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Abstract. We give a classification of the closed 3-manifolds that admit normal

contact forms or normal almost contact structures.

1. Introduction. Let ω be a contact form on a closed 3-manifold M, that is

ω Λdω is a volume form. The Reeb vector field ξ of ω is defined by dω(ξ, ) = 0 and

ω(ξ) = \. On the contact structure 3> = keτω (or, more generally, on a 2-plane distribu-

tion 2 = ker η transverse to ξ) one can find an endomorphism J: 2 -• 2 compatible

with dω in the sense that dω(JX,JY) = dω(X9 Y) for all vector fields X, YE 2 and

dω(X, JX)>0 for XΦO. This / i s uniquely defined up to homotopy. The triple (/, ξ, η),

in other words, a reduction of the structure group of M to U{\) x 1, is called an almost

contact structure compatible with ω.

On MxR one can now define an almost complex structure (still denoted by /)

which extends / : 2 -» 2 and satisfies Jξ = dt9 where t denotes the Λ-coordinate. If / is

integrable, then the almost contact structure (/, ξ9 η) and the contact form ω are called

normal.

In [8] Sato proved that if M admits a normal almost contact structure, then

π2(M) = 0 or M is homotopy equivalent to S1 x S2. In the present paper we complete

the investigation begun by Sato. For the reader familiar with the geometries of

3-manifolds (in the sense of Thurston) we can now state our main results; all the notation

will be explained below.

THEOREM 1. A closed l-manifold admits a normal contact form if and only if it is

dίjfeomorphic to one of the following manifolds:

(a) Γ\S^ with Γ c SO(4) = Isom0(53),

(b) Γ\SL2 with Γ a lsom0(SL2),

(c) Γ\Nil3 with Γ c Isom0(M/3).

REMARK. The manifolds in this theorem are precisely the Seifert fibred 3-manifolds

with non-zero Euler number over orientable base orbifolds (without reflectors).

THEOREM 2. A closed 3-manifold admits a normal almost contact structure if and

only if it is diffeomorphic to one of the manifolds listed in Theorem 1 or one of the following

manifolds:
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(a) Γ\(iί2 x E1) with Γ c Isom0(iί2 x E1),

(b) T2-bundles over S1 with periodic monodromy,

(c) S2xSί.

Our notation here is that of [9], to which we refer for all basic facts about geometric

3-manifolds. SL2 denotes the universal cover of PSL2R, Nil3 the Heisenberg group of

upper triangular (3 x 3)-matrices and H2 the hyperbolic plane. Isom0(X) stand for the

identity component of the isometry group of a Riemannian manifold X. In each case

Γ denotes any discrete subgroup of Isom0( X) acting freely on X.

We note in passing that the manifolds in (b) of Theorem 2 can also be described

as left-quotients of the universal cover of the Euclidean group, that is, the group of

orientation preserving isometries of the Euclidean plane E2. This class comprises exactly

five manifolds.

As a consequence of Theorems 1 and 2 there are 3-manifolds that admit normal

almost contact structures not induced from a contact form.

2. Compact complex surfaces. If a closed 3-manifold M admits a normal contact

form, then M x R admits an /^-invariant integrable almost complex structure, hence

MxS1 is a compact complex surface with a smooth S1-action by holomorphic

automorphisms. Therefore the starting point for our proof of Theorem 1 is the following

theorem from [3]. Part of the argument employed there to prove this theorem is parallel

to that of Sato. We should like to point out to the reader that Section 4 of [3], which

contains Theorem 3 and its proof as well as other arguments relevant to the discussion

here, can be read independently of the preceding sections of that paper.

THEOREM 3. A compact complex surface W is diffeomorphic to a complex surface

of the form MxS1 on which the obvious smooth Si-action is by holomorphic auto-

morphisms, if and only if W is one of the following.

(a) A Hopf surface that is (topologically) of the form (Γ\S3) x S1 with Γ <= 1/(2).

(b) A properly elliptic surface of the form (Γ\(H2 x E1)) x S1 or (Γ\SL2) x S1

with Γ a Isom0(if2 x E1) or Γ a Isom0(SX2), respectively.

(c) One of the hyperelliptic surfaces {which are topologically T2-bundles over T2

with monodromy A, /, where A e SL2Z is periodic and I the identity matrix, A ΦI) with

Euler class (0, 0). Up to diffeomorphism, there are four such surfaces.

(d) A complex torus, diffeomorphic to Γ4.

(e) A primary or secondary Kodaira surface of the form (Γ\Nil3) x S1 with

Γ c Isom0(M73).

(f) A ruled surface of genus 1 diffeomorphic to S2 x T2.

In the following sections we deal with each of the geometries in turn.
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3. Spherical geometry. Suppose (M, ω) is a 3-manifold with normal contact form
ω such that W=M x S1 with the induced complex structure is a Hopf surface.

If π^W) is non-abelian, then W is elliptic. Furthermore, the elliptic structure is
unique and has no singular fibres by (the proof of) Lemma 7.2 of [13]. By [7, Theorem
27], cf. [11], the base orbifold B of the elliptic fibration W^B is a sphere with three
cone points and positive orbifold characteristic. We now have the following argument
from [3]: Since the general fibre of the elliptic fibration represents a homology class
with self-intersection zero, positivity of intersections implies that the holomorphic
^-action generated by dt sends general fibres to general fibres and fixes the exceptional
(i.e. multiple) fibres. So the action descends to an ^-action on B with fixed points in
the three cone points, which must be the trivial action. Hence dt is tangent to the fibres.

Thus ξ is also tangent to the elliptic fibres, and the flow of ξ induces a Seifert
fibration on the quotient M— W/(dt}. (In W=Mx S1 an orbit of ξ is tangent to the
M-factor and cuts an orbit of dt at most once. Since both the orbits of ξ and of dt are
along the fibres of W-+B, it follows that the orbits of ξ are closed. By a fundamental
result of Epstein [1], this implies that M is Seifert fibred.) Hence M is a geometric
manifold (cf. [9]), and the geometric type can only be S3 since the geometric type (if
any) of a Hopf surface can only be S3 x E1 [13, Theorem 10.1].

If nx( W) is abelian, then πx(M) = Z φ Zm (including the case m = 1 of primary Hopf
surfaces, that is, π1(W) = Z) by [6], and π^W), considered as the deck transformation
group on C2\{(0, 0)}, is generated by a contraction Γand, if m > 1, a torsion generator
U. There are two possible cases:
Case (1):

L/(z1,z2) = (ε1z1,ε2z2),

Case (2):

ε̂  = l , (m,ή)=\ .

Now let φt denote the flow of dt on W=M x S1. Lift φt to a one-parameter group of
holomorphic automorphisms of C2\{(0, 0)} (still denoted by φt). Since φt commutes
with T, the arguments on pp. 230-231 of [6] show that φt has to be of the form

in case (1) and

<?,(*!, z2) = (bn(t)zi + c(t)zn

2, B(ήz2)

in case (2). The condition φt+to = φtoφto implies
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or

φt(zu z2) = (enbtz1+ctenbtzn

2, ebtz2),

respectively, where the real parts of a and b are non-zero and have the same sign (since
there is a time t0 such that φt0 is equal to T up to sign and up to a power of U, so φt0

is contracting or expanding).
Now consider the set

S = {(z1>Z2)€C2:|z1 |2+/s:|z2 |2 = l}

with K a positive real constant. This set is {/-invariant and diffeomorphic to 53, and it
is easy to check that the flow of φt is transverse to S for K sufficiently large. This implies
that M is diffeomorphic to a lens space S/<ί/> = L(m, n).

Conversely, suppose M is of the form Γ\S3 with Γ a discrete subgroup of 1/(2) (or
50(4), which amounts to the same thing; see the remark below) acting freely on 53.
Identifying S3 with the unit sphere in C2, we have a natural multiplication of S3 on
itself given by

(zuz2)(wuw2) = (zίwί-z2w2,z2w1+zίw2).

(This formula is simply quaternionic multiplication when identifying (z l5 z2) with q —
zι +zij-) There is a natural epimorphism

Φ:S 3 x5 3 -SO(4)

given by

where ql9 q2, x are unit quaternions, see [9]. Moreover, it is shown there that any finite
subgroup of 50(4) acting freely on 5 3 is conjugate in 0(4) to a subgroup of Φ(53 x 51),
where 5 1 is identified with {(z l 90)eC2 : I z J ^ } . Hence, up to diffeomorphism, we
may assume that M = Γ \ 5 3 with Γ <z Φ(S3 x 51).

REMARK. Alternatively, one may conjugate Γ in 0(4) to a subgroup of Φ(5λ x 53).
It is easy to seen that Φ(51 x 53) = (7(2), with 1/(2) acting on C2 by matrix multiplication
from the left. This implies the statement above about the equivalence of considering
subgroups Γ c £7(2) or Γ c 50(4).

We leave the proof of the following lemma to the reader (cf. Lemma 6 below).

LEMMA 4. The Lie algebra {of left-invariant vector fields) su(2) ofS3 = SU(2) admits
a basis eί9 e29 e3 with [eh ej]=ekfor any cyclic permutation (ij, k) of (1, 2, 3) such that
the right action ofS1 is given by the flow ofeγ. Hence, this action preserves eγ and rotates
the (e2, e3)-plane uniformly.

It follows from Lemma 4 that the dual 1-form ω = ef is a contact form on 5 3
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invariant under the action of Φ(S3 x S1). The fact that ω is a contact form follows

directly from the non-integrability condition [£2, e3~] φQ) of the 2-plane field ^ = kerω,

indeed

ω A dω(eu e2, e3) = dω(e2, e3) = - ω(|> 2, e3]) Φ 0 .

It remains to show that ω is a normal contact form. Here (and in the following

sections) we use the following result of Frόhlicher [2], cf. [12].

LEMMA 5. Let J be a left-invariant almost complex structure on the real Lie group

G. Then J is integrable if and only if the ( +i)-eigenspace (TeG® C ) ( l t 0 ) of J on the

complexified Lie algebra Tfi ®C is a Lie subalgebra.

In other words, the integrability condition is that the bracket of two left-invariant

vector fields of type (1, 0) is again of type (1,0); by writing two arbitrary vector fields

of type (1,0) as linear combinations (with coefficients in C™{G,R)) of left-invariant

vector fields of that type it is easy to see that their bracket is also of type (1,0).

The almost complex structure / o n MxS1 induced by ω is given by Jex = dt and

Je3 = e2 on S3 x E1. Observe that / is invariant under the action of S3 x S1 on S3. Hence

a basis of (TeG® C ) ( 1 ' 0 ) (where G = S3 x E1) is given by

dt — Udt = dt + ieί and e2 — iJe2 = e2 + ie3 .

We compute

[βt + ieu e2 + ie3]=e2 + ie3 ,

which proves that / is integrable.

4. SX2-geometry. Now let (M, ω) be a 3-manifold with normal contact form ω

such that W=Mx S1 with the induced complex structure is a properly elliptic surface

of the form W / =(Γ\5L 2 )xS 1 with Γ c Isom0(SX2). By arguments completely analo-

gous to those used in Section 3 (cf. [3]) we deduce that M = Γ\SL2.

For the converse we have the following analogue of Lemma 4, which is proved

in [4].

LEMMA 6. The Lie algebra sl2 of SL2 has a basis eu e2, e3 with

[<?!, έ?2] =e3 , [έ?2, έ?3] = -ex , [έ?3, έ?J =e2 ,

such that the R-factor ofIsom0(SL2) = SL2 xzR is given by the flow ofeί.

As before we define ω = ef. This is invariant under the action of Isom0(SX2), and

the induced almost complex structure is given by Jex = dt, Je2 = e3. The same computa-

tion as in Section 3 shows that / is integrable.
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5. The Heisenberg group. The Heisenberg group Nil3 is the group of upper
triangular (3 x 3)-matrices

Isom0(M/3) is generated by left multiplication,

(*o> Jo, zo)(χ, y, z)=(*o+x, yo+y,z0+z+χoy),

and the action of the isotropy group S1 (cf. [9]),

(x, y, z) v-¥ (x cos 0+y sin 0, - x sin 0+>> cos 0, z+(sin 0(y2 cos 0 - x2 cos 0 - 2xy sin 0)/2)).

Set ω = dz — xdy. A straightforward computation shows that ω is a contact form on
Nil3 invariant under the action of Isom0(Λ/7/3). The induced invariant almost complex
structure on Nil3 x E1 is given by

jdx=-(dy+xdz), Jdz=dt,

and / is integrable since

It remains to show that if W^MxS1 is a Kodaira surface with complex structure
induced from a normal contact form on M, then M is modelled on Nil3. The fact that
M x S1 is diffeomorphic to (Γ\Nil3) x S1 implies that M is homotopy equivalent to
Γ\NH3. By a result of Scott [10], M and Γ\Nil3 are homeomorphic and hence dif-
feomorphic by the uniqueness of differentiable structures on topological 3-manifolds,
cf. [5].

Alternatively, one can again observe that the holomorphic S^-action on W sends
fibres to fibres and that the flow of dt actually has to be along the fibres of the (unique)
elliptic fibration, so the quotient M under this ^-action is a Seifert fibred manifold by
the argument used in Section 3. Hence M is a geometric manifold, and the geometric
type can only be Nil3 because of the uniqueness of the geometric type of W.

6. The remaining geometries. Let W be a complex surface diffeomorphic to
(Γ\(H2 x E1)) x S1 with holomorphic S^-action. Such a surface has an elliptic fibration
with Euler number zero, and the S^-action has to go along the fibres, because the base
orbifold is of negative orbifold characteristic and does not admit any non-trivial S1-
actions. If the complex structure on W—Mx S1 were induced from a normal contact
form on M, this argument would show that M i s a Seifert manifold of the form
M=Γ\(H2xE1) with Seifert fibration given by the flow of the Reeb vector field ξ.
Since the Euler number of this Seifert fibration is zero, ω would lift to a contact form
on Σg x S1, where Σg denotes a surface of genus g>l, with Reeb vector field ξ tangent
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to the ^-factor. But then dω would induce an exact area form on the transversal Σg,
which is absurd.

The argument in the remaining cases of Theorem 3 is analogous. If W were a
complex torus, then dt — iJdt would lift to a holomorphic vector field on C2 with fourfold
periodic coefficient functions and thus would have to be constant; hence so would
ξ= —Jdt. Then M would have to be a 3-torus and ξ a constant slope vector field on
T3, which would admit a transverse 2-torus.

If Wwere a ruled surface of genus 1 of the form W=S2 x Γ2, the flow of dt would
have to be transverse to the 52-factor by the hairy ball theorem (cf. [3, Section 5.1]).
Hence we would have M=S2xS1 with ξ transverse to the S2-factor (see Section 7
below), which leads to a contradiction as before.

This concludes the proof of Theorem 1.

7. Normal almost contact structures. By Theorem 3 and the arguments used in
the preceding sections, the only manifolds other than those from Theorem 1 that might
admit a normal almost contact structure are manifolds that are homotopy equivalent
to one of those listed in Theorem 2. In case (a) the arguments from Section 3 are
actually strong enough to prove that M is diffeomorphic to a manifold of the form
Γ\(H2 x E1). In cases (a) and (b) homotopy equivalence implies diffeomorphism by the
result of Scott [10] mentioned above.

In case (c) we argue as follows. Suppose M is a 3-manifold with normal almost
contact structure such that W=Mx S1 is a ruled surface diffeomorphic to S2 x T2. Let
π : W-+T2 denote the ruling. By the same arguments as in the elliptic case the S ̂ action
has to send fibres to fibres and induces an S ̂ action on the base T2 of the ruling (which
can be seen to be given by a constant slope vector field because of the holomorphicity
of n^(dt — iJdt)). We claim that the period of this S^action equals the period of the
S^-action on W. Assuming this claim, we see that a fibre of Wdescends to an embedded
sphere in M= W/(dt}, and from [5, Lemma 3.13] or by a direct geometric argument
it follows that M is diffeomorphic to S2xS1 (with ξ transverse to the S2-factor, thus
proving the assertion at the end of Section 6). To prove the claim we argue by con-
tradiction. If the period of the ^-action on WWQTQ k times the period of the S^action
on T2(k>\), we would get an induced holomorphic Zλ-action on a fixed fibre S2.
However, such an action would necessarily have a fixed point, contradicting the fact
that the S1 -action on Wis principal.

Thus, to complete the proof of Theorem 2 it only remains to exhibit a normal
almost contact structure on each of the manifolds listed there. In each case there is an
obvious complex structure on Mx S1 compatible with the geometry, see [13]. Denote
the S1 -coordinate by t and set ξ=—Jdt. Furthermore, one finds an S^invariant
complex line complementary to {3,, Jdt} and tangent to the M-factor. Let η be the
1-form on M defining this complex line; then (/|ker^/, ξ, η) defines a normal almost
contact structure on M.
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