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Abstract. An automorphism α of a group G is normal if it fixes every normal
subgroup of G setwise. We give an algebraic description of normal automorphisms
of relatively hyperbolic groups. In particular, we prove that for any relatively hy-
perbolic group G, Inn(G) has finite index in the subgroup Autn(G) of normal
automorphisms. If, in addition, G is non-elementary and has no non-trivial finite
normal subgroups, then Autn(G) = Inn(G). As an application, we show that
Out(G) is residually finite for every finitely generated residually finite group G with
more than one end.
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1. Introduction

Recall that an automorphism α ∈ Aut(G) of a group G is said to be normal if
α(N) = N for every normal subgroup N of G. The subset of normal automorphisms,
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denoted by Autn(G), is clearly a subgroup of Aut(G). Obviously every inner au-
tomorphism is normal. Throughout this paper we denote by Outn(G) the quotient
group Autn(G)/Inn(G).

The study of normal automorphisms originates from the result of Lubotzky stating
that Outn(G) is trivial for any non-abelian free group [25]. Since then similar results
have been proved for many other classes of groups. For example, Outn(G) = {1}
for non-trivial free products [29], fundamental groups of closed surfaces of negative
Euler characteristic [6], non-abelian free Burnside groups of large odd exponent [9],
non-abelian free solvable groups [37], and free nilpotent group of class c = 2 (for c ≥ 3
this is not true) [13]. On the other hand, every group can be realized as Out(G) for a
suitable simple group G [12]. Since every automorphism of a simple group is normal,
every group appears as Outn(G) for some G. Furthermore, every countable group
can be realized as Outn(G) for some finitely generated group G [27, 30].

The main goal of this paper is to study normal automorphisms of relatively hyper-
bolic groups. The notion of a relatively hyperbolic group was originally suggested by
Gromov [16] and has been elaborated in many papers since then [7, 11, 14, 22, 33, 44].
The class of relatively hyperbolic groups includes (ordinary) hyperbolic groups, fun-
damental groups of finite-volume complete Riemannian manifolds of pinched negative
curvature [7, 14], groups acting freely on R

n-trees [20] (in particular, limit groups aris-
ing in the solutions of the Tarski problem [24, 40]), non-trivial free products and their
small cancellation quotients [33], groups acting geometrically on CAT (0) spaces with
isolated flats [23], and many other examples.

In this paper we neither assume relatively hyperbolic groups to be finitely generated
nor the collection of peripheral subgroups to be finite. (The reader is referred to the
next section for the precise definition.) However we do assume that all peripheral
subgroups are proper to exclude the case of a group hyperbolic relative to itself.
Further on, we will say that a group G non-elementary, if it is not virtually cyclic.

In general Outn(G) is not necessarily trivial even for ordinary hyperbolic groups.
Indeed, it is known (see [38]) that certain finite groups L possess non-inner auto-
morphisms which map every element to its conjugate. One can therefore construct
many hyperbolic groups G with non-trivial Outn(G) by taking any hyperbolic group
H and considering the direct product G = H×L. The first result of our paper shows
that non-trivial finite normal subgroups are essentially the only sources of non-inner
normal automorphisms.

More precisely, every relatively hyperbolic group G contains a unique maximal
finite normal subgroup (see Corollary 2.6). We denote it by E(G). Further let C(G)
denote the centralizer of E(G) in G.

Theorem 1.1. Suppose that G is a non-elementary relatively hyperbolic group and
α ∈ Autn(G). Then there exist an element w ∈ G and a set map ε : G→ E(G) such
that ε(C(G)) = {1} and α(g) = wgε(g)w−1 for every g ∈ G.
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In fact, Theorem 1.1 is a particular case of a more general result about normal
automorphisms of subgroups of relatively hyperbolic groups (see Theorem 6.4). The
corollary below follows easily from Theorem 1.1 and the observation that C(G) has
finite index in G being the centralizer of a finite normal subgroup.

Corollary 1.2. Suppose that G is a relatively hyperbolic group. Then the following
hold.

(a) Outn(G) is finite.
(b) If G is non-cyclic and contains no non-trivial finite normal subgroups, then

Outn(G) = {1}.

This corollary generalizes the results about free groups [25], free products [29], and
surface groups [6] cited above. It also implies the result of Metaftsis and Sykiotis [26]
stating that for every non-elementary finitely generated relatively hyperbolic group
G, Inn(G) has finite index in the group Autc(G) of pointwise inner automorphisms
of G. Recall that an automorphism of G is pointwise inner, if it preserves conjugacy
classes. Clearly Autc(G) ≤ Autn(G). Thus finiteness of Outn(G) implies that of
Autc(G)/Inn(G). The converse is not true in general. For instance, if G is free
nilpotent of class at least 3, we have Autc(G) = Inn(G) while |Outn(G)| = ∞ [13].

It is also worth noting that our methods are quite different from those of [26].
Indeed we use the group-theoretic version of Dehn surgery introduced in [18, 19, 32]
and ‘component analysis’ developed in [33, 27], while Metaftsis and Sykiotis employed
the Bestvina-Paulin approach [5, 34] based on ultralimits and group actions on R-
trees.

In order to prove Theorem 1.1, we introduce a new subclass of automorphisms of
any given group, and investigate it in the case of relatively hyperbolic groups.

Definition 1.3. Let G be a group. We say that an automorphism ϕ ∈ Aut(G) is
commensurating if for every g ∈ G there exist h ∈ G and m,n ∈ Z \ {0} such that
(ϕ(g))n = hgmh−1. In other words, ϕ is commensurating if for each g ∈ G, ϕ(g) is
commensurable to g in G (see Definition 4.1).

It is clear that the subset Autcomm(G) of commensurating automorphisms of G
forms a subgroup of Aut(G) and Inn(G) ≤ Autc(G) ≤ Autcomm(G).

In Section 5 we study commensurating automorphisms of relatively hyperbolic
groups and obtain a complete description of them:

Corollary 1.4. Let G be a non-elementary relatively hyperbolic group and ϕ ∈
Aut(G). The following conditions are equivalent:

(i) ϕ is commensurating;
(ii) there is a set map ε : G → E(G), whose restriction to C(G) is a homomor-

phism, and an element w ∈ G such that for every g ∈ G, ϕ(g) = w (gε(g))w−1.

In particular, if E(G) = {1}, then every commensurating automorphism of G is
inner.
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In Section 6, using the algebraic version of Dehn filling, we show that each normal
automorphism of a relatively hyperbolic group must be commensurating. After this,
Theorem 1.1 follows quite quickly from the above description of commensurating
automorphisms.

Our methods can also be used to prove residual finiteness of some outer automor-
phism groups. A well-known theorem of Baumslag states that the automorphism
group of a finitely generated residually finite group is residually finite [4]. In general,
the analogous property does not hold for the group of outer automorphisms. Indeed,
Bumagina and Wise showed that every finitely presented group is realized as Out(G)
for a suitable finitely generated residually finite group G [8]. However we prove that
Baumslag’s theorem does have an ‘outer’ analogue for groups with more than one
end. We refer to [41] for the geometric definition of ends, and recall that the number
of ends of a finitely generated group can be either 0, 1, 2 or infinity.

Theorem 1.5. Let G be a finitely generated residually finite group with more than
one end. Then Out(G) is residually finite.

An infinite finitely generated group G has two ends if and only if it is virtually
cyclic; and G has infinitely many ends if and only if it splits non-trivially as an
amalgamated free product A ∗S B or an HNN -extension A∗S over a finite group S
[41, 42].

Note that the condition demanding residual finiteness of G in Theorem 1.5 cannot
be removed. Indeed, if H is any finitely generated group that has trivial center and
is not residually finite, then the group G = H ∗ Z has infinitely many ends and H
is embedded into Out(G) (H acts on itself by conjugation and trivially on Z, which
gives rise to an action of H by outer automorphisms on the free product H ∗Z = G).
Thus Out(G) is not residually finite.

The standard way of proving residual finiteness of Out(G) is based on the following
result of Grossman [17]: if a group G is finitely generated and conjugacy separable,
then Aut(G)/Autc(G) is residually finite. In particular, Out(G) is residually finite
whenever G is finitely generated, conjugacy separable, and Autc(G) = Inn(G). Recall
that a group G is said to be conjugacy separable if for any two non-conjugate elements
g, h ∈ G there exists a homomorphism ϕ : G → K, where K is finite, such that ϕ(g)
and ϕ(h) are not conjugate in K.

This approach has been successfully used to prove residual finiteness of Out(G),
where G is a free group of finite rank [17], the fundamental group of a closed surface
[17, 2], the fundamental group of a Seifert manifold with non-trivial boundary [1], etc.
If G is a finitely generated conjugacy separable non-elementary relatively hyperbolic
group, the above mentioned result from [26] implies that every virtually torsion-free
subgroup of Out(G) is residually finite [26, Theorem 1.1].

However there is no hope to use Grossman’s idea to prove Theorem 1.5 since we
only assume the group G to be residually finite, which is much weaker than conjugacy
separability. Indeed there are many examples of finitely generated residually finite
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groups that are not conjugacy separable (e.g., the group of unimodular matrices
GL(n,Z) for n ≥ 3, see [36]). To construct such an example with infinitely many
ends, we can simply take G = H ∗ Z, where H is finitely generated, residually finite,
but not conjugacy separable. It is easy to show that G will also be finitely generated,
residually finite, but not conjugacy separable.

Our approach is different and is based on the following observation. Let Autfn(G)
denote the group of automorphisms of G that stabilize every normal subgroup of finite
index (setwise). Then Aut(G)/Autfn(G) is residually finite for every finitely generated
group G. The following result plays the crucial role in the proof of Theorem 1.5. It
also seems to be of independent interest. Its proof essentially uses the fact that free
products are hyperbolic relative to their free factors, which allows us to employ the
techniques developed in the proof of Theorem 1.1.

Theorem 1.6. Suppose that G = A ∗B, where A,B are non-trivial residually finite
groups. Then Autfn(G) = Inn(G).

Acknowledgments. We are grateful to A. Klyachko and V. Yedynak for useful
discussions, and to the anonymous referee for his comments.

2. Preliminaries

Notation. Given a group G generated by a subset S ⊆ G, we denote by Γ(G, S) the
Cayley graph of G with respect to S and by |g|S the word length of an element g ∈ G.
If p is a (combinatorial) path in Γ(G, S), Lab(p) denotes its label, L(p) denotes its
length, p− and p+ denote its starting and ending vertex. The notation p−1 will be
used for the path in Γ(G, S) obtained by traversing p backwards. By saying that
o = p1 . . . pk is a cycle in Γ(G, S) we will mean that o is obtained as a consecutive
concatenation of paths p1, . . . pk such that (pi+1)− = (pi)+ for i = 1, . . . , k − 1 and
(pk)+ = (p1)−.

For a word W written in the alphabet S, ‖W‖ will denote its length. For two
words U and V we shall write U ≡ V to denote the letter-by-letter equality between
them. The normal closure of a subset K ⊆ G in a group G (i.e., the minimal normal

subgroup of G containing K) is denoted by 〈〈K〉〉G, or simply by 〈〈K〉〉 if omitting
G does not lead to a confusion. For any group elements g and t, gt denotes t−1gt.
If A ⊆ G then At = {at | a ∈ A}. For a subgroup H ≤ G, NG(H) denotes the
normalizer of a H in G. That is, NG(H) = {g ∈ G | gHg−1 = H}. Similarly by
CG(H) we denote the centralizer of H in G, that is,

CG(H) = {g ∈ G | gh = hg, ∀h ∈ H}.

Finally for two subsets A,B of G, their product is the subset AB = {ab | a ∈ A, b ∈
B}.

Relatively hyperbolic groups. In this paper we use the notion of relative hy-
perbolicity which is sometimes called strong relative hyperbolicity and goes back to
Gromov [16]. There are many equivalent definitions of (strongly) relatively hyperbolic
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groups [7, 11, 14, 33]. We recall the isoperimetric characterization suggested in [33],
which is most suitable for our purposes. That relative hyperbolicity in the sense of
[7, 14, 16] implies relative hyperbolicity in the sense of Definition 2.1 stated below is
essentially due to Rebbechi [35]. (Indeed it was proved in [35] under the additional
technical condition that the groups under consideration are finitely presented.) In
the full generality this implication and the converse one were proved in [33].

Let G be a group, {Hλ}λ∈Λ – a collection of proper subgroups of G, X – a subset
of G. We say that X is a relative generating set of G with respect to {Hλ}λ∈Λ if G is
generated by X together with the union of all Hλ. (In what follows we always assume
X to be symmetric.) In this situation the group G can be regarded as a quotient
group of the free product

(1) F = (∗λ∈ΛHλ) ∗ F (X),

where F (X) is the free group with the basis X . If the kernel of the natural homo-
morphism F → G is the normal closure of a subset R in the group F , we say that G
has relative presentation

(2) 〈X, Hλ, λ ∈ Λ | R〉.

If |X| < ∞ and |R| < ∞, the relative presentation (2) is said to be finite and the
group G is said to be finitely presented relative to the collection of subgroups {Hλ}λ∈Λ.

Set

(3) H =
⊔

λ∈Λ

(Hλ \ {1}).

Given a word W in the alphabet X ∪ H such that W represents 1 in G, there exists
an expression

(4) W
F
=

k∏

i=1

f−1
i R±1

i fi

with the equality in the group F , where Ri ∈ R and fi ∈ F for i = 1, . . . , k. The
smallest possible number k in a representation of the form (4) is called the relative
area of W and is denoted by Arearel(W ).

Definition 2.1 ([33]). A group G is hyperbolic relative to a collection of proper
subgroups {Hλ}λ∈Λ if G is finitely presented relative to {Hλ}λ∈Λ and there is a constant
C > 0 such that for any word W in X ∪ H representing the identity in G, we have

(5) Arearel(W ) ≤ C‖W‖.

The constant C in (5) is called an isoperimetric constant of the relative presentation
(2) and {Hλ}λ∈Λ is called the collection of peripheral (or parabolic) subgroups of G.
In particular, G is an ordinary (Gromov) hyperbolic group if G is hyperbolic relative
to the trivial subgroup. Later on by saying that a group G is relatively hyperbolic, we
will mean that there exists a collection of proper subgroups {Hλ ≤ G | λ ∈ Λ} such
that G is hyperbolic relative to {Hλ}λ∈Λ.
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This definition is independent of the choice of the finite generating set X and the
finite set R in (2) (see [33]).

Lemma 2.2 ([33], Thm. 1.4). Let G be a group hyperbolic relative to a collection of
subgroups {Hλ}λ∈Λ. Then the following conditions hold.

(1) For every λ, µ ∈ Λ, λ 6= µ, and every g ∈ G, we have |Hλ ∩H
g
µ| <∞.

(2) For every λ ∈ Λ and g ∈ G \Hλ, we have |Hλ ∩H
g
λ| <∞.

Components. Let G be a group hyperbolic relative to a family of proper subgroups
{Hλ}λ∈Λ. We recall some auxiliary terminology introduced in [33], which plays an
important role in our paper.

Definition 2.3. Let q be a path in the Cayley graph Γ(G,X ∪ H). A (non-trivial)
subpath p of q is called an Hλ-component (or simply a component), if the label of p
is a word in the alphabet Hλ \ {1} and p is not contained in a longer subpath of q
with this property. Two Hλ-components p1, p2 of a path q in Γ(G,X ∪H) are called
connected if there exists a path c in Γ(G,X ∪ H) that connects some vertex of p1
to some vertex of p2, and Lab(c) is a word consisting of letters from Hλ \ {1}. In
algebraic terms this means that all vertices of p1 and p2 belong to the same coset gHλ

for a certain g ∈ G. Note that we can always assume that c has length at most 1, as
every non-trivial element of Hλ \ {1} is included in the set of generators.

Loxodromic elements and elementary subgroups. Recall that an element g ∈ G
is called parabolic if it is conjugate to an element of one of the subgroups Hλ, λ ∈ Λ.
An element is said to be loxodromic if it is not parabolic and has infinite order. If H
is a subgroup of G, by H0 ⊂ H we will denote the set of all elements of H that are
loxodromic in G.

Recall also that a group is elementary if it contains a cyclic subgroup of finite index.
The next result was obtained in [31]. The first part of the lemma is well known in
the context of convergence groups [43]. In particular, it follows from [43] and [44] in
case G is finitely generated. (The latter assumption is only essential for [44].)

Lemma 2.4. Suppose a group G is hyperbolic relative to a collection of subgroups
{Hλ}λ∈Λ. Let g be a loxodromic element of G. Then the following conditions hold.

(a) There is a unique maximal elementary subgroup EG(g) ≤ G containing g.
(b) EG(g) = {h ∈ G | ∃m ∈ N such that h−1gmh = g±m}.
(c) The group G is hyperbolic relative to the collection {Hλ}λ∈Λ ∪ {EG(g)}.

For finitely generated relatively hyperbolic groups, a lemma similar to Lemma 2.4
(c) was also stated in [10]. Namely it was claimed that if G is a (finitely generated)
relatively hyperbolic group and Z is an infinite cyclic subgroup of G such that Z
coincides with its normalizer, then Z can be joined to the collection of peripheral
subgroups of G [10, Lemma 4.4]. We note that this is wrong even in case G is an
ordinary hyperbolic group.
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The simplest counterexample is given by the group

G = 〈z, c | c3 = 1, zcz−1 = c2〉

and the subgroup Z = 〈z〉. Obviously G splits as 1 → C → G → Z → 1, where
C = 〈c〉 ∼= Z/3Z. In particular G is hyperbolic (or, equivalently, hyperbolic relative
to the trivial subgroup). It is straightforward to check that Z coincides with its own
normalizer in G. Indeed every element g ∈ G has the form zkcm, where k ∈ Z and
m ∈ {0, 1, 2}. If m = 1, we have

g−1zg = (c−1z−k)z(zkc) = c−1zc = c−1(zcz−1)z = c−1c2z = cz /∈ Z.

Similarly g−1zg /∈ Z if m = 2. On the other hand, G is not hyperbolic relative to
Z. Indeed c−1z2c = z2 and hence Z ∩ c−1Zc is infinite. This contradicts part (b) of
Lemma 2.2. Similarly for every (finitely generated) group H , the free product G ∗H
is hyperbolic relative to H , and the subgroup Z provides a counterexample. Note
that EG(z) = EG∗H(z) = G, so applying Lemma 2.4 (c) yields the correct result.

Finite normal subgroups. The following result was proved in [3, Lemma 3.3].

Lemma 2.5. Let H be a non-elementary subgroup of a relatively hyperbolic group

G. Suppose that H0 6= ∅. Then the subgroup EG(H) =
⋂

h∈H0

EG(h) is the (unique)

maximal finite subgroup of G normalized by H.

Corollary 2.6. Let G be a relatively hyperbolic group. Then G possesses a unique
maximal finite normal subgroup E(G).

Proof. If G is finite then the statement is trivial. If G contains an infinite normal
cyclic subgroup C of finite index, then denote by K the union of all finite normal
subgroups of G. It is easy to see that K is a torsion normal subgroup of G (because
a product of two finite normal subgroups is itself a finite normal subgroup). Since
K ∩ C = {1}, K injects into the finite quotient G/C, hence K is finite.

Finally, if G is non-elementary, then G0 6= ∅ by [31, Cor. 4.5] (if G is finitely
generated, this also follows from [43] and [44]). It remains to apply Lemma 2.5 to the
case G = H . �

3. Special elements in relatively hyperbolic groups

Let G be a relatively hyperbolic group and let H be a non-elementary subgroup of
G containing at least one loxodromic element.

Definition 3.1. We say that an element h ∈ H is H-special if h is loxodromic in
G and EG(h) = 〈h〉 × EG(H). The set of all H-special elements will be denoted by
SG(H).

Note that, by definition, any g ∈ SG(H) belongs to the centralizer CH(EG(H)).
The result below was obtained in [3, Lemma 3.8].
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Lemma 3.2. If G is a relatively hyperbolic group and H ≤ G is a non-elementary
subgroup such that H0 6= ∅, then SG(H) is non-empty.

Special elements play a significant role in our approach to study automorphisms
of relatively hyperbolic groups. They represent a useful tool that helps to deal with
the technical problems which may arise when the group under consideration contains
torsion. The main goal of this section is to prove the following important statement:

Proposition 3.3. Suppose that G is a relatively hyperbolic group and H ≤ G is a
non-elementary subgroup with H0 6= ∅. Then CH(EG(H)) is generated by the set
SG(H). In particular, 〈SG(H)〉 has finite index in H.

Observe that the statement after ‘in particular’ follows from the fact that the
centralizer of a finite subgroup of G, normalized by H , necessarily has finite index in
H .

We begin with some auxiliary results. Let G be a group hyperbolic relative to a
family of proper subgroups {Hλ}λ∈Λ. If G is infinite, it always contains a loxodromic
element [31, Corollary 4.5]. The next lemma provides us with a tool for constructing
such elements. It was proved in [31, Lemma 4.4].

Lemma 3.4. Let G be a group hyperbolic relative to a collection of subgroups
{Hλ}λ∈Λ. For any λ ∈ Λ and a ∈ G \ Hλ, there exists a finite subset F ⊆ Hλ

such that if h ∈ Hλ \ F , then ah is loxodromic.

Suppose that Ξ is a finite subset of G. Define W(Ξ) to be the set of all words W
over the alphabet X ∪ H that have the following form:

W ≡ x0h0x1h1 . . . xlhlxl+1,

where l ∈ Z, l ≥ −2 (if l = −2 then W is the empty word; if l = −1 then W ≡ x0),
hi and xi are considered as single letters and

1) xi ∈ X ∪ {1}, i = 0, . . . , l + 1, and for each i = 0, . . . , l, there exists λ(i) ∈ Λ
such that hi ∈ Hλ(i);

2) if λ(i) = λ(i+ 1) then xi+1 /∈ Hλ(i) for each i = 0, . . . , l − 1;
3) hi /∈ Ξ, i = 0, . . . , l.

The statement below was proved in [27, Lemmas 6.3, 6.5].

Lemma 3.5. There is a finite subset Ξ of G such that the following holds. Suppose
that o = rqr′q′ is a cycle in Γ(G,X ∪ H) with Lab(q),Lab(q′) ∈ W(Ξ). Set C =
max{L(r),L(r′)}.

(a) If l is the number of components of q, then at least (l− 6C) of components of
q are connected to components of q′; and two distinct components of q cannot
be connected to the same component of q′. Similarly for q′.

(b) For any d ∈ N there exists a constant L = L(C, d) ∈ N such that if L(q) ≥ L
then there are d consecutive components ps, . . . , ps+d−1 of q and p

′

s′, . . . , p
′

s′+d−1

of q′−1, so that ps+i is connected to p′s′+i for each i = 0, . . . , d− 1.



10 A. MINASYAN AND D. OSIN

Proposition 3.3 is an easy consequence of Lemma 3.6 below. In the case when G is
an ordinary word hyperbolic group it was proved in [28, Lemma 4.3].

Lemma 3.6. Suppose that g ∈ SG(H) and x ∈ CH(EG(H)) \ EG(g). Then there
exists N1 ∈ N such that gnx ∈ SG(H) for any n ∈ Z with |n| ≥ N1.

Proof. By part (3) of Lemma 2.4, G is hyperbolic relative to the collection of sub-
groups {Hλ}λ∈Λ ∪{EG(g)}. Denote H′ = (∪λ∈ΛHλ ∪ EG(g)) \ {1} ⊂ G. After adding
x and x−1 to the finite relative generating set of G, if necessary, we can assume that
x±1 ∈ X . Let F and Ξ be the finite subsets of G given by Lemmas 3.4 and 3.5
respectively. Since g has infinite order, there exists N1 ∈ N such that gn /∈ F ∪ Ξ for
any n ∈ Z with |n| ≥ N1.

Choose an arbitrary n ∈ Z such that |n| ≥ N1. By Lemma 3.4, the element
gnx = (xgn)x is loxodromic in G. Suppose that y ∈ EG(g

nx). By part (2) of Lemma
2.4, there are m ∈ N and ǫ ∈ {−1, 1} such that

(6) y(gnx)my−1 = (gnx)ǫm.

Let V be the letter from H′ representing gn in G, let W be the letter from X
representing x, and let U be the shortest word over the alphabet X ∪H′ representing
y. Set C = ‖U‖ and d = 1. Now we apply Lemma 3.5.(b) to find the constant
L = L(C, d) from its claim. Evidently we can assume that the number m from
equation (6) is larger than L.

Consider a cycle o = rqr′q′ in Γ(G,X ∪H′) where Lab(r) ≡ U , Lab(q) ≡ (VW )m,
Lab(r′) ≡ U−1, Lab(q′) ≡ (VW )−ǫm. By construction, the cycle o satisfies the
assumptions of Lemma 3.5.(b), hence some components p of q and p′ of q′−1 must be
connected in Γ(G,X ∪ H′). That is, there is a path s with s− = p+, s+ = p′+ and
z = Lab(s) ∈ EG(g) (see Figure 1). Note that Lab(p) ≡ V , Lab(p′) ≡ V ǫ.

q′p′

s

(gnx)ǫm

q1

q′1

q

y

1

r

p

y(gnx)m

r′

Figure 1.

Let q1 be the subpath of q starting at r+ = q− and ending at p+ = s−; let q
′
1 be

the subpath of q′ starting at s+ = p′+ and ending at q′+ = r−. Considering the cycle
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o1 = rq1sq
′
1 in the case when ǫ = −1 we get the following equality in G:

(gnx)ξy(gnx)ζ = z−1g−n ∈ EG(g
nx) ∩ EG(g) for some ξ, ζ ∈ Z.

Similarly, in the case when ǫ = 1, we get

(gnx)ξy(gnx)ζ = gnz−1g−n ∈ EG(g
nx) ∩ EG(g) for some ξ, ζ ∈ Z.

Observe that by Lemma 2.4, the group G is hyperbolic relatively to {Hλ}λ∈Λ ∪
{EG(g), EG(g

nx)}, hence, by Lemma 2.2, the intersection EG(g
nx) ∩ EG(g) is fi-

nite. Since g is H-special, any finite subgroup of EG(g) is contained in EG(H).
Therefore EG(g

nx) ∩ EG(g) ⊂ EG(H). Thus, whatever ǫ ∈ {−1, 1} is, we al-
ways have (gnx)ξy(gnx)ζ = h ∈ EG(H), implying that y = (gnx)−ξ−ζh because
g, x ∈ CH(EG(H)). By part (2) of Lemma 2.4, 〈gnx〉 and EG(H) are both contained
in EG(g

nx); consequently EG(g
nx) = 〈gnx〉 ×EG(H). �

Proof of Proposition 3.3. By Lemma 3.2 we can find an element g ∈ SG(H). Note
that for any x ∈ Z = EG(H) ∩ CH(EG(H)), the element gx is also H-special. Since
x = g−1(gx), we have Z ⊂ 〈SG(H)〉. It is easy to see that EG(g) ∩ CH(EG(H)) =
〈g〉 × Z, hence EG(g) ∩ CH(EG(H)) ⊂ 〈SG(H)〉. Now, if x ∈ CH(EG(H)) \ EG(g),
then by Lemma 3.6, gnx ∈ SG(H) for some n ∈ N. Consequently, x = g−n(gnx) ∈
〈SG(H)〉. �

4. Technical lemmas

Our main goal here is to prove several auxiliary lemmas, which will be used in
the next section to give an algebraic description of automorphisms preserving com-
mensurability classes of elements in relatively hyperbolic groups. We begin with a
definition.

Definition 4.1. Let G be a group. Two elements x, y ∈ G, are said to be commensu-
rable if there are z ∈ G, m,n ∈ Z \ {0} such that yn = zxmz−1 in G. If the elements

x and y are commensurable in G, we will write x
G
≈ y; otherwise, we will write x

G

6≈ y.

Remark 4.2. Obviously any two elements of finite order are commensurable. Further,
if g and h are commensurable elements of a relatively hyperbolic group G and g is
loxodromic, then h is loxodromic too. Indeed, evidently h has infinite order. Suppose

that h is parabolic. Since g
G
≈ h, there are λ ∈ Λ, a ∈ G and m ∈ N such that

a−1gma ∈ Hλ. Since g is loxodromic, x = ga /∈ Hλ and the intersection Hx ∩ H
contains an infinite order element xm. The latter contradicts claim (2) of Lemma 2.2.

Throughout the rest of this section, G will denote a group hyperbolic relative to a
collection of peripheral subgroups {Hλ}λ∈Λ, and H ≤ G will denote a non-elementary
subgroup with H0 6= ∅.

Lemma 4.3. Let g ∈ G be a loxodromic element and x ∈ G \ EG(g). For any finite
subset Y of G there is N2 ∈ N such that gnx is loxodromic and is not commensurable
with any y ∈ Y whenever |n| ≥ N2.
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Proof. In view of Lemma 2.4.(3), we can assume that EG(g) belongs to the family of
peripheral subgroups {Hλ}λ∈Λ of G and each infinite order element y ∈ Y is parabolic.

Now we can apply Lemma 3.4, to find N2 ∈ N such that for any n ∈ Z with
|n| ≥ N2, the element xgn is loxodromic. Therefore, so is h = gnx = x−1(xgn)x.
Suppose that h is commensurable with some y ∈ Y . Then y must also be loxodromic
(by Remark 4.2), which contradicts our assumption above. �

Lemma 4.4. Let {g1, . . . , gl}, l ≥ 2, be a finite set of pairwise non-commensurable
loxodromic elements in a relatively hyperbolic group G. For any finite subset F ⊂ G
there exists N3 ∈ N such that for any permutation σ of {1, 2, . . . , l} and arbitrary
elements hi ∈ EG(gσ(i)), i = 1, 2, . . . , l, of infinite order, the following hold.

(i) The element g = gm1

1 f1g
m2

2 f2 . . . g
ml

l fl is loxodromic for any fi ∈ F and mi ∈ Z

with |mi| ≥ N3, i = 1, 2, . . . , l.

(ii) Suppose that (gm1

1 gm2

2 . . . gml

l )ζ is conjugate to (hn1

1 f1h
n2

2 f2 . . . h
nl

l fl)
η in G, for

some fi ∈ F , ζ, η ∈ N, mi, ni ∈ Z, |mi| ≥ N3, |ni| ≥ N3 for all i = 1, 2, . . . , l.
Then ζ = η, there is k ∈ {0, 1, . . . , l−1} such that σ is a cyclic shift by k, that
is σ(i) ≡ i+k (mod l) for all i ∈ {1, 2, . . . , l}, and fj ∈ EG

(
gσ(j)

)
EG

(
gσ(j+1)

)

when j = 1, 2, . . . , l − 1, fl ∈ EG

(
gσ(l)

)
EG

(
gσ(1)

)
.

Proof. By Lemma 2.4 and because gi
G

6≈ gj when i 6= j, G is hyperbolic relative to
the extended collection of subgroups {Hλ}λ∈Λ ∪ {EG(gi)}

l
i=1. Also, the finite relative

generating set X can be replaced by the bigger finite set X ′ = X ∪F ∪F−1 retaining
the relative hyperbolicity of G. Denote H′ =

(
∪λ∈ΛHλ ∪ ∪l

i=1EG(gi)
)
\ {1} ⊂ G. Let

Ξ be the finite subset of G given by Lemma 3.5.

Take any i ∈ {1, . . . , l}. By part (1) of Lemma 2.4, we have |EG(gi) : 〈gi〉| < ∞,
hence any infinite order element h ∈ EG(gi) belongs to the elementary subgroup

E+
G(gi) = {x ∈ G | ∃ m ∈ N such that x−1gmi x = gmi } ≤ EG(gi).

Clearly, the center of E+
G(Gi) has finite index in it, hence all finite order elements of

E+
G(gi) form the maximal torsion subgroup T ⊳ E+

G(gi). Let α : E+
G(gi) → E+

G(gi)/T
be the natural epimorphism. The image α(E+

G(gi)) is infinite cyclic (because it is
virtually cyclic and torsion-free), therefore there exists Ki ∈ N such that for every
non-trivial element y ∈ α(E+

G(gi)), one has yn /∈ Si whenever |n| ≥ Ki, where Si =
α(E+

G(gi) ∩ Ξ) is a finite subset of α(E+
G(gi)). Set N3 = max{Ki | i = 1, . . . , l}. By

construction, for every i and each infinite order element h ∈ EG(gi), we have hn /∈ Ξ
whenever |n| ≥ N3.

Choose any elements fi ∈ F and integers mi with |mi| ≥ N3, i = 1, . . . , l. Let
Vi and Wi be the letters from H′ and from X ′ representing the elements gmi

i and fi,
i = 1, . . . , l, respectively.

Proving claim (i) by contradiction, suppose that the element g is not loxodromic.

If g has finite order t ∈ N, then set C = 0, d = 1 and choose L = L(C, d) according
to Lemma 3.5.(b). In the Cayley graph Γ(G,X ′ ∪ H′) consider the cycle o = rqr′q′,
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where Lab(q) ≡ (V1W1V2W2 . . . VlWl)
Lt, and r, r′ and q′ are trivial paths consisting

of single vertex q− = q+ = 1. Since L(q) ≥ Lt ≥ L, it follows from Lemma 3.5.(b)
that some component of q must be connected to a component of q′−1. But q′−1 has
no components at all. A contradiction.

Therefore g must have infinite order and must be parabolic, i.e., g = aha−1 for
some h ∈ H′ and a ∈ G. Let C = |a|X′∪H′, d = 2 and L = L(C, d) be given by
Lemma 3.5.(b). Since h has infinite order (as a conjugate of g), there is n ∈ N such
that n ≥ L and hn /∈ Ξ. Choose a shortest word A over X ′ ∪H′ representing a in G,
and let U be the letter from H′ corresponding to hn. Consider a cycle o = rqr′q′ in
Γ(G,X ′ ∪H′) such that Lab(r) ≡ A, q− = r+, Lab(q) ≡ (V1W1V2W2 . . . VlWl)

n, r′− =
q+, Lab(r

′) ≡ A−1, q′− = r′+, Lab(q
′) ≡ U−1. Since L(r) = L(r′) = C, L(q) ≥ n ≥ L,

we can apply Lemma 3.5.(b) to o, claiming that two distinct components of q must
be connected to two distinct components of q′−1. But q′−1 has only one component
by definition. This contradiction concludes the proof of claim (i).

To establish claim (ii), assume that b (gm1

1 gm2

2 . . . gml

l )ζ b−1 = (hn1

1 f1h
n2

2 f2 . . . h
nl

l fl)
η

in G, for some infinite order elements hi ∈ EG(gσ(i)), b ∈ G, ζ, η ∈ N, mi, ni ∈ Z,
|mi| ≥ N3, |ni| ≥ N3 for i = 1, 2, . . . , l. Then for every κ ∈ N we have

(7) b (gm1

1 gm2

2 . . . gml

l )κζ b−1 = (hn1

1 f1h
n2

2 f2 . . . h
nl

l fl)
κη .

Let Vi and Wi be as before. Choose a letter Ui from H′ corresponding to hni

i , i =
1, . . . , l, and a shortest word B over X ′∪H′ representing b in G. Set C = ‖B‖, d = 2l
and let L = L(C, d) ∈ N be the constant given by Lemma 3.5.(b). Take κ ∈ N so
that κζl ≥ L and κl > 6C.

In the Cayley graph Γ(G,X ′ ∪ H′) equation (7) gives rise to a cycle o = rqr′q′,
in which Lab(r) ≡ B, q− = r+, Lab(q) ≡ (V1V2 . . . Vl)

κζ, r′− = q+, Lab(r
′) ≡ B−1,

q′− = r′+, Lab(q
′) ≡ (U1W1U2W2 . . . UlWl)

−κη.

By construction, the paths q and q′ have exactly κζl and κηl components respec-
tively. Suppose that ζ > η. By Lemma 3.5.(a), at least κζl − 6C > κl(ζ − 1) ≥ κlη
components of q must be connected to components of q′, hence two distinct compo-
nents of q will have to be connected to the same component of q′, contradicting Lemma
3.5.(a). Hence ζ ≤ η. A symmetric argument shows that η ≤ ζ . Consequently ζ = η.

Since L(q) = κζl ≥ L, we can apply Lemma 3.5.(b) to find 2l consecutive compo-
nents of q that are connected to 2l consecutive components of q′−1. Therefore there
are consecutive components p1, . . . , pl+1 of q and p′1, . . . , p

′

l+1 of q′−1 such that pj is
connected to p′j for each j, and Lab(pi) ≡ Vi for i = 1, . . . , l, Lab(pl+1) ≡ V1 (Figure
2). Therefore Lab(p′i) ∈ EG(gi), i = 1, . . . , l, Lab(p′l+1) ∈ EG(g1). From the form of
Lab(q′−1) it follows that there is k ∈ {0, 1, . . . , l − 1} such that Lab(p′j) ≡ Uj+k for

j = 1, . . . , l + 1 (indices at U are taken modulo l). Thus Uj+k = h
nj+k

j+k ∈ EG(gj).

On the other hand, h
nj+k

j+k ∈ EG(gσ(j+k)) has infinite order. Hence the intersection
EG(gj)∩EG(gσ(j+k)) must be infinite, which yields (by Lemma 2.2) that σ(j+k) = j
for all j. Therefore σ is a cyclic shift (by l − k) of {1, . . . , l}.
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r′r

p2 p3
p4

q′

w2

p′4
p′2

s1 s3 t3t2t1 s2

w1

p′3
w3

p′1

p1

q

Figure 2.

The subpath wi of q
′−1 between (p′i)+ and (p′i+1)− is labelled by Wσ−1(i). As we

showed, the vertex (pi)+ = (pi+1)− is connected to (wi)− by a path si with Lab(si) ∈
EG(gi), and to (wi)+ by a path ti with Lab(ti) ∈ EG(gi+1), i = 1, . . . , l (here we
use the convention that gl+1 = g1). Considering the cycle t−1

i siwi we achieve the
desired inclusion: fσ−1(i) = Lab(wi) ∈ EG(gi)EG(gi+1), i = 1, . . . , l. This concludes
the proof. �

Lemma 4.5. Suppose that ϕ : H → G is a homomorphism such that ϕ(h)
G
≈ h for

all h ∈ H0. Then for any g1, g2, g3 ∈ H0, satisfying gi
G

6≈ gj for i 6= j, there exists
N4 ∈ N such that for arbitrary n1, n2, n3 ∈ Z, with |ni| ≥ N4, i = 1, 2, 3, and for
g = gn1

1 g
n2

2 g
n3

3 , one has g ∈ H0 and (ϕ(g))ζ = egζe−1, for some e ∈ G and ζ ∈ N.

Proof. According to the assumptions, there exist xi ∈ G and ζi, ηi ∈ Z\{0} such that

(ϕ(gi))
ζi = xig

ηi
i x

−1
i , i = 1, 2, 3. Denote hi = x−1

i ϕ(gi)xi, i = 1, 2, 3. Then hζi = gηi ,
hence hi ∈ EG(gi) (by part (2) of Lemma 2.4) and hi has infinite order, i = 1, 2, 3.

Set f1 = x−1
1 x2, f2 = x−1

2 x3 and f3 = x−1
3 x1, and let N4 ∈ N be the number N3

from the claim of Lemma 4.4 applied to the set of loxodromic elements {g1, g2, g3}
and the finite set F = {f1, f2, f3}. Take any ni ∈ Z with |ni| ≥ N4, i = 1, 2, 3. By
part (i) of Lemma 4.4, g = gn1

1 g
n2

2 g
n3

3 ∈ H0. Hence there are ζ, η ∈ Z \ {0} and e ∈ G
such that egζe−1 = (ϕ(g))η. Since ϕ is a homomorphism, we get

e(gn1

1 g
n2

2 g
n3

3 )ζe−1 = (ϕ(g))η = (x1h
n1

1 x
−1
1 x2h

n2

2 x
−1
2 x3h

n3

3 x
−1
3 )η, hence

(8) (x−1
1 e)(gn1

1 g
n2

2 g
n3

3 )ζ(x−1
1 e)−1 = (hn1

1 f1h
n2

2 f2h
n3

3 f3)
η.

Without loss of generality we can assume that ζ > 0. Suppose that η < 0. Then
(g−n3

3 g−n2

2 g−n1

1 )ζ is conjugate to (hn1

1 f1h
n2

2 f2h
n3

3 f3)
−η in G and −η > 0. Applying

part (ii) of Lemma 4.4 to this situation, we get a contradiction with the fact that
the transposition (1, 3) is not a cyclic shift of {1, 2, 3}. Therefore, η > 0 and we can
apply part (ii) of Lemma 4.4 to (8), achieving the required equality ζ = η. �
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Lemma 4.6. Let a, b ∈ G be non-commensurable loxodromic elements and let y, z ∈

G. There exists N5 ∈ N such that the following holds. Suppose that ak
′

ybl
′

z
G
≈ akbl

for some integers k, l, k′, l′ with |k|, |l|, |k′|, |l′| ≥ N5. Then y ∈ EG(a)EG(b) and
z ∈ EG(b)EG(a).

Proof. Choose N5 ∈ N to be the number N3 arising after an application of Lemma
4.4 to {a, b} and F = {y, z}. Choose any k, l, k′, l′ ∈ Z satisfying |k|, |l|, |k′|, |l′| ≥ N5.

Assume that there is e ∈ G, ζ ∈ N and η ∈ Z \ {0} for which e
(
akbl

)ζ
e−1 =(

ak
′

ybl
′

z
)η
. If η > 0 then the statement immediately follows from part (ii) of Lemma

4.4. So, suppose that η < 0. Then −η > 0 and
(
b−la−k

)ζ
is conjugate to

(
ak

′

ybl
′

z
)−η

in G. Again, by part (ii) of Lemma 4.4, y ∈ EG(a)EG(b), z ∈ EG(b)EG(a). �

Lemma 4.7. Assume that g ∈ SG(H) and ψ : H → G is a homomorphism satisfying
ψ(gn) = gnz for some n ∈ N and z ∈ EG(H). Then there is f ∈ EG(H) such that
ψ(g) = gf .

Proof. After replacing n with n′ = n|EG(H)|, we can further assume that z = 1,
because ψ(gn

′

) = gn
′

zn
′

= gn
′

.

Now, note that ψ(g)gn(ψ(g))−1 = ψ(gn) = gn, hence ψ(g) ∈ EG(g) by part (2) of
Lemma 2.4. Since g is H-special, there is k ∈ Z and f ∈ EG(H) such that ψ(g) = gkf .
Denote l = |EG(H)|. Then gln = ψ(gln) = (gkf)ln = glnkf ln = glnk, implying that
k = 1, as required. �

Lemma 4.8. Suppose that for an automorphism α ∈ Aut(H) there is g ∈ H0 satis-

fying g
G

6≈ α(g). Then there exists an element a ∈ H such that both a and α(a) are

loxodromic in G and a
G

6≈ α(a).

Proof. If α(g) ∈ H0, there is nothing to prove. Thus, we can assume that α(g) is
parabolic in G, i.e., there exists a peripheral subgroup Hλ and elements t ∈ G, h ∈ Hλ

such that α(g) = ht. Denote x = α−1(g) ∈ H . If x ∈ EG(g), then 〈g〉x∩〈g〉 is infinite

(by Lemma 2.4.(b)), hence 〈α(g)〉α(x)∩〈α(g)〉 is infinite. Thus H
(tgt−1)
λ ∩Hλ is infinite,

which implies, by Lemma 2.2, that tgt−1 ∈ Hλ, contradicting the loxodromicity of g.

Therefore x /∈ EG(g). Since both g and α(g) have infinite order and y = tgt−1 ∈
G \Hλ, we can apply Lemmas 4.3 and 3.4 to find N ∈ N such that for any integer
n ≥ N , the elements gnx and hny are loxodromic in G. Note that α(gnx) = (hny)t.

Suppose, first, that

(9) gnx
G
≈ α(gnx) for every n ≥ N.

By Lemma 2.4, G is hyperbolic relative to {Hλ}λ∈Λ ∪ {EG(g)}. Without loss of
generality, we can also assume that x and y belong to the finite relative generating
set X of G. Let Ξ ⊂ G be the finite set from Lemma 3.5. Evidently there is an
integer n ≥ N such that gn, hn /∈ Ξ. Our assumption (9) implies that there is b ∈ G,
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k, l ∈ Z \ {0} such that b(gnx)kb−1 = (hny)l. Choose a word B in the alphabet
X ∪ H′ representing b in G, where H′ = (∪λ∈ΛHλ ∪ EG(g)) \ {1}, and let W,Y ∈ X ,
U ∈ EG(g), V ∈ Hλ be the letters corresponding to x, y, gn, hn respectively. Set
d = 1, C = ‖B‖ and let L = L(C, d) be the constant provided by part (b) of Lemma
3.5. Without loss of generality we can assume that |k|, |l| ≥ L.

Consider a cycle o = rqr′q′ in the Cayley graph Γ(G,X ∪ H′), where Lab(r) ≡ B,
r+ = q−, Lab(q) ≡ (UW )k, q+ = r′−, Lab(r

′) ≡ B−1, q′− = r′+ and Lab(q′) ≡ (V Y )−l.
It is easy to see that o satisfies all the conditions of Lemma 3.5, hence some component
of q must be connected to a component of q′−1 in Γ(G,X ∪ H′). However, according
to the construction, q has only EG(g)-components, and q′−1 has only Hλ-components.
Thus the assumption (9) yields a contradiction. Hence, there exists n ≥ N such that

for the element a = gnx we have a ∈ H0, α(a) ∈ H0 and a
G

6≈ α(a). �

5. Commensurating automorphisms of relatively hyperbolic groups

The purpose of this section is to study automorphisms of relatively hyperbolic
groups preserving commensurability classes.

Recall that NG(H) denotes the normalizer of a subgroup H in a group G. Further,
let H be a non-elementary subgroup of a relatively hyperbolic group G such that

H0 6= ∅. We denote by Ĥ the product HEG(H). This is clearly a subgroup of G.

Theorem 5.1. Let G be a relatively hyperbolic group, let H ≤ G be a non-elementary

subgroup and let ϕ ∈ Aut(H). Suppose that H0 6= ∅ and ϕ(h)
G
≈ h for every h ∈ H0.

Then there is a set map ε : H → EG(H), whose restriction to CH(EG(H)) is a

homomorphism, and an element w ∈ NG(Ĥ) such that for every h ∈ H, ϕ(h) =
w (hε(h))w−1.

Below is them main technical lemma of this section. It demonstrates how to con-
struct the element w and the restriction of the map ε to CH(EG(H)) from the state-
ment of Theorem 5.1.

Lemma 5.2. Suppose that G is a relatively hyperbolic group, H ≤ G is a non-

elementary subgroup and ϕ ∈ Aut(H). Assume that H0 6= ∅ and ϕ(h)
G
≈ h for every

h ∈ H0. Then there is a homomorphism ε̃ : CH (EG(H)) → EG(H) and an element
w ∈ G such that for every x ∈ CH(EG(H)), ϕ(x) = w (xε̃(x))w−1.

Proof. By Lemma 3.2, H contains anH-special element g1. SinceH is non-elementary
and CH(EG(H)) has finite index in it, CH(EG(H)) is also non-elementary. The
subgroup EG(g1) is elementary (by part (1) of Lemma 2.4), thus there is an el-
ement y ∈ CH(EG(H)) \ EG(g1). By Lemma 4.3, there is k2 ∈ N such that

g2 = gk21 y ∈ CH(EG(H)) is loxodromic and g2
G

6≈ g1. Using the same lemma again we

can find k3 ∈ N such that g3 = gk31 y ∈ CH(EG(H)) is loxodromic and g3
G

6≈ gi, i = 1, 2.
In particular, EG(g2) ∩ 〈g3〉 = {1}.
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Choose N4 ∈ N according to an application of Lemma 4.5 to ϕ, g1, g2, g3, and let
n3 = N4. By Lemma 4.3, there is n2 ≥ N4 such that gn2

2 g
n3

3 ∈ H0 is not commen-
surable with g1 in G. Therefore gn2

2 g
n3

3 ∈ CH(EG(H)) \ EG(g1), and by Lemma 3.6
there is N1 ∈ N such that the element gn1 g

n2

2 g
n3

3 is H-special for any n ≥ N1. De-
note n1 = max{N1, N4} and apply Lemma 4.3 to find m ∈ N such that the elements
a = gn1

1 g
n2

2 g
n3

3 and b = gn1+m
1 gn2

2 g
n3

3 are not commensurable with each other in G.
In view of Lemma 4.5 one can conclude that the elements a, b ∈ CH(EG(H)) are H-
special and there exist u, v ∈ G, µ, ν ∈ N such that ϕ(aµ) = uaµu−1, ϕ(bν) = vbνv−1.

Let χ : H → G be the monomorphism, defined by χ(h) = u−1ϕ(h)u for all h ∈ H .

Then χ(aµ) = aµ, χ(bν) = (u−1v)bν(u−1v)−1. Note that χ(h)
G
≈ h for every h ∈ H0.

By part (i) of Lemma 4.4, akµbkν ∈ H0 for every sufficiently large k ∈ N. Therefore

akµ(u−1v)bkν(u−1v)−1 = χ(akµbkν)
G
≈ akµbkν for every sufficiently large k ∈ N.

Consequently, by Lemma 4.6, u−1v ∈ EG(a)EG(b), thus u
−1v = asbtf for some s, t ∈

Z, f ∈ EG(H). Hence χ(bν) = asbνa−s because b ∈ CH(EG(H)). Denote w = uas ∈ G
and let ψ : H → G be the monomorphism defined by the formula ψ(h) = w−1ϕ(h)w =
a−sχ(h)as for all h ∈ H . By construction, we have

(10) ψ(aµ) = aµ, ψ(bν) = bν and ψ(h)
G
≈ h for each h ∈ H0.

Choose any element g ∈ SG(H). We will show that there is f ∈ EG(H) such that
ψ(g) = gf .

If g ∈ EG(a) then there is n ∈ N such that gn ∈ 〈aµ〉 because |EG(a) : 〈a
µ〉| < ∞.

Hence ψ(gn) = gn and by Lemma 4.7, ψ(g) = gf for some f ∈ EG(H).

Suppose, now, that g /∈ EG(a). Since g ∈ CH(EG(H)) and a is H-special, we
can use Lemmas 3.6 and 4.3 to find l ∈ N such that the element d = alµg is H-
special and is not commensurable with a and b in G. Arguing as in the beginning
of the proof (using Lemmas 3.6, 4.3 and 4.5) we can find m1, m2, m3 ∈ N such that

c = am1µbm2νdm3 ∈ SG(H), c
G

6≈ a, c
G

6≈ b and ψ(cζ) = ecζe−1 for some ζ ∈ N and
e ∈ G.

By part (i) of Lemma 4.4, akµckζ ∈ H0 for every sufficiently large k ∈ N. Hence

akµeckζe−1 = ψ
(
akµckζ

) G
≈ akµckζ whenever k is sufficiently large. Applying Lemma

4.6 we see that e ∈ EG(a)EG(c). As before, this implies that ψ(cζ) = apcζa−p for
some p ∈ Z.

Similarly, there is q ∈ Z such that ψ(cζ) = bqcζb−q. Hence (a−pbq)cζ(a−pbq)−1 = cζ ,
yielding that a−pbq ∈ EG(c).

Suppose that p 6= 0 and q 6= 0. Then the element a−pbq must have infinite order
(otherwise we would have a−pbq ∈ EG(H) since c is H-special, hence bq ∈ apEG(H) ⊂

EG(a) contradicting to a
G

6≈ b). This implies that (a−pbq)α = cβ for some α ∈ Z \ {0}
and β ∈ N. Recalling (10), we can apply Lemma 4.7 to find f1, f2 ∈ EG(H) such that
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ψ(a) = af1 and ψ(b) = bf2. Since a, b ∈ CH(EG(H)) we obtain

ψ(cβ) = ψ
(
(a−pbq)α

)
=

(
a−pbq

)α
f3 = cβf3 for some f3 ∈ EG(H).

Then for γ = βζ |EG(H)| we get cγ = ψ(cγ) = apcγa−p, implying that ap ∈ EG(c),

which contradicts to a
G

6≈ c.

Therefore either p = 0 or q = 0, thus ψ(cζ) = cζ . By Lemma 4.7, there is f5 ∈
EG(H) such that ψ(c) = cf5. Since c = am1µbm2νdm3 , we can use (10) to get ψ(dm3) =
dm3f5. Applying Lemma 4.7 again, we find f6 ∈ EG(H) such that ψ(d) = df6. Finally,
since d = alµg, in view of (10) we achieve ψ(g) = gf6, as needed.

To finish the proof, we observe that by Proposition 3.3, CH(EG(H)) is generated
by SG(H), therefore for each x ∈ CH(EG(H)) there is ε̃(x) ∈ EG(H) such that
ψ(x) = xε̃(x). Since ψ is a homomorphism, the map ε̃ : CH(EG(H)) → EG(H) will be
a homomorphism too. By construction, we have ϕ(x) = wψ(x)w−1 = wxε̃(x)w−1. �

Now we are ready to prove the main result of this section.

Proof of Theorem 5.1. Let w ∈ G and ε̃ : CH(EG(H)) → EG(H) be as in the claim of
Lemma 5.2. Let ψ : H → G be the monomorphism that is defined according to the
formula ψ(h) = w−1ϕ(h)w for all h ∈ H . Denote l = |H : CH(EG(H))|, m = |EG(H)|
and n = ml ∈ N.

Since CH(EG(H)) is a normal subgroup of H , for any z ∈ H we have zl ∈
CH(EG(H)) and ψ(zn) = znε̃(zl)m = zn. Fix an arbitrary h ∈ H . For any g ∈ H0

we see that gn, hgnh−1 ∈ CH(EG(H)) ∩H0, therefore ψ(h)gnψ(h)−1 = ψ(hgnh−1) =
hgnh−1, implying that h−1ψ(h) ∈ EG(g). Thus, h−1ψ(h) ∈

⋂
g∈H0 EG(g) = EG(H).

After defining ε(h) = h−1ψ(h) for each h ∈ H , one immediately sees that ε : H →
EG(H) is a map with the required properties. Obviously, the restriction of ε to
CH(EG(H)) coincides with ε̃.

It remains to prove that w ∈ NG(Ĥ). We will first show that w ∈ NG(EG(H)).
Consider any element f ∈ EG(H). Since ϕ is an automorphism of H , for any g ∈ H0

there is h ∈ H such that ϕ(h) = g. Then hn ∈ CH(EG(H)) and gn = ϕ(hn) = whnw−1

because ε(hn) = ε̃(hl)m = 1. Now we observe that

wfw−1gn(wfw−1)−1 = wfhnf−1w−1 = whnw−1 = gn.

Hence, wfw−1 ∈ EG(g) for every g ∈ H0; consequently wfw−1 ∈ EG(H). The
latter implies that wEG(H)w−1 ⊆ EG(H) and since EG(H) is finite, we conclude
that w ∈ NG(EG(H)).

Now, for any h ∈ H we have

whw−1 = whε(h)w−1wε(h)−1w−1 = ϕ(h)
(
wε(h)w−1

)−1
∈ HEG(H);

thus wHw−1 ⊆ Ĥ . Since w−1ϕ(h)w = hε(h) ∈ HEG(H) and ϕ ∈ Aut(H), one gets

w−1Hw ⊆ Ĥ. Therefore wĤw−1 ⊆ ĤwEG(H)w−1 = Ĥ, w−1Ĥw ⊆ Ĥw−1EG(H)w =

Ĥ , i.e., w ∈ NG(Ĥ). �
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We are now in a position to prove Corollary 1.4 mentioned in the Introduction. We
establish it in a more general form:

Corollary 5.3. Let G be a non-elementary relatively hyperbolic group and ϕ ∈
Aut(G). The following conditions are equivalent:

(a) ϕ is commensurating;

(b) ϕ(g)
G
≈ g for every loxodromic g ∈ G;

(c) there is a set map ε : G → E(G), whose restriction to C(G) is a homomor-
phism, and an element w ∈ G such that for every g ∈ G, ϕ(g) = w (gε(g))w−1.

In particular, if E(G) = {1}, then every commensurating automorphism of G is
inner.

Proof. (a) implies (b) by definition, and (b) implies (c) by Theorem 5.1. It remains
to show that (c) implies (a). Indeed, let g be an arbitrary element of G, and let
the automorphism ϕ satisfy (c). If g is of finite order, then so is ϕ(g), and in this

case evidently ϕ(g)
G
≈ g. Thus, we can suppose that g has infinite order in G. By

our assumptions, ϕ(g) = w(gε(g))w−1 for some w ∈ G and ε(g) ∈ E(G). Since
E(G) is finite and normal in G, 〈g〉 has finite index in the subgroup 〈g〉E(G). Hence
there exists a non-zero integer k such that (gε(g))k = gl for some l ∈ Z. And since
the order of gε(g) = w−1ϕ(g)w is infinite, we can conclude that l 6= 0. Therefore
ϕ(g) = wgε(g)w−1 is commensurable with g in G. Thus ϕ in commensurating. �

Recall that a result of Metaftsis and Sykiotis [26, Lemma 2.2′] states that for any
relatively hyperbolic group G, one has |Autc(G) : Inn(G)| <∞, where

Autc(G) = {α ∈ Aut(G) | ∀ g ∈ G ∃ x = x(g) ∈ G such that α(g) = xgx−1}

is the group of all pointwise inner automorphisms of G. Theorem 5.1 allows one to
generalize their result to all non-elementary subgroups:

Corollary 5.4. Suppose that H is a non-elementary subgroup of a relatively hy-
perbolic group G, with H0 6= ∅. Then |Autc(H) : Inn(H)| < ∞. If, in addition,
EG(H) = {1}, then Autc(H) = Inn(H).

Proof. By Theorem 5.1, for any automorphism ϕ ∈ Autc(H), there exist w ∈ G
and a map ε : H → EG(H) such that ϕ(h) = whε(h)w−1 for each h ∈ H . Take
any element h ∈ SG(H). Then h commutes with ε(h) ∈ EG(H), and, consequently,
(ϕ(h))n = whnw−1 where n = |EG(H)| ∈ N.

Now, since ϕ is a pointwise inner automorphism of H , there is x ∈ H such that
ϕ(h) = xhx−1. Hence xhnx−1 = whnw−1, i.e., w−1x ∈ EG(h) = 〈h〉 × EG(H).
Thus w = fz for some f ∈ H and z ∈ EG(H), and w−1x ∈ CG(h) because h is

H-special. Consequently, we have h = w−1xh (w−1x)
−1

= hε(h), which implies that
ε(h) = 1. Since the latter holds for any h ∈ SG(H), it follows from Proposition 3.3
that ε(CH) = {1}, where CH = CH(EG(H)).
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Note that |H : CH | <∞, hence there are h1, . . . , hl ∈ H such that H =
⊔l

i=1CHhi.
For any g ∈ H there are a ∈ CH and i ∈ {1, . . . , l} such that g = ahi. One has

ϕ(a)ϕ(hi) = ϕ(g) = wgε(g)w−1 = waw−1whiε(ahi)w
−1 =

ϕ(a)ϕ(hi)w(ε(hi))
−1ε(ahi)w

−1,

hence ε(g) = ε(ahi) = ε(hi), i.e., the map ε is uniquely determined by the im-
ages of h1, . . . , hl. Thus, ϕ(g) = fz(gε(hi))z

−1f−1, implying that the automorphism
ϕ ∈ Autc(H), up to composition with an inner automorphism of H , is completely
determined by the finite collection of elements z, ε(h1), . . . , ε(hl) ∈ EG(H), and since
EG(H) is finite, we can conclude that |Autc(H) : Inn(H)| <∞.

Now, if EG(H) = {1} we obtain w = f ∈ H and ϕ(g) = wgw−1 for all g ∈ H , that
is ϕ ∈ Inn(H). �

6. Group-theoretic Dehn surgery and normal automorphisms

In the context of relatively hyperbolic groups, the algebraic analogue of Dehn filling
is defined as follows. Suppose that {Hλ}λ∈Λ is a collection of (peripheral) subgroups
of a group G. To each collection N = {Nλ}λ∈Λ, where Nλ is a normal subgroup of
Hλ, we associate the quotient-group

(11) G(N) = G/
〈〈⋃

λ∈ΛNλ

〉〉G
.

Definition 6.1. Let G and {Hλ}λ∈Λ be as described above. We say that some
assertion holds for most peripheral fillings of G, if there exists a finite subset F of
non-trivial elements of G such that the assertion holds for G(N) for any collection
N = {Nλ}λ∈Λ of normal subgroups Nλ ⊳Hλ satisfying Nλ ∩ F = ∅ for all λ ∈ Λ.

The theorem below was proved in [32]. In the particular case when G is torsion-free,
this theorem was independently proved in [18, 19].

Theorem 6.2. Suppose that a group G is hyperbolic relative to a collection of sub-
groups {Hλ}λ∈Λ. Then for most peripheral fillings of G, the following holds.

1) For each λ ∈ Λ, the natural map Hλ /Nλ → G(N) is injective.
2) The quotient-group G(N) is hyperbolic relative to the collection {Hλ/Nλ}λ∈Λ.

The following statement plays a key role in our paper.

Lemma 6.3. Let G be a relatively hyperbolic group, H – a subgroup of G and α ∈
Aut(H). Suppose that there exists a loxodromic element g ∈ H such that α(g) is
not conjugate to an element of EG(g) in G. Then α does not preserve some normal
subgroup of H.

Proof. Suppose that G is hyperbolic relatively to {Hλ}λ∈Λ. There are two cases to
consider.
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Case 1. Assume first that α(g) is loxodromic. Using Lemma 2.4 twice we obtain
that G is hyperbolic relatively to {Hλ}λ∈Λ ∪ {EG(g), EG(α(g))}. Since 〈g〉 has finite
index in EG(g), there is m 6= 0 such that 〈gm〉 (and each of its subgroups) is normal
in EG(g). Let F be the finite set provided by Theorem 6.2 for the peripheral system
{Hλ}λ∈Λ ∪ {EG(g), EG(α(g))}. Taking p to be a sufficiently large multiple of m,
we can ensure the condition 〈gp〉 ∩ F = ∅. We now consider the filling of G with
respect to the collection of subgroups N consisting of the trivial subgroups of Hλ’s,
the trivial subgroup of EG(α(g)), and 〈gp〉⊳EG(g). By Theorem 6.2 elements g and

α(g) have orders p and ∞, respectively, in Q = G/ 〈〈gp〉〉G. Hence α does not induce

an automorphism on the natural image ofH in Q, i.e., it does not preserve 〈〈gp〉〉G∩H .

Case 2. Now suppose that α(g) is parabolic, i.e., it is conjugate to an element of
some peripheral subgroup Hλ. Again, by Lemma 2.4, G is hyperbolic relatively to
{Hλ}λ∈Λ ∪ {EG(g)}. The rest of the proof is identical to that in Case 1. The only
difference is that Theorem 6.2 is applied to the collection of subgroups N consisting
of trivial subgroups of Hλ’s and 〈gp〉⊳ EG(g) for some p > 0. �

Theorem 1.1 is a particular case of the following result. (Recall that Ĥ = HEG(H).)

Theorem 6.4. Let G be a relatively hyperbolic group and let H ≤ G be a non-
elementary subgroup such that H0 6= ∅. Then for any ϕ ∈ Autn(H) there exists a
map ε : H → EG(H), whose restriction to CH(EG(H)) is trivial, and an element

w ∈ NG(Ĥ) such that for every h ∈ H, ϕ(h) = whε(h)w−1.

Proof. By Lemma 6.3, ϕ maps every loxodromic element h ∈ H to a conjugate of
an element of EG(h). As 〈h〉 has finite index in EG(h), every element of infinite

order in EG(h) is commensurable with h in G. In particular, ϕ(h)
G
≈ h for every

h ∈ H0. Hence by Theorem 5.1 there is a map ε : H → EG(H), whose restriction to

CH(EG(H)) is a homomorphism, and an element w ∈ NG(Ĥ) such that for every h ∈
H , ϕ(h) = whε(h)w−1. It remains to show that ε(h) = 1 for every h ∈ CH(EG(H)).

By Proposition 3.3, it suffices to show that ε(h) = 1 for all h ∈ SG(H). Suppose
that ϕ(h) = whrw−1 for some r ∈ EG(H) \ {1}. Take any integer p ≡ 1 (mod |r|),
where |r| denotes the (finite) order of r in G. Note that h commutes with r as

h ∈ SG(H). Thus ϕ(hp) = whprw−1. Since ϕ should preserve 〈〈hp〉〉G ∩H , we obtain

hpr ∈ 〈〈hp〉〉G. On the other hand, hpr ∈ EG(h). By Lemma 2.4 we can join EG(h) to
the collection of the peripheral subgroups. Without loss of generality we may assume
that p≫ 1 so that the normal subgroup N = 〈hp〉 of EG(h) satisfies the requirement
N ∩F = ∅ from Theorem 6.2 (and Definition 6.1). Then by the first part of Theorem

6.2 we have hpr ∈ 〈〈hp〉〉G ∩ EG(h) = 〈hp〉. Hence r ∈ 〈h〉 ∩ EG(H) = {1}, which
contradicts r 6= 1. �

Corollary 6.5. Let H be a non-elementary subgroup of a relatively hyperbolic group
G such that H0 6= ∅. Then the following hold.

a) If H has finite index in NG(HEG(H)), then Outn(H) is finite.
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b) If H does not normalize any non-trivial finite subgroup of G, and H = NG(H),
then Outn(H) = {1}.

Proof. The argument is similar to the one used to prove Corollary 5.4. Observe that
by Lemma 2.5, EG(H) is a finite subgroup of G normalized by H . Therefore H acts
on EG(H) by conjugation, and CH = CH(EG(H)) has a finite index in H as a kernel
of this action.

Let h1, . . . , hl be elements of H such that H =
⊔l

i=1CHhi. By Theorem 6.4 we can
argue as in the proof of Corollary 5.4 to conclude that every normal automorphism
ϕ of H is uniquely determined by the images ε(hi) of hi, i = 1, . . . , l, and by the

conjugating element w ∈ NG(Ĥ). As EG(H) is finite, for each i there are only

finitely many possibilities for ε(hi), and since |NG(Ĥ) : H| <∞, we can deduce that
|Autn(H) : Inn(H)| <∞.

Furthermore, if H = NG(H) and H does not normalize any finite normal subgroup

of G, we obtain EG(H) = {1}, NG(Ĥ) = NG(H) = H , and CH(EG(H)) = H . Hence
Autn(H) = Inn(H) by Theorem 6.4. This completes the proof. �

The next lemma shows that Corollary 1.2 holds for elementary groups.

Lemma 6.6. Let G be a virtually cyclic group. Then Out(G) is finite.

Proof. If G is finite the claim is trivial, so assume that G is infinite. Recall that
every elementary group is ether finite-by-cyclic or finite-by-(infinite dihedral) (see,
for example, [15, Lemma 2.5]). More precisely, as G is infinite, the quotient G/E(G)
(where E(G) is the maximal finite normal subgroup of G given by Corollary 2.6) is
either infinite cyclic or infinite dihedral. In both cases we have

(12) |Aut(G/E(G)) : Inn(G/E(G))| = 2.

Every automorphism α ∈ Aut(G) induces an automorphism ᾱ ∈ Aut(G/E(G)).
This gives rise to a homomorphism ξ : Aut(G) → Aut(G/E(G)). If α ∈ ker(ξ),
then for every x ∈ G there is h = h(x) ∈ E(G) such that α(x) = xh. By our
assumptions, G is generated by a finite set of elements {xi | i = 1, . . . , n} and the
automorphism α is uniquely determined by the images α(xi), i = 1, . . . , n. Since
|E(G)| <∞, for each i there are only finitely many possibilities for h(xi). Therefore
the kernel of ξ is finite. Evidently ξ(Inn(G)) = Inn(G/E(G)), and by (12) we get
|Aut(G) : (Inn(G) ker(ξ))| ≤ 2 yielding that |Out(G)| = |Aut(G) : Inn(G)| <∞. �

Proof of Theorem 1.1. Let us apply Theorem 6.4 to the case G = H . Then EG(H) =

E(G), CH(EG(H)) = C(G), Ĥ = NG(Ĥ) = G, and the claim of Theorem 1.1 follows
immediately. �

Proof of Corollary 1.2. First, suppose that G is elementary. In this case the first
part of the corollary follows from Lemma 6.6. To derive the second claim of the
corollary, we observe that since G is non-cyclic and does not have non-trivial finite
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normal subgroups, it must be infinite dihedral (this follows from the structure of an
elementary group – see the proof of Lemma 6.6). Hence G ∼= Z/2Z ∗ Z/2Z and, by
Neshchadim’s theorem [29], Outn(G) = {1}.

Thus we may assume that G is non-elementary. In this case the corollary follows
from Theorem 1.1 in the same way as Corollary 6.5 from Theorem 6.4. Alternatively
it follows immediately from Corollary 6.5 applied to the case when G = H . �

7. Free products and groups with infinitely many ends

In order to prove Theorem 1.6 we need two more statements below.

Lemma 7.1. Assume that G is a relatively hyperbolic group and g, h are two non-
commensurable loxodromic elements. Then g and h are non-commensurable and lox-
odromic in most peripheral fillings of G.

Proof. Suppose that G is hyperbolic relative to a collection of subgroups {Hλ}λ∈Λ.
Applying Lemma 2.4 twice we obtain that G is hyperbolic relative to the new collec-
tion {Hλ}λ∈Λ∪{E1, E2}, where E1 = EG(g), E2 = EG(h). Let F1 and F2 be the finite
subsets provided by Theorem 6.2 for the collections of peripheral subgroups {Hλ}λ∈Λ
and {Hλ}λ∈Λ ∪ {E1, E2}, respectively. Set F = F1 ∪ F2.

Consider any collection of subgroups Nλ ⊳ Hλ such that Nλ ∩ F = ∅, λ ∈ Λ. By
Theorem 6.2, the filling of G with respect to the collection of normal subgroups N,
consisting of Nλ ⊳ Hλ for λ ∈ Λ and the trivial subgroups of E1, E2, is hyperbolic
relative to {Hλ/Nλ}λ∈Λ ∪ {E1, E2} as well as relative to {Hλ/Nλ}λ∈Λ. (We keep the
same notation for the isomorphic images of E1, E2 in G(N) and the elements g, h.)

In particular, E1 ∩ E
t
2 is finite for every t ∈ G(N). Clearly this implies that g and

h are not commensurable in G. Similarly g and h are not conjugate to any elements
of the subgroups Hλ/Nλ, λ ∈ Λ, of G(N). Thus g and h are loxodromic in G(N)
with respect to the peripheral collection {Hλ/Nλ}λ∈Λ. As F is finite, g and h are
non-commensurable and loxodromic in most peripheral fillings of G (with respect to
the peripheral structure {Hλ}λ∈Λ). �

The proof of Theorem 1.6 uses the following lemma, which is an immediate corollary
of [45, Lemma 3]. (Recall that the Cartesian subgroup of a free product A ∗B is, by
definition, the kernel of the natural epimorphism A ∗B → A× B.)

Lemma 7.2. Let G = A ∗ B, where A and B are finite groups. Let u, v be non-
commensurable elements of the Cartesian subgroup C of G. Suppose that u = ak,
v = bl for some positive integers k, l, where a, b are not proper powers. Assume
also that ak (respectively, bl) is the smallest non-zero power of a (respectively, b) that
belongs to C. Then there exists a finite quotient-group Q of G such that the images
of u and v have different orders in Q.

Proof of Theorem 1.6. Let G be a non-trivial free product, i.e., G = A ∗ B, where
both A and B are non-trivial. Then G is hyperbolic with respect to {A,B} (the finite
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sets X and R, from the definition of relative hyperbolicity in Section 2, can be taken
to be empty; the isoperimetric constant C for the corresponding relative presentation
of G will then be equal to zero). In what follows, we will fix this as a system of
peripheral subgroups of G.

If |A| = |B| = 2, the proof is an easy exercise. It also follows from the main result
of [29], stating that every normal automorphism of a non-trivial free product is inner,
and the observation that every non-trivial normal subgroup of the infinite dihedral
group is of finite index.

Thus we may assume that G is non-elementary. Suppose that there exists an
automorphism α ∈ Autfn(G) \ Inn(G). Note that E(G) = {1} because G, as a
non-trivial free product, cannot contain non-trivial finite normal subgroups. Since
α is not an inner automorphism of G, it follows from Corollary 1.4 that α is not
commensurating. Therefore, by Corollary 5.3 and Lemma 4.8 (applied to the case
when H = G), there is a loxodromic element g ∈ G such that h = α(g) is also
loxodromic and is not commensurable with g. Further, by Lemma 7.1 there exist
finite index normal subgroups M ⊳ A and N ⊳ B such that the natural images ḡ, h̄
of g and h, respectively, are not commensurable in G = A/M ∗ B/N . Without loss
of generality we may assume that G is non-elementary.

Since G is a free product of two finite groups, it is residually finite. Therefore
the kernel K of the natural homomorphism G → G is an intersection of finite index
normal subgroups of G. As α ∈ Autfn(G), α stabilizes K. Hence α induces an
automorphism ᾱ of G.

Let ḡ = ak, where k is a positive integer and a is not a proper power. Clearly
b = ᾱ(a) is not a proper power as well and bk = h̄. Evidently bp = ᾱ(ap) is not
commensurable to ap for any non-zero integer p. Let C denote the Cartesian subgroup
of G. Then |G : C| < ∞, and replacing ḡ with another positive power of a, if
necessary, we may assume that k > 0 and ḡ = ak is the smallest non-zero power of a
that belongs to C. Again, since |G : C| <∞, ᾱ preserves C. In particular, h̄ = bk is
the smallest power of b that belongs to C.

By Lemma 7.2 there exists a finite index normal subgroup K of G such that the
images of ḡ and h̄ have different orders in G/K. Therefore ᾱ does not induce an
automorphism on G/K. Obviously this means that α does not preserve the full
preimage of K in G, which contradicts our assumption that α ∈ Autfn(G). �

The following lemma is well known and is easy to prove (see, for example, [21,
Lemma 5.4]).

Lemma 7.3. Suppose that G is a finitely generated group and N is a centerless
normal subgroup of finite index in G. Then some finite index subgroup of Out(G) is
isomorphic to a quotient of a subgroup of Out(N) by a finite normal subgroup. In
particular, if Out(N) is residually finite, then Out(G) is residually finite.

The next observation is trivial.
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Lemma 7.4. Suppose that a group G acts on a set M faithfully with finite orbits.
Then G is residually finite.

Proof. Given g ∈ G, let s ∈ M be an element such that g(s) 6= s. Then the natural
map from G to the symmetric group on the orbit of s provides us with a finite quotient
of G, where the image of g is non-trivial. �

Proof of Theorem 1.5. Since the outer automorphism group of any virtually cyclic
group is finite (see Lemma 6.6), we can assume that G has infinitely many ends.

By Stallings’s Theorem ([41, 42]) there is a finite group S such that G splits as an
amalgamated free product A∗SB or an HNN -extension A∗S, where (|A : S|−1)(|B :
S| − 1) ≥ 2 in the first case and |A : Si| ≥ 2, i = 1, 2, in the second case (where
S1 and S2 are the two associated isomorphic copies of S in A). Since G is residually
finite and S is finite, there exists a finite index normal subgroup N ⊳ G such that
N ∩ S = {1} if G = A ∗S B, or N ∩ Si = {1} for i = 1, 2, if G = A∗S. Note that the
quotient of the Bass-Serre tree for G modulo the action of N is finite and the edge
stabilizers in N are trivial. The Bass-Serre structure theorem for groups acting on
trees (see [39]) yields a splitting of N into a non-trivial free product. In particular,
N is centerless.

The group Aut(N) naturally acts on the set M of finite index normal subgroups
of N and Autfn(N) is the kernel of this action. By Theorem 1.6, Autfn(N) = Inn(N).
Therefore, Aut(N)/Autfn(N) = Aut(N)/Inn(N) = Out(N) acts on M faithfully.
Since N is finitely generated, there are only finitely many subgroups of a given finite
index in N , thus all orbits of the action of Out(N) on M are finite. Hence Out(N)
is residually finite by Lemma 7.4. The claim of the theorem is now a consequence of
Lemma 7.3. �
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