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Normal almost contact metric manifolds
of dimension three

by ZriGNiEw Ouszak (Wroctaw)

Abstract. One of the important classes of almost contact metric (shortly a.c.m.) manifolds is
the class consisting of those which are normal. However, the curvature nature of such manifolds
is not known in general, except for Sasakian or cosymplectic manifolds. Recently the author
derived fundamental curvature identities for quasi-Sasakian manifolds (cf. [6]).

The present paper is devoted to normal a.c.m. structures on a 3-dimensional manifold
(denote such a manifold by M). In Section 2 we derive certain necessary and sufficient conditions
for an a.c.m. structure on M (o be normal and we point out some of their consequences. In
Section 3 we completely characterize the local nature of normal a.c.m. structures on M by giving
suitable examples. Section 4 concerns the curvature properties of such structures; we prove that
they are n-Einstein and in the remaining part of that section we study normal a.c.m. structures
on a manifold of constant curvature. We give certain new examples of such structures of rank 1.
We also prove that if M is compact, then all such structures are quasi-Sasakian.

1. Preliminaries. Let M be an almost contact manifold and (¢, &, n) its
almost contact structure. This means, M is an odd-dimensional differentiable
manifold and ¢, &, n are tensor fields on M of types (1, 1), (1, 0), (0, 1),
respectively, such that

o> = ~I1+¢(®n,  n(&) =1

Then also ¢¢ =0, nop = 0. Let R be the real line and ¢ a coordinate on R.
Define an almost complex structure J on M xR by

4 _( .o d

N\

where the pair (X, Ad/dr) denotes a tangent vector to M xR, X and Ad/dt
being tangent to M and R, respectively.

M and (g, &, ) are said to be normal if the structure J is integrable (cf.
e.g. [1]). The necessary and sufficient condition for (¢, £, n) to be normal is

[0, ¢]+2({@dn =0,
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where [¢. ¢] is the Nijenhuis torsion of ¢ defined by
[0, 01(X, Y) =[¢X, oY1+ ¢’[X, Y]-0[eX, Y]-0[X, Y],

for any X, Ye 24'(M), (M) being the Lie algebra of vector fields on M.
We say that the form 5 has rank r = 2s if (dn)’# 0 and 5 A (dn)* =0,
and has rank 7 == 2s+ 1 if A {(dn)* # 0 and (dy)**! = 0. We also say that r is
the rank of the structure (¢, ¢, n).
A Riemannian metric g on M satisfying the condition

g(oX, pY) =g(X, Y)-n(X)n(Y),

for any X, Ye.X (M), is said to be compatible with the structure (¢, &, n). If
g is such a metric, then the quadruple (¢, &, i1, g) is called an almost contact
metric (shortly a.c.m.) structure on M and M an almost contact metric (shortly
a.c.m.) manifold. On such a manifold we also have n(X) =g (X, &) for any
Xe (M) and we can always define the 2-form @ by @(X, Y) =g(X, ¢Y),
where X, Ye .4/ (M).

It is not hard to see that if dim M = 3, then two Riemannian metrics g
and ¢’ are compatible with the same almost contact structure (¢, &, ) on M
if and only if g’ =6g-+(1—a)n® 4. for a certain positive function ¢ on M.

AGREFMENT. Through the rest of this paper M always denotes a
3-dimensional differentiable manifold.

2. Preliminary results.
ProrosiTioN 1. For un a.c.m. structure (@, £, n, g) on M we have

(1 Fxo)Y =gloVxl, Y)E—n(Y)eVy<,
(2) dd = (dive)n A &,
(3) dn =i A (Ve +5(tr(eF)) S,

where V is the Levi-Civita connection on M, div ¢ is the divergence of ¢ defined
by divi =trace | X — Py &) and tr(pVE) =trace{ X — @Vy &} .

Proof. Since n A @ is up to a constant factor the volume element on
M, it is parallel with respect to V, ie., Fyx(n A @) =0. Hence

Vxm(V)B(Z, W)+n(Y)(Fx D) (Z, W)+ (Vxn)(Z)P(W, Y)+
+(Z2)(Vx )W, Y)+(Vxn)(W)@(Y, Z)+n(W)(Vy @)Y, Z) = 0.
The last relation for W = ¢ gives
(PxPUZ, V) = = (D) (Vx D)UY, O)+n (N (T P)(Z, &)
=n(Z)g(oVx&, Y)—n(Y)a(eVx<, Z),
which leads to (1). To piove (2), we note that d® =on A @ for a certain
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function & on M. Taking a local ¢-basis [E,, E,, E,} (ie., an orthonormal
frame such that E; =¢ and E, = ¢E,) we find

3(’" A ¢]('E‘O- Eh EZ) = —1’
J(dP)(E,, E,, E,) = (V.so ?)(E,, Ez)+(V£l P)(E,, EO)+{V,.;2 P)(E,y, E)
= —g(Vg, Eo. Ey)—y(Vi, Eo, Ej) = —div¢,

which implies ¢ = div¢{. Finally, by elementary argumentations we get dn
=n A m+o®, where w is a 1-form orthogonal to n, ie, w()=0,and g is a
scalar function. Consequently

o(X) =2(n A w+eP)(S, X) = 2nig, X) = (Fen)(X),
20 =2(n n 0+ @®UE,, E,) =2dn(E,. Ey) = Ve, ’1)(51)"‘('_’51 n(E,)
=g(¢Vg, & E ) +g(@Ve, &, E;) = trace | X — ¢V {},

completing the proof of (3).

Prorvosimion 2. For an a.c.m. structuru‘(rp, &, M, g) on M the following
conditions are mutually equivalent:

(a) the structure (¢, &, n) is normal,

(b) Vox& = @Vx(,

(©) Vx&=aiX—n(X)¢}~foX,
where 2a = div¢ and 2f = tr{pV3).

Proof. As it is known (cl. [7], p. 171), an a.c.m. structure is normal if
and only if

e(Vx@)Y—(Vox @) Y —(Vy n(Y)¢ =0

With the use of (1) we can easily see that in dimension 3 the above condition
is equivalent to (b). It is also ciear that (c)==(b). To prove (b)=>(c), take a ¢-
basis {E,, E;, E;|. Then by (b) we obtain ¥, =0, Vy ¢ =oF, —pE, and

Vg,& = BE,+aE, for certain «, 3. This gives our assertion.

CoroirLArY 1. For a normal a.c.m. structure (¢, ¢, n,g) on M we have
Vel =0 and dn = B®, where 28 = tr(¢VE). In particular, the rank of such a
structure cannot be 2.

Remark 1. A normal a.c.m. manifold for which d® = 2n A @ is said to
be a Kenmotsu manifold (cf. [4], also [5]). Any Kenmotsu manifold fulfils the
relation V& = X —n(X)&. By Propositions 1 and 2 it can be seen that the
above relation is a sufficient condition for an a.c.m. manifold of dimension 32
to be Kenmotsu.

ProrosiTioN 3. Let (¢, ¢.14,9) be a normal acm. structure on M.
Suppose additionally

/

) o =0, =, n=¢e g=09+(1-0)n®@n,
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where ¢ = +1 or — 1 and ¢ is a positive function on M. Then (¢, &', 1, ¢) is a
normal a.c.m. structure on M, rank n' = rankn. And for functions a, B. o', f'
defined by d® = 2an A &, dn = B, dP’ =2a'n' A &, dy = f'® we have

(5) (@) 2 =¢Ra+&loga), (b) p =c¢p/o,

where @' is a 2-form given by ®'(X, Y) =g'(X, ¢'Y).
Proof. The first two parts of our assertion can be easily obtained by
straightforward verification. To see (5), note that @ .=o¢@®. Consequently,

B =dn =edn=¢efd = agtﬁ', which gives (5) (b). Now take a ¢-basis

{Eo, E,, E,} for the structure (@, ¢, n, g), and its dual basis of 1-forms
{E§ =n, EY, E3}. Then @ = 2E% A EY and do = (¢0)n+(E, 0) EY +(E, 0) E5.
Thus, necessarily do A @ =(a)n A @ and consequently

20 AP =dP' =do A P+0dP = ((o+200)n A D =¢e(Co/o+20)n A P,
which implies (5) (a).

3. A normal ac.m. structure (@, &, n, ¢g) satisfying additionaily the
condition dn = @ is calied Sasakian. Of course, any such structure on M has
rank 3.

THeoreMm 1. Let (o, , n, g) be a Sasakian structure on M. Then an a.c.m.
structure (¢, &', ', g') given by (4) is normai and is of rank 3. Conversely, if
(¢, &,7', g') is a normal ac.m. structure of rank 3 on M, then there is a
Sasakian structure (¢, &, n,g) and a function ¢ on M such that the two
structures are related by (4).

Proof. We must only prove the sccond statement. Let (¢, &, v, g') be a
normal a.c.m. structure of rank 3 on M. Then dn’ = f&’ # 0 at every point of
M with 28 =tr(o' V' {’). Suppose ¢ =signff and

1 1
_ ’, — z’, — ,, —_— — ! 1 _—— 4 ,_
p=¢, L=, n=en, ¢ Eﬁg+( eﬁ)"®"

In view of Proposition 3 we have dn =&, where ¢(X, Y) = g(X, ¢Y).
Thus the structure (¢, &, n, g) is Sasakian. Finally, we can easily verify that
the two structures are related by (4) with ¢ =signp and g = ¢f.

Remark 2. A normal ac.m. structure satisfying additionally the
condition d® =0 is said to be quasi-Sasakian (cf. [2], [3]). In virtue of
Propositions 1 and 2 we can state the following: an a.c.m. structure
(o, &, n, g) on M is quasi-Sasakian if and only if it fulfils ¥y = —f¢X for
some function 8 on M. Clearly, a quasi-Sasakian structure of rank 1 is
cosymplectic. By Theorem 1 and Proposition 3 we have the following
statement: any quasi-Sasakian structure of rank 3 on M can be obtained
from a Sasakian structure by some deformation of the form (4), and
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conversely, a deformation of a Sasakian structure given by (4) with ée =0
leads to a guasi-Sasakian structure of rank 3.

Before we describe the structure of normal a.c.m. manifolds of rank 1
and dimension 3, we examine the foliowing example. '

Examper 1. Let N = Lx V. where L is the circle S' or an open interval
(a,b), —ooc €£a<b< +wo, and V is a K#dhlerian manifold of dimension 2
with (J, G) as its Kahlerian structure. Let E be a nowhere vanishing vector
field on L, E* its dual field of 1-forms and o a posilive function on N.
Denote by (X,, X,) a tangent vector to N, where X,. X, are tangent to L, V
respectively. Assume

(p(Xf_')s X1)=(0$ JXl)s é=(E, 0)9 ”=(E*1 0),
g((Xo, X4), (Yo, Y))) = EX(Xo) E*(Yo)+06G(X,, Y}).
Then it is a matter of an easy straightforward verification that (¢, &, #n, y) is

a normal a.c.m. structure of rank 1 on N.

Tueorem 2. Let (@, &, n, g} be a normal a.c.m. structure of rank 1 on M.
Then for any point pe M, some neighbourhood U of p is identified with the
product (a, b)xV, where (a, b) is an open interval and V is a Kililerian
manifold of dimension 2, on which the structure (¢, ¢, n, g) is given as in
Example 1 with L = (a, b).

Proof. By our assumption and Propusition | we have dy =0 on M and
d® =2an A &, where 2a=div{. Fix a point peM. There s a
neighbourhood U’ of p on which 2 = {log V-/_c;, for 2 certain positive function

(6)

1 1 .. . :
o. Assume g' = ;g+(1 —;)n® n. By Proposition 3, (¢, ¢, n, g') is a normal

a.c.m. structure of rank 1 on U’ satisfying dn = 0, d® = 0. Thus (¢, &, 1, ¢')
is a cosymplectic structure on U’. Therefore the point p has a neighbourhood
U =(a, ) x V< U'. The structure (@, &, n, g') 1s given on U by

¢(X09 Xl) = (0, J‘Xl)a C = (Er 0)’ r’ = (E*" 0)\
9'(Xo, X1), (Yo, Y1) = EX(Xo) E*(Yo) +G(X,, Y)),

where (J, G) 1s a Kihlerian structure on V, E is a nowhere vanishing
vector field on (a, b) and E* its dual. Finally, since g = ag’'+(1-0)n®n, we
sce that the structure (@, &, n, ¢) is of the form (6) on U.

It seems to be of interest to know under what conditions we have a
global decomposition of the form as in Example 1. A partial answer to this
question is given by the following theorem.

Tueorem 3. Let (¢, &, n, g) be a normal a.c.m. structure of rank 1 on M.
Suppose additionally that d(div¢) is linearly dependent of n (or equivalently,
(div&)n is a closed 1form) and M is simply connected and complete. Then
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M = R xV, where R is the real line, V is a Kihlerian manifold of dimension 2
and the structure (@, .1, g) is given on M as in Example 1 with L =R.

Proof. Under our assumptions we have (div¢{)n = dloge for 2 certain
L 1 1 .
posidive function ¢ on M. Let ¢ =;g+(1-—;)n® n. By Propos:tion 3.

(., n,¢g) 1s a2 normal acm. structure of rank | on M. Moreover, by
Proposition 1 and o9’ = &, we have

(diviyn A @ =db =do A @' +add =a(diviin A P +add’
=(divE)n A ¢+ odd,

whence d¢’ = 0. So (o, &, n, ¥') 1s a cosymplectic siructure on M. Taking
into account the toprlogical assumptions we obtain M = Rx V. where V is a
2-dimensional K#hlerian manifold. Argument concerning the structure
(@, . 1. g) is the same as in the proof of Thevrem 2.

In the abeve considerat:ons only normai a.c.m. manifolds of pure rank 1
or 3 have appeared. However, there are such manifolds having rack 3 only
on subsets, as it is illustrated, by the following example.

ExampLe 2. Let N, L, V, J, G, E. E* be as ia Examplc 1. Let o be
a positive function on N and w a 1-form on V. Then dw = B, where J is
a function on V and Q the fundamental 2-form of the Kihlerian structure
defined by 2(X,. Y,) = G(X,, JY;). Define

P{Xo, X)) = (-—w(JXl)E, JX,), <=(E, 0, n=(E* wj
g«XOv X1). (Yo, Yl” = E*(Xo)+w(X )} | E*(Y)+ (1))} +0G (X, 1)).

By straightforward veriiication we can see that (¢,¢,n,g9) I8 an ac.m.
structure on N. To prove the normality of (@, ¢, n), we take the metric

1 1 ) . : )
g = --y+(1—»-—)q® r as a new metric compatible with this structure. We
o g

shall show that Fy¢ = - BeX, where V" is the Levi-Civita connection of g’
and B is the funcuon on N defined by B(t. q) = fi(q) for uny (t, e LxV
= N. On account of Proposition 2 this fact suftices for the normality of
(@, £, m). So, using the explicit formula for V' we get

29'(7;.15,1(,) £, (LE, Y1) = X (Y- Y (X)) ~w{[X,, V1]
=2dw(X,. Y1) = 2B2(X,, V) = = 28G(JX, Y))
= =28y’ (o(AE. X)), (E. Y})),

where X,, Y, are vector fields on V and 4, u arbitrary constants. This
implies Fx¢ = —fpX. Now, in virtue of Propositions 1-3, for the structure

(@, &, 1, g) we obtain i = gtb and d® = (logo)n » ®. Therefore rank
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=3 on the set U = {geN| B(g) # 0} and rankn =1 on N\U. Note also
that the structure (¢, &, 5, g) 1s quasi-Sasakian if o = O.

Now we prove that the converse holds locally.

TuroreM 4. Let (@, &, 1, g) be ¢ normal a.cm. structure on M. Then,
for any point pe M, some neighbourhood U of p is identitied with the product
(—a, a)y x V. where (—a, a} is an oper interval und V is a Kiihlerian manifold of

s ]

dimension 2, on which the structure (o, &, n, g) is given as in Example 2.
Pioof. Fix a point peM. Let U’ be a neighbourhood of p and o

1 1
a tunction on U’ such that div¢é = £loga. Assume g’ =;g+(l—i)n® n.

’

On account of Propositions 1 and 3, (¢, ¢, 1. ¢) is a normal a.c.m. structure
on U’ and d¢’ = 0. Hence this structure is quasi-Sasakiun and consequenily

(cf. [2])

A certain coordinate neighbourhood of p, say U, with coordinates (x°, x!, x2),
is the product (—a, a) x V such that & = @i¢x°® on U, x° is the coordinate on
(—a,a) and (x', x?) are the coordinates on V. Let gj;, 7, ¢ be the
components of g, #, ¢ in the coordinates (x°, x!, x2). The Latin (1esp. Greek)
indices take on values 0, 1, 2 (resp. 1, 2). Thus, assuming the summation
convention, we have

o @, 0] = —05+0om;,  No=1=doo, Ma=Goa-
Catm@e+m02 =0, ¢p=0, gue!o}=ygi;—nn;.

By (8) the components g;;, n;, @) are independent of the coordinate x°.
Therefore they can be used to a description of an almost Hermitian structure
on V. For, define

(100 Jo/éx" = @) o/x' + @2 d/0x?,  G(8/éx?, &/0xP) = gup—Natly-

Using relations (9) one verifies that (J, G) is such a structure on V. And
since dim V== 2, it is K#hlerian. Define additionally (d/8x*) = n,, E = ¢/0x°,
L* =dx". Knowing (9}, (10) and g = og'+(1—0)n®#, we verify that our
structure (¢, &, n, g) 1s of the form (7) on U.

4. The aim of this section is to find curvature properties of a normal

a.c.m. structure on M. Let (¢, &, n, g) be such a structure. By Proposition 2
we have

(11) Py ¢ =a{Y—n(Y)¢) - Bo¥,
which applied to (1) gives

(12)  (Fy@) Y ={Bg(oX, Y)—ag(X, @Y)} E+n(Y){fo* X —apX]}.
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Differentiating (11) covariantly and using (12) we find
PPyl =a Py Y=n(Vx Y)E} = BoVy Y—(a*+ ) g(pX. oY)~
—~(Xa) > Y —(Xf) @Y + (> - B)n(Y) 0> X+ 22fn(Y) 9 X.

Therefore. for the curvature transformation Ryy = [Fy, Fy]l—Fxy, we
obtain

(13)  Ryy¢ = {Ya+(@*=f)n(Y)} 0> X — {Xa+(@*— B} n(X)] ¢* Y+
+) Y8+ 2aBn(Y)) 0X —{ XB+ 2afn{X)} oY,
which for the Riccr curvature tensor § leads to
(14) S(Y. &) = —Ya—(@Y) B~ {Sa+2(c* — )} n(Y).
Denoting the curvature tensor by Ryyzy = g(Rxy Z, W) we have by (13)
Ryyze = —(Ex+ 2 =2 g (oY, 02)—(Ef+2aP)g(Y, ¢Z),
whence it follows that
(15) Reyze = —(Ca+22 =g (oY, 0Z),
(16) EB+208 = 0.
On the other hand, the curvature tensor in dimension 3 always satisfies
(17)  Ryyzw =g(X, W)S(Y, Z)—g(X, Z)S(Y. W)+glY, Z)S(X, W)—
—g(Y, W\)S(X, Z) — 3r {g(X, W)g(¥, Z)—g(X, Z)g(Y, W)],
where r is the scalar curvature. By (14). (15), (17) we can derive
(18)  S(Y, Z) =(r+la+a’--p*)g(Y, 0Z)—n(Y) {(Za+(9Z) B} —
—n(Z) {Ya+ (oY) B} —2(ax* = B2 n(Y)n(2).

Thus we have the following theorem.

THEOREM S. The Ricci tensor of a 3-dimensional normal a.c.m. manifold is
given by (18). Therefore any such manifold is n-Einstein, that is, S(Y, Z)
= Ag(Y, Z), for any vectors Y, Z orthogonal 10 £, where A is a function.

In the remaining part of this section we consider 3-dimensional normal
ac.m. manifolds of constant curvature. Concerning examples of such
manifolds, recall that R* admits standard flat cosymplectic structure, the unit
sphere §* admits a Sasakian structurc of constant curvature 1, and generally,
by Theorem 6.1 of [6], any complete Riemannian manifold (M, g} of
constant positive curvature admits a quasi-Sasakian structure (¢, ¢, 4, g)
(with the same g) of rank 3. Below we give another example of normal a.c.m.
structure of constant curvature and of rank 1. However, as we shall prove,
any compact normal a.c.m. manifold of constant curvature is quasi-Sasakian.
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ExampLe 3. In Example 1 we put L={(a, b), V=582 (J,G) is the

standard K#hlerian structure of constant curvature 1 on 82, x° is the
. - 1

coordinate on (a, b), E = ¢¢/6x°, E* = de", o = g/c?, where ¢ =const # 0

and ¢ is a positive function of x° only. On N =(a, b) x §* we have the
normal a.c.m. structure (. &, n, g) defined by (6). Now we specialize the
function g so that this structure will be of constant curvature. Let (x', x2) be
local coordinates in $2. Then denoting by Gy (1<a,f<2) and g;
(0<i,j<2) the local components of G and g, respectively, we have

900 = 1/¢% Goa = ga0 =0, gpp = %G,,,. Consequently the components of the
c

curvature tensor are of the form

2 2
c“(40—0)
Rin = "—4—02 (911 922"'9122),
c*(0'* —200")
RaOOB = — 492 —‘"(Q‘apgoo—gzogop)s
Ri012 = 0.

Hence, if (a, b) = (0, + ), ¢ = 1 and ¢(x% = (x°?, then g is locally flat; if
(a, b) = (0, ) and ¢{x° = sin2x° then g is of constant curvature c2; and if
(a, b) = (0. + ) and g(x°® = sh?x° then g is of constant curvature (—c?).

TuEOREM 6. Let (@, &, n.g) be a normal acm. structure of constant
curvature K on M, M being compact. Then 2a = div¢ = 0, i.e. the structure is
quasi-Sasakian, and K > 0. Moreover, rankn =1 (i.e., the structure is
cosymplectic) if K =0, and rankn =3 if K> 0.

Proof. At first, by (14) and § = 2Kg we get

(19) Ex+K+u?-p2 =0,
(20) Yo+(@Y) B+ (K +a2—=p2)y(Y) =0
Rewriting (20) in the form
dz(Y)+g(grad B, oY)+(K+2*—f>)n(Y)=0

and differentiating covariantly we get

(Pxda)(Y)+g(Fygrad B, oY)+g(grad B, (Vx ) Y)+

+H X @ =) n(Y)+H(K+a?=p%)(Fyn)(Y) = 0.

Hence, by antisymmetrization with respect to X, Y, we have
(21)  g(Vxgrad B, @Y)—g(Vygrad B, @X)+{(Fxo) Y —(Fyo) X} B+

v

+H X @ =B n(V)= 1Y@ - b)) n(X)+ 2(K +a®— B dn(X, ¥) = 0.
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Let |Ey E,,E,} be a ¢-basis. Taking X =E,, Y=E, m (21) and
considering relation (12) and dn = & we find that

(22)  g(Vi,grad B, Ey)+g(Ve,grad B, E)) = 2aEf— 28(K +a° - f?).

On the other hand, (16) yields ¢(grad g, &) = —2uafS, whence by covariant
differentiation we get, on account of (11) and {19),

(23) g(Fegrad B, 2) = - 2aif—2p5a = —2xEB+ 2B(K + 2% — 7).

Denoting by 4 the Laplacian defined by A = divgrad, in view of (22) and
(23) we have 48 = 0. Since M is compact, § = const. If # # 0, then by (16) x
= 0 everywhere on M. So let # = 0. Relation (20) leads to Yr+(K +2?)5(Y)
=0, or gradx+(K +«%) & = 0. Hence it follows that

Vygradx +(Xa?) EH(K +2¥)a | X —n(X)E} =0,

and consequently

2
Az =Y g(Vp grada, E) = —2x(Sa+K+7),

i=0

or Ax =0 1n virtue of (19) and f =0. Hence x = const. But 2x = div¢
= const, in view of the compactness of M, implies x == 1.

Thus we have 2 =0 and f# =const, in any case. From (19) we get
E = B2 > 0. This clearly completes the proof.

For quasi-Sasakian structures of constant curvature compaie also [6],
Theorem 6.2.
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