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NORM INEQUALITIES EQUIVALENT TO LOWNER-HEINZ THEOREM

ghEIA - B HH #2Z (Takayuki Furuta)

ABSTRACT. We give several norm inequalities equivalent to the famous

Lowner-Heinz inequality.

THEOREM. If A and B are positive bounded linear operators on a
Hilbert space, then the following propérties hold and follow from each

other.
(1) A2B20 ensures ASzB® for any 1lzs20.
(Z)HAB"qs"Aqu” for any qzl, namely ”Aquﬂl/quApoHl/p for any pz2gq>0,

that is, f(p)=”Apo"l/p is an increasing function on p.

(3) |]A®B®||s||aB||® for any 12520, namely HAl/SBl/sHSsHAl/tBl/th for any szt>0,

l/SBI/SHS is a decreasing function on s.

that is, g(s)=|A
() JlaB]| (Y9 25 aPEP /229891 2 ror any p20, 20 with (p+q)/221.
(5) [|aSPBST||25||aSES|| 2t/ (s¥E) ) 2 b5t 28t/ (S¥E) rop any 550, £>0 with 2st/(s+t)sl.
(6) |aB]| P*V/ 25| AP 2a%8P |1 2 for any p20, qz0 with (p+q)/22l.

(7) [|aSPBSY | 25| aSBP|| 28t/ (5*E) 405828t/ (S¥E) £ any 550, >0 with 2st/(s+t)sl.

We remark that (1) has been shown in [cf., [3]J[4][5][6] etc.] and

(3) is shown in [2]. Here we state the following lemma.

Lemma. If A and B are positive bounded linear operator on a Hilbert

space, then

”A(s+t)/2B(S+t)/2H2$ ”BtAs+tBs” for any sz 0 and tz 0.
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Proof of Lemma.

“A<S+t)/25(5+t)/2”2 - ”B‘(S+t)/2AS+tB(S+t)/2”

(s+t)/2As+tB(s+t)/2

=r(B ) (r(A) means the spectral radius of A)

=P(BtAs+tBS) since r(AB) =r(BA) for any A and B

t s+t

s|B A" "B7.

Proof of Theorem.
Proof of (3). Here we give an alternative proof to (3). Put
D={se[0,1] ;[|A°B°| s||aB|®}. Then D is a closed set such that 0, l1eD,

so we have only to show that if s, te D, then (s+t)/2eD.

”A(s+t)/2B(s+t)/2“2 t s+tBs“

s|B"a by Lemma

< |B%a%) (14585

s 4B ) as)S = a8 since s, teD,

(s+t)/2B(s+.t)/2”2 l(s+'c)/.2

so that ||A < || AB| , that is, (s+t)/2 €D, whence

we have (3).
(2)+—(3). 1Its proof is obvious.

(3)«——(1). We may assume that A and B are invertible.
Assume (3). The condition (3) is equivalent to the following (8) by the

homogeneity of norm
(8) [AB|| s1 ensures |A®B®|| s1 for any 1zs 20.

By replacing A by A"l/2 and also B by Bl/z in (8), this condition (8) means

that A"1/2BA™1/2 51 ensures A™3/2853475/2 <1, that is, A 2B 20 ensures

A% 2B® for any 12s20, so we have (3)——(1). Conversely assume (1).
(1) is equivalent to the following (9)

| s1 ensures |A | €1 for any 12s 20.

(9)

By replacing A by A"2 and also B by B2 in (9),s0 we have (8) and this condition

(8) is equivalent to (3), so we have (1)——(3).

2
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Whence we have (1)+——(3).
(2)—>(4) and (6). Assume (2). Then

|aB|P¥e 5 2 (PP /2g(RHa) 212 oy Gince (pta)/2 21

s"BpAp+qu" by Lemma
< |BPa7)1a%%  or |BPAY||aPBY

whence we have (4) and (6).
(4) or (6)—(2). Put p=q in (4) or (6), then we have (2).

(4)+——(5) and (6)+——(7). Put s=1/p and t =1/q in (4) and (6) and

also replace A by ASt t

and B by BS , then we have (5) and (7) and the
reverse implications are obwvwious.

Whence the proof of Theorem is complete.

REMARK. Related to (2) it is easily verified that |[AB|% s|a%98Y|
does not always hold for 1>q >0. Related to this result we would like
to remark the following result. Put h(p) =]|APBP|/||aB||® for any p z0.

(4) asserts that h(p)h(g) 21 for any p20, g 20 with p+q 22. Put

A= [g g] and B = [% 8} Then h(1/2) = /5734 <1 ana

n(3/2) =v/233/3437% 51 but n(1/2)n(3/2) =/I165/34 >1.

Acknowledgment. On December 6, 1988 Professor H. Araki has given
an excellent lecture at the meeting of Operator Theory at the Research
Institute of Mathematical Sciences of Kyoto University ([1]). We became
aware of the importance of (2) in his lecture. We are really impressed
with his instructive topics, so here we have been able to give a short
proof to (3) by using the idea of Pedersen ([6]). We would like to

express our thanks to Professor H. Araki for his attractive topics.
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Addendum. Recently we have the following results in [8] as an

application of [7].

THEOREM 1. If A'and B are arbitrary bounded linear operators on a

Hilbert space, then the following properties hold and follow from each

other.
(1) A2B20 ensures A®z2B° for any 1lzsz0.
(2) ||aB] %] |a]%|B# |9 for any q=1, namely | [a]%[B*|%| %] |a|P|B* [P|*/P
: _ Pins(Pyl/D . . . .

for any pzq>0, that is, f£(p)=|[A["|B*¥|7| is an increasing function on p.
(3) [I1a]°[B#|[s}laB|® for any 12520, nemely || [a|*/S|B* %/ 5| 3s|{a|™/® %>/ |"

. \ _ 1/s|nx11/sys . . .

for any s2t>0, that is, g(s)=||A] | B¥*| |© is a decreasing function on s.
(4) JlaB) PY/ 2 P 5 P/ 2) 4|9 B* |22 for any p20, 20 with (p+a)/2z1.

(5) |laB P 2| 1a|P 8% 922 [a]9|B* P12 for any p20, qz0 with (p+a)/2z1.

Definition 1. An operator T is said to be perinormal if
(T*T)" < T2

holds for every natural number n. Our new class of perinormal operators

occupies the place shown in the following schema and the inclusions are

all proper.

Normal & Quasinormal & Heminormal

& Perinormal & Normaloid

Theorem 2. If A and B¥ are perinormal, then (*) holds;
the following (1) and (2) hold and follow from each other.
n n.n
(¥){ (1) ||aB}| " s |A"B"|| for every natural number n.

(2) HABHn+ms a8 a8 || for every natural number n and m.
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