
JMLR: Workshop and Conference Proceedings vol 40:1–26, 2015

Norm-Based Capacity Control in Neural Networks

Behnam Neyshabur BNEYSHABUR@TTIC.EDU

Ryota Tomioka TOMIOKA@TTIC.EDU

Nathan Srebro NATI@TTIC.EDU

Toyota Technological Institute at Chicago, Chicago, IL 60637, USA

Abstract

We investigate the capacity, convexity and characterization of a general family of norm-constrained

feed-forward networks.

Keywords: Feed-forward neural networks, deep learning, scale-sensitive capacity control

1. Introduction

The statistical complexity, or capacity, of unregularized feed-forward neural networks, as a function

of the network size and depth, is fairly well understood. With hard-threshold activations, the VC-

dimension, and hence sample complexity, of the class of functions realizable with a feed-forward

network is equal, up to logarithmic factors, to the number of edges in the network (Anthony and

Bartlett, 2009; Shalev-Shwartz and Ben-David, 2014), corresponding to the number of parameters.

With continuous activation functions the VC-dimension could be higher, but is fairly well under-

stood and is still controlled by the size and depth of the network.1

But feedforward networks are often trained with some kind of explicit or implicit regularization,

such as weight decay, early stopping, “max regularization”, or more exotic regularization such as

drop-outs. What is the effect of such regularization on the induced hypothesis class and its capacity?

For linear prediction (a one-layer feed-forward network) we know that using regularization the

capacity of the class can be bounded only in terms of the norms, with no (or a very weak) depen-

dence on the number of edges (i.e. the input dimensionality or number of linear coefficients). E.g.,

we understand very well how the capacity of ℓ2-regularized linear predictors can be bounded in

terms of the norm alone (when the norm of the data is also bounded), even in infinite dimension.

A central question we ask is: can we bound the capacity of feed-forward network in terms

of norm-based regularization alone, without relying on network size and even if the network size

(number of nodes or edges) is unbounded or infinite? What type of regularizers admit such capacity

control? And how does the capacity behave as a function of the norm, and perhaps other network

parameters such as depth?

Beyond the central question of capacity control, we also analyze the convexity of the resulting

hypothesis class—unlike unregularized size-controlled feed-forward networks, infinite magnitude-

controlled networks have the potential of yielding convex hypothesis classes (this is the case, e.g.,

1. Using weights with very high precision and vastly different magnitudes it is possible to shatter a number of points

quadratic in the number of edges when activations such as the sigmoid, ramp or hinge are used (Shalev-Shwartz and

Ben-David, 2014, Chapter 20.4). But even with such activations, the VC dimension can still be bounded by the size

and depth (Bartlett, 1998; Anthony and Bartlett, 2009; Shalev-Shwartz and Ben-David, 2014).

c© 2015 B. Neyshabur, R. Tomioka & N. Srebro.

NEYSHABUR TOMIOKA SREBRO

when we move from rank-based control on matrices, which limits the number of parameters to

magnitude based control with the trace-norm or max-norm). A convex class might be easier to

optimize over and might be convenient in other ways.

In this paper we focus on networks with rectified linear units and two natural types of norm reg-

ularization: bounding the norm of the incoming weights of each unit (per-unit regularization) and

bounding the overall norm of all the weights in the system jointly (overall regularization, e.g. lim-

iting the overall sum of the magnitudes, or square magnitudes, in the system). We generalize both

of these with a single notion of group-norm regularization: we take the ℓp norm over the weights

in each unit and then the ℓq norm over units. In Section 3 we present this regularizer and obtain

a tight understanding of when it provides for size-independent capacity control and a characteri-

zation of when it induces convexity. We then apply these generic results to per-unit regularization

(Section 4) and overall regularization (Section 5), noting also other forms of regularization that are

equivalent to these two. In particular, we show how per-unit regularization is equivalent to a novel

path-based regularizer and how overall ℓ2 regularization for two-layer networks is equivalent to so-

called “convex neural networks” (Bengio et al., 2005). In terms of capacity control, we show that

per-unit regularization allows size-independent capacity-control only with a per-unit ℓ1-norm, and

that overall ℓp regularization allows for size-independent capacity control only when p ≤ 2, even if

the depth is bounded. In any case, even if we bound the sum of all magnitudes in the system, we

show that an exponential dependence on the depth is unavoidable.

As far as we are aware, prior work on size-independent capacity control for feed-forward net-

works considered only per-unit ℓ1 regularization, and per-unit ℓ2 regularization for two-layered

networks (see discussion and references at the beginning of Section 4). Here, we extend the scope

significantly, and provide a broad characterization of the types of regularization possible and their

properties. In particular, we consider overall norm regularization, which is perhaps the most natural

form of regularization used in practice (e.g. in the form of weight decay). We hope our study will be

useful in thinking about, analyzing and designing learning methods using feed-forward networks.

Another motivation for us is that complexity of large-scale optimization is often related to scale-

based, not dimension-based complexity. Understanding when the scale-based complexity depends

exponentially on the depth of a network might help shed light on understanding the difficulties in

optimizing deep networks.

2. Preliminaries: Feedforward Neural Networks

A feedforward neural network that computes a function f : RD → R is specified by a directed

acyclic graph (DAG) G(V,E) with D special “input nodes” vin[1], . . . , vin[D] ∈ V with no incom-

ing edges and a special “output node” vout ∈ V with no outgoing edges, weights w :E → R on the

edges, and an activation function σ :R → R.

Given an input x ∈ R
D, the output values of the input units are set to the coordinates of x,

o(vin[i]) = x[i] (we might want to also add a special “bias” node with o(vin[0]) = 1, or just rely on

the inputs having a fixed “bias coordinate”), the output value of internal nodes (all nodes except the

input and output nodes) are defined according to the forward propagation equation:

o(v) = σ

 ∑

(u→v)∈E

w(u → v)o(u)

 , (1)

2

NORM-BASED CAPACITY CONTROL IN NEURAL NETWORKS

and the output value of the output unit is defined as o(vout) =
∑

(u→vout)∈E
w(u → vout)o(u). The

network is then said to compute the function fG,w,σ(x) = o(vout). Given a graphs G and activation

function σ, we can consider the hypothesis class of functions NG,σ = {fG,w,σ :R
D → R | w :E →

R} computable using some setting of the weights.

We will refer to the size of the network, which is the overall number of edges |E|, the depth d
of the network, which is the length of the longest directed path in G, and the in-degree (or width)

H of a network, which is the maximum in-degree of a vertex in G.

A special case of feedforward neural networks are layered fully connected networks where

vertices are partitioned into layers and there is a directed edge from every vertex in layer i to every

vertex in layer i + 1. We index the layers from the first layer, i = 1 whose inputs are the input

nodes, up to the last layer i = d which contains the single output node—the number of layers is

thus equal to the depth and the in-degree is the maximal layer size. We denote by layer(d,H) the

layered fully connected network with d layers and H nodes per layer (except the output layer that

has a single node), and also allow H = ∞. We will also use the shorthand N d,H,σ = N layer(d,H),σ

and N d,σ = N layer(d,∞),σ.

Layered networks can be parametrized by a sequence of matrices W1 ∈ R
H×D,W2,

W3, . . . ,Wd−1 ∈ R
H×H ,Wd ∈ R

1×H where the row Wi[j, :] contains the input weights to unit

j in layer i, and

fW (x) = Wdσ(Wd−1σ(Wd−2(. . . σ(W1x)))), (2)

where σ is applied element-wise.

We will focus mostly on the hinge, or RELU (REctified Linear Unit) activation, which is

currently in popular use (Nair and Hinton, 2010; Bordes and Bengio, 2011; Zeiler et al., 2013),

σRELU(z) = [z]+ = max(z, 0). When the activation will not be specified, we will implicitly be

referring to the RELU. The RELU has several convenient properties which we will exploit, some of

them shared with other activation functions:

Lipshitz The hinge is Lipschitz continuous with Lipshitz constant one. This property is also shared

by the sigmoid and the ramp activation σ(z) = min(max(0, z), 1).

Idempotency The hinge is idempotent, i.e. σRELU(σRELU(z)) = σRELU(z). This property is also

shared by the ramp and hard threshold activations.

Non-Negative Homogeneity For a non-negative scalar c ≥ 0 and any input z ∈ R we have

σRELU(c · z) = c · σRELU(z). This property is important as it allows us to scale the incom-

ing weights to a unit by c > 0 and scale the outgoing edges by 1/c without changing the the

function computed by the network. For layered graphs, this means we can scale Wi by c and

compensate by scaling Wi+1 by 1/c.

We will consider various measures α(w) of the magnitude of the weights w(·). Such a measure

induces a complexity measure on functions f ∈ NG,σ defined by αG,σ(f) = inffG,w,σ=f α(w).

The sublevel sets of the complexity measure αG,σ form a family of hypothesis classes NG,σ
α≤a =

{f ∈ NG,σ | αG,σ(f) ≤ a}. Again we will use the shorthand αd,H,σ and αd,σ when referring

to layered graphs layer(d,H) and layer(d,∞) respectively, and frequently drop σ when RELU is

implicitly meant.

For binary function g : {±1}D → ±1 we say that g is realized by f with unit margin if

∀xf(x)g(x) ≥ 1. A set of points S is shattered with unit margin by a hypothesis class N if all

g : S → ±1 can be realized with unit margin by some f ∈ N .

3

NEYSHABUR TOMIOKA SREBRO

3. Group Norm Regularization

Considering the grouping of weights going into each node of the network, we will consider the

following generic group-norm type regularizer, parametrized by 1 ≤ p, q ≤ ∞:

µp,q(w) =

∑

v∈V

 ∑

(u→v)∈E

|w(u → v)|p

q/p

1/q

. (3)

Here and elsewhere we allow q = ∞ with the usual conventions that (
∑

zqi)
1/q = sup zi and

1/q = 0 when it appears in other contexts. When q = ∞ the group regularizer (3) imposes a per-

unit regularization, where we constrain the norm of the incoming weights of each unit separately,

and when q = p the regularizer (3) is an “overall” weight regularizer, constraining the overall norm

of all weights in the system. E.g., when q = p = 1 we are paying for the sum of all magnitudes of

weights in the network, and q = p = 2 corresponds to overall weight-decay where we pay for the

sum of square magnitudes of all weights (i.e. the overall Euclidean norm of the weights).

For a layered graph, we have:

µp,q(W) =

d∑

k=1

H∑

i=1

H∑

j=1

|Wk[i, j]|p

q/p

1/q

= d1/q

(
1

d

d∑

k=1

‖Wk‖qp,q

)1/q

≥ d1/q

(
d∏

k=1

‖Wk‖p,q

)1/d

, d1/q d

√
γp,q(W) (4)

where γp,q(W) =
d∏

k=1

‖Wk‖p,q aggregates the layers by multiplication instead of summation. The

inequality (4) holds regardless of the activation function, and so for any σ we have:

γd,H,σ
p,q (f) ≤

(
µd,H,σ(f)p,q

d1/q

)d

. (5)

But due to the homogeneity of the RELU activation, when this activation is used we can always

balance the norm between the different layers without changing the computed function so as to

achieve equality in (4):

Claim 1 For any f ∈ N d,H,σRELU , µd,H,σRELU

p,q (f) = d1/q
d

√
γd,H,σRELU

p,q (f).

Proof Let W be weights that realizes f and are optimal with respect to γp,g; i.e. γp,q(W) =

γd,Hp,q (f). Let W̃k = d
√

γp,q(W)Wk/ ‖Wk‖p,q, and observe that they also realize f . We now have:

µd,H
p,q (f) ≤ µp,q(W̃) =

(∑d

k=1

∥∥∥W̃k

∥∥∥
q

p,q

)1/q
=
(
d
(
γp,q(W)

)q/d)1/q
= d1/q

d

√
γd,H,σRELU

p,q (f)

which together with (4) completes the proof.

The two measures are therefore equivalent when we use RELUs, and define the same level sets, or

family of hypothesis classes, which we refer to simply as N d,H
p,q . In the remainder of this Section,

we investigate convexity and generalization properties of these hypothesis classes.

4

NORM-BASED CAPACITY CONTROL IN NEURAL NETWORKS

3.1. Generalization and Capacity

In order to understand the effect of the norm on the sample complexity, we bound the Rademacher

complexity of the classes N d,H
p,q . Recall that the Rademacher Complexity is a measure of the capac-

ity of a hypothesis class on a specific sample, which can be used to bound the difference between

empirical and expected error, and thus the excess generalization error of empirical risk minimization

(see, e.g., Bartlett and Mendelson (2003) for a complete treatment, and Appendix A for the exact

definitions we use). In particular, the Rademacher complexity typically scales as
√

C/m, which

corresponds to a sample complexity of O(C/ǫ2), where m is the sample size and C is the effective

measure of capacity of the hypothesis class.

Theorem 1 For any d, q ≥ 1, any 1 ≤ p < ∞ and any set S = {x1, . . . , xm} ⊆ R
D:

Rm(N d,H,σRELU

γp,q≤γ) ≤ γ
(
2H

[1
p∗

− 1
q
]+
)(d−1)

Rlinear
m,p,D

≤

√√√√γ2
(
2H

[1
p∗

− 1
q
]+
)2(d−1)

min{p∗, 4 log(2D)}maxi ‖xi‖2p∗
m

and so:

Rm(N d,H,σRELU

µp,q≤µ) ≤ µd
(
2H

[1
p∗

− 1
q
]+/

q
√
d
)(d−1)

Rlinear
m,p,D

≤

√√√√µ2d
(
2H

[1
p∗

− 1
q
]+/ q

√
d
)2(d−1)

min{p∗, 4 log(2D)}maxi ‖xi‖2p∗
m

where the second inequalities hold only if 1 ≤ p ≤ 2, Rlinear
m,p,D is the Rademacher complexity of

D-dimensional linear predictors with unit ℓp norm with respect to a set of m samples and p∗ is such

that 1
p∗ + 1

p = 1.

Proof sketch We prove the bound by induction, showing that for any q, d > 1 and 1 ≤ p < ∞,

Rm(N d,H,σRELU

γp,q≤γ) ≤ 2H
[1
p∗

− 1
q
]+Rm(N d−1,H,σRELU

γp,q≤γ).

The intuition is that when p∗ < q, the Rademacher complexity increases by simply distributing the

weights among neurons and if p∗ ≥ q then the supremum is attained when the output neuron is

connected to a neuron with highest Rademacher complexity in the lower layer and all other weights

in the top layer are set to zero. For a complete proof, see Appendix A.

Note that for 2 ≤ p < ∞, the bound on the Rademacher complexity scales with m
1
p (see section

A.1 in appendix) because:

Rlinear
m,p,D ≤

√
2 ‖X‖2,p∗

m
≤

√
2maxi ‖xi‖p∗

m
1
p

(6)

The bound in Theorem 1 depends on both the magnitude of the weights, as captured by µp,q(W) or

γp,q(W), and also on the width H of the network (the number of nodes in each layer). However,

the dependence on the width H disappears, and the bound depends only on the magnitude, as long

5

NEYSHABUR TOMIOKA SREBRO

as q ≤ p∗ (i.e. 1/p+ 1/q ≥ 1). This happens, e.g., for overall ℓ1 and ℓ2 regularization, for per-unit

ℓ1 regularization, and whenever 1/p+ 1/q = 1. In such cases, we can omit the size constraint and

state the theorem for an infinite-width layered network (i.e. a network with an infinitely countable

number of units, when the number of units is allowed to be as large as needed):

Corollary 2 For any d ≥ 1, 1 ≤ p < ∞ and 1 ≤ q ≤ p∗ = p/(p − 1), and any set S =
{x1, . . . , xm} ⊆ R

D,

Rm(N d,H,σRELU

γp,q≤γ) ≤ γ2(d−1)Rlinear
m,p,D ≤

√√√√γ2
(
2H

[1
p∗

− 1
q
]+
)2(d−1)

min{p∗, 4 log(2D)}maxi ‖xi‖2p∗
m

and so:

Rm(N d,H,σRELU

µp,q≤µ) ≤
(
2µ/

q
√
d
)d

Rlinear
m,p,D ≤

√√√√
(
2µ/ q

√
d
)2d

min{p∗, 4 log(2D)}maxi ‖xi‖2p∗
m

where the second inequalities hold only if 1 ≤ p ≤ 2 and Rlinear
m,p,D is the Rademacher complexity of

D-dimensional linear predictors with unit ℓp norm with respect to a set of m samples.

3.2. Tightness

We next investigate the tightness of the complexity bound in Theorem 1, and show that when 1/p+
1/q < 1 the dependence on the width H is indeed unavoidable. We show not only that the bound on

the Rademacher complexity is tight, but that the implied bound on the sample complexity is tight,

even for binary classification with a margin over binary inputs. To do this, we show how we can

shatter the m = 2D points {±1}D using a network with small group-norm:

Theorem 3 For any p, q ≥ 1 (and 1/p∗ + 1/p = 1) and any depth d ≥ 2, the m = 2D points

{±1}D can be shattered with unit margin by N d,H
γp,q≤γ with:

γ ≤ D1/pm1/p+1/q H−(d−2)[1/p∗−1/q]+

The proof is given in Appendix B. To understand this lower bound, first consider the bound

without the dependence on the width H . We have that for any depth d ≥ 2, γ ≤ mrD = mr logm
(since 1/p ≤ 1 always) where r = 1/p+1/q ≤ 2. This means that for any depth d ≥ 2 and any p, q
the sample complexity of learning the class scales as m = Ω(γ1/r/ log γ) ≥ Ω̃(

√
γ). This shows

a polynomial dependence on γ, though with a lower exponent than the γ2 (or higher for p > 2)

dependence in Theorem 1. Still, if we now consider the complexity control as a function of µp,q we

get a sample complexity of at least Ω(µd/2/ logµ), establishing that if we control the group-norm

as in (3), we cannot avoid a sample complexity which depends exponentially on the depth. Note that

in our construction, all other factors in Theorem 1, namely maxi ‖xi‖ and logD, are logarithmic

(or double-logarithmic) in m.

Next we consider the dependence on the width H when 1/p + 1/q < 1. Here we have to use

depth d ≥ 3, and we see that indeed as the width H and depth d increase, the magnitude control

γ can decrease as H(1/p∗−1/q)(d−2) without decreasing the capacity, matching Theorem 1 up to an

offset of 2 on the depth. In particular, we see that in this regime we can shatter an arbitrarily large

number of points with arbitrarily low γ by using enough hidden units, and so the capacity of N d
p,q

is indeed infinite and it cannot ensure any generalization.

6

NORM-BASED CAPACITY CONTROL IN NEURAL NETWORKS

3.3. Convexity

Finally we establish a sufficient condition for the hypothesis classes N d
p,q to be convex. We are

referring to convexity of the functions in the N d
p,q independent of a specific representation. If we

consider a, possibly regularized, empirical risk minimization problem on the weights, the objective

(the empirical risk) would never be a convex function of the weights (for depth d ≥ 2), even if the

regularizer is convex in w (which it always is for p, q ≥ 1). But if we do not bound the width of the

network, and instead rely on magnitude-control alone, we will see that the resulting hypothesis class,

and indeed the complexity measure, may be convex (with respect to taking convex combinations of

functions, not of weights).

Theorem 4 For any d, p, q ≥ 1 such that 1
q ≤ 1

d−1

(
1− 1

p

)
, γdp,q(f) is a semi-norm in N d.

In particular, under the condition of the Theorem, γdp,q is convex, and hence its sublevel sets N d
p,q

are convex, and so µd
p,q is quasi-convex (but not convex).

Proof sketch To show convexity, consider two functions f, g ∈ N d
γp,q≤γ and 0 < α < 1, and let

U and V be the weights realizing f and g respectively with γp,q(U) ≤ γ and γp,q(V) ≤ γ. We will

construct weights W realizing αf + (1 − α)g with γp,q(W) ≤ γ. This is done by first balancing

U and V s.t. at each layer ‖Ui‖p,q = d
√

γp,q(U) and ‖Vi‖p,q = d
√

γp,q,(V) and then placing U and

V side by side, with no interaction between the units calculating f and g until the output layer. The

output unit has weights αUd coming in from the f -side and weights (1− α)Vd coming in from the

g-side. In Appendix C we show that under the condition in the theorem, γp,q(W) ≤ γ. To complete

the proof, we also show γdp,q is homogeneous and that this is sufficient for convexity.

4. Per-Unit and Path Regularization

In this Section we will focus on the special case of q = ∞, i.e. when we constrain the norm of the

incoming weights of each unit separately.

Per-unit ℓ1-regularization was studied by Bartlett (1998); Koltchinskii and Panchenko (2002);

Bartlett and Mendelson (2003) who showed generalization guarantees. A two-layer network of this

form with RELU activation was also considered by Bach (2014), who studied its approximation

ability and suggested heuristics for learning it. Per-unit ℓ2 regularization in a two-layer network

was considered by Cho and Saul (2009), who showed it is equivalent to using a specific kernel. We

now introduce Path regularization and discuss its equivalence to Per-Unit regularization.

Path Regularization Consider a regularizer which looks at the sum over all paths from input

nodes to the output node, of the product of the weights along the path:

φp(w) =
(∑

vin[i]
e1→v1

e2→v2···
ek→vout

k∏

i=1

|w(ei)|p
)1/p

(7)

where p ≥ 1 controls the norm used to aggregate the paths. We can motivate this regularizer as

follows: if a node does not have any high-weight paths going out of it, we really don’t care much

about what comes into it, as it won’t have much effect on the output. The path-regularizer thus looks

at the aggregated influence of all the weights.

7

NEYSHABUR TOMIOKA SREBRO

Referring to the induced regularizer φG
p (f) = minfG,w=f φp(w) (with the usual shorthands for

layered graphs), we now observe that for layered graphs, path regularization and per-unit regular-

ization are equivalent:

Theorem 5 For p ≥ 1, any d and (finite or infinite) H , for any f ∈ N d,H : φd,H
p (f) = γd,Hp,∞

It is important to emphasize that even for layered graphs, it is not the case that for all weights

φp(w) = γp,∞(w). E.g., a high-magnitude edge going into a unit with no non-zero outgoing

edges will affect γp,∞(w) but not φp(w), as will having high-magnitude edges on different layers in

different paths. In a sense path regularization is as more careful regularizer less fooled by imbalance.

Nevertheless, in the proof of Theorem 5 in Appendix D.1, we show we can always balance the

weights such that the two measures are equal.

The equivalence does not extend to non-layered graphs, since the lengths of different paths

might be different. Again, we can think of path regularizer as more refined regularizer taking into

account the local structure. However, if we consider all DAGs of depth at most d (i.e. with paths of

length at most d), the notions are again equivalent (see proof in Appendix D.2):

Theorem 6 For any p ≥ 1 and any d: γdp,∞(f) = min
G ∈ DAG(d)

φG
p (f).

In particular, for any graph G of depth d, we have that φG
p (f) ≥ γdp,∞(f). Combining this

observation with Corollary 2 allows us to immediately obtain a generalization bound for path regu-

larization on any, even non-layered, graph:

Corollary 7 For any graph G of depth d and any set S = {x1, . . . , xm} ⊆ R
D:

Rm(NG
φ1≤φ) ≤

√
4d−1φ2 · 4 log(2D) sup ‖xi‖2∞

m

Note that in order to apply Corollary 2 and obtain a width-independent bound, we had to limit

ourselves to p = 1. We further explore this issue next.

Capacity As was previously noted, size-independent generalization bounds for bounded depth

networks with bounded per-unit ℓ1 norm have long been known (and make for a popular homework

problem). These correspond to a specialization of Corollary 2 for the case p = 1, q = ∞. Fur-

thermore, the kernel view of Cho and Saul (2009) allows obtaining size-independent generalization

bound for two-layer networks with bounded per-unit ℓ2 norm (i.e. a single infinite hidden layer

of all possible unit-norm units, and a bounded ℓ2-norm output unit). However, the lower bound

of Theorem 3 establishes that for any p > 1, once we go beyond two layers, we cannot ensure

generalization without also controlling the size (or width) of the network.

Convexity An immediately consequence of Theorem 4 is that per-unit regularization, if we do not

constrain the network width, is convex for any p ≥ 1. In fact, γdp,∞ is a (semi)norm. However, as

discussed above, for depth d > 2 this is meaningful only for p = 1, as γdp,∞ collapses for p > 1.

Hardness Since the classes N d
1,∞ are convex, we might hope that this might make learning com-

putationally easier. Indeed, one can consider functional-gradient or boosting-type strategies for

learning a predictor in the class (Lee et al., 1996). However, as Bach (2014) points out, this is not

so easy as it requires finding the best fit for a target with a RELU unit, which is not easy. Indeed,

8

NORM-BASED CAPACITY CONTROL IN NEURAL NETWORKS

applying results on hardness of learning intersections of halfspaces, which can be represented with

small per-unit norm using two-layer networks, we can conclude that, subject to certain complexity

assumptions, it is not possible to efficiently PAC learn N d
1,∞, even for depth d = 2 when γ1,∞

increases superlinearly:

Corollary 8 Subject to the the strong random CSP assumptions in Daniely et al. (2014), it is not

possible to efficiently PAC learn (even improperly) functions {±1}D → {±1} realizable with unit

margin by N 2
1,∞ when γ1,∞ = ω(D) (e.g. when γ1,∞ = D logD). Moreover, subject to intractabil-

ity of Q̃(D1.5)-unique shortest vector problem, for any ǫ > 0, it is not possible to efficiently PAC

learn (even improperly) functions {±1}D → {±1} realizable with unit margin by N 2
1,∞ when

γ1,∞ = D1+ǫ.

This is a corollary of Theorem 22 in the Appendix E. Either versions of corollary 8 precludes the

possibility of learning in time polynomial in γ1,∞, though it still might be possible to learn in

poly(D) time when γ1,∞ is sublinear.

Sharing We conclude this Section with an observation on the type of networks obtained by per-

unit, or equivalently path, regularization.

Theorem 9 For any p ≥ 1 and d > 1 and any f ∈ N d, there exists a layered graph G(V,E) of

depth d, such that f ∈ NG and γGp,∞(f) = φG
p (f) = γdp,∞(f), and the out-degree of every internal

(non-input) node in G is one. That is, the subgraph of G induced by the non-input vertices is a tree

directed toward the output vertex.

The proof is given in Appendix D.3. What the Theorem tells us is that we can realize every function

as a tree with optimal per-unit norm. If we think of learning with an infinite fully-connected layered

network, we can always restrict ourselves to models in which the non-zero-weight edges form a

tree. This means that when using per-unit regularization we have no incentive to “share” lower-

level units—each unit will only have a single outgoing edge and will only be used by a single

down-stream unit. This seems to defy much of the intuition and power of using deep networks,

where we expect lower layers to represent generic feature useful in many higher-level features. In

effect, we are not encouraging any transfer between learning different aspects of the function (or

between different tasks or classes, if we do have multiple output units). Per-unit regularization

therefore misses out on much of the inductive bias that we might like to impose when using deep

learning (namely, promoting sharing).

5. Overall Regularization

In this Section, we will focus on “overall” ℓp regularization, corresponding to the choice q = p,

i.e. when we bound the overall (vectorized) norm of all weights in the system:

µp,p(w) =
(∑

e∈E

|w(e)|p
)1/p

.

Capacity For p ≤ 2, Corollary 2 provides a generalization guarantee that is independence of the

width—we can conclude that if we use weight decay (overall ℓ2 regularization), or any tighter ℓp
regularization, there is no need to limit ourselves to networks of finite size (as long as the corre-

sponding dual-norm of the inputs are bounded). However, in Section 3.2 we saw that with d ≥ 3

9

NEYSHABUR TOMIOKA SREBRO

layers, the regularizer degenerates and leads to infinite capacity classes if p > 2. In any case, even

if we bound the overall ℓ1-norm, the complexity increases exponentially with the depth.

Convexity The conditions of Theorem 4 for convexity of N d
2,2 are ensured when p ≥ d. For depth

d = 1, i.e. a single unit, this just confirms that ℓp-regularized linear prediction is convex for p ≥ 1.

For depth d = 2, we get convexity with ℓ2 regularization, but not ℓ1. For depth d > 2 we would

need p > d ≥ 3, however for such values of p we know from Theorem 3 that N d
p,p degenerates to

an infinite capacity class if we do not control the width (if we do control the width, we do not get

convexity). This leaves us with N 2
2,2 as the interesting convex class. Below we show an explicit

convex characterization of N 2
2,2 by showing it is equivalent to so-called “convex neural nets”.

Convex Neural Nets (Bengio et al., 2005) over inputs in R
D are two-layer networks with a fixed

infinite hidden layer consisting of all units with weights w ∈ G for some base class G ∈ R
D, and

a second ℓ1-regularized layer. Since over finite data the weights in the second layer can always be

taken to have finite support (i.e. be non-zero for only a finite number of first-layer units), and we can

approach any function with countable support, we can instead think of a network in N 2 where the

bottom layer is constraint to G and the top layer is ℓ1 regularized. Focusing on G = {w | ‖w‖p ≤ 1},

this corresponds to imposing an ℓp constraint on the bottom layer, and ℓ1 regularization on the top

layer and yields the following complexity measure over N 2:

νp(f) = inf
flayer(d),W=f,s.t.∀j‖W1[j,:]‖p≤1

‖W2‖1 . (8)

This is similar to per-unit regularization, except we impose different norms at different layers (if

p 6= 1). We can see that N 2
νp≤ν = ν · conv(σ(G)), and is thus convex for any p. Focusing on RELU

activation we have the equivalence:

Theorem 10 µ2
2,2(f) = 2ν2(f).

That is, overall ℓ2 regularization with two layers is equivalent to a convex neural net with ℓ2-

constrained units on the bottom layer and ℓ1 (not ℓ2!) regularization on the output.

Proof We can calculate:

min
fW=f

µ2
2,2(W) = min

fW=f

H∑

j=1

(
D∑

i=1

|W1[j, i]|2 + |W2[j]|2
)

= min
fW=f

H∑

j=1

2

√∑D

i=1
|W1[j, i]|2 · |W2[j]| (9)

= 2 min
fW=f

H∑

j=1

|W2[j]| s.t.

√∑D

i=1
|W1[j, i]|2 ≤ 1. (10)

Here (9) is the arithmetic-geometric mean inequality for which we can achieve equality by

balancing the weights (as in Claim 1) and (10) again follows from the homogeneity of the RELU

which allows us to rebalance the weights.

10

NORM-BASED CAPACITY CONTROL IN NEURAL NETWORKS

Hardness As with N d
1,∞, we might hope that the convexity of N 2

2,2 might make it computationally

easy to learn. However, by the same reduction from learning intersection of halfspaces (Theorem

22 in Appendix E) we can again conclude that we cannot learn in time polynomial in µ2
2,2:

Corollary 11 Subject to the the strong random CSP assumptions in Daniely et al. (2014), it is

not possible to efficiently PAC learn (even improperly) functions {±1}D → {±1} realizable with

unit margin by N 2
p,p when µ2

p,p = ω(D
1
p). (e.g. when γ1,∞ = D logD). Moreover, subject to in-

tractability of Q̃(D1.5)-unique shortest vector problem, for any ǫ > 0, it is not possible to efficiently

PAC learn (even improperly) functions {±1}D → {±1} realizable with unit margin by N 2
1,∞ when

γ1,∞ = D
1
p
+ǫ

.

6. Depth Independent Regularization

Up until now we discussed relying on magnitude-based regularization instead of directly controlling

network size, thus allowing unbounded and even infinite width. But we still relied on a finite bound

on the depth in all our derivations. Can the explicit dependence on the depth be avoided, and

replaced with only a measure of scale of the weights?

We already know we cannot rely only on a bound on the group-norm µp,q when the depth is

unbounded, as we know from Theorem 3 that in terms of µp,q the sample complexity necessarily

increases exponentially with the depth: if we allow arbitrarily deep graphs we can shrink µp,q toward

zero without changing the scale of the computed function. However, controlling the γ-measure, or

equivalently the path-regularizer φ, in arbitrarily-deep graphs is sensible, and we can define:

γp,q = inf
d≥1

γdp,q(f) = lim
d→∞

γdp,q(f) or: φp = inf
G

φG
p (f) (11)

where the minimization is over any DAG. From Theorem 6 we can conclude that φp(f) = γp,∞(f).
In any case, γp,q(f) is a sensible complexity measure, that does not collapse despite the unbounded

depth. Can we obtain generalization guarantees for the class Nγp,q≤γ ?

Unfortunately, even when 1/p + 1/q ≥ 1 and we can obtain width-independent bounds, the

bound in Corollary 2 still has a dependence on 4d, even if γp,q is bounded. Can such a dependence

be avoided?

For anti-symmetric Lipschitz-continuous activation functions (i.e. such that σ(−z) = −σ(z)),
such as the ramp, and for per-unit ℓp-regularization µd

1,∞ we can avoid the factor of 4d

Theorem 12 For any anti-symmetric 1-Lipschitz function σ and any set S = {x1, . . . , xm} ⊆ R
D:

Rm(N d,σ
µ1,∞≤µ) ≤

√
4µ2d log(2D) sup ‖xi‖2∞

m

The proof is again based on an inductive argument similar to Theorem 1 and you can find it in

appendix A.4.

However, the ramp is not homogeneous and so the equivalent between µ, γ and φ breaks down.

Can we obtain such a bound also for the RELU? At the very least, what we can say is that an

inductive argument such that used in the proofs of Theorems 1 and 12 cannot be used to avoid an

11

NEYSHABUR TOMIOKA SREBRO

exponential dependence on the depth. To see this, consider γ1,∞ ≤ 1 (this choice is arbitrary if we

are considering the Rademacher complexity), for which we have

N d+1
γ1,∞<1 =

[
conv(N d

γ1,∞<1)
]
+
, (12)

where conv(·) is the symmetric convex hull, and [·]+ = max(z, 0) is applied to each function in

the class. In order to apply the inductive argument without increasing the complexity exponentially

with the depth, we would need the operation [conv(H)]+ to preserve the Rademacher complexity,

at least for non-negative convex cones H. However we show a simple example of a non-negative

convex cone H for which Rm ([conv(H)]+) > Rm (H).
We will specify H as a set of vectors in R

m, corresponding to the evaluation of h(xi) of different

functions in the class on the m points xi in the sample. In our construction, we will have only

m = 3 points. Consider H = conv({(1, 0, 1), (0, 1, 1)}), in which case H′ , [conv(H)]+ =
conv({(1, 0, 1), (0, 1, 1), (0.5, 0, 0)}). It is not hard to verify that Rm(H′) = 13

16 > 12
16 = Rm(H).

7. Summary and Open Issues

We presented a general framework for norm-based capacity control for feed-forward networks, and

analyzed when the norm-based control is sufficient and to what extent capacity still depends on other

parameters. In particular, we showed that in depth d > 2 networks, per-unit control with p > 1 and

overall regularization with p > 2 is not sufficient for capacity control without also controlling the

network size. This is in contrast with linear models, where with any p < ∞ we have only a weak

dependence on dimensionality, and two-layer networks where per-unit p = 2 is also sufficient for

capacity control. We also obtained generalization guarantees for perhaps the most natural form of

regularization, namely ℓ2 regularization, and showed that even with such control we still necessarily

have an exponential dependence on the depth.

Although the additive µ-measure and multiplication γ-measure are equivalent at the optimum,

they behave rather differently in terms of optimization dynamics (based on anecdotal empirical

experience) and understanding the relationship between them, as well as the novel path-based reg-

ularizer can be helpful in practical regularization of neural networks.

Although we obtained a tight characterization of when size-independent capacity control is

possible, the precise polynomial dependence of margin-based classification (and other tasks) on the

norm in might not be tight and can likely be improved, though this would require going beyond

bounding the Rademacher complexity of the real-valued class. In particular, Theorem 1 gives the

same bound for per-unit ℓ1 regularization and overall ℓ1 regularization, although we would expect

the later to have lower capacity.

Beyond the open issue regarding depth-independent γ-based capacity control, another interest-

ing open question is understanding the expressive power of N d
γp,q≤γ , particularly as a function of

the depth d. Clearly going from depth d = 1 to depth d = 2 provides additional expressive power,

but it is not clear how much additional depth helps. The class N 2 already includes all binary func-

tions over {±1}D and is dense among continuous real-valued functions. But can the γ-measure be

reduced by increasing the depth? Viewed differently: γdp,q(f) is monotonically non-increasing in

d, but are there functions for it continues decreasing? Although it seems obvious there are func-

tions that require high depth for efficient representation, these questions are related to decade-old

problems in circuit complexity and might not be easy to resolve.

12

NORM-BASED CAPACITY CONTROL IN NEURAL NETWORKS

Acknowledgments

This research was partially supported by NSF grant IIS-1302662 and an Intel ICRI-CI award. We

thank the COLT anonymous reviewers for pointing out an error in the statement of Lemma 15 and

suggesting other corrections.

References

Martin Anthony and Peter L. Bartlett. Neural network learning: Theoretical foundations. Cam-

bridge University Press, 2009.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. Technical report,

HAL-01098505, 2014.

Maria-Florina Balcan and Christopher Berlind. A new perspective on learning linear separators

with large lqlp margins. Proceedings of the Seventeenth International Conference on Artificial

Intelligence and Statistics, pages 68–76, 2014.

Peter L. Bartlett. The sample complexity of pattern classification with neural networks: the size of

the weights is more important than the size of the network. IEEE transactions on information

theory, 44(2):525–536, 1998.

Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and

structural results. The Journal of Machine Learning Research, pages 463–482, 2003.

Yoshua Bengio, Nicolas L. Roux, Pascal Vincent, Olivier Delalleau, and Patrice Marcotte. Convex

neural networks. Advances in neural information processing systems, pages 123–130, 2005.

Xavier Glorot Antoine Bordes and Yoshua Bengio. Deep sparse rectifier networks. AISTATS, 2011.

Youngmin Cho and Lawrence K. Saul. Kernel methods for deep learning. Advances in neural

information processing systems, pages 342–350, 2009.

Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From average case complexity to improper

learning complexity. STOC, 2014.

Uffe Haagerup. The best constants in the khintchine inequality. Studia Mathematica, 70(3):231–

283, 1981.

Sham M Kakade, Karthik Sridharan, and AmbujTewari. On the complexity of linear prediction:

Risk bounds, margin bounds, and regularization. Advances in neural information processing

systems, pages 793–800, 2009.

Adam R Klivans and Alexander A Sherstov. Cryptographic hardness for learning intersections of

halfspaces. FOCS, pages 553–562, 2006.

Vladimir Koltchinskii and Dmitry Panchenko. Empirical margin distributions and bounding the

generalization error of combined classifiers. Annals of Statistics, pages 1–50, 2002.

13

NEYSHABUR TOMIOKA SREBRO

Wee Sun Lee, Peter L Bartlett, and Robert C Williamson. Efficient agnostic learning of neural

networks with bounded fan-in. Information Theory, IEEE Transactions on, 42(6):2118–2132,

1996.

Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency of training

neural networks. Advances in Neural Information Processing Systems, pages 855–863, 2014.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.

ICML, 2010.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to

Algorithms. Cambridge University Press, 2014.

M.D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q.V. Le, P. Nguyen, A. Senior, V. Van-

houcke, J. Dean, and G.E. Hinton. On rectified linear units for speech processing. ICASSP,

2013.

Appendix A. Rademacher Complexities

The sample based Rademacher complexity of a class F of function mapping from X to R with

respect to a set S = {x1, . . . , xm} is defined as:

Rm(F) = Eξ∈{±1}m

[
1

m
sup
f∈F

∣∣∣∣∣

m∑

i=1

ξif(xi)

∣∣∣∣∣

]

In this section, we prove an upper bound for the Rademacher complexity of the class N d,H,σRELU

γp,q≤γ ,

i.e., the class of functions that can be represented as depth d, width H network with rectified linear

activations, and the layer-wise group norm complexity γp,q bounded by γ. As mentioned in the

main text, our proof is an induction with respect to the depth d. We start with d = 1 layer neural

networks, which is essentially the class of linear separators.

A.1. ℓp-regularized Linear Predictors

For completeness, we prove the upper bounds on the Rademacher complexity of class of linear

separators with bounded ℓp norm. The upper bounds presented here are particularly similar to

generalization bounds in Kakade et al. (2009) and Balcan and Berlind (2014). We first mention two

already established lemmas that we use in the proofs.

Theorem 13 (Khintchine-Kahane Inequality) For any 0 < p < ∞ and S = {z1, . . . , zm}, if the

random variable ξ is uniform over {±1}m, then

(
Eξ

[∣∣∣∣∣

m∑

i=1

ξizi

∣∣∣∣∣

p]) 1
p

≤ Cp

(
m∑

i=1

|zi|2
) 1

2

where Cp is a constant depending only on p.

14

NORM-BASED CAPACITY CONTROL IN NEURAL NETWORKS

The sharp value of the constant Cp was found by Haagerup (1981) but for our analysis, it is enough

to note that if p ≥ 1 we have Cp ≤ √
p.

Lemma 14 (Massart Lemma) Let A be a finite set of m dimensional vectors. Then

Eξ

[
max
a∈A

1

m

m∑

i=1

ξiai

]
≤ max

a∈A
‖a‖2

√
2 log |A|
m

,

where |A| is the cardinality of A.

We are now ready to show upper bounds on Rademacher complexity of linear separators with

bounded ℓp norm.

Lemma 15 (Rademacher complexity of linear separators with bounded ℓp norm) For any d, q ≥ 1,

For any 1 ≤ p ≤ 2,

Rm(N 1
γp,q≤γ) ≤

√
γ2min{p∗, 4 log(2D)}maxi ‖xi‖2p∗

m

and for any 2 < p < ∞

Rm(N 1
γp,q≤γ) ≤

√
2γ ‖X‖2,p∗

m
≤

√
2γmaxi ‖xi‖p∗

m
1
p

where p∗ is such that 1
p∗ + 1

p = 1.

Proof First, note that N 1 is the class of linear functions and hence for any function fw ∈ N 1,

we have that γp,q(w) = ‖w‖p. Therefore, we can write the Rademacher complexity for a set

S = {x1, . . . , xm} as:

Rm(N 1
γp,q≤γ) = Eξ∈{±1}m

[
1

m
sup

‖w‖p≤γ

∣∣∣∣∣

m∑

i=1

ξiw
⊤xi

∣∣∣∣∣

]

= Eξ∈{±1}m

[
1

m
sup

‖w‖p≤γ

∣∣∣∣∣w
⊤

m∑

i=1

ξixi

∣∣∣∣∣

]

= γEξ∈{±1}m

 1

m

∥∥∥∥∥

m∑

i=1

ξixi

∥∥∥∥∥
p∗

15

NEYSHABUR TOMIOKA SREBRO

For 1 ≤ p ≤ min
{
2, 2 log(2D)

2 log(2D)−1

}
(and therefore 2 log(2D) ≤ p∗), we have

Rm(N 1
γp,q≤γ) = γEξ∈{±1}m

 1

m

∥∥∥∥∥

m∑

i=1

ξixi

∥∥∥∥∥
p∗

≤ D
1
p∗ γEξ∈{±1}m

[
1

m

∥∥∥∥∥

m∑

i=1

ξixi

∥∥∥∥∥
∞

]

≤ D
1

2 log(2D) γEξ∈{±1}m

[
1

m

∥∥∥∥∥

m∑

i=1

ξixi

∥∥∥∥∥
∞

]

≤
√
2γEξ∈{±1}m

[
1

m

∥∥∥∥∥

m∑

i=1

ξixi

∥∥∥∥∥
∞

]

We now use the Massart Lemma viewing each feature (xi[j])
m
i=1 for j = 1, . . . , D as a member of

a finite hypothesis class and obtain

Rm(N 1
γp,q≤γ) ≤

√
2γEξ∈{±1}m

[
1

m

∥∥∥∥∥

m∑

i=1

ξixi

∥∥∥∥∥
∞

]

≤ 2γ

√
log(2D)

m
max

j=1...,D
‖(xi[j])mi=1‖2

≤ 2γ

√
log(2D)

m
max

i=1,...,m
‖xi‖∞

≤ 2γ

√
log(2D)

m
max

i=1,...,m
‖xi‖p∗

If min
{
2, 2 log(2D)

2 log(2D)−1

}
< p < ∞, by Khintchine-Kahane inequality we have

Rm(N 1
γp,q≤γ) = γEξ∈{±1}m

 1

m

∥∥∥∥∥

m∑

i=1

ξixi

∥∥∥∥∥
p∗

≤ γ
1

m

D∑

j=1

Eξ∈{±1}m

∣∣∣∣∣

m∑

i=1

ξixi[j]

∣∣∣∣∣

p∗

1/p∗

≤ γ

√
p∗

m

(∑D

j=1
‖(xi[j])mi=1‖p

∗

2

)1/p∗

= γ

√
p∗

m
‖X‖2,p∗

If p∗ ≥ 2, by Minskowski inequality we have that ‖X‖2,p∗ ≤ m1/2maxi ‖xi‖p∗ . Otherwise, by

subadditivity of the function f(z) = z
p∗

2 , we get ‖X‖2,p∗ ≤ m1/p∗ maxi ‖xi‖p∗ .

16

NORM-BASED CAPACITY CONTROL IN NEURAL NETWORKS

A.2. Theorem 1

We define the hypothesis class N d,H,H to be the class of functions from X to R
H computed by a

layered network of depth d, layer size H and H outputs.

For the proof of theorem 1, we need the following two technical lemmas. The first is the well-

known contraction lemma:

Lemma 16 (Contraction Lemma) Let function φ : R → R be Lipschitz with constant Lφ such

that φ satisfies φ(0) = 0. Then for any class F of functions mapping from X to R and any set

S = {x1, . . . , xm}:

Eξ∈{±1}m

[
1

m
sup
f∈F

∣∣∣∣∣

m∑

i=1

ξiφ(f(xi))

∣∣∣∣∣

]
≤ 2LφEξ∈{±1}m

[
1

m
sup
f∈F

∣∣∣∣∣

m∑

i=1

ξif(xi))

∣∣∣∣∣

]

Next, the following lemma reduces the maximization over a matrix W ∈ R
H×H that appears in the

computation of Rademacher complexity to H independent maximizations over a vector w ∈ R
H

(the proof is deferred to Subsection A.3):

Lemma 17 For any p, q ≥ 1, d ≥ 2, ξ ∈ {±1}m and f ∈ N d,H,H we have

sup
W

1

‖W‖p,q

∥∥∥∥∥

m∑

i=1

ξi[W [f(xi)]+]+

∥∥∥∥∥
p∗

= H
[1
p∗

− 1
q
]+ sup

w

1

‖w‖p

∣∣∣∣∣

m∑

i=1

ξi[w
⊤[f(xi)]+]+

∣∣∣∣∣

where p∗ is such that 1
p∗ + 1

p = 1.

Theorem 1 For any d, p, q ≥ 1 and any set S = {x1, . . . , xm} ⊆ R
D:

Rm(N d,H,σRELU

γp,q≤γ) ≤

√√√√γ2
(
2H

[1
p∗

− 1
q
]+
)2(d−1)

min{p∗, 2 log(2D)} sup ‖xi‖2p∗
m

and so:

Rm(N d,H,σRELU

µp,q≤µ) ≤

√√√√µ2d
(
2H

[1
p∗

− 1
q
]+/ q

√
d
)2(d−1)

min{p∗, 2 log(2D)} sup ‖xi‖2p∗
m

where p∗ is such that 1
p∗ + 1

p = 1.

17

NEYSHABUR TOMIOKA SREBRO

Proof By the definition of Rademacher complexity if ξ is uniform over {±1}m, we have:

Rm(N d,H
γp,q≤γ) = Eξ

 1

m
sup

f∈N d,H
γp,q≤γ

∣∣∣∣∣

m∑

i=1

ξif(xi)

∣∣∣∣∣

= Eξ

[
1

m
sup

f∈N d,H

γ

γp,q(f)

∣∣∣∣∣

m∑

i=1

ξif(xi)

∣∣∣∣∣

]

= Eξ

[
1

m
sup

g∈N d−1,H,H

sup
w

γ

γp,q(g) ‖w‖p

∣∣∣∣∣

m∑

i=1

ξiw
⊤[g(xi)]+

∣∣∣∣∣

]

= Eξ

 1

m
sup

g∈N d−1,H,H

γ

γp,q(g)

∥∥∥∥∥

m∑

i=1

ξi[g(xi)]+

∥∥∥∥∥
p∗

= Eξ

 1

m
sup

h∈N d−2,H,H

γ

γp,q(h)
sup
W

1

‖W‖p,q

∥∥∥∥∥

m∑

i=1

ξi[W [h(xi)]+]+

∥∥∥∥∥
p∗

= H
[1
p∗

− 1
q
]+
Eξ

[
1

m
sup

h∈N d−2,H,H

γ

γp,q(h)
sup
w

1

‖w‖p

∣∣∣∣∣

m∑

i=1

ξi[w
⊤[h(xi)]+]+

∣∣∣∣∣

]
(13)

= H
[1
p∗

− 1
q
]+
Eξ

 1

m
sup

g∈N d−1,H
γp,q≤γ

∣∣∣∣∣

m∑

i=1

ξi[g(xi)]+

∣∣∣∣∣

≤ 2H
[1
p∗

− 1
q
]+
Eξ

 1

m
sup

g∈N d−1,H
γp,q≤γ

∣∣∣∣∣

m∑

i=1

ξig(xi)

∣∣∣∣∣

 (14)

= 2H
[1
p∗

− 1
q
]+Rm(N d−1,H

γp,q≤γ)

where the equality (13) is obtained by lemma 17 and inequality (14) is by Contraction Lemma.

This will give us the bound on Rademacher complexity of N d,H
γp,q≤γ based on the Rademacher

complexity of N d−1,H
γp,q≤γ . Applying the same argument on all layers and using lemma 15 to bound

the complexity of the first layer completes the proof.

A.3. Proof of Lemma 17

Proof It is immediate that the right hand side of the equality in the statement is always less than

or equal to the left hand side because given any vector w in the right hand side, by setting each

row of matrix W in the left hand side we get the equality. Therefore, it is enough to prove that

the left hand side is less than or equal to the right hand side. For the convenience of notations, let

g(w) , |∑m
i=1 ξiw

⊤[f(xi)]+|. Define w̃ to be:

w̃ , argmax
w

g(w)

‖w‖p

18

NORM-BASED CAPACITY CONTROL IN NEURAL NETWORKS

If q ≤ p∗, then the right hand side of equality in the lemma statement will reduce to g(w̃)/ ‖w̃‖p
and therefore we need to show that for any matrix V ,

g(w̃)

‖w̃‖p
≥

‖g(V)‖p∗
‖V ‖p,q

.

Since q ≤ p∗, we have ‖V ‖p,p∗ ≤ ‖V ‖p,q and hence it is enough to prove the following inequality:

g(w̃)

‖w̃‖p
≥

‖g(V)‖p∗
‖V ‖p,p∗

.

On the other hand, if q > p∗, then we need to prove the following inequality holds:

H
1
p∗

− 1
q
g(w̃)

‖w̃‖p
≥

‖g(V)‖p∗
‖V ‖p,q

Since q > p∗, we have that ‖V ‖p,p∗ ≤ H
1
p∗

− 1
q ‖V ‖p,q. Therefore, it is again enough to show that:

g(w̃)

‖w̃‖p
≥

‖g(V)‖p∗
‖V ‖p,p∗

.

We can rewrite the above inequality in the following form:

H∑

i=1

(
g(w̃) ‖Vi‖p

‖w̃‖p

)p∗

≥
H∑

i=1

g(Vi)
p∗

By the definition of w̃, we know that the above inequality holds for each term in the sum and hence

the inequality is true.

A.4. Theorem 12

The proof is similar to the proof of theorem 1 but here bounding µ1,∞ by µ means the ℓ1 norm of

input weights to each neuron is bounded by µ. We use a different version of Contraction Lemma in

the proof that is without the absolute value:

Lemma 18 (Contraction Lemma (without the absolute value)) Let function φ : R → R be Lipschitz

with constant Lφ. Then for any class F of functions mapping from X to R and any set S =
{x1, . . . , xm}:

Eξ∈{±1}m

[
1

m
sup
f∈F

m∑

i=1

ξiφ(f(xi))

]
≤ LφEξ∈{±1}m

[
1

m
sup
f∈F

m∑

i=1

ξif(xi))

]

Theorem 12 For any anti-symmetric 1-Lipschitz function σ and any set S = {x1, . . . , xm} ⊆ R
D:

Rm(N d,σ
µ1,∞≤µ) ≤

√
2µ2d log(2D) sup ‖xi‖2∞

m

19

NEYSHABUR TOMIOKA SREBRO

Proof Assuming ξ is uniform over {±1}m, we have:

Rm(N d,H
µ1,∞≤µ) = Eξ

 1

m
sup

f∈N d,H
µ1,∞≤µ

∣∣∣∣∣

m∑

i=1

ξif(xi)

∣∣∣∣∣

= Eξ

 1

m
sup

f∈N d,H
µ1,∞≤µ

m∑

i=1

ξif(xi)

= Eξ

 1

m
sup

g∈N d−1,H,H
µ1,∞≤µ

sup
‖w‖1≤µ

w⊤
m∑

i=1

ξiσ(g(xi))

= Eξ

 1

m
sup

g∈N d−1,H,H
µ1,∞≤µ

∥∥∥∥∥

m∑

i=1

ξiσ(g(xi))

∥∥∥∥∥
∞

= Eξ

 1

m
sup

g∈N d−1,H
µ1,∞≤µ

∣∣∣∣∣

m∑

i=1

ξiσ(g(xi))

∣∣∣∣∣

 (15)

= Eξ

 1

m
sup

g∈N d−1,H
µ1,∞≤µ

m∑

i=1

ξiσ(g(xi))

≤ Eξ

 1

m
sup

g∈N d−1,H
µ1,∞≤µ

m∑

i=1

ξig(xi)

 (16)

= Eξ

 1

m
sup

g∈N d−1,H
µ1,∞≤µ

∣∣∣∣∣

m∑

i=1

ξig(xi)

∣∣∣∣∣

= Rm(N d−1,H
µ1,∞≤µ)

where the equality (15) is by anti-symmetric property of σ and inequality (16) is by the version

of Contraction Lemma without the absolute value. This will give us the bound on Rademacher

complexity of N d,H
µ1,∞≤µ based on the Rademacher complexity of N d−1,H

µ1,∞≤µ. Applying the same

argument on all layers and using lemma 15 to bound the complexity of the first layer completes the

proof.

Appendix B. Tightness

We repeat the theorem statement here for convenience.

Theorem 3 For any p, q ≥ 1 (and 1/p∗ + 1/p = 1) and any depth d ≥ 2, the m = 2D points

{±1}D can be shattered with unit margin by N d,H
γp,q≤γ with:

γ ≤ D1/pm1/p+1/q H−(d−2)[1/p∗−1/q]+ .

20

NORM-BASED CAPACITY CONTROL IN NEURAL NETWORKS

Proof Consider a size m subset Sm of 2D vertices of the D dimensional hypercube {−1,+1}D.

We construct the first layer using m units. Each unit has a unique weight vector consisting of +1
and −1’s and will output a positive value if and only if the sign pattern of the input x ∈ Sm matches

that of the weight vector. The second layer has a single unit and connects to all m units in the

first layer. For any m dimensional sign pattern b ∈ {−1,+1}m, we can choose the weights of the

second layer to be b, and the network will output the desired sign for each x ∈ Sm with unit margin.

The norm of the network is at most (m ·Dq/p)1/q ·m1/p = D1/p ·m(1/p+1/q). This establishes the

claim for d = 2. For d > 2 and 1/p+1/q ≥ 1, we obtain the same norm and unit margin by adding

d− 2 layers with one unit in each layer connected to the previous layer by a unit weight. For d > 2
and 1/p + 1/q < 1, we show the dependence on H by recursively replacing the top unit with H
copies of it and adding an averaging unit on top of that. More specifically, given the above d = 2
layer network, we make H copies of the output unit with rectified linear activation and add a 3rd

layer with one output unit with uniform weight 1/H to all the copies in the 2nd layer. Since this

operation does not change the output of the network, we have the same margin and now the norm of

the network is (m ·Dq/p)1/q · (Hmq/p)1/q · (H(1/Hp))1/p = D1/p ·m(1/p+1/q) ·H1/q−1/p∗ . That

is, we have reduced the norm by factor H1/q−1/p∗ . By repeating this process, we get the geometric

reduction in the norm H(d−2)(1/q−1/p∗), which concludes the proof.

Appendix C. Proof that γd
p,q(f) is a semi-norm in N d

Theorem 4 For any d, p, q ≥ 1 such that 1
q ≤ 1

d−1

(
1− 1

p

)
, γdp,q(f) is a semi-norm in N d.

Proof The proof consists of three parts. First we show that the level set N d
γd
p,q≤γ

= {f ∈ N d :

γdp,q(f) ≤ γ} is a convex set if the condition on d, p, q is satisfied. Next, we establish the non-

negative homogeneity of γdp,q(f). Finally, we show that if a function α : N d → R is non-negative

homogeneous and every sublevel set {f ∈ N d : α(f) ≤ γ} is convex, then α satisfies the triangular

inequality.

Convexity of the level sets First we show that for any two functions f1, f2 ∈ N d
γp,q≤γ and 0 ≤

α ≤ 1, the function g = αf1 + (1 − α)f2 is in the hypothesis class N d
γp,q≤γ . We prove this by

constructing weights W that realizes g. Let U and V be the weights of two neural networks such

that γp,q(U) = γdp,q(f1) ≤ γ and γp,q(V) = γdp,q(f2) ≤ γ. For every layer i = 1, . . . , d let

Ũi =
d

√
γp,q(U)Ui/‖Ui‖p,q, Ṽi =

d

√
γp,q(V)Vi/‖Vi‖p,q.

and set W1 =

[
Ũ1

Ṽ1

]
for the first layer, Wi =

[
Ũi 0

0 Ṽi

]
for the intermediate layers and Wd =

[
αŨd (1− α)Ṽd

]
for the output layer.

Then for the defined W , we have fW = αf1 + (1 − α)f2 for rectified linear and any other

non-negative homogeneous activation function. Moreover, for any i < d, the norm of each layer is

‖Wi‖p,q =
(
γp,q(U)

q
d + γp,q(V)

q
d

) 1
q ≤ 2

1
q γ

1
d (17)

21

NEYSHABUR TOMIOKA SREBRO

and in layer d we have:

‖Wd‖p =
(
αpγp,q(U)

p
d + (1− α)pγp,q(V)

p
d

) 1
p ≤ 21/p−1γ1/d (18)

Combining inequalities (17) and (18), we get γdp,q(fW) ≤ 2
d−1
q

+ 1
p γ ≤ γ, where the last inequality

holds because we assume that 1
q ≤ 1

d−1

(
1− 1

p

)
. Thus for every γ ≥ 0, N d

γp,q≤γ is a convex set.

Non-negative homogeneity For any function f ∈ N d and any α ≥ 0, let U be the weights

realizing f with γdp,q(f) = γp,q(U). Then d
√
αU realizes αf establishing γdp,q(αf) ≤ γp,q(d

√
αU) =

αγp,q(U) = αγdp,q(U) = αγdp,q(f). This establishes the non-negative homogeneity of γdp,q.

Convex sublevel sets and homogeneity imply triangular inequality Let α(f) be non-negative

homogeneous and assume that every sublevel set {f ∈ N d : α(f) ≤ γ} is convex. Then for

f1, f2 ∈ N d, defining γ1 , α(f1), γ2 , α(f2), f̃1 , (γ1 + γ2)f1/γ1, and f̃2 , (γ1 + γ2)f2/γ2,

we have

α(f1 + f2) = α

(
γ1

γ1 + γ2
f̃1 +

γ2
γ1 + γ2

f̃2

)
≤ γ1 + γ2 = α(f1) + α(f2).

Here the inequality is due to the convexity of the level set and the fact that α(f̃1) = α(f̃2) = γ1+γ2,

because of the homogeneity. Therefore α satisfies the triangular inequality and thus it is a seminorm.

Appendix D. Path Regularization

D.1. Theorem 5

Lemma 19 For any function f ∈ N d,H
γp,∞≤γ there is a layered network with weights w such that

γp,∞(w) = γd,Hp,∞(f) and for any internal unit v,
∑

(u→v)∈E |w(u → v)|p = 1.

Proof Let w be the weights of a network such that γp,∞(w) = γd,Hp,∞(f). We now construct a net-

work with weights w̃ such that γp,∞(w) = γd,Hp,∞(f) and for any internal unit v,
∑

(u→v)∈E |w̃(u →
v)|p = 1. We do this by an incremental algorithm. Let w0 = w. At each step i, we do the following.

Consider the first layer, Set Vk to be the set of neurons in the layer k. Let x be the maximum of

ℓp norms of input weights to each neuron in set V1 and let Ux ⊆ V1 be the set of neurons whose ℓp
norms of their input weight is exactly x. Now let y be the maximum of ℓp norms of input weights

to each neuron in the set V1 \ Ux and let Uy be the set of the neurons such that the ℓp norms of

their input weights is exactly y. Clearly y < x. We now scale down the input weights of neurons

in set Ux by y/x and scale up all the outgoing edges of vertices in Ux by x/y (y cannot be zero

for internal neurons based on the definition). It is straightforward that the new network realizes the

same function and the ℓp,∞ norm of the first layer has changed by a factor y/x. Now for every

neuron v ∈ V2, let r(v) be the ℓp norm of the new incoming weights divided by ℓp norm of the

original incoming weights. We know that r(v) ≤ x/y. We again scaly down the input weights of

everyv ∈ V2 by 1/r(v) and scale up all the outgoing edges of v by r(v). Continuing this operation

to on each layer, each time we propagate the ratio to the next layer while the network always realizes

22

NORM-BASED CAPACITY CONTROL IN NEURAL NETWORKS

the same function and for each layer k, we know that for every v ∈ Vk, r(v) ≤ x/y. After this

operation, in the network, the ℓp,∞ norm of the first layer is scaled down by y/x while the ℓp,∞
norm of the last layer is scaled up by at most x/y and the ℓp,∞ norm of the rest of the layers has

remained the same. Therefore, if wi is the new weight setting, we have γp,∞(wi) ≤ γp,∞(wi−1).
After continuing the above step at most |V1| − 1 times, the ℓp norm of input weights is the same

for all neurons in V1. We can then run the same algorithm on other layers and at the end we have

a network with weight setting w̃ such that the for each k < d, ℓp norm of input weight to each of

the neurons in layer k is equal to each other and γp,∞(w̃) ≤ γp,∞(w). This is in fact an equality

because weight setting w′ realizes function f and we know that γp,∞(w) = γd,Hp,∞(f). A simple

scaling of weights in layers gives completes the proof.

Theorem 5 For p ≥ 1, any d and (finite or infinite) H , for any f ∈ N d,H : φd,H
p (f) = γd,Hp,∞.

Proof By the Lemma 19, there is a layered network with weights w̃ such that γp,∞(w̃) = γd,Hp,∞(f)
and for any internal unit v,

∑
(u→v)∈E |w̃(u → v)|p = 1. Let W be the weights of the layered

network that corresponds to the function w̃. Then we have:

vp(w̃) =

∑

vin[i]
e1→v1

e2→v2···
ek→vout

k∏

i=1

|w̃(ei)|p

1
p

(19)

=

H∑

id−1=1

· · ·
H∑

i1=1

D∑

i0=1

|Wd[id−1]|p
d−1∏

k=1

|Wk[ik, ik−1]|p

1
p

(20)

=

H∑

id−1=1

|Wd[id−1]|p · · ·
H∑

i1=1

|Wk[i2, i1]|p
D∑

i0=1

|Wk[i1, i0]|p

1
p

(21)

=

H∑

id−1=1

|Wd[id−1]|p · · ·
H∑

i1=1

|Wk[i2, i1]|p

1
p

(22)

=

H∑

id−1=1

|Wd[id−1]|p · · ·
H∑

i2=1

|Wk[i3, i2]|p

1
p

(23)

=

H∑

id−1=1

|Wd[id−1]|p

1
p

= ℓp(Wd) = γp,∞(W) (24)

(25)

where inequalities 20 to 24 are due to the fact that the ℓp norm of input weights to each internal

neuron is exactly 1 and the last equality is again because ℓp,∞ of all layers is exactly 1 except the

layer d.

23

NEYSHABUR TOMIOKA SREBRO

D.2. Proof of Theorem 6

In this section, without loss of generality, we assume that all the internal nodes in a DAG have

incoming edges and outgoing edges because otherwise we can just discard them. Let dout(v) be the

longest directed path from vertex v to vout and din(v) be the longest directed path from any input

vertex vin[i] to v. We say graph G is a sublayered graph if G is a subgraph of a layered graph.

We first show the necessary and sufficient conditions under which a DAG is a sublayered graph.

Lemma 20 The graph G(E, V) is a sublayered graph if and only if any path from input nodes to

the output nodes has length d where d is the length of the longest path in G

Proof Since the internal nodes have incoming edges and outgoing edges; hence if G is a sublayered

graph it is straightforward by induction on the layers that for every vertex v in layer i, there is a

vertex u in layer i + 1 such that (v → u) ∈ E and this proves the necessary condition for being

sublayered graph.

To show the sufficient condition, for any internal node u, u has din(v) distance from the input

node in every path that includes u (otherwise we can build a path that is longer than d). Therefore,

for each vertex v ∈ V , we can place vertex v in layer din(v) and all the outgoing edges from v will

be to layer din(v) + 1.

Lemma 21 If the graph G(E, V) is not a sublayered graph then there exists a directed edge (u →
v) such that din(u) + dout(v) < d− 1 where d the length of the longest path in G.

Proof We prove the lemma by an inductive argument. If G is not sublayered, by lemma 20, we

know that there exists a path v0 → . . . vi · · · → vd′ where v0 is an input node (din(v0) = 0),

vd′ = vout (dout(vd′ = 0) and d′ < d. Now consider the vertex v1. We need to have dout(v1) = d−1
otherwise if dout(v1) < d− 1 we get din(u) + dout(v) < d− 1 and if dout(v1) > d− 1 there will be

path in G that is longer than d. Also, since dout(v1) = d− 1 and the longest path in G has length d,

we have din(v1) = 1.

By applying the same inductive argument on each vertex vi in the path we get din(vi) = i and

dout(vi) = d − i. Note that if the condition din(u) + dout(v) < d − 1 is not satisfied in one of the

steps of the inductive argument, the lemma is proved. Otherwise, we have din(vd′−1) = d′ − 1 and

dout(vd′−1) = d − d′ + 1 and therefore din(vd′−1) + dout(vout) = d′ − 1 < d − 1 that proves the

lemma.

Theorem 6 For any p ≥ 1 and any d: γdp,∞(f) = min
G ∈ DAG(d)

φG
p (f).

Proof Consider any fG,w ∈ NDAG(d) where the graph G(E, V) is not sublayered. Let ρ be the total

number of paths from input nodes to the output nodes. Let T be sum over paths of the length of the

path. We indicate an algorithm to change G into a sublayered graph G̃ of depth d with weights w̃
such that fG,w = fG̃,w̃ and φ(w) = φ(w̃). Let G0 = G and w0 = w.

At each step i, we consider the graph Gi−1. If Gi−1 is sublayered, we are done otherwise by

lemma 21, there exists an edge (u → v) such that din(u)+dout(v) < d−1. Now we add a new vertex

ṽi to graph Gi−1, remove the edge (u → v), add two edges (u → ṽi) and (ṽi → v) and return the

24

NORM-BASED CAPACITY CONTROL IN NEURAL NETWORKS

graph as Gi and since we had din(u)+dout(v) < d−1 in Gi−1, the longest path in Gi still has length

d. We also set w(u → ṽi) =
√

|w(u → v)| and w(ṽi → v) = sign(w(u → v))
√
|w(u → v)|.

Since we are using rectified linear units activations, for any x > 0, we have [x]+ = x and therefore:

w(ṽi → v) [w(u → ṽi)o(u)]+ = sign(w(u → v))
√

|w(u → v)|
[√

|w(u → v)|o(u)
]
+

= sign(w(u → v))
√
|w(u → v)|

√
|w(u → v)|o(u)

= w(u → v)o(u)

So we conclude that fGi,wi
= fGi−1,wi−1 . Clearly, since we didn’t change the length of any path

from input vertices to the output vertex, we have φ(w) = φ(w̃). Let Ti be sum over paths of the

length of the path in Gi. It is clear that Ti−1 ≤ Ti because we add a new edge into a path at each

step. We also know by lemma 20 that if Ti = ρd, then Gi is a sublayered graph. Therefore, after

at most ρd − T0 steps, we return a sublayered graph G̃ and weights w̃ such that fG,w = fG̃,w̃. We

can easily turn the sublayered graph G̃ a layered graph by adding edges with zero weights and this

together with Theorem 5 completes the proof.

D.3. Proof of Theorem 9

Theorem 9 For any p ≥ 1 and d > 1 and any f ∈ N d, there exists a layered graph G(V,E) of

depth d, such that f ∈ NG and γGp,∞(f) = φG
p (f) = γdp,∞(f), and the out-degree of every internal

(non-input) node in G is one. That is, the subgraph of G induced by the non-input vertices is a tree

directed toward the output vertex.

Proof For any fG,w ∈ NDAG(d), we show how to construct such G̃ and w̃. We first sort the vertices

of G based on topological ordering such that the out-degree of the first vertex is zero. Let G0 = G
and w0 = w. At each step i, we first set Gi = Gi−1 and wi = wi−1 and then pick the vertex u that

is the ith vector in the topological ordering. If the out-degree of u is at most 1. Otherwise, for any

edge (u → v) we create a copy of vertex u that we call it uv, add the edge (uv → v) to Gi and

connect all incoming edges of u with the same weights to every such uv and finally we delete the

vertex u from Gi together with all incoming and outgoing edges of u. It is easy to indicate that

fGi,wi
= fGi−1,wi−1 . After at most |V | such steps, all internal nodes have out-degree one and hence

the subgraph induced by non-input vertices will be a tree.

Appendix E. Hardness of Learning Neural Networks

Daniely et al. (2014) show in Theorem 5.4 and in Section 7.2 that subject to the strong random CSP

assumption, for any k = ω(1) the hypothesis class of intersection of homogeneous halfspaces over

{±1}n with normals in {±1} is not efficiently PAC learnable (even improperly)2. Furthermore,

for any ǫ > 0, Klivans and Sherstov (2006) prove this hardness result subject to intractability of

Q̃(D1.5)-unique shortest vector problem for k = Dǫ.

2. Their Theorem 5.4 talks about unrestricted halfspaces, but the construction in Section 7.2 uses only data in {±1}D

and halfspaces specified by 〈w, x〉 > 0 with w ∈ {±1}D

25

NEYSHABUR TOMIOKA SREBRO

If it is not possible to efficiently PAC learn intersection of halfspaces (even improperly), we can

conclude it is also not possible to efficiently PAC learn any hypothesis class which can represent

such intersection. In Theorem 22 we show that intersection of homogeneous half spaces can be

realized with unit margin by neural networks with bound norm.

Theorem 22 For any k > 0, the intersection of k homogeneous half spaces is realizable with unit

margin by N 2
γp,q≤γ where γ = 4D

1
pk2.

Proof The proof is by a construction that is similar to the one in Livni et al. (2014). For each

hyperplane 〈wi, x〉 > 0, where wi ∈ {±1}D, we include two units in the first layer: g+i (x) =
[〈wi, x〉]+ and g−i (x) = [〈wi, x〉 − 1]+. We set all incoming weights of the output node to be 1.

Therefore, this network is realizing the following function:

f(x) =

k∑

i=1

([〈wi, x〉]+ − [〈wi, x〉 − 1]+)

Since all inputs and all weights are integer, the outputs of the first layer will be integer,

([〈wi, x〉]+ − [〈wi, x〉 − 1]+) will be zero or one, and f realizes the intersection of the k halfspaces

with unit margin. Now, we just need to make sure that γ2p,q(f) is bounded by γ = 4D
1
pk2:

γ2p,q(f) = D
1
p (2k)

1
q (2k)

1
p

≤ D
1
p (2k)2 = γ.

26

	Introduction
	Preliminaries: Feedforward Neural Networks
	Group Norm Regularization
	Generalization and Capacity
	Tightness
	Convexity

	Per-Unit and Path Regularization
	Overall Regularization
	Depth Independent Regularization
	Summary and Open Issues
	Rademacher Complexities
	p-regularized Linear Predictors
	Theorem 1
	Proof of Lemma 17
	Theorem 12

	Tightness
	Proof that dp,q(f) is a semi-norm in Nd
	Path Regularization
	Theorem 5
	Proof of Theorem 6
	Proof of Theorem 9

	Hardness of Learning Neural Networks

