+1

for n = 1, 2, . . . ,N and for all h # H . Then there exists h̃ > 0 such that for any
sequence of step-sizes {hi}Ni=0 satisfying

{
max{hi: i = 0, . . . ,N} # h̃,
δmin # δi # δmax,

1 # i # N , (4.8)
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there exists a bounded sequence {νi}Ni=0 ∈ RNm for which the following inequalities
hold:






‖νn‖2 # K1 max
n=0,...,N

∥∥∥∥∥
(
ϑTn,1 ⊗ Im

)
Δz[0] +

n∑

i=1

(
ϑTn,i+1 ⊗ Im

)
Γ(xi)

∥∥∥∥∥
2

+K2hp+1 # K̃hp,∥∥Δz[n] − e1 ⊗ νn
∥∥
S⊗Im # K̃hp+1,

(4.9)

for n = 1, 2, . . . ,N , where h = max{hn: n = 0, 1, . . . ,N} and where K1, K2 and K̃
are some positive constants.

Proof. For n " 0, let

νn =
(
ϑTn,1 ⊗ Im

)
Δz[0] +

n∑

i=1

(
ϑTn,i+1 ⊗ Im

)(
hi(G⊗ Im)ΔF [i] + Γ(xi)

)
,

and let an = ‖Δz[n] − e1 ⊗ νn‖S⊗Im , bn = ‖νn‖2. Then for any sequence {hi}Ni=0
satisfying (4.8) we obtain, using lemmas 7 and 9,

bn # ΓΣ + k1

n−1∑

i=0
hi+1(ai + bi),

where

ΓΣ = max
n=0,...,N

∥∥∥∥∥
(
ϑTn,1 ⊗ Im

)
Δz[0] +

n∑

i=1

(
ϑTn,i+1 ⊗ Im

)
Γ(xi)

∥∥∥∥∥
2

.

Similarly, we can bound an as follows:

an # k2h
p+1 + k3

n−1∑

i=0
µn−1−ihi+1(ai + bi).

k1, k2 and k3 are some positive constants depending on L, η, µ, Ω and ‖R1/2G‖2.
The rest of the proof follows by a standard induction on n. !

Remark. It can be noticed that, by definition, we have

νn+1 = νn + O
(
hp+1n

)
.

This theorem shows that the main term of the global error (in hp) lies in the
direction of e1. This information will be of interest in the next section for the estimation
of local errors. It also shows that the main part of the error ΓΣ is built up by the
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accumulation of local errors through the action of the ϑ’s. With Γ(xi) of the form
stated in theorem 6, ΓΣ may be estimated as follows:

ΓΣ = max
n=0,...,N

∥∥∥∥∥
(
ϑTn,1 ⊗ Im

)
Δz[0] +

n∑

i=1

(
ϑTn,i+1 ⊗ Im

)(
hp+1i ϕp ⊗ y(p+1)(xi−1)

)
∥∥∥∥∥
2

+ O
(
hp+1

)

# max
n=0,...,N

(
n∑

i=1
hp+1i

∣∣ϑTn,i+1ϕp
∣∣∥∥y(p+1)(xi−1)

∥∥
2

)
+ O

(
hp+1

)
.

In order to design a safe step-size-control strategy, one should consequently estimate
the quantities hp+1i |ϑTn,i+1ϕp| · ‖y(p+1)(xi−1)‖2. In the case of constant step-size, this
is simply the main part of (qT ⊗ Im)Γ(xn).

We now investigate in detail the main case considered in this paper; that is, we
assume that Q is of rank one. We then have Q̃ = 0 and ϑTn,i+1 = qTD(δi). Whenever
the step is kept constant (hi+1 = hi), the main contribution of the local error Γ(xi)
to the global error is (qT ⊗ Im)Γ(xi), as in the case of constant step-size sequences.
Otherwise, it deviates from this quantity by a term of the form

(
qT
(
I −D(δi+1)

)
⊗ Im

)
Γ(xi),

which can be bounded by hp+1i M maxx0!x!X ‖y(p+1)(x)‖2 + O(hp+2i ), where

M = max
δmin!δ!δmax

∣∣qTϕp − qTD(δ)ϕp
∣∣.

Hence,

max
n=0,...,N

∥∥∥∥∥
(
qT ⊗ Im

)
Δz[0] +

n∑

i=1

(
qT ⊗ Im

)
Γ(xi)

∥∥∥∥∥
2

deviates from ΓΣ by a term which can be bounded by

hpM
(
max

x0!x!X

∥∥y(p+1)(x)
∥∥
2

)
max

n=0,...,N

(
n−1∑

i=1
hi|1− δi+1|

)
+ O

(
hp+1

)
,

and thus remains small compared to ΓΣ, under appropriate assumptions on the sequence
of step-sizes and for small h. Note that if q = e1, then we have exactly

ΓΣ = max
n=0,...,N

∥∥∥∥∥
(
qT ⊗ Im

)
Δz[0] +

n∑

i=1

(
qT ⊗ Im

)
Γ(xi)

∥∥∥∥∥
2

.

Similarly, if ϕp = e1 or more generally q(I −D(δ))ϕp = 0 for any δ, then

ΓΣ = max
n=0,...,N

∥∥∥∥∥
(
qT ⊗ Im

)
Δz[0] +

n∑

i=1

(
qT ⊗ Im

)
Γ(xi)

∥∥∥∥∥
2

+ O
(
hp+1

)
.
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Remark. Another case of special interest is ρ(Q̃) = 0. The matrix Q̃ is then nilpotent
of index s−1. This means that whenever s consecutive steps have been kept equal the
contribution of the local error Γ(xi) to ΓΣ is once again of the form (qT ⊗ Im)Γ(xi).

5. Local error estimation

According to the analysis undertaken in the previous section, a reliable con-
trol of the global error ΓΣ can be achieved by bounding the local contributions
hp+1n (qTϕp)y(p+1)(xn−1) at each step. In [8] we derived estimates of the local dis-
cretization error of DIMSIMs of the form (1.2) which were defined on uniform and
nonuniform meshes. These estimates were expressed in terms of internal and exter-
nal stages Y [n] and y[n−1] for uniform meshes and in terms of Y [n] and ŷ [n−1] for
nonuniform meshes, where ŷ [n−1] are rescaled approximations corresponding to y[n−1].
Similar estimates could be derived for methods (3.1). We have found, however, that
in the case of DIMSIMs expressed in Nordsieck form it is more natural to work with
estimates expressed in terms of internal approximations Y [n] and Y [n−1] computed at
two consecutive steps. It is the purpose of this section to derive such error estimates
for variable step-size method (3.1).

Theorem 11. Assume that the hypotheses of theorem 10 are satisfied and method (3.1)
has stage order equal to the order p. Then the principal part of the local discretization
error can be estimated by the formula

hp+1n

(
qTϕp

)
y(p+1)(xn−1)

= hn
(
βT ⊗ Im

)
F
(
Y [n]

)
+ hn−1

(
γT ⊗ Im

)
F
(
Y [n−1]

)
+ O

(
hp+2

)
, (5.1)

where h = maxi=0,...,n hi and where the vectors β = β(δn) and γ = γ(δn) satisfy the
system of equations






βTCpKDT + γTCpK = 0,

βT
(
CpKDa+ δp+1n

cp

p!

)
+ γT

cp

p!
= δp+1n qTϕp,

(5.2)

where T is defined by

T =





1 1
1
2!

. . .
1
p!

0 1 1 . . .
1

(p− 1)!

0 0 1 . . .
1

(p− 2)!
...

...
... . . . ...

0 0 0 . . . 1





. (5.3)
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The matrices Cp,K and the vector a are defined in section 3 and the matrixD = D(δn)
is defined in section 2.

Proof. Since method (3.1) has order p equal to the stage order q one has

Y [n] = Y (xn−1)+ O
(
hp
)
,

and more precisely

Y [n] = Y (xn−1)+
(
PD(δn)⊗ Im

)
Δz[n−1] + O

(
hp+1

)

= Y (xn−1)+ e⊗ νn−1 + O
(
hp+1

)
,

where νn−1 is defined in theorem 10 and where we have used PD(δn)e1 = Pe1 = e.
Then

hnF
(
Y [n]

)
= hnY

′(xn−1)+ hn

(
Is ⊗

∂f

∂y

(
y(xn−1)

))(
Y [n] − Y (xn−1)

)
+ O

(
hp+2

)
,

= hnY
′(xn−1)+ hn

(
e⊗ ∂f

∂y

(
y(xn−1)

)
νn−1

)
+O

(
hp+2

)
.

Expanding Y ′(xn−1) into Taylor series around xn−1 we obtain

hnF
(
Y [n]

)
= hn

(
e⊗ y′(xn−1)

)
+ h2n

(
c⊗ y′′(xn−1)

)
+ · · ·

+ hpn

(
cp−1

(p− 1)! ⊗ y(p)(xn−1)
)

+ hp+1n

(
cp

p!
⊗ y(p+1)(xn−1)

)

+ hn

(
e⊗ ∂f

∂y

(
y(xn−1)

)
νn−1

)
+ O

(
hp+2

)
,

which can be written in a more compact form as

hnF
(
Y [n]

)
= (CpK ⊗ Im)ẑ(xn−1)+ hp+1n

(
cp

p!
⊗ y(p+1)(xn−1)

)

+ hn

(
e⊗ ∂f

∂y

(
y(xn−1)

)
νn−1

)
+ O

(
hp+2

)
. (5.4)

We have also

ẑ(xn−1) = (DT ⊗ Im)ẑ(xn−2)+ hp+1n−1
(
Da⊗ y(p+1)(xn−2)

)
+O

(
hp+2

)
. (5.5)

Substituting (5.4) (and a similar relation with n replaced by n− 1) and (5.5) into (5.1)
and using the relations

y(p+1)(xn−1) = y(p+1)(xn−2)+ O(hn−1),

∂f

∂y

(
y(xn−1)

)
=

∂f

∂y

(
y(xn−2)

)
+ O(h)
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and νn−1 = νn−2 + O(hp+1), we must satisfy the following relation:

δp+1n hp+1n−1
(
qTϕp

)
y(p+1)(xn−2)

=
((
βTCpKDT + γTCpK

)
⊗ Im

)
ẑ(xn−2)

+ hp+1n−1

(
βTCpKDa+ δp+1n βT

cp

p!
+ γT

cp

p!

)
y(p+1)(xn−2)

+
(
δnβ

T e+ γT e
)∂f
∂y

(
y(xn−2)

)
νn−2 +O

(
hp+2

)
. (5.6)

Comparing the corresponding terms in equation (5.6) and noticing that equation
δnβT e+ γT e = 0 is implied by βTCpKDT + γTCpK = 0 leads to the system (5.2).
This completes the proof. !

6. Examples of explicit and implicit DIMSIMs in Nordsieck form

Consider first DIMSIMs with p = q = r = s = 3, c = [0, 1/2, 1]T , and
coefficient matrices given by

[
A U
B V

]
=





0 0 0 1 0 0

1 0 0 0 1 0
1
4

1 0 0 0 1

5
4

1
3

1
6

−2
3

4
3

1
3

35
24

−1
3

1
8

−2
3

4
3

1
3

17
12

0
1
12

−2
3

4
3

1
3





. (6.1)

This method, which was first derived in [6], is an example of type 1 DIMSIM (A is
lower triangular with zero on the main diagonal) and is appropriate for non-stiff dif-
ferential systems solved in a sequential computing environment. By construction,
method (6.1) has the same stability properties as a 3-stage explicit Runge–Kutta method
of order 3.
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It can be verified using the results given in section 2 that the Nordsieck repre-
sentation of (6.1) takes the form

[
A P
G Q

]
=





0 0 0 1 0 0 0

1 0 0 1 −1
2

1
8

1
48

1
4

1 0 1 −1
4

0 1
24

5
4

1
3

1
6

1 −3
4

1
6

1
24

0 0 1 0 0 0 0

1 −4 3 0 0 0 0

4 −8 4 0 0 0 0





. (6.2)

For this method the local discretization error Γ(xn) has the form given by formula (3.7)
in theorem 6 with p = 3 and

ϕ3 =
[ 1
144 0 1

12
1
2
]T
.

Since qT = [1,−3/4, 1/6, 1/24] the principal part of Γ(xn) takes the form
(
qTϕ3

)
h4ny

(4)(xn−1) =
1
24
h4ny

(4)(xn−1).

Using theorem 11 the above expression can be estimated by

1
24
h4ny

4(xn−1) = hn
(
βT ⊗Im

)
F
(
Y [n]

)
+hn−1

(
γT ⊗Im

)
F
(
Y [n−1]

)
+O

(
h5n
)
, (6.3)

where the vectors β = [β1,β2,β3]T and γ = [γ1, γ2, γ3]T can be computed from (5.2)
with p = 3. This leads to the system of five equations in six unknowns and choosing
β3 as a free parameter we obtain






β1 =
2β3 + 9β3δn − 2δ2n + 7β3δ2n

(1+ δn)(2 + δn)
,

β2 =
2(δ2n − 2β3 − 6β3δn − 4β3δ2n)

(1+ δn)(2+ δn)
,

γ1 =
δ3n(β3 − δn + 2β3δn)

2+ δn
,

γ2 =
2δ3n(δn − 2β3 − 2β3δn)

1+ δn
,

γ3 =
δ3n(7β3 − 3δn + 9β3δn − δ2n + 2β3δ2n)

(1+ δn)(2+ δn)
.

(6.4)
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Consider next type 2 DIMSIMs (A is lower triangular with λ %= 0 on the main
diagonal) of the form

A=




0.43586652 0 0
0.25051488 0.43586652 0
−1.2115943 1.0012746 0.43586652



 ,

B=




0.83379073 0.64599891 −0.31582709
0.60625754 1.2869318 −0.47974168
−0.30841677 3.8034216 −1.1207225



 , (6.5)

v= [ 0.55209096 0.73485666 −0.28694762 ]T .

This method was derived in [6] and is appropriate for stiff differential systems
in a sequential computing environment. By construction (6.5) has the same stability
properties as a 3-stage SDIRK method of order 3. As a consequence, this method is
A-stable and L-stable (compare [10]).

The Nordsieck representation of (6.5) takes the form

A=




0.43586652 0 0
0.25051488 0.43586652 0
−1.2115943 1.0012746 0.43586652



 ,

P =




1 −0.43586652 0 0
1 −0.18638114 −0.09293326 −0.03364998
1 0.77445317 −0.43650382 −0.17642592



 ,

(6.6)

G=





0.83379073 0.64599891 0.12003944
0 0 1
1 −4 3
4 −8 4



 ,

q= [ 1 −0.59982908 0.05696111 0.02589708 ]T .

The local discretization error Γ(xn) of this method has the form (3.7) with p = 3
and

ϕ3 =
[
0.00820178 0 1

12
1
2
]T
.

The principal part of Γ(xn) reads
(
qTϕ3

)
h4ny

(4)(xn−1) = 0.02589708h4ny(4)(xn−1).

Using theorem 11 the above expression can be estimated by

0.02589708h4ny4(xn−1)

= hn
(
βT ⊗ Im

)
F
(
Y [n]

)
+ hn−1

(
γT ⊗ Im

)
F
(
Y [n−1]

)
+ O

(
h5n
)
, (6.7)
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with β = [β1,β2,β3]T and γ = [γ1, γ2, γ3]T given by





β1 =
2β3 + 9β3δn − 1.24306006δ2n + 7β3δ2n

(1+ δn)(2 + δn)
,

β2 =
2(0.62153003δ2n − 2β3 − 6β3δn − 4β3δ2n)

(1+ δn)(2 + δn)
,

γ1 =
δ3n(β3 − 0.62153003δn + 2β3δn)

2+ δn
,

γ2 =
2δ3n(0.62153003δn − 2β3 − 2β3δn)

1+ δn
,

γ3 =
δ3n(7β3 − 1.86459009δn + 9β3δn − 0.62153003δ2n + 2β3δ2n)

(1+ δn)(2 + δn)
,

(6.8)

where β3 is a free parameter. The quality of these error estimating formulas will be
tested in the next section.

7. Numerical experiments

We have tested methods (6.2) and (6.6) on many non-stiff and stiff problems,
respectively. We will present below the selection of results of numerical experiments
which were designed to test the reliability of error estimating formulas (6.3) and (6.7)
subject to rapid step changes. We will use the test equation

{
y′(x) = λ(y − eµx)+ µeµx, x ∈ [x0,X],
y(x0) = y0,

where λ and µ are real parameters and y0 is a given initial value, with the exact
solution

y(x) = eµx −
(
eµx0 − y0

)
eλ(x−x0).

As in [8] the step-size pattern was chosen according to the formula

hn+1 = r(n)hn
with h0 = (X − x0)/N , N = 1000, and

r(n) = RHO(−1)n sin(4πn/(X−x0))

for RHO = 1.25, 1.5, 1.75 and 2. The results are displayed in figure 1 for method (6.2)
and in figure 2 for method (6.6) for λ = −0.1 and µ = 0.1. In these figures the inner
curves correspond to the local error LE and the outer curves to the estimates EST
given by (6.3) and (6.7) with β and γ defined by (6.4) and (6.8), respectively, and
β3 = 1/6.

As expected, as λ increases the explicit method (6.2) fails to integrate this prob-
lem successfully. This happens, for example, for constant step-size h = 1/1000 for
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Figure 1. LE versus EST for DIMSIMs of type 1.

Figure 2. LE versus EST for DIMSIMs of type 2.
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λ < −251 since the stability interval of this method is (−2.51, 0). On the other hand,
the implicit method (6.6) can handle this problem for a wide range of the parame-
ter λ. However, the quality of error estimating formula (6.7) deteriorates rapidly as λ
becomes larger. This is due to the fact that the higher order term in h5n is becoming
dominant and eventually greater than the principal part of the local discretization error

h4n
(
qTϕ3

)
y(4)(xn−1).

For scalar problems we could improve the quality of the error estimating formula by
killing higher order terms. However, this is a very complicated task, even for methods
of low orders, and which require different theoretical and numerical tools from that
used in this paper. The situation is even more complicated in the vector case. These
topics will be addressed in subsequent work.

8. Concluding remarks

Techniques similar to those discussed in this paper have been developed and
implemented by Mrs Anjana Singh. Her work also considers a range of alternative
error estimates and will be reported in a subsequent paper.
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