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Summary. — In this paper we prove that the restriction of the tamgent bundle of a nonsingular
gquadriz ¢ to a subvariety X is ample if and only if X does not contain a straight line. This
implies that the normal bundle of a locally complete intersection, reduced and irreducible
curve O is ample if and only if C is not a straight line. The result gives information also
for higher dimensional subvarieties of Q.

Introduction.

This paper is a continuation and a generalization of our previous paper[1].
We work always over an algebrically closed field ¥ with ch (k) = 0.

In the first paragraph we consider a nonsingular quadric ¢ with tangent
bundle 7Q and a subvariety X of ¢. We prove that the restriction 7'Qx of T¢Q
to X is an ample veetor bundle if and only if X does not contain a straight line.
This result implies in particular [1], theorem 1, but applies also to singular curves
and to a large class of subvarieties of Q.

It implies that a generically reduced, loeally complete intersection curve C in
a nonsingular quadric ¢ has an ample normal bundle ¥, if and only if it is not
a straight line.

Furthermore the normal bundle Ny, of a nonsingular subvariety X in a non-
singular quadric  is ample if X does not contain a straight line. If X ig centained
in 3 linear space contained in ¢, then this condition is also necessary. In fact it is
essential for the higher dimensional case to considerer all the singular curve C.

The method used are similar to those of the previous paper[1]; by reduction
to the case of a curve we apply the normalization and try to repeat the proofs of [1].
Therefore some proofs are omitted. Similar results were proved by A. PAPANTONO-
POULOU for grassmannians [9]. In particular the main result is proved by A. PAPAN-
TONOPOULOU for the case of G(1,3), the grassmannian of lines in P,, which is a
nonsingular quadric of dimension four. His proof is different from our’s, but his
paper inspired us, showing the possible applications.

The ampleness of the normal bundle has many interesting applications for a
complete variety. In particular it applies to formal meromorphic functions[5],
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corollary 6.8, and therefore to the rigidity problem. Therefore it seems worthwhile
to study directly the « exceptional case» of a straight line L in a nonsingular qua-
driec ©. This is done in the second paragraph. We prove that the ring of formal
regular funetions on the completion of @ in L is isomorphic to & if ¢ has dimension
at least three. This is the expected result if ¢ has dimension at least three. In fact,
over the field of complex numbers, if dim @>3, L is a generating subspace of Q
in the sense of Cmow [2] and therefore every holomorphic function on a complex
trascendental neighborhood of L in @ is constant for[2], theorem 2.

In the third paragrapb we study the ampleness of the normal bundle of a curve
in a product of quadrics and projective sgpaces.

1. — Let & be an algebraically closed field with ch(k) = 0. Every variety is
defined over k.
We want to prove the following

THEOREM 1. — Let @ be a nonsingular quadric and X a subvariety of Q. Then the
restriction TQ)x of TQ to X is an ample vector bundle if X does not contain a straight
line.

Proor. — The scheme of the proof is similar to the scheme of the proof of [1],
theorem 1.

Let L be a straight line contained in Q. Since 7@, = 0, @ 0,(1)%¢=1 if Q has
dimension #», the condition is obviously necessary.

Since T is generated by global sections, for a theorem of Gieseker [7], prog. 2.1,
TQx is ample if and only it T'Q,, is ample for each curve C contained in X. There-
fore it is sufficient to treat the case X = O a curve. We may suppose C reduced
because a vector bundle B on € is ample if and only if B, is ample on C,, [6],
prop. 1.4, pag. 84. Furthermore we may suppose C irreducible for the easy result [6],
propr. 1.5, pag. 84.

We distinguish two cases:

a) O is contained in a linear space contained in @;

b) € is not contained in a linear space contained in §.

a) Let O be a reduced and irreducible curve contained in a maximal linear
space P, contained in ¢. In[1], prop. 2, we proved that the normal bundle of P,
m @, Np g, 18 isomorphie to 9}5(2) if dim @ =2s is even and that Np g, is iso-
morphie to 2 (2) @ 0p (1) if dimQ = 2s 1 is odd.

From the exact sequence

0 "'?TPS"%TQIPS—>_NPB/Q —0

and the ampleness of TP, we obtain that T¢,, is simple if and only if "Q%’,(‘?)lc is
ample. Therefore it is sufficient for the proof of case a) to prove the following
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PRrROPOSITION 1. — Let € be a reduced and irreducible curve contained in a projective
space P,. Then .Q},'(2)‘0 is ample if and only if C is not a straight line.

Proor. — We generalize the proof of [1], prop. 3, to the case of a singular curve O.

We use induction on s. For s =1 the result is empty. :

Suppose s > 1 and that 9}5(2) |c 18 not ample. Let p: ("— C be the normalization.
A vector bundle ¥ on C is ample if and only if p*& is ample on ¢’ (see [5], prop. 1.6,
pag. 84). As 3 (2) is generated by global sections, p*(£2p,(2)c) 1s generated by
global sections. For a criterion of ampleness of GIESEKER-HARTSHORNE[7], prop. 2.1,
p*(2p,(2)¢) has O, as a trivial quotient bundle.

We put 04 (f) := p*(9,(f)) and d:= degC := deg,(1):= deg 9, (1). Dualiz-
ing the give surjection from p*(25:(2);) to O, we obtain an exact sequence on C':

0 = 04(2) = p*(TPye) ~E -0

in which ¥ is a rank (s—1)-bundle on ¢’ with degF = (s—1)d. If we prove
that O is contained in a linear space P,., c P,, the thesis will follow from the exact
sequence

0 —0p, (1) =025 (2)p,_ —>2p,_(2) >0

and the inductive hypotheses. Therefore the thesis follows from the following
useful

Levma 1. — Let C be a reduced and irreducible curve of degree d contained in a
projective space P, and p: C'— C the normalization. If B is a vector bundle of rank r
on C'" which is a quotient of p*(TP,,), then h:= degE>rd and if h=rd, then O
is contained in a hyperplane of P,.

Proor. ~ If C is nonsingular, then this is lemma 2 of [1]. The general case is
similar and we sketech some defails. We choose homogeneous coordinates z,, ..., 2,
on P,. From the exact sequence

0 — 0g = 04,(1)96FD — pHTP, ) — 0

where 2(f) := (f2, ..., f2,), We obtain a surjective map from 0, (1)®¢*? to E. This
proves h>>rd. We suppose b = rd. Any section of E(— 1) gives a subline bundle L
of B(—1) with degL>0. Therefore after r—1 steps we arrive at a surjective
map f: 0,(1)%¢~D 9 (1) where 9,.(1) is a quotient of E. The map f gives s 41
costants a,, ..., a, such that the section a,p*(z,) -+ ... + a,p*(2;) of O..(1) is the zero-
section. Therefore C is contained in the hyperplane

H:= {(#;...;%) € Py a2 + ... + a,2,= 0} . Q.E.D.
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COROLLARY. — Let P, be @ maximal linear space contained in a nonsingular qua-
dric Q and X be @ nonsingular subvariety of Py, Then Ny, is ample if and only if X
does not eontain a straight line.

Proor. — From the exact sequence

0 —>Nyp, > Nxq = Npjqx >0

[B.G.A. IV 16.2.7 and IV 16.9.13], the ampleness of Nyp and the explicit form of
Np s it follows that Ny, is ample if and only if Qp (2)x is ample. As O (2) is
generated by global sections, for the cited criterion of Gieseker-Hartshorne [7],
prop. 2.1, 25 (2) is ample if and only if Q4 .(2),¢ is ample for any reduced and irre-
ducible curve € contained in X i.e. for proposition 1 if and only if XX does not con-
tain a straight line. Q.ED.

b) For any variety X and any coherent sheaf 5 on X, we put () := tor-
sion part of F. Let ¢ De a reduced and irreducible curve and p: ¢'— C the normal-
ization map. We give an ad hoc definifion. We say that a coherent algebraic
sheaf & on € is ample if the vector bundle on ¢’ F':= p*(F)/t(p*(F)) is ample;
this definition is equivalent to the usual definitions if F is a locally free sheaf
(see [6], prop. 1.6, pag. 84).

Now let @, , be an irreducible quadric contained in P,; let € be a reduced and
irreducible curve contained in Q,_, but not contained in the singular locus § of Q,_,.
The tangent sheaf TX to a variety X is by definition the dual of £%. We have an
exach sequence of sheaves on @, ; [E.G.A, IV 16.4.21]:

0 =0, (—2) > Qb0 >

We dualize the exact sequence sbove, obtaining another exact sequence
1) 0~ TQ,_,— TP, = 0, (2).

In fact Hom (2p 4, ., Op, ) is isomorphic to (Hom (2p,; Op)),0,., because Q4 is
locally free.

Restricting to ¢, pulling back to ¢’ and killing torsion we obtain a complex of
vector bundles on C':

(2) 0 — (TCg) - (TPyc)-% p*(04(2)) — 0

which is exact except for a finite number of points.

The first map 4 is necessarly injective because ker (i), as a torsion-free sheaf
with finite support, must be zero. We put M, ,:= Imwu. M, , is an invertible
sheaf on ¢’ beecause it ig torsion-free and €' is nonsingular. We put d:= degC,



EDosrDO BALLICO: Normal bundle to subvarieties in gquadrics, IT 73

From proposition 1 it follows that 3, , has degree >d and that if we have
deg M, , =d, then C is contained in a hyperplane.
The sequence of vector bundles on '

(3) 0 > (TQ)5)' - p*(TPyo) > M,_, -0

iy exact i.e. we have Jer (#) = Im (). In fact we have an exact sequence

p*(TQ0) —~ p*(ITP, ) — p*R) -0

with B :=Im(u'). We have Im(t(p*(TQw))) == 0 in p*(TP,) because p*(TP,,) is
locally free.

If @, is contained in P, ; and @, , = @, N P;, we obtain a commutative dia-
gram. of vector bundles on ¢’ with exact rows and columns:

0 0 0
v v v
0— (TQS_IIC)’—> (TP, )y —M,_,—0
v y v
(4) 0 — (Tqisw)/ (TP, o) ~ M, 0
0—> H, —p*041)
b v
0 0
Here H, is a line bundle on ¢’ because, in the same way as when we defined M,_,,
it is contained in p*(0,(1)) and any torsion-free algebraic coherent sheaf on a non-
singular curve is locally free. The maps from H, to p*(04(1)) and from M, , to M,
are injective because they are injective except for a finite number of points. The
exactness of the first column in (TQyc) follows, with an easy diagram chasing,
from the commutativity of the diagram and the exactness of the rows and of the
other columns. From lemma 1 and the definitions we have d <deg M,_; <deg M,<2d.
Thus we obtain degH,—deg M, ;—deg M ,+d. Therefore degH,>0 and degH,=0,
i.e. H, is not ample, if and only if deg M, =24 and deg M, ,=d. From degM, ;=4
and lemma 1 it follows that C is contained in a hyperplane of P,. Part b) of theo-
rem 1 is a particular case of the following

PROPOSITION 2. — Let C be an irreducible, reduced curve contained in the irreducible
quadriz ¢ but not contained in a linear space contained in Q. Then the vector bundle
(TQ)0)" is ample i.c. the sheaf TQ)¢ is ample.

The proof of the proposition above is a straightforward generalization of the
proof of proposition 1 and lemma 4 of [1] and is therefore omitted.
Now the proof of the theorem is finished. Q.E.D.
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CoROLLARY 1. — Let X be a nonsingular subvariety of a nonsingular quaedric Q.
If X does not contain o straight line, then Ny, is ample.

Proovr. — Since X is nongingular, the natural map from TQ] x t0 Ny, is surjective.
Therefore the thesis follows from the theorem. Q.E.D.

COROLLARY 2. — Let U be a curve which is o locally complete intersection and gene-
rically reduced in a nonsingular quadric Q. If O, does not contain a straight line as
irveducible component, then N, is ample.

ProoF. — The natural map from 7'Q), to Ny, is surjective except for a finite
number of points, the singular points of €. Therefore it is sufficient to prove the
following useful

Levma 2. — Let C be a complete curve and E, F vector bundles on O with o homo-
morphism w: B — F which is surjective except for a finite number of points. If E is
ample, then I is ample.

Proor. — First we may suppose O reduced and then, passing to the normalization,
we way suppose ¢ non singular. Let F be a coherent algebraic sheaf on € and
t, € IN such that for ¢>1, we have H(C, S{(E)® F) = 0 by [6], theorem 1.1, pag. 83.

We have two exact sequences, with v, induced by u, which define G, and R,

SE)RF 26, —0,
08 >8MHRTF >R, —-0.

Here R, has finite support and thus we have HY(C, B;) = 0. Furthermore we have
H*0, L) = 0 for any coherent algebraic sheaf on C because C is a curve. There-
fore from the two exact sequences we obtain H'(C, SF)® F) = HYC,S:;) =0
for t>1,. This proves the ampleness of F by the fundamental criterion of ample-
ness [6], theorem 1.1, pag. 83. Q.ED.

Lemma 2 applies also to a curve in a projective space.

COROLLARY 3. — Let V be a nonsingular subvariety of the nonsingular quadric
Q c P,. Suppose that for any siraight line L contained in V there exists a straight
line L'V, intersecting L and such that the plane H containing L and L' is not con-
tained in Q. Then Ny, is an ample vector bundle on V.

PrOOF. — Since N, is generated by global sections, the cited criterion of ample-
ness of Gieseker-Hartshorne [7], prop. 2.1, shows that it ig sufficient to prove that
Nyjqc is ample for every curve C contained in V. From theorem 1 and the sur-
jectivity of the natural map from T, to Ny, it follows that it is gufficient to
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prove that N, is an ample vector bundle on L for every straight line I" con-
tained in V. Let L’ be a straight line contained in V, intersecting I and such that
the plane H generated by L and L' is not contained in V. Let X be the subvariety
of @ union of L and L' with the reduced strueture, that is to say X:=HNQ =
=HNYV.

We have the following exact sequence [E.G.A. IV 16.2.7]:

0 >Nyyp > Nyg > Npjgx -

Furthermore Ny, is ample and in fact we have Ny, ~ 0 <(1)®®=2 From this
exact sequence and lemma 2, we obtain the ampleness of N, and Nyqr,y a8
restriction of an ample vector bundle to a closed subset, is ample, too. Q.E.D.

2. — The ampleness of the normal bundle of a subvariety of a variety has many
well-known applications, for example to formal rational functions (see [5], [1]) and
therefore to the rigidity problem.

Therefore it is natural to study directly the case of a straight line contained
in a nousingular quadric from the point of view of formal rational functions.

Here we recall some definitions. Let Z be a noetherian scheme, X a closed sub-
scheme of Z defined by the ideal sheaf. The formal completion of Z along X is the
ringed space (X, 0,y) where we have O,y :=invlimO,/J,. We say as in[2]
that X is G-1 in Z if the natural map from H°(Z, 0,) to Hy(X, 9, 5) is an isomor-
morphism,

Let X, be the total quotient sheaf of 0, and put K(Z/X) := H(X, X, ).
We say as in [2] that X is ¢-3 in Z if the canonical map K(Z) - K(Z/X) is an iso-
morphism. We say that X is G-2 in Z if for the canonical map K(Z) - K(Z/X),
K(Z/X) is a finite module over K(Z).

From the results of the first paragraph, a theorem by Hartshorne and an explicit
calcalation for the formal completion of a straight line in a nonsingular quadric,
we obtain the following

THEOREM 2. — Let X be a reduced and irreducible locally complete intersection in a
nonsingular quadric Q of dimension at least three. Then X is Q-1 in Q. Furthermore
if X is not a stroight line, then X is G-3 in Q.

Proor. — It is well-known, see [8], Remark 2.10, that @-3 implies G-2 and G-2
implies @-1 because the field k is algebraically closed and we have H(Q, 0,) = k.
Furthermore if X contains ¢ and C is G-3 in @, then X is G-3 in @, too. If
dim X =1 and X is not a straight line, then its normal bundles is ample for Corol-
lary 2 to Thecrem 1.

From a theorem of Hartshorne [5], corollary 6.8, it follows that X is G-2 in Q;
as X is also a generating subspace of @, then X is G 3 in @ (see [1], theorem 2).
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It dim X >2, let H a generic linear space on the projective space which contains @
and such that X N H ig an irreducible and reduced curve (Bertini’s theorem).
Then X N H ig a locally complete intersection on §. If X N H is not a straight
line, we have proved the theorem in this case. If X N H is a straight line, then X
has degree 1 i.e. it is a linear space and contains a lot of nonsingular curves which
are not gtraight lines. Therefore X is G-3 in . Now we have to prove that a gtraight
line L in  is G-1 in @.

The proof of the theorem is therefore reduced to the proof of the following

ProposITION 3. — Let L be a straight line contained in a nonsingular quadric Q
with dim@Q>3. Then L is G-1 in Q.

PRrOOF (OF THE PROPOSITION). — Let @ be a quadric hypersurface in P, with
n>4. We choose a system of homogeneous coordinate («,; ...; #,) on P, such that L
has equations #, = ... =2,=0 and ¢ has equation

n
Bolby + 0y 005 > 25 =0 .
s=4

This can be done because the orthogonal group O(n 4 1) acts transitevely on
the straight lines contained into @. In fact it is easy to prove first that O(n }-1)
acts transitevely on the set of maximal linear subspace of . Let H be a maximal
linear space in  containing L. Then it is eagy to prove that the elements of O(n4-1)
which leave H fixed act transitevely on the set of lines contained into H.

L is covered by twe affine open sets B, = @ N {x, % 0} and B, = @ N {x, 7~ 0}.
We put a, = 2./, and b, = x,/,. Then we have k[B,] = k[a,, a3, ay, ..., a,] and
E[By] = k[bg, by, byy ..y byl By:= By N B, is an affine open subset of @ with
k[B,] = k[ay, a;*][as, a4, ..., @,]. We have a natural injective map of restriction
i: k[By] — k[B,] induced from the inclusion of B, into B, with i(a;) = a,. We have
also a natural injective map j: k[B;] —>k[Bg] induced from the inclusion of B,

into By, with j(&,) = a7, j(bs) = Zasal and j(b,) = a.0;" for s>4. Let 4,,

s=20,1,2, the ring of coordinate of the completion of B, in L N B,. We have
Ay = K[, )[05) Gay oovy @]y Ay = E[bo1[bs, Dy vy B and Ay = ey, a7 ][5, @5 ..y ]
We have inclusions 4, j between the 4.s. We have k[Q/L] = i(d4,) N j(4,) for the
sheaves’ axioms.

with d = (dy, ..., d,) a multiindex and P,’s polynomials. Therefore we have

:%Pm(a; ( @ “‘z“ a; ) (@, 0.1 ... (¢, a; )"
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Suppose j(f) €i(4,). First we have that P, is & constant. From the monomial
P, a we obtain that P, is a costant. From the monomial ¢P, ai  aia; we obtain
P, =0 for ¢ > 0 beeause every other monomial with 4} has at least a;? as a factor
(recall that k has ch(k) =0). We prove by induction on |d|=d, 4 ... - d,
that every term. P,, with |d|> 0 vanishes. In fact the monomial P alal" ... aia;'®!
can be deleted only by terms with a P, as a factor with « > ¢ and therefore [v| < |d|.
By induction we have P, = 0 and therefore P,, = 0. Thus f is costant. Q.E.D.

The propogition above is true also if L is a straight line contained in a three
dimensional nonsingular quadric contained in the singular quadric ¢, while it is
false if the singular locus of @ is bigger. I do not know if a straight lines is G-3 in a
nonsingular quadric.

This result is the expected one. Consider the problem over the field of complex
numbers. Then it is known that a straight line L, as any subspace, in a nonsingular
quadric @ of dimension at least 3 is a generating subspace in the sense of [2]. We
recall Chow’s definition. Let G be an algebraic group and X be a projective variety
which is homogeneous under a regular action of G; let ¥ be a closed connected sub-
variety of X; let p be a point of Y. We put ¢, , = {gc G: gp €Y}. The subgroup
Gy of G generate by &, , does not depend upon the choice of the point p. We
say [2] that Y is a generating subspace of X if we have G, = G. Then by [2],
theorem 2, any holomorphic function in a neighborhood of L in @ for the trascen-
dental topology is constant. Therefore only the constants among the formal regular
functions on the completion of L in @ can be extended to a complex neighborhood
of L as holomorphic functions; therefore theorem 2 means that any formal regular
funections on the eompletion of L in ¢ converges.

Revark. — The proof of theorem 2 works for every connected subvariety of @
which contains a locally complete intersection curve which is not a straight line.
In particular this occur for Bertini’s theorem for any connected subvariety which
is non singular in codimension 1, e.g. for a connected normal variety of dimension
at least two.

3. — In this paragraph we want to study the ampleness of the normal bundle
of a curve in a product of quadrics and projective spaces. Let V= X,x...XX,
be a produet of varieties; we take an index 4, 1 <¢<7, and a point » € X;; the slice
of V' corresponding to the point » is simply X;X...X X, ;X {#} XX, X...x X, with
the induced structure. We recall some notation of the first paragraph. Let C be a
reduced curve; we put p: C'— € the normalization map; if F is a sheaf on C,
E':= p*(B)[t(p*(F)) i.e. p*(B) modulo the torsion part, is a vector bundle on 0';
for definition ¥ is an ample sheaf if and only if &' is an ample vector bundle on (.
This definition iy given only because it is useful, for example in the proof of theorem 3
below, although probably it is not the good one or an interesting one.
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PROPOSITION 4. — Let C be an irreducible and reduced curve contained in the variety
Vi= P, X..xXP, with r>1, n,>1 for all index i.
The following conditions are equivalent:

i) TV, is ample vector bundle;
il) Ng,p i an ample sheaf;

iii) C is mot contained in a slice of Q.

ProOF. — i) = ii). This assertion follows from the natural map TV~ Ngw
which is surjective except for a finite number of points and from lemma 2.

if) = iii). If C is contained in a slice, then TV, and N, have a trivial
quotient bundle because all factors are positive-dimensional. Therefore they can-
not be ample,

iii) = i). Suppose that TV, is not ample and therefore p*(TV,) is not ample,
f00. TV, is generated by global sections and therefore also p*(T'V,) is generated
by global sections. Therefore for the cited criterion of ampleness of GIESEKER-
HARTSHORNE [7], prop. 2.1, (T'V ;)" has O, as a quotient line bundle. We put

p;: V — P, the projection. TV is a quotient bundle of ( p; (9p, (1)) and there-
i=1 *

fore we have an index ¢ and a non zero map p* (p; (9p, (1))10) — p*(9,). This means

that the pull-back to €’ of the restrietion to C of the ‘pull-baek to V of any homo-

geneous form of degree one on P, is costant. This means that there exists a point

in P, such that O is contained in the slice of V' corresponding to the point z.  Q.E.D.

PROPOSITION B. — Let V be a product of at least two among projective spaces and
quadrics (even singular). Let O be an irreducible and reduced curve contained in V
but not contained in a slice through a point of o factor P, or in the product of a linear
space contained in a quadric factor and of the other faciors. Then TV, and Ny are
ample sheaves.

PrOOF. ~ If TV, is ample, then it follows from lemma 2 that N is ample, too.
Suppose that TV, is not ample i.e. (I'V|,)" is not an ample vector bundle on C'.
If V has no quadric as a factor, then the thesis is the proposition above. The general
case is by induction on the sum ¢ of the dimension of the quadrics which are
factors of V.

If =1, we have only one quadric Q. If @ is nonsingular, then it is isomorphie
to a projective line and this case is covered by the proposition above. If @ is sin-
gular then it is the union of two lines intersecting in a point. C is contained in the
product of one of the two lines for the remaining factors because € is reduced and
irreducible. Therefore this case cannot occur.

Now suppose ¢t >1. TV is a quotient of a direct sum of sheaves of the type
p;(TQ,), p;."(TP,,‘) where p;’s are the projections. We use a criterion of ampleness
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proved by HARTSHORNE [7], theorem 2.4. Let O’ be a non-singular, complete curve
and F be a vector bundle on ¢'; then ¥ is ample if and only if for every quotient
bundle B of F we have deg B> 0. Suppose that (TV,G)’ is not ample, Let B Dbe
a quotient bundle of (TV ), with deg E<0 and rank R > 0. If for a factor P,
the induced map from (pf(TPM)IG)’ to R is not zero, then we obtain that C is con-
tained in a slice corresponding to a point of P, in the same way as in the proof of
the proposition above. Therefore there exists a quadric ¢ which is a factor of V
and such that the induce map (p;(7TQ) j¢)'— R is not zero. Here p; is the projection
from V to . Suppose that the quadric @ is a hypersurface of P,. On @ we have the
exact sequence (1) and, as ¢ is not contained in the singular locus of ¥, we obtain
an exact sequence on € which looks like the sequence (2):

0 — (97 TQ;0) > ((P1(TPyo)) 1) = p*(0(2)) -0

which is exact except for a finite number of points. We put M := Im(u). We obtain
the following sequence which looks like the exaet sequence (3)

™ 0— (8 TQ)' > (@i(LPy))0) > M — 0

which is exact. The proof of the exactness of (7) is the same as the proof of the
exactness of (3). Furthermore M, as a torsion-free sheaf on a nonsingular curve C
is locally free. Therefore ¢ injects as a map of veetor bundles. We put

@ := deg O,(1) := deg p*(p} Oy(1),,) -

From the quotient map (p; TQ;) — R, from the Euler’s sequence defining 7P,
and from. the injectivity of 4 as a map of vector bundles, we obtain an exact sequence
of vector bundles on C

[8) P*(p; Og(1)c) 7+t —> B — 0

with rank F =14 rankR>2 and degZi<2d. If we prove that C is contained in
the product of a hyperplane section of ¢ for the remaining factors, then we will
be gone for the inductive hypotheses and a natural generalization of the diagram (4).

The surjective map h induces a non zero section of E ® p*(0y(—1),,) which
gives a commutative diagram with exact rows and columns and which defines a
line bundle L of positive degree

0

'
0 — j,)o —~E® p*(oTl(~1)w) —~(B® p*(OQ(—il)lC)/OC) 0

0~ L ~H® p*(Og(— 1)) — (B® p*(0g(—1)16)/0g) 0.

0
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In a finite number of steps we reduce to the case in which the vector bundle ¥ is a
line bundle E of degree d, necessarly isomorphic to p*(pf((‘)a(l))w).
Now the thesis follows as in the last part of Lemma 1. Q.E.D.

THEOREM 3. — Let V be isomorphic to Q><P,,l><...><P,,r with r>1, n,>1. and C
be a reduced and irreducible curve contained in V.
Then the following properties are equivalent:

i) € is not contained in o slice of V;
if) TV,y is an ample vector bundle;

iii) Nyyp is an ample sheaf.

Proor. — The assertion iii) = i) is obvious.

From Lemma 2 it follows in the usnal way that ii) =- iii).

We prove the agsertion i) =- ii). From proposition 5 it follows that it is suf-
ficient to consider the following situation: ¢ is contained in P, X P, X... X P, where
P, is a maximal linear space of . By [1], prop. 2, we have Np , ~ 05 (2) if
dim@Q = 2s is even and we have Np ;= Qp (2)® Op,(1) if dim =25 41 is odd.
We have the exact sequence

0—>p; TP,®p; TP, ®..Q 1, TP, > TV, p, = Npjq—>0.

The proof of proposition 4 shows that (p; 0p, (1)), is ample if O is not contained
in a slice. Therefore the thesis in this case is equivalent to prove that p*(2p (2),0)
is ample if € is not contained in a slice.

The proof of this assertion is a straight forward generalization of the proof of
proposition 1 in the first paragraph and is therefore omitted. Q.E.D.
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