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Abstract

We describe several variants of the norm-graphs introduced by Kollár, Rónyai, and Szabó and
study some of their extremal properties. Using these variants we construct, for infinitely many
values of n, a graph on n vertices with more than 1

2n
5/3 edges, containing no copy of K3,3, thus

slightly improving an old construction of Brown. We also prove that the maximum number of
vertices in a complete graph whose edges can be colored by k colors with no monochromatic
copy of K3,3 is (1 + o(1))k3. This answers a question of Chung and Graham. In addition we
prove that for every fixed t, there is a family of subsets of an n element set whose so-called dual
shatter function is O(mt) and whose discrepancy is Ω(n1/2−1/2t

√
log n). This settles a problem

of Matoušek.
1Research supported in part by a State of New Jersey grant, by a USA Israeli BSF grant, and by the Hermann

Minkowski Minerva Center for Geometry at Tel Aviv University.
2Research supported in part by OTKA Grants 016503, 016524, NWO-OTKA Grant 048.011.002, MKM Grant

FKFP 0612/1997 and EC Grant ALTEC KIT.
3Research supported in part by the Alfred P. Sloan Foundation Grant 96-6-2 and the State of New Jersey.

1



1 Introduction

Let H be a fixed graph. The classical problem from which extremal graph theory has originated is
to determine the maximum number of edges in a graph on n vertices which does not contain a copy
of H. This maximum value is the Turán number of H and is customarily denoted by ex(n,H).

Because of the Erdős-Simonovits-Stone Theorem — which supplies an asymptotic formula for
ex(n,H) for every fixed graph H of chromatic number at least 3 — the determination of the Turán
numbers is particularly interesting when H is bipartite. In most of these cases even the question of
finding the correct order of magnitude (that is, determining the value of ex(n,H) up to a constant
factor depending on H) is open.

The problem of estimating the Turán numbers of complete bipartite graphs (which is sometimes
called the “Zarankiewicz problem”) is of special interest, and received a considerable amount of
attention during the years. (See, e.g., Chapter VI, Section 2 of Bollobás [1] and the more recent
paper of Füredi [9] for some details and references.)

Let t, s be positive integers with t ≤ s. We denote by Kt,s the complete bipartite graph with
t+ s vertices and ts edges. Kővári, T. Sós and Turán [11] proved that for every fixed t and s ≥ t:

ex(n,Kt,s) ≤
1
2

(s− 1)1/tn2− 1
t +

1
2

(t− 1)n, (1)

The right hand side is conjectured to give the correct order of magnitude for every fixed t and s.
However, the best known general lower bound, obtained by the probabilistic method, yields only

c′n2− s+t−2
st−1 ≤ ex(n,Kt,s), (2)

where c′ is a positive absolute constant, (cf. e.g., [7], p.61, proof of inequality (12.19).)
Note that for all t, s such that 2 ≤ t ≤ s, we have s+t−2

st−1 > 1
t , hence the lower bound (2) is always

of a lower order of magnitude than the upper bound (1).
The upper bound (1) was proven to be asymptotically tight for all pairs (t, s) with s ≥ t = 2

(Erdős, Rényi and T. Sós [6], Brown [2] for s = t = 2, Füredi [9] for s ≥ t = 2).
For t = s = 3 an asymptotic formula is known as well. Brown [2] gave a construction and Füredi

[8] improved on (1), thus proving

ex(n,K3,3) =
1
2
n5/3 + o(n5/3). (3)

Brown’s construction clearly supplies the correct order of magnitude for t = 3 and any fixed
s ≥ 3. More recently, in [12], the authors described a general construction which established the
optimality of the upper bound (1) up to a constant factor (depending only on s and t) for every
t > 3 and s > t!.

Here we first show that a simple variant of the construction of [12] implies that the upper bound
(1) is in fact optimal up to a constant factor even for s > (t − 1)!. We next describe several
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applications of this variant and some related ones to various extremal problems. In particular, we
describe explicit K3,3-free graphs which are slightly denser than those in the construction of Brown.
The properties of these graphs enable us to use them for determining the asymptotic behavior of the
multicolor Ramsey number Rk(K3,3), which is the maximum number of vertices in a complete graph
whose edges can be colored by k colors without a monochromatic copy of K3,3. It turns out that
this number is (1 +o(1))k3, thus settling a problem of Chung and Graham [3], [4], who showed (with
Spencer) that this number is at least Ω(k3/ log3 k) and at most (2 +o(1))k3. The order of magnitude
of several related Ramsey numbers can also be determined in a similar manner.

A slight variation of the construction, motivated by ideas of Füredi [9], supplies some additional
information on the behavior of the Turán numbers ex(n,Kt,s) for s which is much larger than t. This
is related to an extension of a question of Erdős.

Finally, using a simple generalization of the original construction of [12] we obtain tight lower
bounds for several asymmetric instances of the Zarankiewicz problem. This helps to settle a problem
of Matoušek in Discrepancy Theory.

The rest of the paper is organized as follows. In the next section we describe a projective
version of the norm-graphs that supplies explicit dense K3,3-free graphs. The proofs here require
only elementary algebra. In section 3 we apply these graphs to obtain an asymptotic formula for
the Ramsey number Rk(K3,3). In Section 4 we define the projective norm-graphs in full generality
and observe that they can be used to settle an extension of a question of Erdős. In Section 5 we use
a slight variation of the original norm-graphs to study some asymmetric cases of the Zarankiewicz
problem, and briefly describe the relevance of this construction to discrepancy theory.

Throughout the paper it is convenient to choose some of the parameters to be primes (or prime
powers). In order to extend the results to every value of the parameters we always make use of the
fact that there is a prime number between n and n+ o(n). (In the proof of Theorem 9 we even need
this statement for primes congruent to 1 modulo a fixed number r.) For a much more general result
we refer the reader to the paper of Huxley and Iwaniec [10].

2 Projective K3,3-free norm-graphs

Let GF (q)∗ denote the multiplicative subgroup of the q element field. The graph H = H(q, 3) is
defined as follows. The vertex set V (H) is GF (q2) × GF (q)∗. Two distinct vertices (A, a) and
(B, b) ∈ V (H) are connected if and only if N(A + B) = ab, where N(X) = X1+q is the norm4 of
X ∈ GF (q2) over GF (q). Of course N(X) ∈ GF (q) and it is clear that |V (H)| = q3 − q2. If (A, a)
and (B, b) are adjacent, then (A, a) and B 6= −A determine b. Thus H is regular of degree q2 − 1.

4The norm of the field extension GF (ql) over GF (q) is the map Nl defined on GF (ql) by Nl(A) = A ·Aq · · ·Aq
l−1

.

We drop the subscript l throughout, as it will be apparent from the context. Clearly N is a multiplicative function: if

A,B ∈ GF (ql) then N(AB) = N(A)N(B). From N(A)q = N(A) we infer that N(A) ∈ GF (q) for every A ∈ GF (ql).

Indeed, the roots of the polynomial xq − x are precisely the elements of GF (q), and it vanishes at N(A).
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We prove that H(q, 3) is K3,3-free and hence provides an improvement (in the second term) over
Brown’s construction for a dense K3,3-free graph. (The Brown-graph has 1

2n
5/3 − 1

2n
4/3 edges for

infinitely many values of n.)

Theorem 1 The graph H = Hq,3 contains no subgraph isomorphic to K3,3. Thus there exists a
constant C such that for every n = q3 − q2 where q is a prime power

ex(n,K3,3) ≥ 1
2
n

5
3 +

1
3
n

4
3 + C.

It is worthwhile to note that the the upper bound of Füredi [8] is ex(n,K3,3) ≤ 1
2n

5
3 + n

4
3 + 3n.

Proof: The statement of Theorem 1 is a direct consequence of the following: if
(D1, d1), (D2, d2), (D3, d3) are distinct elements of V (H), then the system of equations

N(X +D1) = xd1

N(X +D2) = xd2

N(X +D3) = xd3

(4)

has at most two solutions (X,x) ∈ GF (q2)×GF (q)∗.
Observe that if the system has at least one common solution (X,x), then
(i) X 6= −Di for any i = 1, 2, 3 and
(ii) Di 6= Dj if i 6= j.
The latter is true, because if Di = Dj , then the presence of a common neighbor implies di = dj .
Because of (i) we can divide the first two equations by the last one and get rid of x. The norm

is a multiplicative function, so we obtain N((X +Di)/(X +D3)) = di/d3, i = 1, 2.
We can divide each equation by N(Di − D3), since these are nonzero by (ii). Then we can

substitute Y = 1/(X +D3), Ai = 1/(Di−D3) and bi = di/(d3N(Di−D3)) and obtain the following
two equations:

N(Y +A1) = (Y +A1)(Y q +Aq1) = b1

N(Y +A2) = (Y +A2)(Y q +Aq2) = b2
(5)

where we used the fact that (A+B)q = Aq +Bq for all A,B in GF (q2).
We need the following simple Lemma.

Lemma 2 Let K be a field and aij , bi ∈ K for 1 ≤ i, j ≤ 2 such that a1j 6= a2j. Then the system of
equations

(x1 − a11)(x2 − a12) = b1,

(x1 − a21)(x2 − a22) = b2
(6)

has at most two solutions (x1, x2) ∈ K2.
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Proof: Subtracting the first equation from the second we get

(a11 − a21)x2 + (a12 − a22)x1 + a21a22 − a11a12 = b2 − b1.

Here we can express x1 in terms of a linear function of x2, since a12 6= a22. Substituting this back
into one of the two equations of (6) we obtain a quadratic equation in x2 with a nonzero leading
coefficient (since a11 6= a21). This has at most two solution in x2 and each one determines x1 uniquely.

2

We can apply the Lemma with x1 = Y, x2 = Y q, a11 = −A1, a12 = −Aq1, a21 = −A2, a22 = −Aq2.
The conditions of the Lemma hold since −Aq1 = a12 = a22 = −Aq2 would mean A1 = A2, which is
impossible by(ii). Hence the system of equations (5) has at most two solutions in Y . These solutions
are in one-to-one correspondence with the solutions (X,x) of the equations (4), so Theorem 1 is
proved.

2

3 Ramsey numbers

Let k ≥ 2 be an integer and let G be a graph. The k-color Ramsey number Rk(G) is the maximum
integer m such that one can color the edges of the complete graph Km using k colors with no
monochromatic copy of G.

The multicolor Ramsey number of a bipartite graph is strongly related to its Turán number
through the following simple inequality.

k · ex(Rk(G), G) ≥
(
Rk(G)

2

)
(7)

Using the above inequality, an upper bound on the Turán number can immediately be converted
into an upper bound on the corresponding multicolor Ramsey number. On the other hand we obtain
a lower bound for the Ramsey number from a lower bound on the Turán number if our construction
of a G-free graph can appropriately be used to construct an (almost) complete tiling of the complete
graph.

In Brown’s graph the vertices are the points of the 3-dimensional affine space over finite fields
of order q with, say, q ≡ −1 mod 4. The neighborhood of a vertex is given by the points of a
“Euclidean sphere” around it. Unfortunately the construction only works if the “squared radius” of
the sphere is a fixed quadratic residue modulo q. This is the main reason why it is not at all obvious
how to make a tiling of the complete graph with the Brown graph.

Chung, Graham and Spencer ([3]) proved that ck3/ log3 k ≤ Rk(K3,3) ≤ (2 + o(1))k3. Chung,
Erdős and Graham [5, 3, 4] raised the problem of determining or estimating this quantity more
accurately.
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The graph H(q, 3) enables us to answer this question and obtain an asymptotic formula for the
multicolor Ramsey number of K3,3.

Theorem 3 Rk(K3,3) = (1 + o(1))k3

Proof: Knowing Füredi’s upper bound (3) for the Turán number of K3,3, inequality (7) provides
Rk(G) ≤ (1 + o(1))k3.

For the other direction we can exploit the advantages of the graph H(q, 3) over the Brown
graph. We define an almost complete q − 1-coloring of the edges of Kq3−2q2+q, such that there is no
monochromatic K3,3. The edges that are missing form disjoint complete bipartite graphs of order
2q − 2 and thus can be colored recursively.

The vertices of the complete graph are labeled by the elements in GF (q2)∗×GF (q)∗. If A 6= −B,
color the edge between (A, a) and (B, b) by N(A+ B)/ab. This way no color class contains a K3,3.
The proof of Theorem 1 works for any fixed color, because of the generality of Lemma 2.

The uncolored edges form (q2 − 1)/2 pairwise disjoint complete bipartite graphs, each of which
has 2(q − 1) vertices. Using the same construction recursively, one can color the edges of each such
bipartite graph using at most (1 + o(1))(2q)1/3 additional colors. Since the uncolored copies of the
graphs Kq−1,q−1 are pairwise disjoint we can use the same set of new colors for each of them. The
total number of colors is thus q+ o(q), implying the lower bound, in view of the known results about
the distribution of primes, mentioned in the introduction. 2

4 The general projective norm-graphs

All proofs in the previous sections of this paper are elementary. In order to prove the properties
of the improved norm-graphs for t > 3 we need the following lemma of [12], which generalizes our
simple Lemma 2 proved in section 2. The proof in [12] requires some tools from elementary Algebraic
Geometry.

Lemma 4 ([12]) Let K be a field and aij , bi ∈ K for 1 ≤ i, j ≤ t such that ai1j 6= ai2j if i1 6= i2.
Then the system of equations

(x1 − a11)(x2 − a12) · · · (xt − a1t) = b1,

(x1 − a21)(x2 − a22) · · · (xt − a2t) = b2,
...

...
(x1 − at1)(x2 − at2) · · · (xt − att) = bt

(8)

has at most t! solutions (x1, x2, . . . , xt) ∈ Kt.

Now we are ready to define the improved norm-graph H = H(q, t) for any t > 2. Let V (H) =
GF (qt−1)×GF (q)∗. Two distinct (A, a) and (B, b) ∈ V (G) are adjacent if and only if N(A+B) = ab,
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where the norm is understood overGF (q), that is, N(x) = x1+q+···+qt−2
. Note that |V (H)| = qt−qt−1.

If (A, a) and (B, b) are adjacent, then (A, a) and B 6= −A determine b. Thus H is regular of degree
qt−1 − 1.

Theorem 5 The graph H = H(q, t) contains no subgraph isomorphic to Kt,(t−1)!+1.

Proof: The proof is a straightforward generalization of the proof of Theorem 1 with the remark that
we need to use Lemma 4 (for t− 1 equations) instead of Lemma 2.

2

Therefore, the following slight improvement of the main result of [12] holds.

Corollary 6 For every fixed t ≥ 2 and s ≥ (t− 1)! + 1 we have

ex(n,Kt,s) ≥
1
2
n2− 1

t −O(n2− 1
t
−c),

where c > 0 is an absolute constant.

The improvement is most visible for small values of t, for example:

Corollary 7
ex(n,K4,7) = Θ(n7/4).

Chung, Erdős and Graham [5, 3, 4] raised the problem of determining or estimating the multicolor
Ramsey numbers Rk(Kt,s). The following straightforward generalization of Theorem 3 determines
the order of magnitude of these numbers for all s ≥ (t− 1)! + 1.

Theorem 8 Let t ≥ 2 and s ≥ (t− 1)! + 1 be fixed integers. Then

Rk(Kt,s) = Θ(kt).

In [9] Füredi mentions that the area lacked constructions so badly that Erdős even proposed the
problem of showing that

lim
s→∞

(lim inf
n→∞

ex(n,K2,s)n−3/2) =∞.

In [9] this conjecture is proved in a strong way: exact asymptotics is given for ex(n,K2,s).
Using Füredi’s method together with our projective norm-graphs we prove the validity of Erdős’s

conjecture for any fixed t in place of 2:

lim
s→∞

(lim inf
n→∞

ex(n,Kt,s)n−(2−1/t)) =∞.

We are not able to give an asymptotics of ex(n,Kt,s) like Füredi did for t = 2, but for any t ≥ 3 and
s ≥ (t − 1)! + 1 our answer is tight up to a constant factor depending only on t. In particular the
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known upper bound of ex(n,K3,s) comes within a factor of 2
1
3 + o(1) of the lower bound for every

s ≥ 3, s = 2r2 + 1.
Let r be a positive integer which divides q − 1. Let Qr denote the subgroup of GF (q)∗ of order

r. The vertex set of the graph Hr(q, t) = Hr is defined to be GF (qt−1)× (GF (q)∗/Qr). Two vertices
(A, aQr) and (B, bQr) are adjacent in Hr iff N(A+B) ∈ abQr.

Hr has (qt − qt−1)/r vertices and each vertex has degree qt−1 − 1. It is also easy to see that Hr

does not contain a Kt,(t−1)!rt−1+1. Indeed, similarly to the proof of Theorem 5, the problem can be
reduced to bounding the number of solutions of the following system of equations:

N(Y +A1) = (Y +A1)(Y q +Aq1) · · · (Y qt−2
+A1

qt−2
) ∈ b1Qr

N(Y +A2) = (Y +A2)(Y q +Aq2) · · · (Y qt−2
+Aq

t−2

2 ) ∈ b2Qr
...

...
...

N(Y +At−1) = (Y +At−1)(Y q +Aqt−1) · · · (Y qt−2
+Aq

t−2

t−1 ) ∈ bt−1Qr

(9)

Because of the generality of Lemma 4, for any choice of elements from b1Qr, b2Qr, . . . , bt−1Qr

there are at most (t − 1)! solutions. Since we have rt−1 choices on the right hand side of (9), the
number of solutions is not more than (t− 1)!rt−1.

Hence, we proved the following.

Theorem 9 Let t ≥ 2 be fixed. There is a constant ct such that for any s ≥ (t− 1)! + 1 we have

ex(n,Kt,s) ≥ (1 + o(1))
ct
2

(s− 1)
1
t n2− 1

t .

In particular for t = 3 and s = 2r2 + 1 we can take c3 = 2−1/3

5 An asymmetric construction for the Zarankiewicz problem

Let m ≥ t ≥ 1 and n ≥ s ≥ 1 be integers. The problem of Zarankiewicz asks about the maximum
possible number of 1 entries in an n×m matrix M with 0− 1 entries such that M does not contain
an s× t submatrix consisting entirely of 1 entries. This maximum is usually denoted by z(n,m, s, t).
The problem of determining z(n, n, s, t) is related to that of finding the Turán number ex(n,Kt,s)
through the inequality z(n, n, s, t) ≥ 2ex(n,Kt,s).

The upper bound of Kővári, T. Sós and Turán for the Turán number of Kt,s generalizes to the
Zarankiewicz problem giving z(n,m, s, t) ≤ (s − 1)1/tmn1−1/t + (t − 1)n, (as well as the symmetric
bound obtained by exchanging n and m and s and t).

The following theorem shows the real strength of Lemma 4. We are able to choose not only n,
but roughly n1+1/t subsets of size n1−1/t each, out of an n-element set, without t of them having an
intersection of size more than t!. This gives a tight lower bound in Zarankiewicz’ problem for certain
choices of n and m.
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Theorem 10 Let t ≥ 2 and s > t! be fixed. If n1/t ≤ m ≤ n1+1/t, then

z(n,m, s, t) = Θ(mn1− 1
t ).

Proof: Clearly, it suffices to prove the lower bound for n of the form qt, where q is a prime power, and
for m = (1 + o(1))n1+1/t. Let us label the rows of the matrix with the elements of GF (qt) and the
columns with the elements of GF (qt)×GF (q)∗. Let the entry at (A, (B, b)) be 1 iff N(A+B) = b. In
this construction every row contains qt−1 1 entries and every column contains qt−1+qt−2+. . .+q+1
1 entries. The matrix does not contain a (t! + 1) × t submatrix all of whose entries are 1. To see
this let us choose t distinct columns (D1, d1), . . . , (Dt, dt). If they have a row where each of their
entries is a 1, then all the Dis must be different, since N(X +Di) determines di. We have to bound
the number of solutions X of the equation system N(X + Di) = di, i = 1, . . . , t. Since the Dis are
distinct we are able to use Lemma 4 and obtain that the number of solutions is at most t!.

2

The construction in the proof of Theorem 10 is exactly the missing ingredient needed to answer
Matoušek’s question in [13] about tight lower bounds for the maximum possible discrepancy of set
systems with dual shatter functions of given order of magnitude. The discrepancy Disc(F) of a
family F of m subsets of an n element set X is the minimum, over all functions f : X 7→ {−1, 1},
of the maximum, over all members F ∈ F , of the quantity |

∑
x∈F f(x)|. The dual shatter function

h of F is the function h : {1, 2, . . . ,m} 7→ {1, 2, . . . , n} defined by letting h(g) denote the maximum,
over all possible choices of g members of F , of the number of atoms in the Venn diagram of these
members.

In [14] it is proved that if the dual shatter function satisfies h(g) ≤ O(gt), then for the discrepancy

Disc(F) ≤ O(n
1
2
− 1

2t

√
log n). (10)

This supplies nontrivial estimates in various geometric situations, where in most of these it is widely
believed that the

√
log n factor can be omitted.

In [13] it is shown, however, that for t = 2, 3 the estimate (10) is tight (in some general, non-
geometric examples). Suppose there is a family F = Ft of subsets of an n element set X such that
the intersection of no t members of Ft exceeds c(t), each set F ∈ F has at least c1n

1−1/t elements
and |F| > n1+ε for some absolute ε > 0. The author in [13] shows that if G is a (random) family
of subsets of X obtained by picking one random subset of each member of F , all choices being
independent and uniform, then the dual shatter function of the resulting family G is O(gt) and, with
high probability, its discrepancy is Ω(n

1
2
− 1

2t
√

log n). Using a clever semi-probabilistic construction
Matoušek describes an appropriate family Ft for t = 2 and 3.

The construction of Theorem 10 provides us with a family Ft of Θ(n1+1/t) subsets of an n element
setX, where each subset is of size Θ(n1−1/t) and no t subsets have intersection of cardinality exceeding
t!. Hence the estimate (10) is tight for all values of t.
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[12] J. Kollár, L. Rónyai and T. Szabó, Norm-graphs and bipartite Turán numbers, Combinatorica
16 (1996), no. 3, 399-406.
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