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Abstract

Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The rela-

tionship between matrix content and stiffness, however, is non-linear, and stiffness is only

one component of tissue mechanics. The mechanical response of tissues such as liver to

physiological stresses is not well described, and models of tissue mechanics are limited. To

better understand the mechanics of the normal and fibrotic rat liver, we carried out a series

of studies using parallel plate rheometry, measuring the response to compressive, exten-

sional, and shear strains. We found that the shear storage and loss moduli G’ and G” and

the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction

increased markedly with both progressive fibrosis and increasing compression, that livers

shear strain softened, and that significant increases in shear modulus with compressional

stress occurred within a range consistent with increased sinusoidal pressures in liver dis-

ease. Proteoglycan content and integrin-matrix interactions were significant determinants of

liver mechanics, particularly in compression. We propose a new non-linear constitutive

model of the liver. A key feature of this model is that, while it assumes overall liver incom-

pressibility, it takes into account water flow and solid phase compressibility. In sum, we

report a detailed study of non-linear liver mechanics under physiological strains in the nor-

mal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures

compression stiffening, tension softening, and shear softening, and can be understood in

terms of the cellular and matrix components of the liver.
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Introduction

Tissues become stiffer in fibrosis and other diseases, including some forms of cancer. This

change is used clinically in caring for patients with fibrosis, including liver fibrosis: liver stiff-

ness is viewed as a correlate of fibrosis, and its measurement by transient elastography methods

is increasingly used as a diagnostic and predictive tool for fibrosis [1–3]. We have previously

shown, however, that increased stiffness precedes as well as results from fibrosis, and that lysyl

oxidase-mediated collagen cross-linking can alter liver mechanics independently of matrix

deposition [4, 5], suggesting that the relationship between fibrosis and liver mechanics is

complex.

Increased tissue stiffness has a direct impact on cell behavior. Most, if not all, cell types

respond phenotypically to changes in the mechanics of their environment. Mechanical stimuli

have proven to be as important as cytokines, growth factors, and other chemical signals in regu-

lating cell behavior [6–8], and release of active forms of the potent profibrogenic growth factor

transforming growth factor (TGF)-β is linked to matrix stiffness [9, 10]. In the liver, cholangio-

cytes and hepatocytes (the epithelial cells of the liver) are mechanosensitive [11–13], and we have

shown that hepatic stellate cells and portal fibroblasts (the myofibroblast precursors of the liver)

require a stiff matrix in order to undergo myofibroblastic differentiation [14, 15].

Studying the stiffness of the liver and other tissues has yielded important insights into mecha-

nisms of disease, but stiffness (as quantified by the elastic modulus) is just one component of tis-

sue mechanics. Static stiffness values fail to reflect the full range of tissue mechanics and provide

little insight into the contributions of individual tissue components such as cells or the pericellu-

lar and extracellular matrix to tissue mechanics. Liver and other tissues are viscoelastic and are

composites of cells and matrix polymers, each with unique physical features; their mechanical

properties are non-linear, with elastic and viscous properties changing as functions of time and

deformation. For example, we and others have shown that liver is strain softening in shear defor-

mation, with the shear modulus decreasing as the strain amplitude increases [5, 16].

Several groups have studied liver mechanics and developed constitutive models to explain

liver viscoelasticity. In some cases, this work was designed to model the liver response to high-

speed loading (as occurs in blunt trauma such as during automobile accidents); in this setting

the liver behaves in some ways similarly to biological polymers such as collagen [17]. In other

cases, models were based on shear loading at variable strains and were based on general non-

linear viscoelastic models [16, 18–20]. One group has developed a “microchannel flow”model,

based on the concept that viscous liquids flow through microchannels in tissues in response to

the application of stress, but this makes assumptions of linearity and low strain [21]. A signifi-

cant issue in developing models of tissue mechanics has been determining how to incorporate

tissue heterogeneity–the presence of cells as well as various matrix components with which

they interact [22].

Little work has been done on complex liver mechanics in non-trauma settings, such as dur-

ing the development of fibrosis, although the literature on changes in Young’s modulus in

humans with fibrosis is extensive. The extracellular matrix (ECM) of the liver changes qualita-

tively as well as quantitatively during fibrosis, with increases in fibrillar collagens, which add

rigidity, and proteoglycans, which are highly negatively charged and impede fluid flow through

the tissue [23]. The mechanical changes associated with these ECM proteins and polysaccha-

rides may contribute to and change cell behavior, especially for myofibroblasts, and have a sig-

nificant impact on the non-linear mechanics of the tissue. Application of two common

viscoelastic models to normal and fibrotic rodent liver (generated by CCl4 injection) showed

that the stage of fibrosis did not have a linear relationship to either elasticity or viscosity [24],

as we have also shown [4].
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In addition to changes in resting mechanics that occur in disease, the liver is subject to

forces that change significantly in disease, including shear (from altered sinusoidal blood flow)

and compression (due to elevated portal pressure in end-stage liver disease). The mechanical

response of the liver to these forces is not fully understood but may be relevant to the effective

stiffness sensed by cells and therefore to cell behavior. For example, changes in the degree of

stiffness sensed by cells (potentially resulting from non-linear responses of tissue to forces like

compression) may render the liver more or less susceptible to myofibroblast differentiation

and fibrosis. Increased resistance to liver venous outflow (from right-sided heart failure and

other causes of chronic passive congestion) leads to liver fibrosis and cirrhosis in humans and

experimental animals, underscoring the need to understand the role of forces and deformations

on liver mechanics [25–27].

In this study, we systematically evaluated the mechanical properties of the normal and

fibrotic rat liver by shear rheometry under a range of shear strains and degrees of axial com-

pression. Perfusion of livers with reagents designed to disrupt cell-matrix contacts, dissolve cell

membranes, or disrupt matrix proteoglycans revealed an intimate relation between cells and

matrix that produces the mechanical properties of the intact tissue. We suggest the potential

relevance of our findings to liver fibrosis and myofibroblast behavior, and propose a constitu-

tive model of the liver that accounts for the non-linear mechanics we observe, including com-

pression stiffening, tension softening, and shear softening.

Methods

Animal studies

All animal work was carried out in strict accordance with the recommendations in the Guide

for the Care and Use of Laboratory Animals of the National Institutes of Health. Animal proto-

cols were approved by the Institutional Animal Care and Use Committee of the University of

Pennsylvania (protocol numbers 804031 and 805338). Animals were housed singly or in pairs

in a temperature-controlled environment, with appropriate enrichment, for periods less than

several weeks, and with an automatic water system, ad libitum feeding of standard rat chow,

and 12 h light/dark cycles. Euthanasia was carried out by approved methods (CO2 inhalation

or sedation with pentobarbital, both followed by exsanguination), and all efforts were made to

minimize suffering.

Livers were harvested from 300–350 g Sprague-Dawley rats (Charles River Laboratories,

Malvern, PA) and stored in HBSS at 4°C for up to 5 h, then analyzed at room temperature; con-

trol experiments indicated that samples are adequately preserved under these conditions and

rheological properties are maintained, as reported by others [16]. Perfused livers were analyzed

within 1 h of perfusion. Decellularized livers were maintained overnight in PBS at 4°C with

shaking. To induce fibrosis, rats on the 2 week CCl4 protocol were injected intraperitoneally

twice weekly with a mixture of CCl4:mineral oil (1:1) at 0.2 ml CCl4/100 g body weight x3, and

then once with 0.1 ml CCl4/100 g body weight. Rats on the 6 week CCl4 protocol received

twice-weekly intraperitoneal injections of a CCl4:olive oil mix (1:1) at 0.2 ml CCl4/100 g body

weight x4 and then at 0.1 ml CCl4/100 g body weight x8. Rats were given DietGel 76A (Port-

land, ME) during the first two weeks of both protocols to maintain hydration. All tissue har-

vests were carried out 4 days after the final injection.

Liver perfusion

Rats were anesthetized with pentobarbital, the abdomens were opened, the portal vein catheter-

ized, and the inferior vena cava transected. Livers were flushed in situ with warm HBSS without

Ca2+ (GIBCO, Manassas, VA), then perfused for 1 h with 400 ml 2% α-amylase (MP
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Biomedicals, LLC, Solon, OH) in HBSS with Ca2+ and Mg2+, or for 20 min with 200 ml of

0.025% Triton X-100 in HBSS minus Ca2+and Mg2+. For treatment with the disintegrin VLO4,

which blocks integrin α5β1, livers were perfused for 30 min with 200 ml of 4.2 μg/ml VLO4 in

HBSS with Ca2+ and Mg2+. VLO4 was isolated from snake venom and generously provided by

Cezary Marcinkiewicz (Temple University, Philadelphia, PA) [28]. All treatments were fol-

lowed by perfusion with HBSS at 37°C for 5 min, then liver harvest. Pump speed was 6.6 ml/

min for α-amylase and VLO4 and 10 ml/min for Triton X-100.

Decellularization

Livers were decellularized in situ by detergent perfusion according to a modification of a pub-

lished protocol [29]. Briefly, after portal vein catheterization, blood was flushed out with PBS

and the liver was perfused with 250 ml each of 1%, 2% and 3% Triton X-100 in PBS, 150 ml of

0.1% SDS in PBS, and 250 ml PBS, all at a pump speed of 9 ml/min. After the final perfusion,

the livers were removed and washed overnight in PBS.

Rheometry

Liver samples were prepared using a 20 mm diameter punch (or an 8 mm punch for poroelas-

ticy experiments) (CL Presser, Philadelphia, PA), with all punches taken in the same orienta-

tion. The height of the slices ranged from 3.05 to 5.6 mm in the uncompressed state. Samples

were kept hydrated during all experiments with HBSS or (for decellularized livers) PBS. Parallel

plate shear rheometry was carried out on an RFS3 rheometer (TA instruments, New Castle,

DE) at room temperature using TA Orchestrator software (TA instruments) (Fig 1). Normal

Fig 1. Rheometry methods. Liver samples were cut to a diameter of 20 mm and placed on a parallel plate
rheometer with an upper platen of 25 mm. Tension and compression were generated by applying force in a
direction perpendicular to the sample. Shear forces were applied by rotating the bottom plate in a direction
parallel to the sample. Values derived from compression and tension studies were corrected to account for
the difference in size between the sample and the top platen, and for narrowing at the waist of the sample in
tension (see methods).

doi:10.1371/journal.pone.0146588.g001
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forces were simultaneously measured from the analog signal of the RFS3 and collected using

Logger Pro software (Vernier Software and Technology, Beaverton, OR).

For all measurements unless otherwise indicated, the upper platen (25 mm diameter) was

initially lowered to touch the sample and 10 g of nominal initial force (~300 Pa) was applied to

ensure adhesive contact of the sample with the plates. Unless noted, measurements were taken

in the following order: dynamic time sweep test (2% constant strain, oscillation frequency 1

radian/s, measurements taken for 120 s, every 20 s); dynamic strain sweep test (increasing

strain amplitude from 1 to 50%, measurements taken at 5% increments, oscillation frequency

10 radians/s). Tests were carried out under uncompressed conditions (defined as 10 g initial

force) and then with increasing uniaxial compression (10, 15, 20 and 25%), applied by narrow-

ing the gap between the platform and upper platen of the rheometer. The shear storage modu-

lus (G’) was plotted against time (for dynamic time sweep test) or strain (for the strain sweep

test), and the shear modulus G was plotted against time (stress relaxation test).

For tension experiments, samples were attached to rheometer platforms with fibrin glue

made by mixing equal volumes of 5 mg/ml salmon fibrinogen and 150 U/ml salmon thrombin

(Sea Run Holdings, Freeport, ME) immediately before use. 100 μl of the glue was applied to

each side of the sample, touching the lower platform and upper platen. 2 g of initial force were

applied, the sample was allowed to sit for 5 min to attach to the metal surfaces, and then the

force was brought to 10 g. Measurements were taken in the following order: uncompressed

(defined as 10 g initial force), 10% tension, and 20% tension. In control experiments, G’ of liv-

ers was measured with and without glue and was found to be unchanged, indicating that the

glue did not affect the mechanics of the system.

For tension and compression experiments, the following correction was applied to account

for the change in cross-sectional area during testing under the assumption that total tissue vol-

ume is conserved, where G’ is the storage modulus and λ is axial strain. A similar correction

was applied to the loss modulus G”.

G0
actual ¼ G

0

measuredð1þ lÞ
2

For reversibility experiments, livers were subject to strain sweeps from 1% to approximately

45% strain. The rheometer was then quickly reset (less than 10 s) and a strain sweep from

approximately 50% to 5% was carried out. The rheometer was again quickly reset and the 1%

to 45% sweep repeated, to a total of 3 cycles. This was done for 3 individual livers.

Conversion of normal force into axial stress

Normal force was collected continuously during the duration of the experimental setup (time

sweep, strain sweep, at all levels of compression) and was converted to stress by dividing nor-

mal force by the area of the sample in contact with the rheometer platens. The correction for-

mula for stress (δ) in tension and compression experiments under the assumption that volume

is conserved, was

d actual ¼ d measuredð1þ lÞ
2

To determine Young’s modulus E, stress (Pa) versus axial strain was plotted, and the slope

between two neighboring points was calculated.

Glycosaminoglycan measurement

Sulfated GAG concentrations were determined using the Blyscan reagent, according to the

manufacturer’s instructions (Biocolor, UK). Briefly, small chunks of normal, amylase-perfused,
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or decellularized liver (up to 50 mg) were placed in 1 ml of digestion buffer (0.2 M sodium

phosphate buffer, pH 6.4, 0.1 M sodium acetate, 10 mM EDTA, 0.08% cysteine (Sigma,

St. Louis, MO) and 0.02% papain (Worthington, Lakewood, NJ)) and incubated at 65°C for 18

h. The solution was centrifuged at 10,000 x g for 10 min. 30 μl of supernatant and 70 μl of

water were combined with 1 ml of the Blyscan dye reagent, incubated for 30 min at room tem-

perature with shaking, and centrifuged at 12,000 x g for 10 min. The resulting pellets were

dried and dissolved in 0.5 ml of the dissociation reagent provided. Absorbance was read at 656

nm and concentration determined by comparison to a calibration curve. The average percent-

age change in liver weight after decellularization was determined for 3 livers per condition and

GAG content expressed as a function of starting weight.

Tissue staining

Samples of all livers were formalin fixed and paraffin embedded, then stained with hematoxylin

and eosin or, in some cases, Sirius red and reticulin stains. Laminin and fibronectin immuno-

fluorescence staining was carried out using rabbit polyclonal anti-laminin antibodies (1:100,

Abcam, Cambridge, UK) and goat polyclonal anti-fibronectin antibodies (1:100, Santa Cruz

Biotechnology, Dallas, TX). Secondary antibodies were from Jackson Immunoresearch Labora-

tories (West Grove, PA).

Statistics

In all cases unless stated, data represent the mean ± SD of measurements generated from at

least 3 livers. Two-way ANOVA was used to analyze G’ and E data, and unpaired two-tailed t-

test for sulfated GAG content.

Results

In order to understand the mechanics of the normal and fibrotic liver, we carried out a series of

studies using a parallel plate rheometer able to simultaneously measure torque and normal

force. We applied both compressive and shear strains (Fig 1), aiming for stresses within a

physiologically realistic range for a non-traumatic setting, including fibrosis with elevated por-

tal pressures [30] or where there is a tumor or cyst compressing the liver parenchyma

(although pressures have not been measured in this setting). Using a rat model, we evaluated

normal livers, livers from animals treated with CCl4 for two weeks (typical of early fibrosis),

and livers from animals treated with CCl4 for six weeks (typical of established fibrosis, with

bridging and early cirrhosis) (S1 Fig).

G', G'', and axial stress increase with compression and with progressive
fibrosis

We first carried out a time course study, demonstrating increases in the shear storage modulus

G', the shear loss modulus G'', and axial stress as fibrosis progresses, as we have reported previ-

ously (Fig 2) [5]. Although liver is viscoelastic, G'' is significantly lower than G' (approximately

20%) and contributes little to the complex shear modulus. Notably, liver demonstrates non-lin-

ear mechanics, such that G', G'', and E all increase significantly with axial compression (Figs 2

and 3). G’ and E decrease (albeit slightly) with tension (Fig 3C). The increase in G' associated

with established fibrosis (6 weeks CCl4) is particularly pronounced with compression (Fig 2A).

Normal and fibrotic livers are exposed to a variety of strains, although these have not been

studied systematically. Plotting G' as a function of compression shows that compression stiff-

ening is most pronounced at axial strains greater than 15%, and that the greatest divergence
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between normal, early fibrosis, and established fibrosis also occurs at axial strains greater than

15% (Fig 3A). E shows similar strain dependence (Fig 3B), although it is significantly higher

than G' (up to 10 times greater), highlighting that the relation between shear and Young's mod-

ulus for liver is not simple as for isotropic continuous elastic materials for which E = 2G(1+ ν),

where ν is the Poisson ratio. Interestingly, although both G' and E increase in compression,

both change little with increasing tension (Fig 3C). This behavior of liver is in stark contrast to

that of collagen gels, which demonstrate increasing G’ in tension and slightly decreasing G’ in

compression [31]. Additionally, unlike livers which demonstrate variable E with compression

and tension, collagen gels exhibit two distinct E values for compression and tension that are

independent of strain: for a 2.5 mg/ml collagen gel, E in tension (~7000 Pa) is approximately

200-fold greater than E in compression (30 Pa) [31].

We previously reported that normal liver undergoes significant softening with the applica-

tion of shear strain [5]. We observe shear strain softening even for livers with established fibro-

sis, although the initial G' at minimal strain is significantly higher for fibrotic livers (Fig 4A–

4C). Strain softening persists even in livers under compression, although G' values at all levels

of strain are higher under compression, and strain-softening curves are less steep under com-

pression for all livers. Control experiments in which livers were subjected to repeated rounds of

increasing and decreasing shear strain indicate that, while there is a slight degree of tissue stiff-

ening after the first round, there is no significant tissue damage with these manipulations, and

the mechanical properties of the liver were not sensitive to the history of previous tests (Figs

4D and S3).

Fig 2. G', G'', and axial stress increase with fibrosis and with compression. (A-C) Normal and fibrotic
livers (2 and 6 weeks of CCl4 treatment) were subject to varying degrees of axial strain (compression, from
0–25%) as indicated. G' (A), G'' (B) and axial stress (C) were measured over 120 s after each incremental
increase in compression. Curves shown are from single livers and are representative of results generated
from 3–5 independent livers. (Mean curves +/- SD, representing results from all livers tested, are shown in S2
Fig).

doi:10.1371/journal.pone.0146588.g002

Fig 3. The relationship between G' and E in compression. (A) Normal and fibrotic (2 and 6 weeks of CCl4)
livers underwent shear rheometry with measurement of G’ under varying degrees of compression. G’ shown
here was taken at 120 s from the start of compression, approximating equilibrium values after viscous effects
have largely dissipated. (B) E was determined by calculating the slope from the stress-strain curve, where
stress (calculated from the normal force) was taken at 120 s from the start of compression. The slope was
determined in between two neighboring points – 0 and 10, 10 and 15, 15 and 20, 20 and 25 for compression.
(C) G' and E for normal livers were calculated as described above in both tension and compression and
normalized with respect to initial G’ and E values at no compression. For all cases, 3–5 livers were analyzed
for each condition and curves represent the mean +/- SD. By two-way ANOVA, G’ for both 2 and 6 week CCl4
livers are significantly higher than for normal livers (p� 0.002) pink *; E for 6 week CCl4 livers is significantly
higher than for normal and 2 weeks CCl4 livers (p� 0.02) blue *.

doi:10.1371/journal.pone.0146588.g003
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G' increases linearly with compressional stress in normal and fibrotic
liver

We then examined the relationships among G', compressional stress, and compressional strain.

We observe a nearly linear relationship between G' and compressional stress in normal and

fibrotic livers, with similar slopes (Fig 5A); this is particularly interesting because it suggests

that uniaxial compression dictates the value of G’. The relationship between compressional

strain and compressional stress, however, is nearly linear at low stress (<25 mm Hg) but is

non-linear at larger stresses, consistent with the compression-dependent stiffening of the tis-

sues (Fig 5B). The curves for normal and early fibrotic (2 weeks CCl4 treatment) liver are simi-

lar to each other, but are significantly different from the curve for late fibrotic (6 weeks CCl4
treatment) liver. While Fig 5A suggests that equivalent stress at the different compressions

yields an equivalent change in G', Fig 5B shows that increased stress is required for deformation

Fig 4. Normal and fibrotic livers demonstrate strain softening and compression stiffening. (A-C) G'
was measured for normal and fibrotic (after 2 and 6 weeks of CCl4) livers by shear rheometry under
increasing strain and under variable degrees of compression ranging from 0–25%. Note that the y-axes
scales are the same and that G' values increase significantly as fibrosis progresses. Curves are mean +/- SD
for 3–5 livers tested for each condition. (D) Normal liver subjected to three rounds of shear rheometry, each
round with increasing, then decreasing strain. Livers demonstrated no evidence of significant tissue damage
due to measurements. Representative liver of 3 tested is shown. (See S3 Fig for mean curves +/- SD for all
three livers tested.)

doi:10.1371/journal.pone.0146588.g004

Fig 5. G’ increases linearly with compressional stress, while stress increases nonlinearly with
compressional strain for normal and fibrotic liver. Normal and fibrotic (2 and 6 weeks of CCl4) livers were
subjected to shear rheometry under various degrees of compression. Compressional stress was calculated
in mm Hg and plotted against G' or compressional strain (% compression). (A) G' vs. compressional stress,
showing a nearly linear relationship between the two conditions in both normal and fibrotic livers. Lines were
fit to each curve (in red) and are shown in the graph. (B) Compressional stress vs. compressional strain,
shown for normal and fibrotic livers. G’ and compressional stress values are after 120 s of relaxation. Curves
reflect mean +/- SD for 3–5 livers per condition.

doi:10.1371/journal.pone.0146588.g005
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in established fibrosis–the same range of stresses results in more strain in early compared to

established fibrosis.

Expression of compressional stress in mm Hg suggests that the forces we applied are in the

physiologically relevant range (Fig 5B). Excluding consideration of acute changes during

trauma, normal and fibrotic livers are subject to significant stresses and strains on a chronic

basis. Sinusoidal pressure in a normal liver is less than 10 mm Hg, but may be greater than 20

mmHg in a cirrhotic liver [30] and the pressure gradient at tissue boundaries will lead to sig-

nificant strains.

Poroelasticity contributes little to liver mechanics

In order to determine whether poroelasticity plays a major role in liver mechanics on the time

scales used for our rheometry measurements, we measured stress and G(t) for normal livers

cut to two different diameters and subjected to either 25% compression or 25% shear strain,

respectively (Fig 6). In both compression and shear, stress relaxation behavior was effectively

independent of sample geometry, suggesting that while poroelasticity of liver is not zero, it con-

tributes little to liver mechanics. (Note that differences in the slope of the curves at time points

under 5 s are likely artifacts due to differences in time between manual compression of the

samples and initiation of measurements, rather than real differences between the samples.)

Liver mechanics are influenced by proteoglycans and integrin-matrix
interactions

To develop a component-based model of the liver, we perfused normal livers with several

reagents designed to disrupt different aspects of liver structure (Fig 7). These included a) α-

amylase, which hydrolyzes the internal α-1,4-glucan links in polysaccharides containing 3 or

more α-1,4-linked D-glucose units, b) the disintegrin VLO4, which inhibits binding between

fibronectin and the integrin α5β1 [28], and c) varying amounts of detergent to permeabilize or

completely decellularize the liver. Control experiments demonstrated that α-amylase and

VLO4 perfusion resulted in increased spaces between hepatocytes, although the livers other-

wise looked normal (Figures A, C, and E in S1 File). α-amylase treatment resulted in a small

but significant decrease in heparan sulfate glycosaminoglycans (Figure F in S1 File). Perfusion

with a low concentration of detergent (0.025% Triton X-100) resulted in a slight loss of hepato-

cytes around the portal regions, but the majority of the liver remained intact (Figure D in S1

Fig 6. Poroelasticity plays little role in normal liver mechanics. 8 and 20 mm diameter samples were
taken from normal liver and subjected to (A) 25% compression or (B) 25% shear strain. Normal force and G'
were measured for 1200 s. Stress was subsequently calculated from normal force. There is no statistically
significant difference between the curves for the 8 and 20 mm samples for either condition (for the means of 3
samples each) at time points beyond 5 s (which takes into account differences between the initiation of
manual compression and the initiation of measurements), suggesting that tissue poroelasticity contributes
little to liver mechanics. Curves shown are from a single liver, representative of 3; curves for the remaining 2
livers are shown in S4 Fig.

doi:10.1371/journal.pone.0146588.g006
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File); in contrast, increasing the detergent concentration to 0.1% resulted in extensive cell loss

(data not shown). We thus used 0.025% Triton X-100 for permeabilizing liver cells without cell

removal. Decellularized livers retained their initial volume, appeared completely white, and

demonstrated a complete absence of cells, with preservation of most matrix components except

for a significant loss of sulfated GAG residues (S6 Fig), as has been reported by others using

similar detergent-based protocols [29, 32–34].

Livers treated in these different ways demonstrated different mechanical properties. With

the exception of complete decellularization, all treatments resulted in livers with similar G' val-

ues in the uncompressed state at minimal strain (Fig 7A, 7B and 7D). For permeabilization, the

data suggest that membrane integrity has a slight effect on overall G', but does not impact com-

pression stiffening; however, measurements related to membrane behavior are probably most

accurate at low strains.

Compression stiffening was markedly decreased by perfusion with α-amylase, suggesting

that glycosaminoglycans are in part responsible for changes in mechanics with compression

(Fig 7A and 7D). Although the total glycosaminoglycan content decreases only slightly

(although significantly) by this method, we suspect they are modified after treatment with α-

amylase; regardless, it has a marked effect on compression stiffening (Figure F in S1 File). Per-

fusion with the disintegrin VLO4 also led to marked decreases in compression stiffening, sug-

gesting that links between cells and the fibronectin-rich ECM of the liver also contributed to

stiffening with compression (Fig 7A and 7D).

Fig 7. The impact of tissue manipulations on liver mechanics. Normal livers were subject to the
manipulations indicated, and then G' was measured under various strains. (A) G' as a function of
compression for treated livers. (B) Strain sweeps of normal liver, disintegrin-treated, amylase-treated, and
permeabilized livers at 0% compression. Key as in (A). (C) Strain sweeps of decellularized normal and fibrotic
(2 weeks CCl4) livers at 0% compression, compared to a curve for normal liver (the same as shown in (B)).
Note the different shape of the curves for decellularized compared to normal liver. (D) G' measured under 2%
oscillatory shear for livers at either 0% or 25% compression. G’ values are after 120 s of relaxation. By two-
way ANOVA for the data plotted in (A), G’ for amylase treated livers was significantly reduced from normal
and permeabilized livers (brown *, p�0.02). Disintegrin treatment significantly reduced G’ of normal liver
(green *, p = 0) and G’ of decellularized livers was significantly reduced from normal and all other
manipulated livers (green *, p = 0). Two-way ANOVA of the data in (D) showed that G’ compared between
0% and 25% compression was significantly different only for normal livers (blue ***, p�0.001) and
permeabilized livers (green ***, p = 0). G’ values at 25% compression were significantly different between
normal livers and α-Amylase (*, p�0.05), VLO4-treated (brown **, p = 0.059), and decellularized livers
(brown ***, p = 0). For all graphs, data represent the mean of 3 independent livers +/- SD per condition.

doi:10.1371/journal.pone.0146588.g007
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Decellularization causes marked changes in mechanics

Given the changes observed with cell permeabilization (Fig 7A, 7B and 7D), we determined the

effect of complete decellularization on the mechanical properties of the liver. Livers were decel-

lularized by a series of detergent perfusions. Decellularization (which also results in loss of

more than 65% of sulfated GAGs; Figure D in S1 File), resulted in an almost complete loss of

compression stiffening (Fig 7A and 7D) and in a reduction in baseline G' to approximately

10% that of normal liver. For fibrotic liver (2 weeks CCl4), G’ after decellularization similarly

decreased to about 10% of baseline. The magnitude of changes after liver decellularization is

consistent with that reported for liver by others [35, 36], although it is much greater than for

tissues such as lung that are less cellular [37]. In addition to the loss of compression stiffening,

decellularization resulted in a marked change in strain softening; at high strains, the decellular-

ized fibrotic and normal livers had the same G' (Fig 7C). This is in contrast to non-decellular-

ized livers, α-amylase-treated livers, and fibrotic livers for which the shape of the strain-

softening curves are similar (Figs 7B and 4A–4C). Although we cannot rule out a contribution

from GAGs, these data strongly suggest that strain softening is a function of the cellular com-

ponent of the liver.

A non-linear constitutive model for the liver

Our data show that both normal and fibrotic liver, unlike gels formed by biopolymers like col-

lagen, demonstrate stiffening in compression and softening in tension and shear. We present a

minimal material model to simultaneously capture these behaviors. Derivation of this model is

described in S1 File (see Figures A and B in S1 File). A key feature of this model is that, while

we assume that the liver is incompressible overall, it contains a high volume of water that can

locally flow in and out under mechanical load, and the solid phase can be locally compressible

(as is the case for other biological tissues). The material model is characterized by two fitting

parameters C1 and C2 that can be determined from sheer sweep and compression/tension

experiments (Figures C and D in S1 File). To validate the model, predicted values for a) G’

measured at 2% shear strain as a function of axial strain and b) G’ as function of shear strain at

different levels of compressive strains are compared to the experimental data (Figures E and F

in S1 File). The model predictions are in good agreement with the experimental results, sug-

gesting that the model captures the major elastic response of liver. To the best of our knowl-

edge, this is the first model that captures both compression stiffening/tension softening and

shear softening with only two material parameters. A schematic demonstrating the behavior of

cells and ECM under compression and shear is shown in Fig 8.

Discussion

We report here the results of a detailed study of the mechanical properties of normal and

fibrotic rat liver as assessed by shear rheometry, with or without uniaxial compression. Unlike

tissues and organs such as tendon, heart, and lung, liver has a relatively high cell volume-to-

matrix ratio and is relatively soft, making it, like brain and adipose tissue, an interesting system

for studying tissue mechanics. Our data corroborate previous findings that liver, like other tis-

sues, demonstrates non-linear mechanics and is viscoelastic [16, 19], although viscosity con-

tributes little to the complex modulus. Although there may be some (non-significant)

differences in the stress-time curves of different sized samples, we find that the contribution of

global poroelasticity to liver mechanics is minimal. The development and progression of fibro-

sis are associated with increases in G', G'', and E, suggesting that there are changes in the quality

of the liver matrix or in tissue reorganization after 6 weeks of fibrosis induction, and that the

late fibrotic liver is better able to resist compressive stresses than the early fibrotic or normal

Normal and Fibrotic Rat Liver Mechanics
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liver. Remarkably, we find that both G' and E increase several fold with compression (although

they change little with tension), and that G’ and E are not related linearly. These properties

cannot be explained by standard models of polymer mechanics and are in contrast to the prop-

erties of biopolymers like collagen and fibrin, suggesting that liver mechanics in neither the

normal nor the fibrotic liver are a function of matrix content alone. By carrying out a series of

manipulations on the liver, we identify the glycosaminoglycan content of the matrix and cell-

matrix interactions as key contributors to mechanics, and we propose a novel material model

to explain these findings.

We previously demonstrated that liver G' and G'' increase with fibrosis in rat livers [4, 5].

Extensive clinical studies using shear elastography methods to measure E have reached similar

conclusions in patients with a variety of fibrotic liver diseases [1, 3, 38]. Interestingly, although

increasing stiffness is often assumed to reflect increasing ECM in fibrosis, in neither humans

nor animal models does liver ECM content correlate linearly with stiffness [3, 4, 39, 40]. Our

previous work suggests that increased collagen cross-linking from lysyl oxidase (LOX) family-

mediated collagen cross-linking is responsible at least in part for early increases in G' (before

the 2 week time point in the CCl4 model) in the setting of minimal increases in ECM content

[4, 5]. In the current study, we find that stiffness as measured by both G’ and E increases with

fibrosis progression, and rises more sharply over the range of physiologically-relevant pressures

found in liver disease [30], which is indicative of tissue or matrix reorganization. This may

have important implications for cell behavior [14, 15]. Stiffening of the tissue may indicate a

protective response to the increased stresses associated with advanced fibrosis. We have not

investigated collagen cross-linking at points beyond 2 weeks of CCl4 intoxication. Cross-link-

ing occurs relatively slowly (over days to weeks) and others have reported increases in the LOX

family member LOXL2 in more advanced fibrosis [41]. It is thus likely that changes in the

stress-strain behavior in the 6 week CCl4 livers reflect matrix reorganization.

The liver, like brain [42], undergoes marked stiffening in compression [16]. This occurs for

normal as well as fibrotic liver, and at stresses which, when converted to mm Hg, are

Fig 8. Schematic of the model. A) Schematic for liver tissue, consisting of cells and ECM. B) When under
compression, cells maintain the same volume but begin to contact each other and generate strong
resistance, resulting in compression stiffening. C) We propose that there are two kinds of cell-ECM
connections: strong connections that sustain large loads and re-formable connections that break under large
loads and re-form when there is no external load. When under shear, the re-formable connections break,
which results in shear softening.

doi:10.1371/journal.pone.0146588.g008
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physiologically relevant, consistent with those seen in advanced liver disease. These findings

raise the possibility that, in the perfused liver, increases in stress (from increased sinusoidal

pressure) result in a liver that is effectively stiffer, and may be sensed as such by cells such as

hepatic stellate cells and portal fibroblasts, which undergo stiffness-dependent differentiation

into fibrogenic myofibroblasts [14, 15]. This may explain the increased stiffness observed with

in vivo compared to ex vivomeasurements. Our measurements were all carried out ex vivo, but

it would be interesting to carry out shear rheometry with compression in perfused livers. Both

normal and fibrotic livers demonstrate shear strain softening as well as compression stiffening,

and we observe a slight decrease in G' (and E) with tension, as has also been observed for brain

[42]. Given that livers are not fixed in place but may be subject to a variety of multiaxial exter-

nal and internal strains or forces, stiffness in the liver in vivomay be quite variable.

Perfusion with α-amylase, which removes a small fraction of glycosaminoglycans causes a

decrease in the degree of compression stiffening, suggesting that glycosaminoglycans are at

least partly responsible. Glycosaminoglycans carry densely packed negative charges and as a

result there may be significant osmotic shifts associated with compression, leading to stiffening.

Decellularized livers, which demonstrate marked loss of glycosaminoglycans, show an almost

complete loss of compression stiffening, which is consistent with a role for glycosaminoglycans,

although there are multiple additional changes in these livers, including loss of cell-matrix

adhesions, which could also affect their mechanical properties. Perfusion with VLO4, which

decreases cell-matrix adhesions, also causes a decrease in compression stiffening. Consistent

with this observation, there are published data suggesting that glycosaminoglycans and cell-

ECM adhesions are linked [43].

The mechanical behavior of the liver (as well as brain [42] and adipose tissue bears some

similarity to networks of biopolymers such as collagen. Like these networks, E and G do not

follow the relationship E = 3G (Fig 3) typical of linearly elastic materials. Comparing the shear

modulus with uniaxial compression of gels formed by biopolymers such as collagen and fibrin

with that of tissues, however, shows a striking divergence between the mechanical behavior of

the liver and of biopolymers. Reconstituted fibrin and collagen networks compression soften,

and strain stiffen, the opposite of liver tissue [31]; this makes it clear that soft tissue mechanics

cannot simply be modeled on or explained by collagen gels. Even if increased collagen cross-

linking or collagen expression leads to increased liver stiffness in vivo, the magnitude and

strain-dependence of the stiffening effect need not arise directly from the increased collagen

network stiffness but might instead involve the cellular response to the change in matrix stiff-

ness. Our findings showing that fibrotic rat livers even after 6 weeks of CCl4 treatment (when

they typically demonstrate early cirrhosis) demonstrate compression stiffening and strain soft-

ening highlight that the mechanical changes in fibrosis cannot simply be modeled as increased

collagen content.

Rather than modeling the liver as a complex system of polymers with only elastic and vis-

cous constants, our experimental results suggest that the mechanical behavior of the liver

largely arises from a tight coupling of cells to the matrix, as demonstrated by interruption of

cell-matrix polymer interactions through decellularization or disintegrin treatment. Decellular-

ization, which completely removes all cells, leads to a dramatic reduction in G' and effective

loss of both compression stiffening and shear strain softening, but does not restore strain-stiff-

ening to the remaining material as would be expected for a network of collagen (Fig 7A, 7C

and 7D). Cell permeabilization, which should not affect the cytoskeleton or cell-matrix interac-

tions, has minimal effect on compression stiffening or shear strain softening, particularly at

high compression or shear, while perfusion with the disintegrin VLO4, which disrupts the link-

age between integrin α5β1 and fibronectin, causes a decrease in compression stiffening. This is

consistent with the model that cells and their linkages to the matrix are important participants

Normal and Fibrotic Rat Liver Mechanics
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in tissue mechanics. The liver is approximately 85% cellular by volume [44]. Although we have

not investigated tissues like heart or kidney, we would predict, given their increased matrix-to-

cell volume ratio compared to liver, that they would demonstrate less extreme shear strain soft-

ening and compression stiffening (as well as decreased changes after decellularization),

although the trends would remain the same. It will be important to study livers with end-stage

cirrhosis, where the matrix-to-cell volume ratio is markedly different than in the early cirrhotic

(6 weeks of CCl4) livers we investigated.

In developing a new constitutive model to capture the non-linear properties of the liver as a

representative tissue, we considered that the ECM is a network of collagen and other ECM pro-

teins, which can considered to be fibrous material permitting fluid to flow freely in and out.

When the tissue is under compression, fluid in the ECM flows out and cells begin to contact

each other. Since fluid, especially water, is not easy to transport across cell membranes, contact

between cells generates significant resistance and therefore results in compression stiffening.

The connections between cells and the ECM in tissue can be divided into two groups: strong

connections that can sustain large loads without breaking and re-formable connections that

are easy to break when the load increases beyond a threshold level (integrin affinity can be reg-

ulated by allosteric interactions or force). Broken re-formable connections can re-form when

the load is dismissed. When the tissue is under shear, the re-formable connections begin to

break and therefore lead to shear softening. When the load is dismissed, the strong connections

ensure that the tissue resumes its original state and the re-formable connections begin to re-

form. Clearly, since cells play an essential role in both mechanisms, compression stiffening and

shear softening are not expected when cells are removed from the tissue. This is consistent with

the experimental observation that decellularized liver displays almost no compression stiffen-

ing or shear softening when compared with normal liver, and also highlights the key role of

cell-matrix interactions in determining liver mechanics.

We believe that our findings with rat livers are relevant to human livers. Administration of

CCl4 is a common method for inducing fibrosis in rodent models. It is a reproducible and reca-

pitulates the pathology and stages of human fibrosis–inflammation, regeneration, matrix depo-

sition, and regression–although it is highly toxic [45]. With respect to material properties,

human liver may be slightly stiffer than rat, and mouse liver slightly softer, as determined by

preliminary rheological measurements in our laboratory. Both human and mouse livers also

exhibit the compression stiffening and strain softening reported here for rat livers. Clinically,

human liver stiffness as measured by ultrasound elastography [46, 47] is higher than the

uncompressed stiffness values for rat liver we report, but is similar when livers are under physi-

ologically-relevant compression levels. Rat livers and the CCl4 rat fibrosis model thus appear to

be suitable models for human livers with respect to pathology and mechanics, although further

investigation is needed and is of ongoing interest in our laboratory.

In sum, we report a detailed experimental and theoretical study of liver mechanics. We pro-

pose that both cells and the matrix are significant contributors to the mechanical properties of

the tissue, and that cell-cell and cell-matrix contacts largely drive these properties. These

mechanical properties have significant implications for the behavior of cells within the tissue,

suggesting that the effective stiffness sensed by cells may be highly variable, and may regulate

progression of fibrotic disease.

Supporting Information

S1 Fig. Histology of rat livers. For all experiments, rat livers were used after (A) no treatment

(normal), (B) 2 weeks of CCl4 intoxication (early fibrosis), or (C) 6 weeks of CCl4 intoxication

(established fibrosis). Samples are representative of 3–5 livers per condition, and were stained

Normal and Fibrotic Rat Liver Mechanics

PLOS ONE | DOI:10.1371/journal.pone.0146588 January 6, 2016 14 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0146588.s001


with Sirius red, which detects collagen. Magnification 100X.

(JPG)

S2 Fig. G', G'', and axial stress increase with fibrosis and with compression. (A-C) Normal

and fibrotic livers (2 and 6 weeks of CCl4 treatment) were subject to varying degrees of axial

strain (compression, from 0–25%) as indicated, and G' (A), G'' (B), and axial stress (C) were

measured for 120 seconds for each incremental increase in compression. Curves shown repre-

sent means of data from 3–5 independent livers. Representative curves from single livers are

shown in Fig 2, for clarity. Curves in all panels are mean +/- SD.

(TIF)

S3 Fig. Normal liver subjected to three rounds of shear rheometry, each round with increas-

ing, then decreasing strain. There was no evidence of significant tissue damage due of signifi-

cant tissue damage due to measurements. Means ± SD of 3 tested livers are shown. A set of

curves from a single representative liver is shown in Fig 4D for clarity.

(TIF)

S4 Fig. Response of normal liver to 25% compression and shear strain. Panels (A) and (B)

show the remaining two individual livers from the experiment described in Fig 6. 20–1 repre-

sents the first liver, cut with a 20 mm punch, while 8–1 represents the same liver cut with an 8

mm punch; 20–2 is a second liver cut with a 20 mm punch, and 8–2 the same liver cut with an

8 mm punch. The data in Fig 6 are from a third liver.

(TIF)

S5 Fig. Hematoxylin and eosin stains of fixed livers. (A-E) H&E-stained fixed livers: (A) nor-

mal, (B) fibrotic (2 weeks CCl4), (C) perfused with 2% α-amylase, (D) permeabilized with

0.025% Triton X-100, and (E) perfused with the disintegrin VLO4. F. Blyscan assay results

showing mean +/- SD of the relative heparan sulfate proteoglycan content of normal vs. α-

amylase-perfused livers. Note that spaces between hepatocytes appear larger in α-amylase- (C)

and disintegrin-perfused (E) livers. There is mild loss of periportal cells in 0.025% Triton X-

100 perfused livers, but the architecture is maintained overall. Magnification is 200X for all pic-

tures, and all are representative of a minimum of 3 livers examined. (F) Represents analysis of

three livers per condition, mean normalized to 100% for the unperfused, +/- SD, p<0.05.

(TIF)

S6 Fig. Characterization of decellularized livers. Livers were perfused in situ with increasing

concentrations of Triton X-100 followed by 0.1% SDS (all in PBS), and were then washed with

PBS. (A) Hematoxylin and eosin staining of normal decellularized liver. (B) Hematoxylin and

eosin staining of liver treated for 2 weeks with CCl4 then decellularized. (C) Appearance of a

decellularized normal liver. The size of the liver was maintained after perfusion. (D) Sulfated

glycosaminoglycan (sGAG) content. Liver samples were analyzed with the Blyscan reagent.

Livers decellularized by detergent perfusion retain on average 34% of initial GAGs. Mean +/-

SD (normalized to 100% for control livers) of data from 3 individual livers. ���, p<0.0001 by t-

test. (E-L) Paraffin sections of intact (E-H) and decellularized (I-L) normal livers stained with

Sirius red (detects overall collagen; (E,I) and reticulin stains (collagen type III and proteogly-

cans; F, J) and with antibodies against laminin (G, K) and fibronectin (H, L). Collagen fibrils

appear yellow when stained with sirius red and visualized with polarized light (E, I), and black

when reticulin stained (F, J); for (G, H, K, L), specific stain is red, DAPI blue. Note the absence

of specific staining for nuclei in the decellularized livers. (E, I) 40X; all others, 200X.

(TIF)
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S1 File. A non-linear constitutive model for the liver. (A) Sample dimension parameters. (B)

Predicted stress vs. strain λ (left) and modulus vs. strain λ (right), both normalized to C1. (C)

Relation between G’ and shear strain γ. G’ decreases with application of shear strain. (D) Rela-

tion between E and axial strain λ. E increases with application of compressive strains and

decreases with tension. (E) The model predictions for the relationship between G’ and axial

strain λ. G’ increases with increasing compression and decreases with increasing tension,

which is comparable to experimental data. (F) The model predictions compared with experi-

mental data for the relationship between G’ and shear strain γ at different levels of compressive

strains. G’ decreases with increasing shear at all levels of compression.

(DOCX)
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