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Abstract. Several authors have recently shown that Brownian

motion with continuous paths on [0, 1] can be expanded into a

uniformly convergent (a.s.) orthogonal series in terms of a given

complete orthonormal system (CONS) in its reproducing kernel

Hilbert space (RKHS). In an earlier paper we generalized this

result to Gaussian processes with continuous paths. Here we obtain

such expansions for a Gaussian random variable taking values in

an arbitrary separable Banach space. A related problem is also

considered in which starting from a separable Hilbert space H

with a measurable norm ||-||i defined on it, it is shown that the

corresponding abstract Wiener process has a ||- ||i-convergent

orthogonal expansion in terms of a CONS chosen from PL.

1. Introduction. In [5] we used the results of Ito and Nisio [4]

to show the uniform convergence in the time parameter of expansions

of a Gaussian process. A special case of Theorem 1 of [5 ] is the follow-

ing result:

Theorem 1. Let (Xt, tE [0, l]) be a Gaussian process with covari-

ance R and having continuous paths with probability I on a probabil-

ity space (ft, ff, P). Let {e,}f be a complete orthonormal system (CONS)

in the reproducing kernel Hilbert space (RKHS) H(R). Then there exists

a sequence {£;}" of independent N(0, 1) (Gaussian with mean 0,

variance 1) random variables on (ft, S?, P) such that the partial sums

(1.1) E b(*)ej(t)

converge uniformly in t to Xt(co) a.s. (as »—»«>).

It was pointed out in [5] that Theorem 1 implies, in particular,

the a.s. uniform convergence of the Karhunen-Loeve expansion of

the process Xt.

Our aim here is to study similar questions in a more general con-

text. Adopting the point of view of L. Gross [2 ] we obtain expansions
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similar to (1.1) for all Gaussian processes on separable Banach spaces;

Theorem 1 itself being a special case of this general result.

The set up that permits us to define "orthogonal expansions" for

Gaussian processes in Banach spaces is explained below in terms of

the abstract Wiener processes of Gross. The precise definitions are

given in the next section.

Let 77 be a separable Hilbert space and p the cylinder set measure

corresponding to the canonical Gaussian weak distribution F. If H

is infinite dimensional (which is what we assume from now on) it is

well known that p is not countably additive. Let there be a measur-

able norm (in the sense of Gross) on H and let B be the separable,

infinite dimensional Banach space which is the completion of 77 under

this norm (the measurable norm is necessarily weaker than the

Hilbert norm on 77 [2]). Then it is known [3] that ju can be extended

to B to be a countably additive Gaussian measure on the topological

Borel field %(B) of B.

X is said to be a Gaussian, 7>-valued random variable (or process)

on (&, 5, P) if for every/ in B* (the dual of B), (/, X) is a real-valued

Gaussian random variable with mean 0, where (/, x) denotes the

scalar product of an element / of B* and an element x of B. On

account of the separability of B and Proposition 2.1 of [4], it follows

that X is a map of fl into B which is (J, SI(5))-measurable, so that

our definition of a 75-valued random variable coincides with that

given by I to and Nisio in [4]. The probability measure p = PX~l

defined on the <r-field Sl(73) of Borel sets of B will be referred to as the

distribution of X. The main results are the following:

Theorem 2. Let H be an infinite dimensional separable Hilbert

space. Let F denote the canonical Gauss distribution on 77. Let B be the

infinite dimensional separable Banach space which is the completion of

H under a given measurable norm || • ||i, and let p denote the countably

additive Gaussian measure on (B, %(B)) which is determined by F.

If {e/}" is a CONS in 77, then there exists a sequence ,£,-}r of inde-

pendent N(0, 1) random variables on a probability space (ft, SF, P) such

that the B-valued random variables

(1.2) Yn(w) = £ M*)*
y=i

converge in || •||i norm a.s. to a B-valued Gaussian random variable Y

with distribution p, as n—> °o.

Theorem 3. Let B be an arbitrary separable Banach space with norm

\\-\\b and let X be a Gaussian, B-valued random variable defined on a
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probability space (ft, $F, P). Let pt denote the distribution of X, i.e. the

probability measure in B induced by X. Then there exists a separable

Hilbert space H contained in B such that the following is true:

(1.3) || • || b is a measurable norm on H.

If H denotes the closure of H in B, then

(1.4) H = topological support of /x in B.

(1.5) To every choice of CONS{ej}i in H there corresponds a se-

quence {£;}r of independent N(0, 1) random variables on (ft, 5, P)

with the property that

oo

(1.6) X(w) = £&(«)«>   a.s.(P),

the convergence of the series on the right-hand side being in the sense of the

norm ||-||s. The series in (1.6) might be regarded as the orthogonal

expansion of X corresponding to {e>} ".

2. Preliminaries. The notions of a cylinder set measure and a weak

distribution on a locally convex, linear topological space L are equiv-

alent. Let L* denote the topological dual of L.

Definition 2.1. A weak distribution on L is an equivalence class

of linear maps F from L* to the linear space M(ft, ff, P) of random

variables on some probability space (ft, ff, P) (the choice of which

depends on F).

Definition 2.2. If L = H, a separable Hilbert space, a weak dis-

tribution F is called a canonical Gauss distribution on H if to each

hEH* the real random variable F(h) is normally distributed with

mean 0 and variance ||A||h. (|| -\\h denotes the Hilbert norm on H*.)

From now on F will be a representative of the canonical Gauss

distribution.

A function / is said to be a tame function on L ii f(x)

= cp[(yi, x), • • ■ , (y„, x)], where yi, • • • , ynEL* and cp is a Baire

function of n variables; (y, x) denotes the value of y at x. For wGft

the random variable/~(«) =<t>[F(yi)(u), ■ ■ • , F(yn)(co)] has the same

probability distribution as/ under the weak distribution F.

Remark. Let B be a Banach space with norm ||-||s and let

HEB be a Hilbert space with norm ||-||h and inner product

(•, -)h- Let ei, • • ■ , e„EH. Then the function u(ax, • ■ • , an)

= ||ffliCi+ • " • +0neB||fl is a continuous function in n variables, and

hence a Baire function. It thus follows that for xEH the function

g(x)=||(ei, x)hCi+ ■ ■ ■ +(en, x)ffe„||B is a tame function on H and

(2.1) g~(w) = ||F(ei)(co)ei + • • • + F(e»)(«)«-IU-
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This fact will be needed later.

Let 77 be a separable Hilbert space with the canonical Gauss dis-

tribution F and 0° the family of all finite dimensional projections Q

on 77.

Definition 2.3 [2]. A norm ||x||i on 77 is said to be measurable

(with respect to F) if to every e>0 there exists a projection Q,E<P

such that

(2.2) ?rob[\\Qx\\~>e}<eiorallQ±Q„QG<P.
Definition 2.4. Let R be a continuous covariance function on

[0, 1 ] X [0, 1 ]. Then the reproducing kernel Hilbert space (RKHS) of

R, denoted by H(R), is a Hilbert space of continuous functions/ on

[0, l] with the following properties:

(2.3) £(■,/)£77(72), for all <£ [0, l],

(2.4) (J, R(-, t))mB)=f(t) for tE[0, 1], _
where (•, •)//(«) denotes the inner product in H(R).

We will need the following result of Gross [2 ] in proving Theorem 2.

Lemma 2.1 [2, Corollary 5.2]. 7,e/ Qa and 0> 6e two nets of finite

dimensional projections on a Hilbert space 77, each converging to the

identity, and let ||-||i 6e a measurable norm on 77. Then the random

variables ^QaX^ converge in probability to a random variable ||x||~

Furthermore ||(<2o — (?s)x||r converges to zero in probability as a, 8—><*>.

3. Proof of Theorem 2. Let {ey}r be a CONS in 77. If F is the
canonical Gauss distribution, the random variables F(ef), 7^1, are

independent N(Q, 1) defined over some probability space (fi, fJ, P).

Define £,•(&>) = F(ef) (ui) for w££l Let Yn(u>) be the partial sums defined

in (1.2). Let pn denote the distribution of Yn, i.e. the Gaussian mea-

sure on (B, %(B)) induced by Yn. Let { Yn(k)} be an arbitrary but

fixed subsequence of { Y„\. Let Q„ denote the projection on 77 given

by Qnx= 2~ll-i (x< ei)ei f°r x£77, where (•, •) is the inner product in

77. By Lemma 2.1 we can find {«(&)'} £ {n(k)} such that for k^ 1

(3.1) P{\\{Q»<n.iy ~ Qmky)x\\7^ 1/2*} 5S 1/2*.

This can be seen as follows: by Lemma 2.1 one can pick {«(&)'}

E\n(k)), such that «(&)' <«(fe + l)' and for m,n^nik)',

P{\\(Qm-Qn)x\\T^l/2k} gl/2*. For this sequence (n(*);j it is now

clear that (3.1) holds. Now || (<?„(*+»'-(W)*||i = II Hf-m'+i (x, e;)e;-||i
and as we already explained in the previous section we have

n(M-l)' ^ n(*+l)'

£       (x,e,)ej     (ui)  = X)      &(«>)«;     •
/=n(Z0'+l 1 j=nC*)'+l 1
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Hence (3.1) can be written as

P{\\Ynlk+iy~ Ynikr\\i^ 1/2*} £1/2*.

It is thus clear that { Yn(k)>} converges in probability to a random

variable and consequently by Theorem 3.1 [4] {ju„(ib)'} converges in

the Prohorov metric to a probability measure, say p.'. It is easy to

see that p.' = pt, for iifEB* and u is real, then

/exp(iu(f, x))p.'(dx) = lim    I   exr>(iu(f, x))p.n(dx)
B n—* to   J s

= lim   f  exn(iu(f, Yn))P(dui)
n—»oo   J q

(       U2    » \

= hm exp I - — 2^ (f, ej)2)
B-.00 \ I    j_i /

Hence iifEB* (EH*), then (/, x) is N(0, ||/|||). Thus p. and p.' have
the same cylinder set measure and therefore must be identical. We

have thus shown that every subsequence of {pn} has a further subse-

quence which converges in the Prohorov metric to the probability

measure p. Hence {jun} itself converges to p, in this metric. Theorem

3.1 [4] now shows that Yn converges a.s. in || -||i norm to a random

variable Y. It is clear that p. is the distribution of Y.

4. Proof of Theorem 3. Let us first assume that B = C0, a closed

linear subspace of C[0, l]. Let Sf(C) denote the Borel sets of C[0, l]

and 2I(Co) those of Co- X induces a Gaussian measure/x on (Co, §I(Co)).

For wGft define Xt(a) = [X(u)](t), O^gl. Then {Xt, O^i^l} is a

Gaussian process on the probability space (ft, fj, P) with continuous

paths. Let II(R) be its RKHS. Since the random variables Xt are

Gaussian and the process has continuous paths it follows easily that

R is continuous and hence H(R) consists of continuous functions.

We now observe that from Theorem 6 of [6] the sup-norm closure of

H(R), denoted as [H(R)]i, must be contained in Co. Theorem 3 is

now true with B = Co and H = H(R). To see this note that conclusion

(1.3) follows from Theorem 7 of [6] according to which the sup-norm

must be a measurable norm on H(R) if the process has continuous

paths. Theorem 6 of [6] yields (1.4) and the remaining assertions

follow from Theorem 1. It now remains to consider the case when B

is a separable Banach space. Let 8:B—+Co, where Co is a closed sub-

space of C[0, l], be an isometric isomorphism from B onto C0 (one is
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constructed in [l, p. 186]). Let Y=6 o X be the C0-valued random

variable on (ft, *5, P). Then by the special case we have considered

there is a Hilbert space 77(72) £ Co such that [77(72) ]i, the closure of

77(72) in Co, is the topological support of p, where p is the Gaussian

measure on C0 induced by Y. If we let H = 6~1(H(R)) and define the

inner product (x, y) in 77 to be (6x, 8y)mR), where ( • , • )h<.r) denotes

the inner product in 77(72), then 77 becomes a Hilbert space with

inner product (x, y). d is thus not only the isometric isomorphism

between B and C0, but it also preserves the inner product between

the Hilbert spaces 77 and 77(72). It is now straightforward to check

that || -Us is a measurable norm in 77 (simply because the sup-norm

is a measurable norm in H(R)). This 77 now serves the purpose of the

Hilbert space in the statement of Theorem 3. (1.4) follows from the

special case by observing that 6 is an isometric isomorphism. Let

{ej}' be any CONS in 77. Then {dej}" is a CONS in 77(72) and there

exist independent N(0, 1) random variables {?y}T on (Q, fj, P) such

that X/"-i £j'(<°)0(e;) converges in the sup-norm a.s. to0 o X(u). Again,

because 6 is an isometric isomorphism between B and Co it now fol-

lows that 23"=i £y(w)e,- converges in ||-||s norm a.s. to Xico). This

establishes (1.5) and (1.6) in the general case and the proof is com-

plete.

From the proof just given, it is clear that Theorem 1 [5] is con-

tained in the more abstract version given in Theorem 3.

References

1. S. Banach, Thlorie des operations lineaires, Monogr. Mat., PWN, Warsaw,

1932; reprint, Chelsea, New York, 1955. MR 17, 175.
2. L. Gross, Measurable functions on Hilbert space, Trans. Amer. Math. Soc.

105 (1962), 372-390. MR 26 #5121.

3. -, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Statist.

and Prob. (Berkeley, Calif., 1965/66), vol. II, part I, Univ. of California Press,
Berkeley, Calif., 1967, pp. 31-42. MR 35 #3027.

4. K. It6 and M. Nisio, On the convergence of sums of independent Banach space

valued random variables, Osaka J. Math. 5 (1968), 35-48. MR 38 #3897.

5. N. C. Jain and G. Kallianpur, A  note on uniform convergence of stochastic

processes, Ann. Math. Statist.

6. G. Kallianpur, Abstract Wiener processes and their reproducing kernel Hilbert

spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete (to appear).

University of Minnesota, Minneapolis, Minnesota 55455

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


