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NORM OF CONVOLUTION BY OPERATOR-VALUED
FUNCTIONS ON FREE GROUPS

ARTUR BUCHHOLZ

(Communicated by Palle E. T. Jorgensen)

Abstract. We present a connection between the Leinert sets and the non-
crossing two-partitions and we use this connection to give a simple proof of the
free Khintchine inequality in discrete non-commutative Lp-spaces. Moreover
we extend the inequality of Haagerup-Pisier,∥∥∥∥∥∥

∑
g∈S

λ(g) ⊗ ag

∥∥∥∥∥∥
C∗λ(Fn)⊗A

≤ 2 max


∥∥∥∥∥∥
∑
g∈S

a∗gag

∥∥∥∥∥∥
1
2

,

∥∥∥∥∥∥
∑
g∈S

aga∗g

∥∥∥∥∥∥
1
2
 ,

where λ is the left regular representation of the group Fn, ag are elements of
the C∗-algebra A, and S is the set of the words with length one, to the set S

of the words with arbitrary fixed length.

0. Introduction

In this paper we treat two inequalities (scalar and operator) related to norms of
convolution operators on free groups.

Section 1 is devoted to the free Khintchine inequality, first proved by M. Bożejko
in [B]. The relationship between the classical Khintchine inequality (more precisely
its dual version1) and the free version is the following. Instead of linear combi-
nations of Rademacher functions, we consider functions supported on a subset (of
discrete groups) satisfying a certain condition of Leinert (Definition 1.1). In the
free case, similar to the classical one, L2p-norms are estimated by L2-norms (see
Theorem 1.8 below):

‖f‖L2p ≤ C
1
2p
p ‖f‖L2.(Kp)

The constants Cp =
(
2p
p

)
1

p+1 (Catalan numbers) are different from the classical
ones. The main idea of our proof of the free Khintchine inequality is based on a
simple connection (given in Definition 1.3) between the condition of Leinert and
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1We identify the interval [0, 1] with the Lebesgue measure, and the group product

∏
i∈N Z2

with the Haar measure.
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1672 ARTUR BUCHHOLZ

non-crossing pairings. We show the way in which the products (of free genera-
tors and its inverses) reducing to identity induce the non-crossing pairings: pair-
ings arise as the elementary deletions between generators and inverses (for more
about the connection between Leinert’s condition and free generators see Theorem
IIIC in [AO]). To give an example: let a, b be free generators; then the product
abb−1a−1 is related to only one non-crossing pairing {{1, 4}, {2, 3}}, but the prod-
uct ba−1aa−1ab−1 is related to two non-crossing pairings {{1, 6}, {2, 3}, {4, 5}} and
{{1, 6}, {2, 5}, {3, 4}}. The occurrence of the constants Cp in the above inequality
has a natural explanation in this proof: the number of non-crossing pairings of
totally ordered sets with even cardinality 2p is equal to Cp. The constants Cp are
the best in (Kp). It is possible to view this inequality as a certain case of the free-
central-limit-theorem for concrete variables, namely for self-adjoint operators (the
free Rademacher functions) Xi = λ(gi), where g2

i = e freely generate a group. It is
obvious that the Xi’s form the free family of operators (with the zero expectations
and normalized second moments) with respect to the state φ given by the formula
φ(T ) = 〈Tδe|δe〉. Since

lim
n→∞

∥∥∥∥∥ 1√
n

n∑
i=1

Xi

∥∥∥∥∥
2p

L2p

= lim
n→∞φ

[ 1√
n

n∑
i=1

Xi

]2p
 = Cp =

∫ 2

−2

x2p 1
2π

√
4− x2 dx,

it follows that the spectral measure of the operators 1√
n

∑n
i=1 Xi in the state φ

tends to the Wigner measure dν(x) = 1
2π

√
4− x2 dx. We want to point out that in

this way we get the elementary proof (without the R-transform of Voiculescu) of a
free analog of the De Moivre-Laplace central limit theorem.

The purpose of the second section of our paper is to generalize the Haagerup
inequality (Lemma 1.4 in [H]) on free groups∥∥∥∥∥∥

∑
|wi|=k

αiλ(wi)

∥∥∥∥∥∥ ≤ (k + 1)
(∑

|αi|2
) 1

2
, αi ∈ C,(H)

into the operator case (i.e. αi ∈ B(H)). At the beginning of this section we intro-
duce the partial isometry operators Tp,q, where p, q are any two elements of a free
group G (considered with the fixed family of free generators g1, . . . , gm). Operators
Tp,q arise naturally in the following decompositions of the left translations on free
groups:

λ(p) =
k∑

i=0

Tp1· ··· ·pi,pi+1· ··· ·pk
,(D)

where p ∈ G has reduced writing p =
∏k

i=1 pi, with pi ∈ {g1, . . . , gm, g−1
1 , . . . , g−1

m }.
The orthogonality of domains and images (for different q and p respectively) of
Tp,q’s and the decompositions (D) are used to convert the estimates about norms
of linear combinations of λ(p)’s into estimates about norms of certain matrices. It
gives a sequence (Hk) of inequalities (see Theorem 2.8). For k = 1 we get the
estimate (for operator coefficients αi ∈ B(H)) as in Haagerup and Pisier’s paper
(see Proposition 1.1 in [HP]):∥∥∥∥∥∥

∑
|pi|=1

αi ⊗ λ(pi)

∥∥∥∥∥∥ ≤ 2 max
{∥∥∥∑αiα

∗
i

∥∥∥ 1
2

,
∥∥∥∑α∗i αi

∥∥∥ 1
2
}

.(H1)
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For k = 2 on the right hand side, besides two previous norms (which are equal to
the operator norm of one row and one column matrix respectively), there is the
operator norm of the matrix (αi,j) with zero entries for |pipj| 6= 2:∥∥∥∥∥∥

∑
|pipj |=2

αi,j ⊗ λ(pipj)

∥∥∥∥∥∥
≤ 3 max

{∥∥∥∑αi,jα
∗
i,j

∥∥∥ 1
2

, ‖(αi,j)‖,
∥∥∥∑α∗i,jαi,j

∥∥∥ 1
2
}

.

(H2)

The case k = 3 is∥∥∥∥∥∥
∑

|pipjpk|=3

αi,j,k ⊗ λ(pipjpk)

∥∥∥∥∥∥
≤ 4 max

{∥∥∥∑αi,j,kα∗i,j,k
∥∥∥ 1

2
, ‖(αi,(j,k))‖, ‖(α(i,j),k)‖,

∥∥∥∑α∗i,j,kαi,j,k

∥∥∥ 1
2
}

,

(H3)

where the rows and columns of the matrix (αi,(j,k)) are indexed by words of length
one and two respectively (conversely for (α(i,j),k)), and similarly as before αi,(j,k) =
0(α(i,j),k = 0) if |pipjpk| 6= 3.

1. The free Khintchine inequality

First we recall the definition of Leinert’s condition.

Definition 1.1. A subset A of a group G satisfies Leinert’s condition if for every
natural n and any sequence {gi}2n

i=1 of elements of A the relation
n∏

i=1

g2i−1g
−1
2i = e

implies that gk = gk+1 for some k < 2n.

The typical example of such a set is the set of free generators. We will present
a certain connection between the condition of Leinert and non-crossing pairings
defined below.

Definition 1.2. Let A be a finite subset of the natural numbers and let V be a
partition of this subset. We say that V is a non-crossing two-partition of A if two
conditions hold:

(i) any class of V has exactly two elements,
(ii) there does not exist in A an increasing sequence a, b, c, d such that a, c forms

a class and b, d another class of the partition V .
We denote by NC2(A) the set of all non-crossing two-partitions of the set A, and

if A is equal to {1, . . . , 2n} we will write NC2(2n) instead of NC2({1, . . . , 2n}).
Definition 1.3. Let a subset A of a discrete group G satisfy Leinert’s condi-
tion and let {xi}2n

i=1 be a sequence of elements of A. Let moreover the equality∏n
i=1 x2i−1x

−1
2i = e hold. We say that the sequence {xi}2n

i=1 induces a non-crossing
two-partition V , if for any class {i, j} of V the equality xi = xj holds.

Proposition 1.4. If a sequence {xi}2n
i=1 satisfies the assumptions of Definition 1.3,

then the set of non-crossing two-partitions induced by this sequence is not empty.
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Proof. We obtain a simple proof by induction. For n = 1 the statement of the
proposition is obvious. Let a sequence {xi}2n+2

i=1 be given. Because Leinert’s con-
dition is satisfied, there exists k < 2n + 2 such that xk = xk+1. By the induc-
tion assumption there exists a non-crossing two-partition V of the set {1, . . . , 2n +
2}\{k, k + 1} such that for any class {i, j} of V we have xi = xj . It is clear that
Ṽ = V ∪ {k, k + 1} is a non-crossing two-partition of the set {1, . . . , 2n}.
Proposition 1.5. Let sequences {xi}2n

i=1 and {yi}2n
i=1 satisfy the assumptions of

Definition 1.3. If {x2i−1}n
i=1 = {y2i−1}n

i=1 and {x2i}n
i=1 6= {y2i}n

i=1, then the sets
of non-crossing two-partitions induced by these sequences are disjoint.

Corollary 1.6. Let a subset A satisfy Leinert’s condition, let {xi}n
i=1 be a sequence

of elements of A and let A be a class of such sequences. For any fixed {xi}n
i=1 ∈ A

the number of elements {yi}n
i=1 ∈ A which satisfy the condition

∏n
i=1 xiy

−1
i = e is

less than or equal to the cardinality of NC2(2n), and if the sequence {xi}n
i=1 has

mutually different elements, the equality holds.

Proof of Proposition 1.5. Let x2k0 6= y2k0 . For any V and Ṽ , induced by {xi}2n
i=1

and {yi}2n
i=1 respectively, if {2k0, 2i − 1} and {2k0, 2j − 1} are elements of V and

Ṽ respectively, then i 6= j, because in this case x2i−1 = x2k0 6= y2k0 = y2j−1 and
{x2i−1}n

i=1 = {y2i−1}n
i=1.

Remark 1.7. The cardinality of NC2(2n) is equal to the Catalan number Cn =(
2n
n

)
+ 1

n+1 .

One can find the proof of this fact in the paper of G. Kreweras (Theorem 4 in
[K]).

Now we present another proof of the theorem of M. Bożejko (see [B]), see also
the paper [AO], where the operator norm of the operator λ(f) is computed; this
norm is equal to limp→∞ ‖f‖L2p.

Theorem 1.8 (the free Khintchine inequality). If the support of a function f : G
→ C satisfies Leinert’s condition, then we have the following inequality:

‖f‖L2p ≤
[(

2p

p

)
1

p + 1

] 1
2p

‖f‖l2,

where p is a natural number and the constant
(
2p
p

)
1

p+1 is the best possible for the
function with infinite support.

Proof. We have

‖f‖2p
L2p

= (f ∗ f̃)∗p(e)

=
∑

{{ik}2p
k=1∈{i1,...,in}2p : xi1x−1

i2
···xi2p−1x−1

i2p
=e}

f(xi1)f̃(xi2 ) · · · f(xi2p−1 )f̃(xi2p)

=
∑

{xi}p
i=1∈(supp f)p

∑
{{yi}p

i=1∈(supp f)p :
∏p

i=1 xiy
−1
i =e}

∏
x∈supp f

|f(x)|2[#({xi}p
i=1)

−1(x)].

From Corollary 1.6 and Remark 1.7 we obtain∑
{{yi}p

i=1∈(supp f)p :
∏p

i=1 xiy
−1
i =e}

1 ≤
(

2p

p

)
1

p + 1
,
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thus

‖f‖2p
L2p

≤
(

2p

p

)
1

p + 1

∑
{xi}p

i=1∈(supp f)p

∏
x∈supp f

|f(x)|2[#({xi}p
i=1)

−1(x)]

=
(

2p

p

)
1

p + 1
‖f‖2p

l2 .

In order to prove that the constant
(
2p
p

)
1

p+1 is the best possible we consider, similarly
as in the paper [B], a sequence, normalized with respect to the l2-norm, of functions
fn = 1√

n

∑n
i=1 δgi with support in some infinite subset A which satisfies Leinert’s

condition. For these functions we have

‖fn‖2p
L2p

=
∑

gi1g−1
i2
···gi2p−1g−1

i2p
=e

(
1√
n

)2p

=
∑
A

∑
B

(
1√
n

)2p

≥
∑
Ã

∑
B

(
1√
n

)2p

=
(

2p

p

)
1

p + 1

∑
Ã

(
1√
n

)2p

=
(

2p

p

)
1

p + 1

(
n

p

)
p!
(

1√
n

)2p

,

where

A := {gik
}p

k=1 ∈ (supp fn)p,

B :=

{
{hk}p

k=1 ∈ (supp fn)p :
p∏

k=1

gik
h−1

k = e

}
,

Ã := {{gik
}p

k=1 ∈ (supp fn)p : #{gik
}p

k=1({1, . . . , p}) = p}.

So the proof of Theorem 1.8 is finished because limn→∞
(
n
p

)
p!
(

1√
n

)2p

= 1.

2. The operator-valued functions

In this section Ek(G) denotes the subset of words of length k of a free group G
(considered with the fixed family of free generators g1, . . . , gm). For p ∈ Ek(G) we
denote by pi the ith letter in the reduced word p, i.e.

p = p1 . . . pk, where pi ∈ {g1, . . . , gm, g−1
1 , . . . , g−1

m }.
Notations 2.1. Let G be a free group, h an element of G and p, q elements of Ek(G)
and El(G) respectively. Then

(i) l2(G)h denotes the closed span of {δhg ∈ l2(G) : g ∈ G and |hg| = |h| + |g|}
in l2(G),

(ii) Ph denotes the orthogonal projection of l2(G) onto l2(G)h,
(iii) λ(h) denotes the operator of left convolution by δh,
(iv) Tp,q denotes the operator of the form

Tp,q =
(∏k

i=1 Ppiλ(pi)
)(∏l

i=1 λ(qi)Pq−1
i

)
= Ppλ(p)λ(q)Pq−1 ,

Tp,e =
∏k

i=1 Ppiλ(pi) = Ppλ(p),
Te,q =

∏l
i=1 λ(qi)Pq−1

i
= λ(q)Pq−1 ,

Te,e = Id,
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1676 ARTUR BUCHHOLZ

(v) p≤n =


p for n > k,∏n

i=1 pi for k ≥ n > 0,

e for n = 0,

p>n =


p for n < 0,∏k

i=n+1 pi for 0 ≤ n < k,

e for n ≥ k.

It is very useful that for different q the domains of these operators are orthogonal,
and for different p the images are also orthogonal (if we assume that the lengths of
p and q, respectively, are fixed):

If q 6= w and |q| = |w|, then [Ker(Tv,w)]⊥⊥[Ker(Tp,q)]⊥,

If p 6= v and |p| = |v|, then Im(Tv,w)⊥ Im(Tp,q).
(2.1)

The operator Tp,q has the following properties:

Proposition 2.2. Let g be one of the free generators of the free group G and let
p, p′, q, q′ be elements of Ek(G), Ek′ (G), El(G), El′ (G) respectively, such that |pp′| =
|p|+ |p′| and |qq′| = |q|+ |q′|. Then

(i) Tp,eTe,q = Tp,q,
(ii) Tp,eTp′,e = Tpp′,e,

Te,qTe,q′ = Te,qq′ ,
(iii) λ(g) = Pgλ(g) + λ(g)Pg−1 = Tg,e + Te,g,

λ(g−1) = Pg−1λ(g−1) + λ(g−1)Pg = Tg−1,e + Te,g−1 = T ∗e,g + T ∗g,e,
(iv) λ(g)Pg−1λ(g−1) = Te,gT

∗
e,g = Id− Pg,

λ(g−1)Pgλ(g) = T ∗g,eTg,e = Id− Pg−1 ,
(v) Te,qT

∗
e,q = Id− Pq1 ,

T ∗p,eTp,e = Id− Pp−1
k

.

Proof. The statements (i) and (ii) are obvious by the definition. The proof of (iii)
is done in the paper [HP] (see proof of Proposition 1.1). Assertion (iv) follows from
(iii), because

λ(g)Pg−1λ(g−1) = λ(g)[λ(g−1)− λ(g−1)Pg ] = Id− Pg.

The statement (v) is a consequence of (iv) and the property (ii).

Corollary 2.3. Let p, p′ ∈ Ek(G) and q, q′ ∈ El(G). Then
(i) T ∗p,qTp′,q′ = δp,p′T

∗
e,q(Id− Pp−1

k
)Te,q′ ,

(ii) Tp,qT
∗
p′,q′ = δq,q′Tp,e(Id− Pq1)T ∗p′,e.

Proof. We prove only the first equality, the proof of the second is similar. One can
observe that if g, g′ ∈ E1(G) and g 6= g′, then

T ∗g,eTg′,e = λ(g−1)PgPg′λ(g′) = 0.

Hence we obtain

T ∗p,eTp′,e = 0, for p, p′ ∈ Ek(G) and p 6= p′.

Thus, applying Proposition 2.2 (i) and (v), we get

T ∗p,qTp′,q′ = T ∗e,qT
∗
p,eTp′,eTe,q′ =

{
T ∗e,q(Id− Pp−1

k
)Te,q′ if p = p′,

0 if p 6= p′.

Using the above operator Tp,q we obtain a decomposition of the left translation
operator λ(p). This representation is a generalization of the statement (iii) from
Proposition 2.2.
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Lemma 2.4. Let p ∈ Ek(G). Then we have the following representation of the
operator λ(p):

λ(p) =
k∑

i=0

T p≤i,p>i .

Proof. We get this equality by applying Proposition 2.2 (iii) to the left translation
operator λ(p) =

∏k
i=1 λ(pi).

Now we introduce a matrix representation for a sum of operators Ap,q ⊗ Tp,q ∈
B(H ⊗2 l2(G)), where H is a Hilbert space. The following notation will be useful:

(α) for a family {Ap≤i,p>i}p∈Ek(G) of bounded operators, the family

{Ãp,q}(p,q)∈Ei(G)×Ek−i(G)

is defined by the equation

Ãp,q =

{
Ap,q if |pq| = k,

0 otherwise,

(β) for a finite family {Ap,q}(p,q)∈K×L of bounded operators acting on a Hilbert
space H we denote by (Ap,q)(p,q)∈K×L the matrix of an operator acting from⊕

q∈L H to
⊕

p∈K H.

Lemma 2.5. Let G be a free group with finitely many free generators and let k,
i ∈ N be such that k ≥ i. Let, moreover, H be a Hilbert space and {Ap≤i,p>i}p∈Ek(G)

be a family of bounded operators acting on H. Then, for the operators

Pt : H ⊗2 l2(G) →
⊕

w∈Et(G)

H ⊗2 l2(G), where t = k − i, or t = i,

given by the formulas

Pt(v) =
⊕

w∈Et(G)

Pw(v), where t = k − i, or t = i,

the following statements hold :

(i) (Ãp,q ⊗ Tp,q)(p,q)∈Ei(G)×Ek−i(G) = Pi

∑
p∈Ek(G) Ap≤i,p>i , ⊗T p≤i,p>iP∗k−i,

(ii)
∑

p∈Ek(G) Ap≤i,p>i ⊗ T p≤i,p>i = P∗i (Ãp,q ⊗ Tp,q)(p,q)∈Ei(G)×Ek−i(G)Pk−i.

Since both operators Pi and Pk−i have norms equal to one, as a simple conse-
quence we obtain:

Corollary 2.6. Let the assumptions of Lemma 2.5 be satisfied. Then∥∥∥∥∥∥
∑

p∈Ek(G)

Ap≤i,p>i ⊗ T p≤i,p>i

∥∥∥∥∥∥
B(H⊗2l2(G))

= ‖(Ãp,q ⊗ Tp,q)(p,q)∈Ei(G)×Ek−i(G)‖B(X,Y ),

where X =
⊕

q∈Ek−i(G)(H ⊗2 l2(G)) and Y =
⊕

p∈Ei(G)(H ⊗2 l2(G)).
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Proof of Lemma 2.5. The statements of the lemma will become obvious if we ob-
serve that the operators Tp,q have orthogonal complements of kernels for different
q and orthogonal images for different p (with the assumption that the lengths of p
and q respectively are fixed); see (2.1).

Indeed, for the first statement (the second one can be shown similarly) we have:
if δq′ is not in l2(G)q−1 (where q ∈ Ek−i(G)), then the delta-function A ⊗ δq′

(where A ∈ H), which lies in the qth orthogonal component (of the orthogonal
sum

⊕
w∈Ek−i(G)(H ⊗2 l2(G))), is in the kernels of both operators from state-

ment (i). Now, if δq′ belongs to l2(G)q−1 and A ⊗ δq′ , as a moment ago, be-
longs to (

⊕
r∈Ek−i(G)\{q} H ⊗2 l2(G))⊥ (where orthogonal complement is taken in⊕

r∈Ek−i(G)(H ⊗2 l2(G))), then for the left-hand side of the equality (i) we have:

(Ãw,l ⊗ Tw,l)(w,l)∈Ei(G)×Ek−i(G)A⊗ δq′ =
⊕

w∈Ei(G)

Ãw,qA⊗ Pi+|r|δwr,

where q′ = q−1r and |q′| = |q|+ |r|, and Pk is the projection onto words of length
k. We obtain the same value for the right-hand side of this equality:

Pi

∑
p∈Ek(G)

Ap≤i,p>i ⊗ T p≤i,p>iP∗k−iA⊗ δq′

= Pi

∑
p∈Ek(G)

Ap≤i,p>i ⊗ T p≤i,p>iÂ⊗ δ̂q′

= Pi

∑
w∈I

Aw,qÂ⊗ Pi+|r|δ̂wr

=
⊕
w∈I

Ãw,qA⊗ Pi+|r|δwr

=
⊕

w∈Ei(G)

Ãw,qA⊗ Pi+|r|δwr,

where Â ⊗ δ̂q′ means the same function as A ⊗ δq′ , but in the other space (i.e. in
H ⊗2 l2(G)), r and Pk are as above, and I is the set of these words from Ei(G)
which multiplied by q are in Ek(G).

Lemma 2.7. Let G be a free group with finitely many free generators and let k, i
be natural numbers such that 0 ≤ i ≤ k. Let, moreover, H be a Hilbert space and
{Ap≤i,p>i}p∈Ek(G) a family of bounded operators acting on H. Then, using the
notations

X1 =
⊕

q∈Ek−i(G)

(H ⊗2 l2(G)), X2 =
⊕

p∈Ei(G)

(H ⊗2 l2(G)),

Y1 =
⊕

q∈Ek−i(G)

H, Y2 =
⊕

q∈Ei(G)

H,

we have

‖(Ãp,q ⊗ Tp,q)(p,q)∈Ei(G)×Ek−i(G)‖B(X1,X2)

= ‖(Ãp,q)(p,q)∈Ei(G)×Ek−i(G)‖B(Y1,Y2).
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Proof. In order to prove this equality we show the inequalities on both sides:
(≥) Let v ∈ Y1 be a normed vector of the form v =

⊕
q∈Ek−i(G) v(i)q. Then

ṽ ∈ X1 defined by formula ṽ =
⊕

q∈Ek−i(G)(v(i)q ⊗ δq−1) is also normed and
satisfies the equation

‖(Ãp,q)(p,q)∈Ei(G)×Ek−i(G)v‖Y2 = ‖(Ãp,q ⊗ Tp,q)(p,q)∈Ei(G)×Ek−i(G)ṽ‖X2 .

(≤) In the proof of the opposite inequality we use the following well known facts:

(∗) For an operator T acting between Hilbert spaces H1 and H2 we have

‖T ‖2
B(H1,H2)

= ‖T ∗T ‖B(H1) = ‖TT ∗‖B(H2),

(∗∗) For a positive operator T (acting on a Hilbert space) which is of the form
T = T1 − T2, where T1, T2 are also positive operators, we have ‖T ‖ ≤ ‖T1‖.

By applying (∗) to the operator (Ãp,q ⊗ Tp,q)(p,q)∈Ei(G)×Ek−i(G) we obtain

‖(Ãp,q ⊗ Tp,q)(p,q)∈Ei(G)×Ek−i(G)‖2
B(X1,X2)

=
∥∥∥(Ãp,q ⊗ Tp,q)∗(p,q)∈Ei(G)×Ek−i(G)(Ãp,q ⊗ Tp,q)(p,q)∈Ei(G)×Ek−i(G)

∥∥∥
B(X1)

=

∥∥∥∥∥∥∥
 ∑

p∈Ei(G)

Ã∗
p,qÃp,r ⊗ T ∗p,qTp,r


(q,r)∈Ek−i(G)×Ek−i(G)

∥∥∥∥∥∥∥
B(X1)

.

Thus, using Corollary 2.3, we get

‖Ãp,q ⊗ Tp,q)(p,q)∈Ei(G)×Ek−i(G)‖2
B(X1,X2)

=

∥∥∥∥∥∥∥
 ∑

p∈Ei(G)

Ã∗
p,qÃp,r ⊗ [T ∗e,q(Id− Pp−1

k
)Te,r]


(q,r)∈Ek−i(G)×Ek−i(G)

∥∥∥∥∥∥∥
B(X1)

=

∥∥∥∥∥∥∥
 ∑

p∈Ei(G)

Ã∗
p,qÃp,r ⊗ T ∗e,qTe,r


(q,r)∈Ek−i(G)×Ek−i(G)

−
 ∑

p∈Ei(G)

Ã∗
p,qÃp,r ⊗ T ∗e,qPp−1

k
Te,r


(q,r)∈Ek−i(G)×Ek−i(G)

∥∥∥∥∥∥∥
B(X1)

.

From this and (∗∗) we get the following inequality:

‖(Ãp,q ⊗ Tp,q)(p,q)∈Ei(G)×Ek−i(G)‖2
B(X1,X2)

≤

∥∥∥∥∥∥∥
 ∑

p∈Ei(G)

Ã∗
p,qÃp,r ⊗ T ∗e,qTe,r


(q,r)∈Ek−i(G)×Ek−i(G)

∥∥∥∥∥∥∥
B(X1)

= ‖(Ãp,q ⊗ Te,q)(p,q)∈Ei(G)×Ek−i(G)‖2
B(X1,X2).
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In a similar way we get

‖(Ãp,q ⊗ Te,q)(p,q)∈Ei(G)×Ek−i(G)‖2
B(X1,X2)

= ‖(Ãp,q ⊗ Te,q)(p,q)∈Ei(G)×Ek−i(G)(Ãp,q ⊗ Te,q)∗(p,q)∈Ei(G)×Ek−i(G)‖B(X2)

=

∥∥∥∥∥∥∥
 ∑

q∈Ek−i(G)

Ãp,qÃ
∗
d,q ⊗ [Te,eT

∗
e,e]


(p,d)∈Ei(G)×Ei(G)

−
 ∑

q∈Ek−i(G)

Ãp,qÃ
∗
d,q ⊗ Te,ePq1T

∗
e,e


(p,d)∈Ei(G)×Ei(G)

∥∥∥∥∥∥∥
B(X2)

≤ ‖(Ãp,q ⊗ Te,e)(p,q)∈Ei(G)×Ek−i(G)‖2
B(X1,X2)

= ‖(Ãp,q)(p,q)∈Ei(G)×Ek−i(G)‖2
B(Y1,Y2).

So the proof of Lemma 2.7 is finished.

Now we formulate the main theorem of the paper. We should also mention that
the result below was known to Uffe Haagerup.

Theorem 2.8. Let G be a free group with finitely many free generators, let H be
a Hilbert space and let f be a function supported on Ek(G) with values in B(H).
Then

(1) ‖λ(f)‖B(H⊗2l2(G)) ≥ max{‖(f(pq))(p,q)∈Ei(G)×Ek−i(G)‖Xi : 0 ≤ i ≤ k},
(2) ‖λ(f)‖B(H⊗2l2(G)) ≤ (k+1)max{‖(f(pq))(p,q)∈Ei(G)×Ek−i(G)‖Xi : 0 ≤ i ≤ k},

where ‖ · ‖Xi is the operator norm in the space B(
⊕

q∈Ek−i(G) H,
⊕

p∈Ei(G) H).

Proof. It is clear that λ(f) =
∑

p∈Ek(G) f(p)⊗λ(p). Applying Lemma 2.4 we obtain

λ(f) =
k∑

j=0

 ∑
p∈Ek(G)

(f(p)⊗ T p≤j ,p>j )

 .(∗)

Proof of (1). Let v(i) be a normed vector in
⊕

q∈Ek−i(G) H of the form v(i) =⊕
q∈Ek−i(G) v(i)q. Then the vector ṽ(i) from H ⊗2 l2(G) defined by the formula

ṽ(i) =
∑

q∈Ek−i(G)(v(i)q ⊗ δq−1) is also normed, and from (∗) and (2.1) we have

‖λ(f)ṽ(i)‖2
H⊗2l2(G) =

∥∥∥∥∥∥
∑
j≥i

∑
p∈Ek(G)

(f(p)⊗ T p≤j,p>j )ṽ(i)

∥∥∥∥∥∥
2

H⊗2l2(G)

=
∑
j≥i

∥∥∥∥∥∥
∑

p∈Ek(G)

(f(p)⊗ T p≤j,p>j )ṽ(i)

∥∥∥∥∥∥
2

H⊗2l2(G)

≥
∥∥∥∥∥∥
∑

p∈Ek(G)

(f(p)⊗ T p≤i,p>i)ṽ(i)

∥∥∥∥∥∥
2

H⊗2l2(G)

= ‖(f(pq))(p,q)∈Ei(G)×Ek−i(G)v(i)‖2
⊕p∈Ei(G)H

.
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Proof of (2). By (∗) we have

‖λ(f)‖ ≤
k∑

j=0

∥∥∥∥∥∥
∑

p∈Ek(G)

f(p)⊗ T p≤j,p>j

∥∥∥∥∥∥ ,

thus, it is enough to show that∥∥∥∥∥∥
∑

p∈Ek(G)

f(p)⊗ T p≤j,p>j

∥∥∥∥∥∥
B(H⊗2l2(G))

≤ ‖(f(pq))(p,q)∈Ej(G)×Ek−j(G)‖Xj .

But, by Corollary 2.6 and Lemma 2.7, we have the equality since if we denote
Ap≤j ,p>j = f(p≤jp>j) = f(p) for p ∈ Ek(G), then Ãp,q = f(pq) for p ∈ Ej(G) and
q ∈ Ek−j(G).

Remark. The norms ‖ · ‖Xi in the above theorem are similar to the norms
‖ · ‖{i+1,...,k} from the paper [HP] (see (0.3) and (0.4) there). The similarity is
the following. Let V be a finite set of free generators of a free group G and let f
be a function supported on Ek(G). We define a family aJ of bounded operators on
Hilbert space H , where J belongs to [V ∪ V −1]k, in the following way:

aJ = f

(
k∏

i=1

J(i)

)
, where

k∏
i=1

is multiplication in the group G.

In the above notations we get:

‖(aJ)‖{i+1,...,k} = ‖(f(pq))(p,q)∈Ei(G)×Ek−i(G)‖Xi .
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