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Norm of a Bethe vector and the Hessian

of the master function

Evgeny Mukhin and Alexander Varchenko

Abstract

We show that the norm of a Bethe vector in the slr+1 Gaudin model is equal to the Hessian
of the corresponding master function at the corresponding critical point. In particular
the Bethe vectors corresponding to non-degenerate critical points are non-zero vectors.
This result is a byproduct of functorial properties of Bethe vectors studied in this paper.
As another byproduct of functoriality we show that the Bethe vectors form a basis in the
tensor product of several copies of first and last fundamental slr+1-modules.

1. Introduction

The Bethe ansatz is a large collection of methods in the theory of quantum integrable models to
calculate the spectrum and eigenvectors for a certain commutative sub-algebra of observables for
an integrable model. Elements of the sub-algebra are called hamiltonians, or integrals of motion, or
conservation laws of the model. The bibliography on the Bethe ansatz method is enormous; see for
example [BIK93, Fad90, FT79].

In the theory of the Bethe ansatz one assigns the Bethe ansatz equations to an integrable model.
Then a solution of the Bethe ansatz equations gives an eigenvector of commuting hamiltonians of
the model. The general conjecture is that the constructed vectors form a basis in the space of states
of the model.

The simplest and most interesting example is the Gaudin model associated with a complex
simple Lie algebra g; see [Bab93, BF94, Fre95, Fre04, FFR94, Gau76, MV00, RV95, SV03, Var95].
One considers highest weight g-modules VΛ1 , . . . , VΛn and their tensor product VΛ. One fixes a point
z = (z1, . . . , zn) ∈ C

n with distinct coordinates and defines linear operators K1(z), . . . ,Kn(z) on VΛ

by the formula

Ki(z) =
∑
j �=i

Ω(i,j)

zi − zj
, i = 1, . . . , n.

Here Ω(i,j) is the Casimir operator acting in the ith and jth factors of the tensor product.
The operators are called the Gaudin hamiltonians of the Gaudin model associated with VΛ.
The hamiltonians commute.

The common eigenvectors of the Gaudin hamiltonians are constructed by the Bethe ansatz
method. Namely, one assigns to the model a scalar function Φ(t, z) of new auxiliary variables t and
a VΛ-valued function ω(t, z) such that ω(t0, z) is an eigenvector of the hamiltonians if t0 is a critical
point of Φ. The functions Φ and ω were introduced in [SV91] to construct hypergeometric solutions

Received 8 March 2004, accepted in final form 7 August 2004, published online 21 June 2005.
2000 Mathematics Subject Classification 82B23 (primary), 17B67, 14M15 (secondary).
Keywords: Bethe ansatz, master functions, critical points.

The first author was supported in part by NSF grant DMS-0140460. The second author was supported in part by
NSF grant DMS-0244579.
This journal is c© Foundation Compositio Mathematica 2005.

https://doi.org/10.1112/S0010437X05001569 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X05001569


Norm of a Bethe vector and the Hessian

of the Knizhnik–Zamolodchikov (KZ) equations. The function Φ is called the master function and
the function ω is called the universal weight function.

The first question is if the Bethe eigenvector ω(t0, z) is non-zero. In this paper we show that for
the slr+1 Gaudin model the Bethe vector is non-zero if t0 is a non-degenerate critical point of the
master function Φ. To show that, we prove the following identity:

S(ω(t0, z), ω(t0, z)) = Hesst log Φ(t0, z). (1)

Here S is the tensor Shapovalov form on the tensor product VΛ and the right-hand side of the
formula is the Hessian at t0 of the function log Φ. This formula for sl2 Gaudin models was proved
in [Var95]; see also [Kor82, Res86, RV95, TV96, MV00].

In this paper we prove the Bethe ansatz conjecture for tensor products of several copies of first
and last fundamental slr+1-modules. Namely, we assume that VΛ1 , . . . , VΛn are slr+1-modules, each
of which is either the first or last fundamental slr+1-module; then we show that for generic z the
Bethe vectors form an eigenbasis of the Gaudin hamiltonians in the tensor product VΛ. Note that
sl3 has only two fundamental modules: the first and last.

We also prove the Bethe ansatz conjecture for tensor products of several copies of arbitrary
fundamental representations of sl4.

The Bethe ansatz conjecture for slr+1 is related to the question of transversality of special
Schubert cycles in the Grassmannian of (r + 1)-dimensional planes in the space of polynomials of
one variable; for more about this relation see [MV04, § 4] and for the corresponding transversality
statements see [Sot99] and [EH83].

The formulated results are based on functorial properties of the master function and the universal
weight function studied in this paper. Namely we study the behavior of Φ and ω when some of the
coordinates of z tend to the same limit. That corresponds to the situation in which the number
of factors in the tensor product VΛ becomes smaller while the factors become bigger. It turns out
that under this limit the Bethe vectors behave in a reasonable way. That reasonable behavior allows
us to establish some general properties of Bethe vectors under the condition that those properties
hold for some model examples. The properties for the model examples can be checked by direct
calculations. Ideas of that type were exploited earlier in [RV95].

The results of this paper split into two parts: one of them (constructions) is related to any simple
Lie algebra (§§ 2–4); the other one (§§ 5–7) is related to slr+1 and can be considered as applications
or examples of the previous constructions.

The paper is organized as follows. Section 2 contains the definitions of the master function and
universal weight function. We prove there that the universal weight function is well defined on
critical points of the master function. In § 3 we collect information on iterated singular vectors in
tensor products of representations. The functorial properties of the master and universal weight
functions are studied in § 4. Preliminary information on Bethe vectors and their Shapovalov norms
is collected in § 5. In § 6 we prove Theorem 6.1 that the Bethe vectors form a basis in the tensor
product of several copies of first and last fundamental slr+1-modules for generic z. In § 7 we prove
formula (1) using Theorem 6.1.

2. Bethe vectors

2.1 The Gaudin model

Let g be a simple Lie algebra over C with Cartan matrix A = (ai,j)ri,j=1. Let D = diag{d1, . . . , dr}
be the diagonal matrix with positive relatively prime integers di such that B = DA is symmetric.
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Let h ⊂ g be the Cartan sub-algebra. Fix simple roots α1, . . . , αr in h ∗ and an invariant bilinear
form ( , ) on g such that (αi, αj) = diai,j. Let H1, . . . ,Hr ∈ h be the corresponding coroots, 〈λ,Hi〉 =
2(λ, αi)/(αi, αi) for λ ∈ h ∗. In particular, 〈αj ,Hi〉 = ai,j. Let w1, . . . , wr ∈ h ∗ be the fundamental
weights, 〈wi,Hj〉 = δi,j .

Let E1, . . . , Er ∈ n+,H1, . . . ,Hr ∈ h , F1, . . . , Fr ∈ n− be the Chevalley generators of g,

[Ei, Fj ] = δi,jHi, i, j = 1, . . . , r,
[h, h′] = 0, h, h′ ∈ h ,

[h,Ei] = 〈αi, h〉Ei, h ∈ h , i = 1, . . . , r,
[h, Fi] = −〈αi, h〉Fi, h ∈ h , i = 1, . . . , r,

and

(ad Ei)1−ai,j Ej = 0, (ad Fi)1−ai,j Fj = 0,

for all i �= j.

Let (xi)i∈I be an orthonormal basis in g, and Ω =
∑

i∈I xi ⊗xi ∈ g⊗ g the Casimir element. We
have

[x ⊗ 1 + 1 ⊗ x,Ω] = 0 (2)

in U(g) ⊗ U(g) for any x ∈ g. Here U(g) is the universal enveloping algebra of g.

For a g-module V and µ ∈ h ∗ denote by V [µ] the weight subspace of V of weight µ and by
Sing V [µ] the subspace of singular vectors of weight µ,

Sing V [µ] = {v ∈ V | n+v = 0, hv = 〈µ, h〉v}.

Let n be a positive integer and Λ = (Λ1, . . . ,Λn), Λi ∈ h ∗, a set of weights. For µ ∈ h ∗ let Vµ be
the irreducible g-module with highest weight µ. Denote by VΛ the tensor product VΛ1 ⊗ · · · ⊗ VΛn .

If X ∈ End(VΛi), then we denote by X(i) ∈ End(VΛ) the operator · · · ⊗ id⊗X ⊗ id⊗ · · · acting
non-trivially on the ith factor of the tensor product. If X =

∑
k Xk ⊗ Yk ∈ End(VΛi ⊗ VΛj), then

we set X(i,j) =
∑

k X
(i)
k ⊗ Y

(j)
k ∈ End(VΛ).

Let z = (z1, . . . , zn) be a point in C
n with distinct coordinates. Introduce linear operators

K1(z), . . . ,Kn(z) on VΛ by the formula

Ki(z) =
∑
j �=i

Ω(i,j)

zi − zj
, i = 1, . . . , n.

The operators are called the Gaudin hamiltonians of the Gaudin model associated with VΛ. One can
check directly that the hamiltonians commute, [Ki(z),Kj(z)] = 0 for all i, j.

The main problem for the Gaudin model is to diagonalize simultaneously the hamiltonians;
see [Bab93, BF94, Fre95, Fre04, FFR94, Gau76, MV00, RV95, SV03, Var95].

One can check that the hamiltonians commute with the action of g on VΛ, [Ki(z), x] = 0 for
all i and x ∈ g. Therefore it is enough to diagonalize the hamiltonians on the subspaces of singular
vectors Sing VΛ[µ] ⊂ VΛ.

The eigenvectors of the Gaudin hamiltonians are constructed by the Bethe ansatz method.
We recall the construction in the next section.

2.2 Master functions, critical points, and the universal weight function

Fix a collection of weights Λ = (Λ1, . . . ,Λn), Λi ∈ h ∗, and a collection of non-negative integers
l = (l1, . . . , lr). Denote l = l1 + · · · + lr, Λ = Λ1 + · · · + Λn, and α(l) = l1α1 + · · · + lrαr.
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Let c be the unique non-decreasing function from {1, . . . , l} to {1, . . . , r} such that #c−1(i) = li
for i = 1, . . . , r. The master function Φ(t, z,Λ, l) is defined by

Φ(t, z,Λ, l) =
∏

1�i<j�n

(zi − zj)(Λi,Λj)
l∏

i=1

n∏
s=1

(ti − zs)−(αc(i),Λs)
∏

1�i<j�l

(ti − tj)(αc(i) ,αc(j))

(see [SV91]). The function Φ is a function of complex variables t = (t1, . . . , tl), z = (z1, . . . , zn),
weights Λ, and discrete parameters l. The main variables are t; the other variables will be considered
as parameters.

For given z,Λ, l, a point t with complex coordinates is called a critical point of the master
function if the following system of algebraic equations is satisfied

−
n∑

s=1

(αc(i),Λs)
ti − zs

+
∑
j,j �=i

(αc(i), αc(j))
ti − tj

= 0, i = 1, . . . , l. (3)

In other words, t is a critical point if(
Φ−1 ∂Φ

∂ti

)
(t) = 0, for i = 1, . . . , l.

By definition, if t = (t1, . . . , tl) is a critical point and (αc(i), αc(j)) �= 0 for some i, j, then ti �= tj .
Also if (αc(i),Λs) �= 0 for some i, s, then ti �= zs.

Let Σl be the permutation group of the set {1, . . . , l}. Denote by Σl ⊂ Σl the subgroup of
all permutations preserving the level sets of the function c. The subgroup Σl is isomorphic to
Σl1 × · · · ×Σlr and acts on C

l permuting coordinates of t. The action of the subgroup Σl preserves
the critical set of the master function. All orbits of Σl on the critical set have the same cardinality
l1! · · · lr!.

Consider highest weight irreducible g-modules VΛ1 , . . . , VΛn , the tensor product VΛ = VΛ1 ⊗· · ·⊗
VΛn , and its weight subspace VΛ[Λ − α(l)]. Fix a highest weight vector vΛi in VΛi for all i.

We construct a rational map

ω : C
l × C

n → VΛ[Λ − α(l)]

called the universal weight function.
Let P (l, n) be the set of sequences I = (i11, . . . , i

1
j1

; . . . ; in1 , . . . , injn
) of integers in {1, . . . , r} such

that, for all i = 1, . . . , r, the integer i appears in I precisely li times. For I ∈ P (l, n), and a
permutation σ ∈ Σl, set σ1(i) = σ(i) for i = 1, . . . , j1, and σs(i) = σ(j1 + · · · + js−1 + i) for
s = 2, . . . , n and i = 1, . . . , js. Define

Σ(I) = {σ ∈ Σl | c(σs(j)) = ijs for s = 1, . . . , n and j = 1, . . . js}.
To every I ∈ P (l, n) we associate a vector

FIv = Fi11
· · ·Fi1j1

vΛ1 ⊗ · · · ⊗ Fin1
· · ·Finjn

vΛn

in VΛ[Λ − α(l)], and rational functions

ωI,σ = ωσ1(1),...,σ1(j1)(z1) · · ·ωσn(1),...,σn(jn)(zn),

labeled by σ ∈ Σ(I), where

ωi1,...,ij (zs) =
1

(ti1 − ti2) · · · (tij−1 − tij )(tij − zs)
.

We set
ω(z, t) =

∑
I∈P (l,n)

∑
σ∈Σ(I)

ωI,σFIv. (4)
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Examples. If l = (1, 1, 0, . . . , 0), then

ω(t, z) =
1

(t1 − t2)(t2 − z1)
F1F2vΛ1 ⊗ vΛ2 +

1
(t2 − t1)(t1 − z1)

F2F1vΛ1 ⊗ vΛ2

+
1

(t1 − z1)(t2 − z2)
F1vΛ1 ⊗ F2vΛ2 +

1
(t2 − z1)(t1 − z2)

F2vΛ1 ⊗ F1vΛ2

+
1

(t1 − t2)(t2 − z2)
vΛ1 ⊗ F1F2vΛ2 +

1
(t2 − t1)(t1 − z2)

vΛ1 ⊗ F2F1vΛ2 .

If l = (2, 0, . . . , 0), then

ω(t, z) =
(

1
(t1 − t2)(t2 − z1)

+
1

(t2 − t1)(t1 − z1)

)
F 2

1 vΛ1 ⊗ vΛ2

+
(

1
(t1 − z1)(t2 − z2)

+
1

(t2 − z1)(t1 − z2)

)
F1vΛ1 ⊗ F1vΛ2

+
(

1
(t1 − t2)(t2 − z2)

+
1

(t2 − t1)(t1 − z2)

)
vΛ1 ⊗ F 2

1 vΛ2 .

The universal weight function was introduced in [SV91] to solve the KZ equations; see
[SV91, FSV95, FMTV00]. The hypergeometric solutions to the KZ equations with values in
Sing VΛ[Λ − α(l)] have the form

I(z) =
∫

γ(z)
Φ(t, z,Λ, l)1/κω(t, z) dt.

Lemma 2.1. Assume that z ∈ C
n has distinct coordinates. Assume that t ∈ C

l is a critical point of
the master function Φ( . , z,Λ, l). Then the vector ω(t, z) ∈ VΛ[Λ − α(l)] is well defined.

Proof. The rational function ω of t and z may have poles at hyperplanes given by equations of the
form ti − tj = 0 and ti − zs = 0. All of the poles are of first order. We need to prove two facts:

(i) If (αc(i), αc(j)) = 0 for some i and j, then w does not have a pole at the hyperplane ti − tj = 0.
(ii) If (αc(i),Λs) = 0 for some i and s, then w does not have a pole at the hyperplane ti − zs = 0.

Assume that (αc(i), αc(j)) = 0 for some i and j. From formulas for ωI,σ it follows that the residue of
ω at ti − tj = 0 belongs to the span of the vectors in VΛ having the form

Fi11
· · ·Fi1j1

vΛ1 ⊗ · · · ⊗ Fis1
· · · (Fc(i)Fc(j) − Fc(j)Fc(i)) · · ·Fisjs

vΛs ⊗ · · · ⊗ Fin1
· · ·Finjn

vΛn .

But the element Fc(i)Fc(j) − Fc(j)Fc(i) acts by zero on VΛ. Hence ω is regular at ti − tj = 0.
Assume that (αc(i),Λs) = 0 for some i and s. From formulas for ωI,σ it follows that the residue

of ω at ti − zs = 0 belongs to the span of monomials

FIv = · · · ⊗ Fis1
· · ·Fisjs

vΛs ⊗ · · ·
such that Fisjs

= Fc(i). But Fc(i)vΛs = 0 in the irreducible g-module VΛs . Hence ω is regular at
ti − zs = 0.

Theorem 2.1. [RV95] Assume that z ∈ C
n has distinct coordinates. Assume that t ∈ C

l is a critical
point of the master function Φ( . , z,Λ, l). Then the vector ω(t, z) belongs to Sing VΛ[Λ − α(l)] and
is an eigenvector of the Gaudin hamiltonians K1(z), . . . ,Kn(z).

This theorem was proved in [RV95] using the quasi-classical asymptotics of the hypergeometric
solutions of the KZ equations. The theorem also follows directly from Theorem 6.16.2 in [SV91];
cf. Theorem 7.2.5 in [SV91], and see also Theorem 4.2.2 in [FSV95].

The values of the universal weight function at the critical points (with respect to t) of the master
function are called the Bethe vectors; see [RV95, Var95, FFR94].
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3. The Shapovalov form and iterated singular vectors

3.1 The Shapovalov form
Define the anti-involution τ : g → g sending E1, . . . , Er, H1, . . . ,Hr, and F1, . . . , Fr to F1, . . . , Fr,
H1, . . . ,Hr, and E1, . . . , Er, respectively.

Let W be a highest weight g-module with highest weight vector w. The Shapovalov form on W
is the unique symmetric bilinear form S defined by the conditions:

S(w,w) = 1, S(xu, v) = S(u, τ(x)v),

for all u, v ∈ W and x ∈ g; see [Kac90]. The Shapovalov form is non-degenerate on an irreducible
W and is positive definite on the real part of W .

Let VΛ1 , . . . , VΛn be irreducible highest weight modules and VΛ their tensor product. Let vΛi ∈
VΛi be a highest weight vector and Si the corresponding Shapovalov form on VΛi . Define a symmetric
bilinear form on VΛ by the formula

S = S1 ⊗ · · · ⊗ Sn. (5)

The form S will be called the tensor Shapovalov form on VΛ.

Lemma 3.1 [RV95]. The Gaudin hamiltonians K1(z), . . . ,Kn(z) are symmetric with respect to S,
S(Ki(z)u, v) = S(u,Ki(z)v) for all i, z, u, v.

3.2 Iterated singular vectors
Let n1, . . . , nk be positive integers. For p = 0, 1, . . . , k fix a collection of non-negative integers
lp = (lp1, . . . , l

p
r). Set l = l0+l1+ · · ·+lk, α(lp) = lp1α1+ · · ·+ lprαr, n = n1+ · · ·+nk, lp = lp1 + · · ·+ lpr ,

and l = l0 + l1 + · · · + lk. For j = 1, . . . , r, set lj = l0j + l1j + · · · + lkj . We have l = l1 + · · · + lr.
For p = 1, . . . , k fix a collection of weights Λp = (Λp

1,Λ
p
2, . . . ,Λ

p
np),Λ

p
i ∈ h ∗. Denote by Λ the

collection of n weights Λp
i , p = 1, . . . , k, i = 1, . . . , np. Set Λp = Λp

1 + · · · + Λp
np , Λ = Λ1 + · · · + Λk.

Set Λ0 = (Λ0
1, . . . ,Λ

0
k) where

Λ0
p = Λp − α(lp)

for p = 1, . . . , k. Set Λ0 = Λ0
1 + · · · + Λ0

k.
Consider the tensor products

VΛ0 = VΛ0
1
⊗ · · · ⊗ VΛ0

k
,

VΛp = VΛp
1
⊗ · · · ⊗ VΛp

np
, for p = 1, . . . , k,

VΛ = VΛ1 ⊗ · · · ⊗ VΛk

= VΛ1
1
⊗ · · · ⊗ VΛ1

n1
⊗ · · · ⊗ VΛk

1
⊗ · · · ⊗ VΛk

nk
.

Let S0 be the tensor Shapovalov form on VΛ0, Sp the tensor Shapovalov form on VΛp , and S =
S1 ⊗ · · · ⊗ Sk the tensor Shapovalov form on VΛ.

To p = 1, . . . , k and I = (i11, . . . , i
1
j1

; . . . ; inp

1 , . . . , i
np

jnp
) ∈ P (lp, np) we associate a vector

FIvΛp = Fi11
· · ·Fi1j1

vΛp
1
⊗ · · · ⊗ Fi

np
1

· · ·Fi
np
jnp

vΛp
np

in VΛp [Λp − α(lp)]. Assume that for p = 1, . . . , k a singular vector

wΛp =
∑

I∈P (lp,np)

ap
IFIvΛp ∈ Sing VΛp [Λp − α(lp)]

is chosen. Here ap
I are some complex numbers.
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To every I = (i11, . . . , i
1
j1

; . . . ; ik1 , . . . , i
k
jk

) ∈ P (l0, k) we associate a vector

FIvΛ0 = Fi11
· · ·Fi1j1

vΛ0
1
⊗ · · · ⊗ Fik1

· · ·Fikjk

vΛ0
k

in VΛ0[Λ − ∑k
p=0 α(lp)]. Assume that a singular vector

wΛ0 =
∑

I∈P (l0,k)

a0
IFIvΛ0 ∈ Sing VΛ0

[
Λ −

k∑
p=0

α(lp)
]

is chosen. Here a0
I are some complex numbers.

To every I ∈ P (l0, k) we also associate a vector

FIw = Fi11
· · ·Fi1j1

wΛ1 ⊗ · · · ⊗ Fik1
· · ·Fikjk

wΛk

in VΛ[Λ − ∑k
p=0 α(lp)]. Here Fip1

· · ·Fipjp
wΛp denotes the action of Fip1

· · ·Fipjp
on the vector wΛp in

the g-module VΛp .
The vector

w =
∑

I∈P (l0,k)

a0
IFIw ∈ VΛ

[
Λ −

k∑
p=0

α(lp)
]

(6)

is called the iterated singular vector with respect to the singular vectors wΛ0 , wΛ1 , . . . , wΛk . It is easy
to see that w is a singular vector in VΛ.

Lemma 3.2. We have

S(w,w) =
k∏

p=0

Sp(wΛp , wΛp).

4. Asymptotics of master functions and Bethe vectors

4.1 Asymptotics of master functions

In this section we consider a master function Φ(t, z,Λ, l) and assume that parameters Λ, l do not
change while z depends on a complex parameter ε. We assume that z has a limit as ε tends to zero.
We study the limit of the master function, its critical points, and its Bethe vectors as ε tends to
zero.

We use the notation of § 3.2.
Let z = (z1, . . . , zn). For s = 1, . . . , n we assign the weight Λp

s−n1−···−np−1
to the coordinate zs if

n1 + · · · + np−1 < s � n1 + · · · + np. (7)

With this assignment we consider the master function Φ(t, z,Λ, l) with t = (t1, . . . , tl).
Introduce the dependence of z = (z1, . . . , zn) on new variables ε and (yp

i ) as follows. Let y0 =
(y0

1, . . . , y
0
k). For p = 1, . . . , k, let yp = (yp

1, . . . , y
p
np). Let y = (yp

i ) where p = 0, . . . , k and i = 1, . . . , k
if p = 0 and i = 1, . . . , np if p = 1, . . . , k. Set

zs(y, ε) = y0
p + εyp

s−n1−···−np−1
, (8)

if s satisfies (7).
If the variables y are fixed and ε → 0, then the coordinate zs(y, ε) in (8) tends to y0

p and the
ratio (zs(y, ε) − y0

p)/ε has the limit yp
s−n1−···−np−1

.
Let z = z(y, ε) be the relation given by formula (8).
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We rescale the variables t of the master function Φ(t, z(y, ε),Λ, l) as follows. Introduce new
variables u = (uj

i ) where j = 0, 1, . . . , k and i = 1, . . . , lj . If

l1 + · · · + lj−1 < i � l1 + · · · + lj−1 + l0j ,

then we set
ti = u0

l01+···+l0j−1+i−(l1+···+lj−1)
. (9)

If
l1 + · · · + lj−1 + l0j + · · · + lp−1

j < i � l1 + · · · + lj−1 + l0j + · · · + lpj ,

then we set
ti = y0

p + εup

lp1+···+lpj−1+i−(l1+···+lj−1+l0j+···+lp−1
j )

. (10)

Let t = t(u, ε) be the relation given by formulas (9) and (10). The relation t = t(u, ε), given by
formulas (9) and (10), will be called the rescaling of variables t with respect to the parameters
l0, . . . , lk or simply the (l0, . . . , lk)-type rescaling.

We study the asymptotics of the function Φ(t(u, ε), z(y, ε),Λ, l) as ε tends to zero.
To describe the asymptotics we use the master functions Φ(up, yp,Λp, lp), p = 0, . . . , k. Here

up = (up
1, . . . , u

p
lp) for p = 0, . . . , k; y0 = (y0

1 , . . . , y
0
k); yp = (yp

1 , . . . , y
p
np) for p = 1, . . . , k; Λp =

(Λp
1, . . . ,Λ

p
np) for p = 0, . . . , k; and lp = (lp1, . . . , l

p
r) for p = 0, . . . , k.

Lemma 4.1. Let all the parameters Λj
i , l

j
i be fixed. Fix a compact subset K ⊂ C

l × C
n in the

(u, y)-space such that the y0
1 , . . . , y

0
k coordinates of points in K are distinct. Assume that ε tends

to 0. Then

Φ(t(u, ε), z(y, ε),Λ, l) = εN(Λ,l1,...,lk)(1 + O(ε, u, y))
k∏

p=0

Φ(up, yp,Λp, lp).

Here N(Λ, l1, . . . , lk) is a suitable constant. The function O(ε, u, y) is holomorphic in C × C
l × C

n

in a neighborhood of the set {0} × K and O(ε, u, y)|ε=0 = 0.

4.2 Asymptotics of critical points
We keep the notation of § 4.1.

Let y0(∗) = (y0
1(∗), . . . , y0

k(∗)) be a point in C
k with distinct coordinates. Let u0(∗) = (u0

1(∗), . . . ,
u0

l0(∗)) be a non-degenerate critical point of the master function Φ(·, y0(∗),Λ0, l0).
For p = 1, . . . , k let yp(∗) = (yp

1(∗), . . . , yp
np(∗)) be a point in C

np with distinct coordinates.
Let up(∗) = (up

1(∗), . . . , up
lp(∗)) be a non-degenerate critical point of the master function

Φ(·, yp(∗),Λp, lp).

Lemma 4.2. There exist unique functions up
i (ε), where p = 0, . . . , k and i = 1, . . . , k if p = 0 and

i = 1, . . . , np if p = 1, . . . , k, with the following properties.

(i) The functions up
i (ε) are holomorphic functions defined in a neighborhood of ε = 0 in C.

(ii) We have up
i (0) = up

i (∗) for all p, i.

(iii) For all non-zero ε in a neighborhood of ε = 0 in C the point u(ε) = (up
i (ε)) is a non-degenerate

critical point of the function Φ(t(u, ε), z(y(∗), ε),Λ, l) with respect to the variables u = (up
i ).

Lemma 4.2 follows from Lemma 4.1 with the help of the implicit function theorem.
Let u(ε) be as in Lemma 4.2. Then for small non-zero ε, the point t(ε) = t(u(ε), ε) ∈ C

l is
a non-degenerate critical point of the master function Φ(·, z(y(∗), ε),Λ, l). This family of critical
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points t(ε) of Φ(·, z(y(∗), ε),Λ, l) will be called the family of critical points associated with the
(l0, . . . , lk)-type rescaling and originated at the critical points u0(∗), . . . , uk(∗) of the master functions
Φ(·, y0(∗),Λ0, l0), . . . , Φ(·, yk(∗),Λk, lk), respectively.

4.3 Asymptotics of Hessians
If f is a function of t1, . . . , tn and t(∗) = (t1(∗), . . . , tn(∗)) is a point, then the determinant

det
i,j=1,...,n

∂2f

∂ti∂tj
(t(∗))

is called the Hessian of f at t(∗) with respect to variables t = (t1, . . . , tn) and is denoted by
Hesstf(t(∗)).
Lemma 4.3. Let t(ε) be the family of non-degenerate critical points of the master function
Φ(·, z(y(∗), ε),Λ, l) associated with the (l0, . . . , lk)-type rescaling and originated at the critical points
u0(∗), . . . , uk(∗) of the master functions Φ(·, y0(∗),Λ0, l0), . . . , Φ(·, yk(∗),Λk, lk), respectively. Then

lim
ε→0

ε2(l1+···+lk)Hesst log Φ(t(ε), z(y(∗), ε),Λ, l) =
k∏

p=0

Hessup log Φ(up(∗), yp(∗),Λp, lp).

4.4 Asymptotics of Bethe vectors
Let t(ε) be the family of non-degenerate critical points of the master function Φ(·, z(y(∗), ε),Λ, l)
associated with the (l0, . . . , lk)-type rescaling and originated at the critical points u0(∗), . . . , uk(∗)
of the master functions Φ(·, y0(∗),Λ0, l0), . . . , Φ(·, yk(∗),Λk, lk), respectively.

Let

ω(t(ε), z(y(∗), ε)) ∈ Sing VΛ

[
Λ −

k∑
p=0

α(lp)
]

be the Bethe vector corresponding to the critical point t(ε) of Φ(·, z(y(∗), ε),Λ, l).
For p = 0, . . . , k let

ω(up(∗), yp(∗)) ∈ VΛp [Λp − α(lp)]
be the Bethe vector corresponding to the critical point up(∗) of Φ(·, yp(∗),Λp, lp).

Let

ωωΛ0 ,ωΛ1 ,...,ω
Λk

∈ Sing VΛ

[
Λ −

k∑
p=0

α(lp)
]

be the iterated singular vector with respect to singular vectors ωΛ0, ωΛ1 , . . . , ωΛk .

Lemma 4.4. We have

lim
ε→0

εl1+···+lkω(t(ε), z(y(∗), ε)) = ωωΛ0 ,ωΛ1 ,...,ω
Λk

.

Lemma 4.4 easily follows from the formula for the universal weight function by repeated appli-
cation of the identity

1
(ti − tj)(tj − tk)

=
1

(ti − tk)(tj − tk)
+

1
(ti − tj)(ti − tk)

.

4.5 Asymptotics of hamiltonians
In this section we keep the notation and assumptions of § 4.4.

For s = 1, . . . , n, let Ks(z) : VΛ → VΛ be the Gaudin hamiltonian associated with the ten-
sor product VΛ and the point z ∈ C

n. Let cs(ε) be the eigenvalue on the Bethe eigenvector
ω(t(ε), z(y(∗), ε)) of the operator Ks(z(y(∗), ε)).
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For i = 1, . . . , k, let Ki(y0(∗)) : VΛ0 → VΛ0 be the Gaudin hamiltonian associated with the
tensor product VΛ0 and the point y0(∗) ∈ C

k. Let c0
i (u

0(∗), y0(∗)) be the eigenvalue on the Bethe
eigenvector ω(u0(∗), y0(∗)) of the operator Ki(y0(∗)).

For p = 1, . . . , k and i = 1, . . . , np, let Ki(yp(∗)) : VΛp → VΛp be the Gaudin hamiltonian
associated with the tensor product VΛp and the point yp(∗) ∈ C

np . Let cp
i (u

p(∗), yp(∗)) be the
eigenvalue on the Bethe eigenvector ω(up(∗), yp(∗)) of the operator Ki(yp(∗)).

Consider the tensor product VΛ as the tensor product VΛ1 ⊗ · · · ⊗ VΛk of k g-modules. For i =
1, . . . , k, consider the Gaudin hamiltonian K̂i(y0(∗)) : VΛ → VΛ,

K̂i(y0(∗)) =
k∑

j=1,j �=i

Ω(i,j)

y0
i (∗) − y0

j (∗)
,

associated with those k g-modules and the point y0(∗) ∈ C
k. For p = 1, . . . , k and i = 1, . . . , np,

denote by K̂i(yp(∗))(p) the linear operator on VΛ = VΛ1 ⊗· · ·⊗VΛk acting as Ki(yp(∗)) on the factor
VΛp and as the identity on other factors of that tensor product.

Lemma 4.5. Let s ∈ {1, . . . , n} and s satisfies (7). If np = 1, then

lim
ε→0

Ks(z(y0(∗), ε)) = K̂p(y0(∗))
and

lim
ε→0

ci(ε) = c0
p(u

0(∗), y0(∗)).
If np > 1, then

lim
ε→0

εKs(z(y0(∗), ε)) = K̂i−(n1+···+np−1)(y
p(∗))(p)

and

lim
ε→0

εci(ε) = cp
i−(n1+···+np−1)(u

p(∗), yp(∗)).

5. Norms of Bethe vectors and Hessians

5.1 The z-dependence of the norm of a Bethe vector
We use the notation of § 2.2.

Fix a collection of weights Λ = (Λ1, . . . ,Λn) and a collection of non-negative integers l =
(l1, . . . , lr). Consider the master function Φ(t, z,Λ, l).

Let z0 = (z0
1 , . . . , z0

n) be a point with distinct coordinates. Let t0 = (t01, . . . , t
0
l ) be a non-

degenerate critical point of the master function Φ(·, z0,Λ, l). By the implicit function theorem there
exists a unique holomorphic C

l-valued function t = t(z), defined in the neighborhood of z0 in C
n,

such that t(z) is a non-degenerate critical point of the master function Φ(·, z,Λ, l) and t(z0) = t0.
Let ω(t(z), z) ∈ Sing VΛ[Λ−α(l)] be the corresponding Bethe vector. Let S be the tensor Shapovalov
form on VΛ.

Theorem 5.1 [RV95]. We have

S(ω(t(z), z), ω(t(z), z)) = C Hesst log Φ(t(z), z,Λ, l), (11)

where C does not depend on z.

Conjecture 5.1 [RV95]. The constant C in (11) is equal to 1.

The conjecture is proved for g = sl2 in [Var95]. We prove the conjecture for g = slr+1 in
Theorem 7.1.
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5.2 The upper bound estimate for the number of critical points
Fix a collection of integral dominant g-weights Λ = (Λ1, . . . ,Λn) and a collection of non-negative
integers l = (l1, . . . , lr). Consider the master function Φ(t, z,Λ, l) and its critical points with respect
to t. Recall that the group Σl = Σl1 × · · · × Σlr acts on the critical set of Φ.

Theorem 5.2. If Λ−α(l) is not a dominant integral g-weight, then the master function Φ(·, z,Λ, l)
does not have isolated critical points; see Corollary 5.3 in [MV03].

If Λ−α(l) is a dominant integral g-weight, then the master function Φ(·, z,Λ, l) has only isolated
critical points; see Lemma 2.1 in [MV04].

If g = slr+1 and Λ − α(l) is a dominant integral slr+1-weight, then the number of the Σl-orbits
of critical points of the master function Φ(·, z,Λ, l), counted with multiplicities, is not greater than
the multiplicity of the irreducible slr+1-module VΛ−α(l) in the tensor product VΛ; see Theorem 5.13
in [MV04].

If g = sl2, the weight Λ−α(l) is a dominant integral sl2-weight, and the coordinates of the point
z = (z1, . . . , zn) are generic, then the number of critical points of the master function Φ(·, z,Λ, l) is
equal to the multiplicity of the irreducible sl2-module VΛ−α(l) in the tensor product VΛ. Moreover,
in that case all critical points are non-degenerate; see Theorem 1 in [SV03].

5.3 Tensor products of two slr+1-modules if one of them is fundamental
Let λ be an integral dominant slr+1-weight, w1, . . . , wr the fundamental slr+1-weights. Set e1 =
w1, e2 = w2 − w1, . . . , er = wr − wr−1, er+1 = −wr. For p = 1, . . . , r we have

Vλ ⊗ Vwp =
⊕

µ

Vµ (12)

where the sum is over all dominant integral weights µ such that µ = λ + ei1 + · · · + eip , 1 � i1 <
· · · < ip � r + 1.

For example, if λ, µ are dominant integral slr+1-weights, then Vµ enters Vλ ⊗ Vw1 if and only if
λ = µ − w1 +

∑i
j=1 αj for some i � r.

Notice also that if λ, µ are dominant integral slr+1-weights, then Vµ enters Vλ ⊗ Vwr if and only
if λ = µ − wr +

∑r
j=i αj for some i � r.

Consider the pair Λ = (Λ1,Λ2) where Λ1 is an integral dominant slr+1-weight, and Λ2 = w1.
Write Λ1 =

∑r
j=1 λjwj for suitable non-negative integers λj. Let l = (l1, . . . , lr) = (1, . . . , 1i, 0i+1,

. . . , 0) for some i � r. Assume that µ = Λ1+w1−α(l) is an integral dominant weight. Let z0 = (0, 1),
and t = (t1, . . . , ti). Consider the master function Φ(t, z0,Λ, l).

Let S be the tensor Shapovalov form on VΛ1 ⊗ Vw1 .

Theorem 5.3 [MV00]. Under the above assumptions the function Φ(·, z0,Λ, l) has exactly one
critical point, denoted by t0 = (t01, . . . , t

0
i ). The critical point t0 is non-degenerate. The coordinates

of t0 are given by the formula

t0j =
j∏

m=1

λm + · · · + λi + i − m

λm + · · · + λi + i − m + 1
, j = 1, . . . , i. (13)

The Bethe vector ω(t0, z0) ∈ Sing VΛ1 ⊗ Vw1[Λ1 + w1 − α(l)], corresponding to the critical point t0,
has the property

S(ω(t0, z0), ω(t0, z0)) = Hesst log Φ(t0, z0,Λ, l).

Similarly consider the pair Λ = (Λ1,Λ2) where Λ1 is an integral dominant slr+1-weight, and
Λ2 = wr. Let l = (l1, . . . , lr) = (0, . . . , 0i, 1i+1, . . . , 1) for some i < r. Assume that µ = Λ1+wr−α(l)
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is an integral dominant weight. Let z0 = (0, 1), and t = (t1, . . . , tr−i). Consider the master function
Φ(t, z0,Λ, l).

Let S be the tensor Shapovalov form on the tensor product VΛ1 ⊗ Vwr .

Theorem 5.4 [MV00]. Under the above assumptions the function Φ(·, z0,Λ, l) has exactly one
critical point, denoted by t0. The critical point t0 is non-degenerate. The Bethe vector ω(t0, z0)
∈ Sing VΛ1 ⊗ Vwr [Λ1 + wr − α(l)], corresponding to the critical point t0, has the property

S(ω(t0, z0), ω(t0, z0)) = Hesst log Φ(t0, z0,Λ, l).

The formulas for coordinates of the critical point in Theorem 5.4 can be easily deduced from
formula (13).

5.4 Tensor products of two sl4-modules if one of them is the second fundamental
If λ, µ are dominant integral sl4-weights, then Vµ enters Vλ⊗Vw2 if and only if λ = µ−w2 +δ where
δ = 0 or δ is one of the following five weights:

α2, α1 + α2, α2 + α3, α1 + α2 + α3, α1 + 2α2 + α3. (14)

For each δ in (14), write δ = l1α1+l2α2+l3α3 for suitable non-negative integers li. Set l = (l1, l2, l3),
l = l1 + l2 + l3, Λ = (λ,w2), z0 = (0, 1), and t = (t1, . . . , tl).

Consider the master function Φ(t, z0,Λ, l).

Theorem 5.5. Let λ, µ be dominant integral sl4-weights, such that λ = µ − w2 + δ and δ is one
of the weights in (14). Then the function Φ(·, z0,Λ, l) has exactly one critical point t0. The critical
point t0 is non-degenerate. The Bethe vector ω(t0, z0) ∈ Sing Vλ ⊗ Vw2[µ], corresponding to t0, is a
non-zero vector.

Proof. If δ is α2, α1 + α2, or α2 + α3, then the theorem follows from Theorems 5.3 and 5.4.
If δ is α1 + α2 + α3 or α1 + 2α2 + α3, then the theorem is proved by direct verification. Namely,

let λ = λ1w1 + λ2w2 + λ3w3. If δ = α1 + α2 + α3, then one can check that t0 = (t01, t
0
2, t

0
3), where

t01 =
λ1(λ1 + λ2 + λ3 + 2)

(λ1 + 1)(λ1 + λ2 + λ3 + 3)
, t02 =

λ1 + λ2 + λ3 + 2
λ1 + λ2 + λ3 + 3

,

t03 =
λ3(λ1 + λ2 + λ3 + 2)

(λ3 + 1)(λ1 + λ2 + λ3 + 3)
.

If δ = α1 + 2α2 + α3, then one can check that t0 = (t01, t
0
2, t

0
3, t

0
4), where

t01 =
(λ1 + λ2 + 1)(λ1 + λ2 + λ3 + 2)
(λ1 + λ2 + 2)(λ1 + λ2 + λ3 + 3)

, t04 =
(λ2 + λ3 + 1)(λ1 + λ2 + λ3 + 2)
(λ2 + λ3 + 2)(λ1 + λ2 + λ3 + 3)

,

t02 + t03 − 2 = −(λ1 + 2λ2 + λ3 + 4)(λ1λ3 + 2λ1λ2 + 2λ2λ3 + 2(λ2)2 + 2λ1 + 6λ2 + 2λ3 + 4)
(λ2 + 1)(λ1 + λ2 + 2)(λ2 + λ3 + 2)(λ1 + λ2 + λ3 + 3)

,

t02t
0
3 =

λ2(λ1 + λ2 + 1)(λ2 + λ3 + 1)(λ1 + λ2 + λ3 + 2)
(λ2 + 1)(λ1 + λ2 + 2)(λ2 + λ3 + 2)(λ1 + λ2 + λ3 + 3)

.

One easily verifies the statements of the theorem using those formulas.

6. Critical points of the slr+1 master functions with first and last
fundamental weights

Let Λ = (Λ1, . . . ,Λn) be a collection of slr+1-weights, each of which is either the first or last
fundamental, i.e. Λi ∈ {w1, wr}. Let l = (l1, . . . , lr) be a sequence of non-negative integers such that
Λ − α(l) is integral dominant; here Λ = Λ1 + · · · + Λn and α(l) = l1α1 + · · · + lrαr.
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Consider the master function Φ(t, z,Λ, l) where t = (t1, . . . , tl), l = l1 + · · · + lr, and z =
(z1, . . . , zn). Recall that the group Σl = Σl1 × · · · × Σlr acts on the critical set of Φ(·, z,Λ, l).

Theorem 6.1. For generic z the following statements hold:

(i) The number of Σl-orbits of critical points of Φ(·, z,Λ, l) is equal to the multiplicity of the
slr+1-module VΛ−α(l) in the tensor product VΛ.

(ii) All critical points of Φ(·, z,Λ, l) are non-degenerate.

(iii) For every critical point t0, the corresponding Bethe vector ω(t0, z) has the property

S(ω(t0, z), ω(t0, z)) = Hesst log Φ(t0, z,Λ, l).

(iv) The Bethe vectors, corresponding to orbits of critical points of Φ(·, z,Λ, l), form a basis in
Sing VΛ[Λ − α(l)].

Proof. The proof is by induction on n. If n = 2, then the theorem follows from Theorems 5.3 and
5.4.

Assume that Theorem 6.1 is proved for all tensor products of n − 1 representations, each of
which is either the first or last fundamental. We prove Theorem 6.1 for the tensor product VΛ

of n given representations VΛ1 , . . . , VΛn , each of which is either the first or last fundamental, and
the given sequence l = (l1, . . . , lr). We will use the notation and results of §§ 3.2 and 4.

We may assume that Λn = w1. We may obtain that result by either reordering Λ1, . . . ,Λn or
using the automorphism of slr+1 which sends Ei, Hi, Fi, αi, and wi to Er+1−i, Hr+1−i, Fr+1−i,
αr+1−i, and wr+1−i, respectively.

Introduce n1, . . . , nk, and Λ1, . . . ,Λk (as in § 3.2) using the following formulas. Set k = 2,
n1 = n − 1, n2 = 1, Λ1 = (Λ1,Λ2, . . . ,Λn−1), Λ2 = (Λn), VΛ1 = VΛ1 ⊗ · · · ⊗ VΛn−1 , VΛ2 = VΛn , and
VΛ = VΛ1 ⊗ VΛ2 = VΛ1 ⊗ · · · ⊗ VΛn−1 ⊗ VΛn .

Consider the set M ′ of the r + 1 integral weights Λ − w1 − α(l), Λ − w1 − α(l) + α1, . . . ,
Λ − w1 − α(l) + α1 + · · · + αr. Denote by M the subset of all µ ∈ M ′ which are dominant.

Denote by mult(µ;λ1, . . . , λm) the multiplicity of Vµ in Vλ1 ⊗ · · · ⊗ Vλm . We have

mult(Λ − α(l); Λ1, . . . ,Λn) =
∑
µ∈M

mult(µ; Λ1, . . . ,Λn−1).

To prove parts (i) and (ii) of the theorem we will introduce a dependence of z on ε so that
z1, . . . , zn−1 tend to 0 as ε → 0 and zn tends to 1. Using the results of § 4 we will construct
non-intersecting sets of Σl-orbits of critical points of Φ, depending on ε, labeled by µ ∈ M , and
consisting of mult(µ; Λ1, . . . ,Λn−1) elements each. Together with Theorem 5.2 it will prove parts (i)
and (ii).

More precisely, introduce the dependence of z = (z1, . . . , zn) on the new variables ε and y =
(yp

i ) = (y0
1 , y

0
2, y

1
1 , . . . , y

1
n−1) as follows. Set

zs(y, ε) = y0
1 + εy1

s , s = 1, . . . , n − 1,

zn(y, ε) = y0
2. (15)

Let z = z(y, ε) be the relation given by formula (15). Set y0 = (y0
1, y

0
2) and y1 = (y1

1 , . . . , y
1
n−1).

Introduce r + 1 types of rescaling of coordinates t; cf. § 4.1.

Type 0 rescaling. Set l0 = (0, . . . , 0), and l1 = (l1, . . . , lr). Introduce new variables u =
(u1

1, . . . , u
1
l ),

ti = y0
1 + εu1

i , i = 1, . . . , l. (16)
This relation t = t(u, ε) will be called the type 0 rescaling of variables t. Set u0 = ∅, u1 = (u1

1, . . . , u
1
l ).
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Type m rescaling, m = 1, . . . , r. Set l0 = (1, . . . , 1m, 0, . . . , 0), and l1 = (l1 − 1, . . . , lm − 1,
lm+1, . . . , lr). Introduce new variables u = (u0

1, . . . , u
0
m, u1

1, . . . , u
1
l−m),

ti = u0
j , if i = l1 + · · · + lj−1 + 1 for j = 1, . . . ,m,

ti = y0
1 + εu1

i−j, if l1 + · · · + lj−1 + 1 < i � l1 + · · · + lj for j = 1, . . . ,m,

ti = y0
1 + εu1

i−m, if l1 + · · · + lm < i. (17)

This relation t = t(u, ε) will be called the type m rescaling of variables t. Set u0 = (u0
1, . . . , u

0
m),

u1 = (u1
1, . . . , u

1
l−m).

We study the asymptotics of the function Φ(t(u, ε), z(y, ε),Λ, l) as ε tends to zero for each of
the r + 1 rescalings.

To describe the asymptotics we use the master functions Φ(up, yp,Λp, lp), p = 0, 1. Here the
collections Λ1 = (Λ1,Λ2, . . . ,Λn−1), l0, l1, and the variables up and yp have already been defined
for each of the r + 1 rescalings. The collection Λ0 is defined as follows. For the type 0 rescaling we
set Λ0 = (Λ1 − α(l1),Λn). For the type m rescaling with m = 1, . . . , r, we set Λ0 = (Λ1 − α(l1) +
α1 + · · · + αm,Λn).

The master functions corresponding to the type m rescaling will be provided with the corre-
sponding index: Φm(up, yp,Λp, lp), p = 0, 1.

Let y1(∗) = (y1
1(∗), . . . , y1

n−1(∗)) be a point with distinct coordinates such that the following
holds:

For m = 0, 1, . . . , r, if Λ − w1 − α(l) + α1 + · · · + αm is dominant, then the master function
Φm(u1, y1(∗),Λ1, l1) has mult(Λ − w1 − α(l) + α1 + · · · + αm; Λ1, . . . ,Λn−1) distinct orbits of
non-degenerate critical points satisfying parts (iii) and (iv) of Theorem 6.1.

Such y1(∗) exists according to the induction assumptions.
Consider the type m rescaling with m = 1, . . . , r. Put y0(∗) = (0, 1). By Theorem 5.3 the function

Φm(·, y0(∗),Λ0, l0) has one critical point. Denote the critical point by u0(∗) = (u0
1(∗), . . . , u0

m(∗)).
Choose mult(Λ − w1 − α(l) + α1 + · · · + αm; Λ1, . . . ,Λn−1) critical points of Φp(·, y1(∗),Λ1, l1)

lying in different Σl1−1×· · ·×Σlm−1×Σlm+1×· · ·×Σlr -orbits. Denote those critical points by u1(∗j),
j = 1, . . . ,mult(Λ−w1−α(l)+α1+· · ·+αm; Λ1, . . . ,Λn−1). Let t(ε, j,m) ∈ C

l be the family of critical
points of Φ(·, z(y(∗), ε),Λ, l) associated with type m rescaling and originated at the critical points
u0(∗), and u1(∗j) of the master functions Φm(·, y0(∗),Λ0, l0) and Φm(·, y1(∗),Λ1, l1), respectively;
see § 4.2.

Consider the type 0 rescaling. Put y0(∗) = (0, 1). The function Φ0(u0, y0(∗),Λ0, l0) does not
depend on u0.

Choose mult(Λ − w1 − α(l); Λ1, . . . ,Λn−1) critical points of Φ0(·, y1(∗),Λ1, l1) lying in
different Σl1 × · · · × Σlr -orbits. Denote the critical points by u1(∗j), j = 1, . . . ,mult(Λ − w1 −
α(l); Λ1, . . . ,Λn−1). Let t(ε, j, 0) ∈ C

l be the family of critical points of Φ(·, z(y(∗), ε),Λ, l)
associated with type 0 rescaling and originated at the critical point u1(∗j) of the master function
Φ0(·, y1(∗),Λ1, l1); see § 4.2.

All together we have constructed mult(Λ − α(l); Λ1, . . . ,Λn) families of critical points of
Φ(·, z(y(∗), ε),Λ, l).

The constructed families are all different. Indeed, the families corresponding to the same rescaling
are different by construction. The families corresponding to different rescalings are different because
they have different limits as ε tends to 0. Now Theorem 5.2 implies part (i).

All constructed critical points are non-degenerate by Lemma 4.2. This proves part (ii). Part (iii)
is a direct corollary of the induction assumptions, Theorems 5.1 and 5.3, and Lemmas 4.4 and 4.3.

Part (iv) is a direct corollary of the construction and Lemma 4.4.
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Let Λ = (Λ1, . . . ,Λn) be a collection of sl4-weights, each of which is fundamental, i.e. Λi ∈
{w1, w2, w3}. Let l = (l1, l2, l3) be a sequence of non-negative integers such that Λ−α(l) is integral
dominant; here Λ = Λ1 + · · · + Λn and α(l) = l1α1 + l2α2 + l3α3.

Consider the master function Φ(t, z,Λ, l) where t = (t1, . . . , tl), l = l1 + l2 + l3, and z =
(z1, . . . , zn). Recall that the group Σl = Σl1 × Σl2 × Σl3 acts on the critical set of Φ(·, z,Λ, l).

Theorem 6.2. For generic z the following statements hold:

(i) the number of Σl-orbits of critical points of Φ(·, z,Λ, l) is equal to the multiplicity of the
sl4-module VΛ−α(l) in the tensor product VΛ;

(ii) all critical points of Φ(·, z,Λ, l) are non-degenerate;

(iii) the Bethe vectors, corresponding to orbits of critical points of Φ(·, z,Λ, l), are non-zero vectors
and form a basis in Sing VΛ[Λ − α(l)].

The proof of this theorem is parallel to the proof of Theorem 6.1 and is based on Theorem 5.5.

7. Norms of Bethe vectors in the slr+1 Gaudin models

Let Λ0 = (Λ0
1, . . . ,Λ

0
k) be a collection of slr+1 integral dominant weights. Let l0 = (l01, . . . , l

0
r) be a

sequence of non-negative integers such that Λ0−α(l0) is integral dominant. Here Λ0 = Λ0
1 + · · ·+Λ0

n

and α(l0) = l01α1 + · · · + l0rαr.
Consider the master function Φ(u0, y0,Λ0, l0) where u0 = (u0

1, . . . , u
0
l0), l

0 = l01 + · · · + l0r , and
y0 = (y0

1 , . . . , y
0
k).

Theorem 7.1. Let y0(∗) ∈ C
k be a point with distinct coordinates. Let u0(∗) be a non-degenerate

critical point of Φ(·, y0(∗),Λ0, l0). Let ω(u0(∗), y0(∗)) ∈ Sing VΛ0 [Λ0 − α(l0)] be the corresponding
Bethe vector. Let S0 be the tensor Shapovalov form on VΛ0 . Then

S0(ω(u0(∗), y0(∗)), ω(u0(∗), y0(∗))) = Hessu0 log Φ(u0(∗), y0(∗),Λ0, l0).

Corollary 7.1. The Bethe vector ω(u0(∗), y0(∗)) is a non-zero vector.

Proof of Theorem 7.1. We deduce Theorem 7.1 from Theorem 6.1 using the results of § 4.
It is known that for each integral dominant slr+1-weight λ, the multiplicity of Vλ in V ⊗n

w1
is

positive for a suitable n.
For each p = 1, . . . , k, fix np such that the multiplicity of VΛ0

p
in V

⊗np
w1 is positive. Set Λp =

(w1, . . . , w1) where w1 is taken np times. Denote by Sp the tensor product Shapovalov form on
V

⊗np
w1 .

We have npw1 −Λ0
p = lp1α1 + · · ·+ lprαr where lp = (lp1, . . . , l

p
r) is a sequence of non-zero integers.

Set lp = lp1 + · · · + lpr , yp = (yp
1 , . . . , y

p
np), and up = (up

1, . . . , u
p
lp). Consider the master function

Φ(up, yp,Λp, lp). That master function satisfies the conditions of Theorem 6.1. Hence there exists
a point yp(∗) ∈ C

np with distinct coordinates and a non-degenerate critical point up(∗) ∈ C
lp

of the function Φ(·, yp(∗),Λp, lp) such that the Bethe vector ω(up(∗), yp(∗)) ∈ Sing V
⊗np
w1 [Λ0

p] satisfies
the identity:

Sp(ω(up(∗), yp(∗)), ω(up(∗), yp(∗))) = Hessup log Φ(up(∗), yp(∗),Λp, lp).

Set n = n1 + · · · + nk, l = l0 + · · · + lk = (l01 + · · · + lk1 , . . . , l0r + · · · + lkr ), l = l0 + · · · + lk.
Set z = (zp

i ), where p = 1, . . . , k, i = 1, . . . , np. Set Λ = (Λp
i ), where p = 1, . . . , k, i = 1, . . . , np, and

Λp
i = w1. Assign the weight Λp

i to the variable zp
i for every p, i. Set t = (t1, . . . , tl). Consider the

master function Φ(t, z,Λ, l).

1026

https://doi.org/10.1112/S0010437X05001569 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001569


Norm of a Bethe vector and the Hessian

Introduce the dependence of variables z on variables u, ε by the formula: zp
i = y0

p +εyp
i for all p, i.

Introduce the (l0, . . . , lk) rescaling of variables t by formulas (9) and (10). Let t(ε) ∈ C
l be the family

of critical points associated with this rescaling and originated at the critical points u0(∗), . . . , uk(∗)
of the master functions Φ(·, y0(∗),Λ0, l0), . . . , Φ(·, yk(∗),Λk , lk), respectively; see § 4.2.

Let ω(t(ε), z(y(∗), ε)) ∈ Sing V ⊗n
w1

be the corresponding Bethe vector. Let S be the tensor
Shapovalov form on V ⊗n

w1
. By Theorem 6.1 we have

S(ω(t(ε), z(y(∗), ε)), ω(t(ε), z(y(∗), ε))) = Hesst log Φ(ω(t(ε), z(y(∗), ε)),Λ, l).

Now by Lemmas 4.3, 4.4, and 3.2 we may conclude that

S0(ω(u0(∗), y0(∗)), ω(u0(∗), y0(∗))) = Hessu0 log Φ(u0(∗), y0(∗),Λ0, l0).

Similarly to Theorem 7.1 one can prove the following theorem.

Theorem 7.2. Let t0(∗) be a critical point of Φ(·, y0(∗),Λ0, l0). Let ω(u0(∗), y0(∗)) ∈ Sing VΛ0 [Λ0−
α(l0)] be the corresponding Bethe vector. Assume that the number

S0(ω(u0(∗), y0(∗)), ω(u0(∗), y0(∗)))
is not equal to zero. Then t0(∗) is a non-degenerate critical point.

Corollary 7.2. Let t0(∗) be a critical point of Φ(·, y0(∗),Λ0, l0) such that the corresponding Bethe
vector ω(u0(∗), y0(∗)) ∈ Sing VΛ0 [Λ0 − α(l0)] is not equal to zero and belongs to the real part of
VΛ0. Then t0(∗) is a non-degenerate critical point.

The corollary follows from Theorem 7.2 since the Shapovalov form is positive definite on the
real part of VΛ0.

Example (cf. [RV95]). Let g = sl2, Λ0 = (w1, w1, w1), l0 = (1), and y0(∗) = (1, η, η2), where
η = e2πi/3. Consider the master function Φ(t, y0(∗),Λ0, l0) = ((t1)3 − 1)−1. The point t0(∗) = (0) is
the only critical point of Φ. The critical point is degenerate. The corresponding Bethe vector

ω(u0(∗), y0(∗)) =−F1vw1 ⊗ vw1 ⊗ vw1

−η2vw1 ⊗ F1vw1 ⊗ vw1 − ηvw1 ⊗ vw1 ⊗ F1vw1 ∈ VΛ0

is a non-zero vector and S0(ω(u0(∗), y0(∗)), ω(u0(∗), y0(∗))) = 1 + η4 + η2 = 0.
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