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ABSTRACT Controller Area Network (CAN) is a de facto standard of in-vehicle networks. Since CAN

employs broadcast communication and a slower network than other general networks (e.g. Ethernet,

IEEE802.11), it is inherently vulnerable to Denial-of-Service (DoS) attacks. As a countermeasure against

DoS attacks on CAN, a method for detecting a DoS attack using the entropy in a sliding window has been

proposed. This method has a good advantage in terms of effectiveness and the small computational overhead.

However, this method may only be effective against DoS attacks under naive conditions such as some

higher priority messages. In addition, if an adversary can adjust the entropy of the DoS attack to its normal

value, the conventional method cannot detect a DoS attack in which the adversary manipulates the entropy.

We found this type of DoS attack, which is called an entropy-manipulated attack. In this paper, we propose

a method that can detect an entropy-manipulated attack by using the similarity of two sliding windows.

We confirmed that the proposed method detected the DoS attack in 100% of the cases in our experiment,

and we showed that the detection time is up to 93% (14 µs) shorter than the conventional method.

INDEX TERMS Automotive security, controller area network, DoS attack, intrusion detection system,

simulated annealing.

I. INTRODUCTION

The security risk of cyberattacks on modern vehicles has

become a concern due to the spread of vehicles connected

to the internet [1], [2]. These attacks abuse the security hole

of In-Vehicle Infotainment (IVI) and vulnerability of Con-

troller Area Network (CAN) [3] which is a de facto standard

form of in-vehicle networks. Miller and Valasek success-

fully controlled a variety of automotive functions through

IVI, and they exploited the vulnerabilities of CAN. As a

result, 1.4 million automobiles were recalled because of this

vulnerability. Therefore, cybersecurity countermeasures for

automobiles are urgently required. In addition, software in

the automotive industry has become open source software

(e.g. Automotive Grade Linux Distribution: AGL [4]) for

enhancing the reusability of source codes. If the software has

The associate editor coordinating the review of this manuscript and

approving it for publication was Luis Javier Garcia Villalba .

vulnerabilities, there is a danger of malware infection which

exploits the vulnerabilities related to cybersecurity [5]. Thus,

the intrusion detection capabilities of the in-vehicle networks

should be improved to avoid serious damage from hacking.

Countermeasures such as encryption and authentication

have been proposed to prevent spoofing, sniffing, and replay

attacks in next-generation in-vehicle networks (e.g. CAN

with FlexibleData rate: CANFD, In-Vehicle Ethernet). These

proposals could disable traditional hacking, in which an

adversary sends a spoofed message to a specific Electronic

Control Unit (ECU). However, even in CAN bus applied to

encryption and authentication, these proposals cannot disable

a Denial-of-Service (DoS) attack that sends many messages

to the in-vehicle network, because DoS attacks can delay the

encrypted normal messages. To disable DoS attacks, a secu-

rity solution different from encryption and authentication is

necessary. In order to prevent a DoS attack of one type in

which an adversary sends messages to flood the buffer of
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receiving ECU, Intrusion Prevention System (IPS) defenses

have been proposed [6]–[8]. However, these methods do not

affect other DoS attacks, in which an adversary sends many

messages of the highest CAN ID priority. Therefore, it is

necessary to have an IPS that can prevent all DoS attacks.

To prevent all DoS attacks, firstly, we must consider a method

to detect all DoS attacks.

Time-intervals Intrusion Detection System (IDS) [9] has

been proposed to detect spoofing attacks and DoS attacks on

CAN. This IDS detects DoS attacks with the cutoff of the

time interval to 0.2 milliseconds for detecting DoS messages.

However, in the case of over 0.2 milliseconds of the time

interval of the DoS attack’s messages, the IDS cannot detect

DoS attacks. In addition, in different baud rates such as

CAN and CAN FD, the IDS cannot be adapted to the CAN

buses because the time intervals of DoS attacks are different.

Furthermore, some methods [9]–[11] may only be effective

against the DoS attacks under naive environments, such as

some higher priority messages [12].

A machine learning approach for IDS has been proposed.

The approach can widely detect attacks such as spoofing,

replaying, and DoS attacks with high accuracy. The approach

(especially deep learning) is too expensive to implement the

training function in the vehicle, although the cost of inferring

is reasonable. Also, a secure Over-the-Air (OTA) update [13]

has been proposed in modern automotive. Therefore, the cost

of training the additional communication of the OTA update

should be reasonable.

Also, an entropy-based IDS [11] using the entropy of a

fixed number of messages, called a sliding window, has been

proposed against the DoS attacks and the replay attacks.

This method has a good advantage in terms of effective-

ness and the small computational overhead [14]. However,

the entropy might be manipulated by adversaries to avoid the

IDS. To solve this problem, we propose a method that can

detect DoS attacks of all types using the Simpson coefficient

as the similarity of two sliding windows. One of the two

sliding windows is composed of CAN IDs (Window IDs:

WIDs) which are actually received, and the other is composed

of normal CAN IDs (Criterion IDs: CIDs) which serves as a

criterion to calculate the similarity. Also,CIDs is generated as

an optimized parameter using the Simulated Annealing (SA)

algorithm in the proposed method.

The main contributions of this study can be summarized as

follows.

1) We found a DoS attack called the entropy-manipulated

attack, which bypasses the conventional method

(entropy-based IDS [11]) by adjusting the entropy of

messages. These consist of messages of random CAN

ID.

2) The proposed method (similarity-based IDS) achieved

a detection precision of 100.0% against the above type

of DoS attacks, while the detection precision is 68.3%

in the entropy-based IDS.

3) We showed that the detection time is up to 93% (14µs)

shorter than the entropy-based IDS.

FIGURE 1. CAN and CAN FD message format.

The rest of the paper is organized as follows. In Section II,

we explain the background and attack model. In Section III,

we propose a DoS attack detection method based on the

similarity of sliding windows. In section IV, we evaluate

the similarity-based IDS. In Section V, we discuss the result

of evaluation from Section IV. Finally, we elaborate on our

conclusions.

II. PRELIMINARIES

A. CAN VULNERABILITY

1) CAN

CAN [3] is a de facto standard form of in-vehicle networks.

With the increase of ECUs in cars, the wiring of automo-

biles has become complicated. In order to solve this wiring

harness problem, a CAN was designed with noise resistance

and capable of event-oriented mutual communication. For

enhancing CAN capacity, CAN FDwas released in 2012 [15]

as an extended CAN in response to the demand for a capa-

bility in automobiles to send more data. Figure 1 shows the

standard CAN and CAN FD message frame. The green area

in Figure 1(a) and (b) are data that can be observed in the

application layer programs (e.g. can-utils [16]). In Figure 1,

the 11-bit identifier is called CAN ID, which is used for pri-

oritizing CANmessages. The 4-bit Data Length Code (DLC)

contains the number of bytes of data being transmitted. The

DLC has a length of 4 bits, and this can have an integer value

between 0 and 15. In the case of a CAN FD, a 4-bit DLC

is taken from a corresponding table. For example, if DLC is

15 (0 × 1111), the size of the data field is 64-bytes in the

CAN FD. Then, 64-byte data fields have various data (e.g.

sensor values, gear position, turn signal). Also, unlike CAN

FD, the CAN’s 8-bytes of data fields have various data. The

rest of the fields shaded in gray are handled in the physical

layer.

CAN uses a bitwise arbitration ID to control the priority of

messages. If logical ‘‘0’’ and logical ‘‘1’’ are transmitted on

the bus at the same time, ‘‘0’’ takes precedence. Due to this

characteristic, a low CAN ID (e.g. 0 × 000) of destination

information is handled as an ID with a high priority. If an

adversary exploits the bitwise arbitration, the adversary can

easily achieve a DoS attack on CAN. In addition, due to

the features of broadcast communication, no authentication

and, low bandwidth, CAN is vulnerable against sniffing,

spoofing, replay attacks, and DoS attacks. Also, Cook and
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FIGURE 2. CAN vulnerabilities and the countermeasures.

FIGURE 3. The classification of DoS attacks on CAN.

Freudenberg [17] claimed that the major drawback of CAN

is that message latency is non-determinant (due to the exis-

tence of some error frames and retransmissions), and latency

increases with the amount of traffic on the bus. Therefore,

bus utilization should not exceed 30% of the CAN bus capac-

ity to assure that low priority messages do not experience

an unacceptable delay. It implies that even a compromised

in-vehicle computer with limited resources can delay CAN

message with DoS attacks.

CAN attackmethods and countermeasures are summarized

in Figure 2, which shows that encryption and authentication

methods could disable a sniffing, spoofing, and replay attack

in next-generation in-vehicle networks (e.g. CAN FD). How-

ever, to disable a DoS attack, a security solution different

from encryption and authentication is necessary.

2) ATTACK MODEL

There are three types of DoS attacks on CAN according to

the report [6] of Humayed et al. as follows. (Also, shown

in Figure 3.)

a) Traditional DoS attack

An adversary can easily interfere with a CAN bus by

using bitwise arbitration. Since the lower CAN ID has

a higher priority, the adversary would use CAN ID

0 × 000 for the DoS attack. As a result, the adversary

can induce unexpected behavior of the vehicle. Though

it is not difficult to detect the Traditional DoS attack,

IDSs must detect it as soon as possible.

b) Random DoS attack

A Random DoS attack is the most appropriate attack

for broadcasting incorrect values without investigating

an in-vehicle network. Messages with a random CAN

ID from 0 to 2047 can be transmitted within one sec-

ond, even on a low-speed network. The difficulty of

the detection of the Random DoS attack is the same

with Traditional DoS attacks and should be detected as

soon as possible too. An entropy-based IDS can detect

Random DoS attacks of both extremes of entropy.

However, the entropy-based IDS cannot detect an

entropy-manipulated attack in which an adversary

adjusts the entropy of a DoS attack to a normal value.

For example, in case of the sliding window W = 30,

entropies of two sliding windows are the same value if a

sliding window includes 10 messages of normal CAN

IDs 0 × 0AA, 0 × 0BB, and 0 × 0CC, respectively,

and a sliding window includes 10 messages of the DoS

message’s IDs 0× 000, 0× 001, and 0× 002, respec-

tively. If an adversary exploits the entropy-manipulated

attack, the adversary can bypass the entropy-based IDS.

The conditions for an entropy-manipulated attack are as

follows.

1. The entropies of the Random DoS attack and the

normal messages are the same values.

2. The CAN IDs of the Random DoS attack are

lower than the CAN IDs of normal messages.

Here, we describe that the realization of the entropy-

manipulated attack. Firstly, after an adversary intrudes

an ECU from some external network, the adversary

sniffs the messages of CAN. Next, the adversary can

calculate the window and the entropy in the CAN using

the same algorithm to the entropy-based IDS. Finally,

the entropy-manipulated attack is executed using the

window and entropy. IDS should assume adversaries

know the algorithm inside it [18].

Second, we describe the possibility, which entropy-

manipulated attacks are interrupted by other legitimate

CAN messages. The average total number of CAN

IDs in six car models is 53 IDs. In addition, most of

the CAN messages in the six car models have a CAN

ID of 0 × 053 or more. Therefore, if an adversary

exploits CAN IDs of high priority from 0 × 000 to

0 × 053 for a Random DoS attack, the adversary can

imitate the same entropy as legitimate data. In other

words, the adversary cannot be interrupted by other

legitimate CANmessages so that the attacks are higher

priority than the legitimate CAN messages. Therefore,
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FIGURE 4. Vulnerability of the entropy-based IDS.

we can conclude that the entropy-manipulated attack is

reproducible by an adversary.

c) Targeted DoS attack

A Targeted DoS attack influences buses and ECUs.

In this research, we assume an attack on one ECU

and define it as a DoS attack using one ID flowing

on the bus. This DoS attack could have life-threating

consequences for the driver and passengers. However,

entropy-based IDS can be used to achieve to detect this

DoS attack.

B. RELATED WORKS

1) INTRUSION DETECTION SYSTEM

A lot of works have been done on IDSs on CAN. IDSs on

CAN using deep learning have been proposed [19], [20]. The

approach is too expensive to implement the training function

in the vehicle although the cost of inferring is reasonable.

Also, a secure OTA update [13] has been proposed in modern

automotive. Therefore, the cost of training the additional

communication of the OTA update should be reasonable.

Time-intervals IDS [9] has been proposed to detect spoof-

ing attacks and DoS attacks on CAN. This IDS detects DoS

attacks with the cutoff of the time interval to 0.2 milliseconds

for detecting DoS messages. However, in the case of over

0.2 milliseconds of the time interval of the DoS attack’s

messages, the IDS cannot detect DoS attacks. In addition,

in different baud rates such as CAN and CAN FD, the IDS

cannot be adapted to the CAN buses because the time inter-

vals of DoS attacks are different. Furthermore, some meth-

ods [9]–[11] may only be effective against the DoS attacks

under naive environments such as some highest priority

messages [12].

Detection methods based on electrical fingerprint

information have been proposed [21], [22]. However, in order

to perform electrical fingerprint information-based anomaly

detection, some additional hardware such as the A/D con-

verter is necessary. Furthermore, if an original ECU is

compromised, the IDS cannot detect a malicious message

using CAN ID assigned in compromised ECU itself.

There are various other related studies, but these studies are

not superior to the entropy-based IDS in terms of effective-

ness to DoS attacks and the small computational overhead.

Hence, we will summarize the comparison in Section V-C.

2) ENTROPY-BASED IDS

The IDSs using entropy have been proposed [23], [24].

Wu et al. pointed out that because these IDSs use fixed-time

messages (sliding windows) for calculating entropies, they

cannot be applied to different transmission rates. Therefore,

they proposed a novel entropy-based IDS [11], showing that

the entropy-based IDS can fastly detect DoS attacks by using

a sliding window (a fixed number of messages) for calcu-

lating the entropy. The definition of entropy in the method

is as follows, where I = {id1, id2, id3, . . . , idn} is a set of

different CAN IDs appearing within sliding windows W .

Equation (1) is expressed as the entropy of CAN IDs in sliding

windowsW .

H (I ) = −
∑

idi∈I

P(idi) log(P(idi)) (1)

Next, we explain the P(idi) in Equation (1). Since the

method determines the network state by monitoring CAN

messages per window W , the total number of messages in

the arbitrary network state is the same to window W . Thus,

the total number of messages Ntotal in the sliding windowsW

can be obtained by Equation (2):

Ntotal =

n∑

i=1

Countidi (2)

The Countidi is the number of idi appearing inW . Then the

probability of idi appearing inW can be represented as

P(idi) =
Countidi

Ntotal
(3)
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FIGURE 5. Entropy of Random DoS attack under different CAN ID range.

The definition of Equation (1), (2), and (3) is based on

the entropy-based IDS [11]. The problem with the entropy-

based IDS [11] is that it has a much higher FP rate against

the entropy-manipulated attack. We show the example of the

entropy-manipulated attack. Figure 4 illustrates our test car’s

temporal change of entropy against two RandomDoS attacks.

Figure 4(a) and (b) are randomly generated by Random DoS

attacks with CAN IDs of a range of [0, 2047] and [0,55]

respectively. From Figure 4(a), we confirm that the entropy-

based IDS can distinguish the normal CAN messages and

Random DoS attacks of the extremes of entropy. Figure 4(b)

shows that the entropies of normal messages and Random

DoS attacks are the same value. This attack is an entropy-

manipulated attack. Also, Figure 5 shows the entropy of

Random DoS attacks under the various ranges of CAN IDs.

It shows that an adversary can inject a Random DoS attack

using arbitrary entropy. If the entropy of a Random DoS

attack and the entropy of normal traffic are the same value,

like Figure 4 (b), an adversary can bypass the entropy-based

IDS. This problem is caused by that the entropy defined

by [11] is based only on the randomness of the CAN ID.

In other words, an adversary can configure sliding windows

with the same randomness with completely different CAN

IDs which are higher priority than normal CAN messages.

Therefore, to detect the entropy-manipulated attacks and the

other DoS attacks, we consider an approach that can detect the

entropy-manipulated attacks based on whether a CAN IDs’

set in a sliding window is a normal range.

III. PROPOSED SIMILARITY-BASED IDS

In Section II-B.2, we confirmed that the entropy-based IDS

could not detect the entropy-manipulated attack. Therefore,

we aim to detect the entropy-manipulated attack and the

other DoS attackswith the similarity-based IDS. The entropy-

based IDS focuses only on the degree of randomness of CAN

IDs in a sliding window, but the IDS does not focus on the

individual values of CAN IDs in a sliding window. In other

words, an adversary can configure sliding windows with the

same randomness with completely different CAN IDs which

are higher priority than normal CAN messages. Therefore,

FIGURE 6. Example of WIDs and CIDs.

the entropy-manipulated attack bypasses the entropy-based

IDS.

In order to detect anomalies based on the degree of random-

ness of CAN IDs and the individual values of CAN IDs in a

sliding window, we propose an IDS based on the similarity

of the sliding windows rather than the entropy of the sliding

windows. Our similarity-based IDS calculates the similarity

inWindow IDs (calledWIDs) and Criterion IDs (calledCIDs)

using the Simpson coefficient, which expresses the similarity

between the sets. Figure 6 shows an example of WIDs and

CIDs. As shown in Figure 6, our similarity-based IDS detects

DoS attacks based on the similarity betweenWIDs and CIDs.

In addition, in order to optimize the anomaly detection pre-

cision and detection time, we use the SA algorithm. The SA

algorithm is used to obtain a good local solution, so that the

entropy-based IDS [11] indicated the effectiveness of the SA

algorithm.

Detection time is an important evaluation metric because

fast detection can conduct intrusion preventions (e.g.

ID-Hopping Mechanism) rapidly. Therefore, we consider

decreasing the detection time.

A. DEFINITION OF SIMILARITY IN CAN

Our similarity-based IDS calculates the similarity in WIDs

and CIDs using the Simpson coefficient (often called the

Overlap coefficient), which expresses the similarity between

the sets. If the two sets have an intersection, the Simpson coef-

ficient of the two sets is higher than the Jaccard coefficient

and the Dice coefficient. Also, since some non-cyclic mes-

sages are sent in CAN, similarity decreases even in normal

messages. Therefore, if a part of the two sets is not shared

such as non-cyclic messages, the Simpson coefficient that

the decreasing of similarity is most low is the most suitable

similarity in CAN.

The definition of similarity in CAN is as follows.

Equation (4) is used to calculate the similarity between CIDs

andWIDs in CAN, where CIDs are a set of bases to calculate

the similarity, and WIDs are a set of CAN IDs in a sliding

window,W , of a fixed number of messages.

overlap(CIDs,WIDs) =
|CIDs ∩WIDs|

min(|CIDs|, |WIDs|)
(4)
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FIGURE 7. Comparison of similarity under different sliding window message sizes.

If we use normal CAN messages to calculate the sim-

ilarity, CIDs and WIDs may possess several elements of

the same CAN ID. Due to this fact, CIDs and WIDs are

multisets. Moreover, Equation (4) can be transformed into

Equation specified in (5) because |CIDs| and |WIDs| are

always same as |W |.

overlap(CIDs,WIDs) =
|CIDs ∩WIDs|

|W |
(5)

We use Equation (5) to calculate the similarity in the pro-

posed similarity-based IDS. Also, note that |W | is a constant

value in the On-line detection phase, if the denominator of

Equation (5) is incremented whenever a CAN message is

received, the Overlap coefficient can be calculated in O(1).

It is a smaller value than O(log(|N |)) of the entropy calcu-

lation of the entropy-based IDS, where N is the number of

unique CAN ID included in a sliding window.

Next, we measure similarity under different sliding win-

dows as a preliminary experiment, in which we used prelim-

inary CAN messages that are composed of 1000 messages

of both normal and DoS attacks. These preliminary CAN

messages of the first half are normal ones, and the rest is the

DoS attack messages of CAN ID 0× 000. We plot similarity

under different sliding windows in Figure 7.We use CAN IDs

optimized by the Off-line learning phase as CIDs to calculate

similarity. Figure 7 shows how different sliding windows

W affect the similarity value. For example, when W = 5,

the similarity value is between 0.2 and 1.0, but when W

increases to 50, the similarity value changes to a range of

values between 0.8 and 1.0. Furthermore, when W = 100

or 200, the similarity value reaches almost 1.0. As shown

in Figure 7 (b), we have confirmed that when W = 50,

the distance of similarities between normal CAN messages

and DoS attacks is great. Hence, the Off-line learning phase

optimally selects a sliding window size in the range of [5, 50].

B. FRAMEWORK OF THE SIMILARITY-BASED IDS

The similarity-based IDS has two phases, an Off-line learning

phase and an On-line detection phase (Figure 8). In the first

phase, the SA algorithm is used to collect optimal parameters;

in the later phase, we detect anomalies by using the optimal

parameters collected in the first phase.

a) Off-line learning phase

TheOff-line learning phasemainly includes the follow-

ing steps.

• Step 1: Extract the CAN IDs from learning traffic.

• Step 2: Calculate the similarity betweenWIDs and

CIDs.WIDs are a set of CAN IDs of a certain win-

dow.CIDs are a set of normal CAN IDs defined for

intrusion detection. Also,CIDs serves as a criterion

to calculate the similarity.

• Step 3: Judge whether the similarity (details are

shown in Section III-A) calculated in Step 2 falls
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FIGURE 8. Flow of the similarity-based IDS.

within the normal range randomly generated by the

SA algorithm.

• Step 4: Select the new deviation of the normal

range and the sliding window for the next loop.

• Step 5: Try all the CIDs in the CAN messages for

learning after that determine the CIDs to calculate

the best score. Steps 1-4 are designed based on the

SA algorithm. Step 5 is designed to try all theCIDs

through steps 1-4 for high accuracy.
b) On-line detection phase

The On-line detection phase mainly includes the fol-

lowing steps.
• Step 1: Read a CAN message on-line and collect

messages until the number of messages is the same

as the size of the sliding window.

• Step 2: Calculate the similarity between WIDs

and CIDs.

• Step 3: Judge whether the similarity calculated in

Step 2 falls within the normal range generated in

the Off-line learning phase.

C. ON-LINE DETECTION PHASE

The proposed algorithm used for the On-line detection phase

is depicted in Algorithm 1. In the algorithm, I is a set of CAN

IDs from one sliding window W . The remaining parameters

are optimized in the Off-line learning phase. During the

On-line intrusion detection phase, the in-vehicle network is

monitored in real-time in units per sliding window,W .

The details of the On-line detection phase are as follows:

1) In line 1, we define the average of similarity us = 0.8.

This average has been measured by the result of the

average similarity of six car models.

Algorithm 1 Similarity-Based Intrusion Detection Algo-

rithm (On-Line Detection Phase)

Input: I ⇐ {message1,message2, . . . ,messageW }, k, σs,

W ,CIDs

1: us ⇐ 0.8

2: while True do

3: WIDs⇐ extract_CANID(I )

4: Calculate similarity S according to

overlap(WIDs,CIDs) based on Equation (5)

5: if S not in normal range [us − kσs, us + kσs] then

6: Detect DoS attacks

7: end if

8: end while

2) In lines 2-4, we calculate the similarity value in sliding

windowW .

3) In lines 5-7, we judge whether the similarity value is

within the normal range.

As described in Section III-A, the time complexity in

calculating similarity is O(1). Thus, the time complexity of

Algorithm 1 is O(|W |).

D. OFF-LINE LEARNING PHASE

As a parameter for evaluating our similarity-based IDS,

we used precision TP/(TP + FP) (True Positive: TP, False

Positive: FP). We selected this precision because it gives

the main indicators in the IDS. The detection rate of attack

messages RA (TP rate) is calculated according to equation (6).

RA(%) =
DA

TA
× 100 (6)
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where TA is the total number of DoS attack blocks, DA is the

detected number of DoS attack blocks. And, the detection

error rate of attacks RN (FP rate) is calculated according to

equation (7).

RN (%) =
DN

TN
× 100 (7)

where TN is the total number of normalmessage blocks,DN is

the number of normal message blocks detected incorrectly as

attacks by the IDS. Also, if the number of normal messages is

greater than the number of DoSmessages, the block is labeled

as normal.

Algorithm 2 Modified Similarity-Based Intrusion Detection

Algorithm for Off-Line Learning Phase

Input: Test_Data,

I ⇐ {message1,message2, . . . ,messageW }, k, σs,W ,

CIDs

Output: Precision RA
RA+RN

1: us ⇐ 0.8

2: while I in Test_Data do

3: WIDs⇐ extract_CANID(I )

4: Calculate similarity S according to

overlap(WIDs,CIDs) based on Equation (5)

5: if S not in normal range [us − kσs, us + kσs] then

6: if The window include number of malicious mes-

sages greater than number of normal messages then

7: DA+ = 1

8: else

9: DN+ = 1

10: end if

11: end if

12: end while

13: Calculate TP rate RA and FP rate RN , based on Equa-

tion (6) and and Equation (7)

14: return Precision RA
RA+RN

The proposed algorithm used for the Off-line learning

phase is depicted in Algorithm 2 and 3. Algorithm 2 is the

algorithm added to calculate precision to Algorithm 1 for the

Off-line learning phase. The Test_Data of input parameters

in Algorithm 2 represents the CAN message chronologically

sequenced, including the DoS attack blocks. We employ the

SA algorithm to optimize parameters in the Algorithm 3. The

energy function used in the SA algorithm is as follows.

E() = C1 × RA(%)− C2 × RN (%)− C3 ×W (8)

where E() represents the efficiency of the TP rate, the FP rate,

and the detection time. E() is based on Equations (6), (7), and

slidingwindowW . Threeweighted parametersC1,C2,C3 are

used to adjust the weights to the characteristics of IDS. To get

high precision and fast detection time, we set C1 = 1.0,

C2 = 0.5,C3 = 2.0, which are the same values as in the

entropy-based IDS [11] and the sliding window W is in the

range of [5, 50].

Algorithm 3 Sliding Windows Optimization Algorithm

Using SA (Off-Line Learning Phase)

Input: Learning_Data_with_DoS_attack,

I ⇐ {message1,message2, . . . ,messageW }

Output: (σs,W )_setmax ,CIDsmax
1: function neighbor(σs,W )

2: return random(σ − 0.5, σ + 0.5), random(W −

10,W + 10)

3: end function

4: function probability(e1, e2,T )

5: return exp (−( e2−e1
T

))

6: end function

7:

8: while I in Learning_Data_with_DoS_attack do

9: CIDs⇐ extract_CANID(I )

10: k ⇐ 0.8

11: σs_best ⇐ σe0

12: W_best ⇐ W0

13: ebest ⇐ E((σs,W )_set0,CIDs)

14: T ← 10000

15: cool ← 0.99

16: while T > 0.0001 and ebest > e do

17: (σs,W )_setnext ⇐ neighbor((σs,W )_set)

18: enext ⇐ E((σs,W )_setnext ,CIDs) Calculated by

Algorithm_2 (Learning_Data_with_DoS_attack,

k, (σs,W )_setnext ,CIDs)

19: p = probability(e, enext ,T )

20: if random() < p then

21: (σs,W )_set ⇐ (σs,W )_setnext ; e⇐ enext
22: if e > ebest then

23: (σs,W )_setbest ⇐ (σs,W )_set; ebest ⇐ e

24: end if

25: end if

26: T ⇐ T × cool

27: end while

28: precisionbest
⇐ Algorithm_2 (Learning_Data_with_DoS_attack,

k, (σs,W )_setbest ,CIDs)

29: if precisionmax < precisionbest then

30: precisionmax ⇐ precisionbest
31: (σs,W )_setmax ⇐ (σs,W )_setbest
32: CIDsmax ⇐ CIDs

33: end if

34: end while

35: return (σs,W )_setmax ,CIDsmax

The Learning_Data_with_DoS_attack of input parame-

ters in Algorithm 3 represents the CAN messages of time

sequence, including the DoS attack blocks. The I is a set of

one sliding window W . Algorithm 3 optimizes σs, W , and

CIDs to achieve high precision and fast detection. (σs,W )_set

is randomly generated, where σs is the deviation, k is the

sensitivity deviation, and us is the average similarity value.

The sensitivity deviation k is 0.8 the same as the average

similarity value. The purpose of Algorithm 3 is to obtain
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TABLE 1. Data set description.

the parameter settings that can effectively maximize E(). The

details of the Off-line learning phase are as follows:
1) In lines 1-6, functions neighbor() and probability() are

defined and later used in lines 17 and 19 respectively.

2) In lines 8-27, we execute the SA algorithm to optimize

σs,W .

3) In lines 28-33, we calculate precisionbest using

(σs,W )_setbest , and then compare precisionbest
with precisionmax , thereby getting the parameters

(σs,W )_setbest with the highest precision among all

CIDs.
Since the time complexity of Algorithm 1 is O(|W |),

the time complexity of Algorithm 3 is O(|S| × |T | × |W |),

where |T | is the temperature in the SA algorithm, |S|

is the number of normal blocks in Learning_Data_

with_DoS_attack .

IV. EXPERIMENTS AND EVALUATIONS

A. DATA SET

In this study, we evaluate the precision in detecting the three

types of DoS attacks. We use a data set of the real CAN

messages provided in [25] and a data set of the five carmodels

(A, B, C, D, E) which we logged during driving and stopping.

We evaluate the similarity-based IDS using the DoS attack

messages (1000messages) added to the data sets without DoS

attack messages.

Table 1 shows the dataset description. We describe the

average value Have and the standard deviation Hdev of the

entropy at the sliding window W = 60, which was regarded

as the optimal parameter in the entropy-based IDS [11].

As shown in Table 1, the entropies depend on the car model.

Therefore, when these normal entropies and the entropies of

Random DoS attacks are the same value, the precision of the

entropy-based IDS decreases.

We evaluate the precision and detection time of similarity-

based IDS with the three aspects. First, the precision of

similarity-based IDS is compared from the precision of

entropy-based IDS against three types of DoS attacks.

Second, we evaluate the precision of similarity-based IDS

against entropy-manipulated attacks. Finally, we conduct the

experiment, in which the similarity-based IDS detect DoS

attacks, to measure the detection time in resource-restricted

environments.

B. PRECISION EVALUATION AGAINST THREE TYPES

OF DOS ATTACKS

In this section, we evaluate the precision of the similarity-

based IDS against each of the DoS attacks. In actual

automobiles, the FP rate in the IDS should be low. In other

words, the similarity-based IDS is expected to have a high

TP rate and a low FP rate. Therefore, we selected a TP

rate, an FP rate, and the precision (TP/(TP + FP)) as the

evaluation indicators of the similarity-based IDS. Table 2

shows the evaluation indicators of the entropy-based IDS

and the similarity-based IDS against Traditional, Random,

and Targeted DoS attacks. Also, we evaluate the entropy-

based IDS and the similarity-based IDS using only the HCR

Lab data set.1 Table 2 only shows the precision against the

RandomDoS attack with the range of [0, 31] in bothmethods,

because this range is suitable as the example of entropy-

manipulated attacks.

Table 2 shows that the entropy-based IDS can detect DoS

attacks in which an adversary uses a single CAN ID at the

high TP rate and high precision. However, the precision of

the entropy-based IDS against RandomDoS attacks is 68.3%.

Also, the average and standard deviation of entropies of

Random DoS attacks are Have = 3.08535, Hdev = 0.07863,

and these are almost the same as the average and standard

deviation of the HCR Lab’s data set in Table 1. Hence,

we confirm that the entropy-based IDS cannot correctly clas-

sify a Random DoS attack.

On the other hand, Table 2 shows that the similarity-based

IDS can detect all DoS attacks with a high TP rate and

precision. Therefore, it is confirmed that the similarity-based

IDS has superior precision against Random DoS attacks,

as compared with the entropy-based IDS, and has the same

precision as other methods for the other types of DoS attacks.

Also, this evaluation made it clear that the similarity-based

IDS with the below parameters can detect all DoS attacks in

the HCR Lab’s data set.

W = 25,

σs = 0.52499,

CIDs = {0×80, 0×80, 0×81, 0×81, 0×153, 0×164,

0×165, 0×165, 0×18f, 0×18f, 0×220,

0×260, 0×2a0, 0×2b0, 0×316, 0×316,

0×329, 0×370, 0×382, 0×43f, 0×440,

0×4b0, 0×4b1, 0×545, 0×5a2}

C. PRECISION EVALUATION IN VARIOUS RANGES

OF CAN ID

In this section, we compare the similarity-based IDS with

the entropy-based IDS when these IDSs are used under

an entropy-manipulated attack. We also compare the two,

in Figure 9, for their precision against entropy-manipulated

attacks. We confirm that the entropy-based IDS has a range

in which the precision decreases, whereas the similarity-

based IDS can detect all ranges. Figure 9 shows the preci-

sion against entropy-manipulated attacks of various ranges,

1We must hide specific CAN IDs of real vehicle data except the data set
of HCR Lab because they are not in public from the companies.
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TABLE 2. Comparison of the precision at each DoS attack.

FIGURE 9. Comparison of precision against entropy-manipulated attack.

while Table 2 shows the precision against only the entropy-

manipulated attack with the range of [0, 31] in both methods.

We show the variation of the entropy in the entropy-

manipulated attack under different CAN ID ranges

in Figure 10, which shows a correspondence between the

entropy and the CAN ID range of entropy-manipulated

attacks. Figure 10 plots the 600 entropies of entropy-

manipulated attacks in each range in the box-and-whisker

plots. Furthermore, we depict the lines which express the

average of entropies on the six car models with Figure 10.

Focusing on the car model D in Figure 9 (a), the precision

of the entropy-based IDS has decreased in the range [0, 55].

Next, when focusing on the x-axis [0, 55] in Figure 10, the

average entropy of car model D is within the entropy of

the entropy-manipulated attack in the range [0, 55]. Because

the entropy of the entropy-manipulated attack and the aver-

age normal entropy are the same value, the entropy-based

FIGURE 10. Entropy of entropy-manipulated attack under different CAN
ID range [0, 0]-[0, 100].

TABLE 3. The experimental environment.

IDS cannot detect the entropy-manipulated attack with high

precision. The same applies to other car models. Hence,

we confirmed that the precision decreases when the average

entropy used in detecting DoS attacks is within the range of

the entropy of the entropy-manipulated attack.

D. DETECTION TIME EVALUATION

In this section, we compare the detection time of the

similarity-based IDS and of the entropy-based IDS in the On-

line detection phase. Also, since the Off-line learning phase

has nothing to do with real-time detection, we evaluate only

the On-line detection phase.

First, we describe the experimental environment (see

Table 3). We assumed Raspberry Pi, a low-spec evaluation

board, to implement our similarity-based IDS on resource-

restricted on-board computers. We also implemented the

entropy-based IDS [11] for the comparison between entropy-

and similarity-based IDS. Thus, the conventional one was

conducted in the same environments of similarity-based IDS

for this evaluation.

Next, we define the evaluation time in Figure 11. The

evaluation time T1 shows the time after the start of the DoS

attack until the anomaly is detected. In other words, T1 is

the time that increases in proportion to the sliding windows.

The evaluation time T2 shows the time from receiving W

messages as a sliding window until the time of detecting the
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FIGURE 11. Definition and requirements for detection time in CAN.

FIGURE 12. Comparison of detection time.

anomaly. In other words, T2 is an indicator to compare the

calculation times of the entropy and the similarity.

We show the actual requirement in the detection time of

similarity-based IDS. In some cars, it is impossible to send

messages more often than 10 ms apart due to the load require-

ments placed by vehicle manufacturers [26]. Therefore, if we

can prevent the DoS attacks until 10 ms after starting attacks,

the messages may be sent with the correct intervals. Hence,

we define a requirement as which the T1 must be shorter than

10 ms in the similarity-based IDS.

Figure 12 shows the box-and-whisker diagrams as the

results of T1 and T2 measured 1000 times each. Also,

the median of T1 is 6.054 ms in the similarity-based IDS.

In the figure, the detection times T1 of the similarity-based

IDS are lower by one order to the detection times of the

entropy-based IDS. As shown in Figure 12 (a), the T1 ranges

of the similarity-based IDS and of the entropy-based IDS

are 6.052-6.055 ms and 15.142-15.157 ms, respectively. This

result is caused by the difference that is an optimized sliding

window W = 25 in the similarity-based IDS, whereas an

optimized sliding windowW = 60 in the entropy-based IDS.

As shown in Figure 12 (b), the T2 ranges of the similarity-

based IDS and of the entropy-based IDS are 13-15 µs

and 1 µs, respectively. The median of T2 is 14 µs in the

entropy-based IDS. We confirmed that the similarity-based

IDS could detect an attack up to 93.33% (14 µs) faster than

the entropy-based IDS.

V. DISCUSSION

In Section IV, the similarity-based IDS can detect all DoS

attacks in 100.0% precision and with a faster time than the

conventional entropy-based IDS by up to 93.33% (14 µs).

We discuss these results in this section.

A. PRECISION

We found this DoS attack called the entropy-manipulated

attack, which bypasses the conventional entropy-based

IDS by adjusting the entropy of messages. The proposed

similarity-based IDS can detect the entropy-manipulated

attack because it can distinguish between the CAN IDs

of the entropy-manipulated attack and the normal CAN

IDs. As an experimental result, the similarity-based IDS

achieved a detection precision of 100.0% against the entropy-

manipulated attacks, while the detection precision is 68.3%

in the entropy-based IDS. Since an adversary use CAN IDs

with higher priority than normal messages in the entropy-

manipulated attacks, the similarity decreases between nor-

mal messages and the DoS attack. Therefore, as shown

in Figure 9(b), the similarity-based IDS can detect entropy-

manipulated attacks with 100.0% precision.

However, the similarity-based IDS may not be able to

detect a Replay DoS attack which is a combination of replay

attacks and DoS attacks, because an adversary can inject

the same CAN IDs with normal CAN messages. Since

the entropy-based IDS is effective against a Replay attack,

a hybrid implementation of the similarity-based IDS and the

entropy-based IDS would be effective against Replay DoS

attacks.

B. DETECTION TIME

Due to load requirements placed by the vehicle manu-

facturers [26], we defined the requirement as which the

T1 must be shorter than 10 ms in the similarity-based

IDS. As the result of Section IV-D, the T1 ranges of the

similarity-based IDS and of the entropy-based IDS are

6.052-6.055 ms and 15.142-15.157 ms, respectively. The T1
of the similarity-based IDS meets the 10 ms of the require-

ment, whereas the entropy-based IDS’s T1 does not meet the

requirement. Thus, we confirmed that the similarity-based
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TABLE 4. Comparison of the related works.

IDS is superior to the entropy-based IDS in actual

requirements.

As shown in Figure 12 (b), the T2 ranges of the similarity-

based IDS and of the entropy-based IDS are 13-15 µs and

1 µs, respectively. Note that the time complexity of the

entropy-based IDS is O(|W | × log(|N |)), and the computa-

tional complexity of the similarity-based IDS isO(|W |) in the

On-line detection phase. Hence, we showed that the detection

time is up to 93% (14µs) shorter than with the entropy-based

IDS in Section IV-D.

Incidentally, in ID-Hopping Mechanism [6]–[8] which

avoids Targeted DoS attacks, the average overhead required

for AES encryption to generate a one-time ID and for newly

setting the CAN ID register are 20.23 µs and 0.2 µs respec-

tively. Therefore, the impact of achieving rapid IDS 14 µs

faster than the entropy-based IDS is worth to cancel the over-

head for utilizing the conventional IDS and the ID-Hopping

Mechanism together.

C. COMPARISONS

Some IDSs proposed so far has a good advantage in term

of effectiveness to DoS attacks and the small computational

overhead. In the following, these IDSs and the similarity-

based IDS are compared. Table 4 shows a comparison of the

related works. Incidentally, to compare the similarity-based

IDS and various methods, we newly define one of the IDS

called Rule-based IDS which detects an attacker based on a

white-list or black-list of CAN ID.

First, we compare each IDSs based on three types of

DoS attacks. Rule-based IDS can detect Traditional and Ran-

dom DoS attacks using a white-list or black-list because

Traditional DoS attacks consisted of messages of CAN

ID 0 × 000. However, Targeted DoS attacks are bypassed

because rule-based IDS judges attack with the white-list.

Time-interval based IDS can detect Traditional DoS attacks

because time-interval based IDS detects anomaly interval of

messages of CAN ID 0 × 000. When Random DoS attacks

have messages of same CAN IDs assigned to the CAN,

the time-interval of the CAN IDs is shorter than the regular

time-interval. Hence, the time-intervals IDS detects Random

DoS attacks. However, the time-interval IDS cannot detect

Targeted DoS attacks using a non-cyclic CAN ID. The time-

interval IDSmonitors the CAN IDs which ECUs send period-

ically. In other words, the time-interval IDS does not monitor

non-cyclic CAN IDs. As we confirmed in Section IV-B,

the entropy-based IDS can detect Traditional and Targeted

DoS attacks. However, the entropy-based IDS has a problem

that the FP rate is high against Random DoS attacks. While

our similarity-based IDS using the similarity of sliding win-

dows has a high precision against both Random DoS attacks

and the other DoS attacks. Aswementioned in Section II-B.2,

the entropy-based IDS bypasses entropy-manipulated attacks

which is a kind of Random DoS attack, whereas the

similarity-based IDS can detect all DoS attacks. From the

comparison above, we confirmed that the similarity-based

IDS could only detect DoS attacks of all types.

Secondly, we describe the applicability in different band-

width of CAN. The rule-based IDS can be used in different

bandwidth of CAN because this IDS does not use intervals

of messages to detect attacks. Similar to the rule-based IDS,

the entropy-based IDS and the similarity-based IDS are appli-

cable because the entropy and the similarity are calculated

based on CAN IDs of a fixed number of messages. On the

other hand, since the time-interval of messages varies in

each bandwidth, time-interval IDS cannot be used in differ-

ent bandwidth of CAN. Thus, we confirmed that the rule-,

entropy-, and similarity-based IDSs have advantages in terms

of different bandwidth.

Thirdly, we mention whether each IDSs optimize a thresh-

old to judge DoS attacks. Also, the rule-based IDS detects

the attacks based on a white-list or black-list of CAN ID,

so that this IDS does not have a threshold to judge attacks. The

time-interval IDS has a threshold to detect DoS attacks with

high accuracy. An expert must manually select this threshold

before the IDS is implemented on the actual CAN bus. In

addition, the threshold is experimental rather than theoretical;

it is possible that there is an optimized threshold to detect

DoS attacks. Both the entropy- and the similarity-based IDSs

automatically optimize a threshold to judge attacks using SA.

Therefore, there is an advantage to determine a threshold in

the rule-, entropy-, and similarity-based IDSs.

Finally, we discuss the time complexity. The rule-based

IDS uses a white-list or a black-list to detect intrusions so

that the time complexity of this IDS is O(1). The time-

interval IDS calculates the time-interval when received some

messages. Since this IDS only needs calculating the time-

interval and comparing whether the time-interval is normal

to detect attacks, the time complexity is O(1). Next, the time

complexity of the entropy-based IDS’s On-line detection

phase is O(|W | × log(N )). As mentioned in Section III-C,

the time complexity of the similarity-based IDS is O(|W |).

Thus, the rule-based IDS and Time-interval IDS have advan-

tages in terms of the time complexity. On the other hand,

we evaluated the actual detection time of the similarity-based
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IDS. As a result, we confirmed that our method satisfies the

requirement from the vehicle manufacturers [26]. Therefore,

we conclude that the similarity-based IDS can be operated in

the actual environment.

From these comparisons among related works, we confirm

that the similarity-based IDS can detect the DoS attacks of

all types. In addition, it was confirmed that the similarity-

based IDS has advantages in terms of applicability in CAN

of different bandwidth, determining the threshold, and the

detection time.

VI. CONCLUSION

The growing number of vehicles connected to the internet

causes a security risk of cyberattacks such as DoS attacks

on modern automobiles. It requires a security solution that

can prevent DoS attacks. To prevent all DoS attacks, firstly

we must consider a method to detect all DoS attacks. In

this research, we proposed an optimized DoS attack detec-

tion method based on the similarity of sliding windows that

is capable of detecting every type of DoS attack. In addi-

tion, we have solved the entropy-based IDS’ problem of

a higher FP rate occurring when the entropy-manipulated

attack is executed. Furthermore, our similarity-based IDS has

lower computational complexity than the entropy-based IDS.

We confirmed that the similarity-based IDS detected a DoS

attack in 100% of the cases in our experiment, and we showed

that the detection time is up to 93.33% (14 µs) shorter than

with the entropy-based IDS. We release the source code [27]

hoping to promote research on countermeasures against DoS

attacks.

For future work, we plan to implement a hybrid method

based on similarity and entropy against Replay DoS attacks.

Furthermore, We will apply our method to the case of a

specific ECU message being interrupted by a DoS attack

(bus-off attack) [28] which abuses the error handling protocol

of CAN. Finally, since we proposed the similarity-based IDS

which can rapidly detect all DoS attacks, we will evaluate the

serviceability of using the similarity-based IDS and the ID-

Hopping mechanism together.
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