Tôhoku Math. J. 49 (1997), 415–422

NORMAL CONTACT STRUCTURES ON 3-MANIFOLDS

HANSJÖRG GEIGES

(Received February 21, 1996)

Abstract. We give a classification of the closed 3-manifolds that admit normal contact forms or normal almost contact structures.

1. Introduction. Let ω be a contact form on a closed 3-manifold M, that is $\omega \wedge d\omega$ is a volume form. The Reeb vector field ξ of ω is defined by $d\omega(\xi, \cdot) \equiv 0$ and $\omega(\xi) \equiv 1$. On the contact structure $\mathcal{D} = \ker \omega$ (or, more generally, on a 2-plane distribution $\mathcal{D} = \ker \eta$ transverse to ξ) one can find an endomorphism $J: \mathcal{D} \to \mathcal{D}$ compatible with $d\omega$ in the sense that $d\omega(JX, JY) = d\omega(X, Y)$ for all vector fields $X, Y \in \mathcal{D}$ and $d\omega(X, JX) > 0$ for $X \neq 0$. This J is uniquely defined up to homotopy. The triple (J, ξ, η) , in other words, a reduction of the structure group of M to $U(1) \times 1$, is called an *almost contact structure compatible with* ω .

On $M \times R$ one can now define an almost complex structure (still denoted by J) which extends $J: \mathcal{D} \to \mathcal{D}$ and satisfies $J\xi = \partial_t$, where t denotes the **R**-coordinate. If J is integrable, then the almost contact structure (J, ξ, η) and the contact form ω are called *normal*.

In [8] Sato proved that if M admits a normal almost contact structure, then $\pi_2(M)=0$ or M is homotopy equivalent to $S^1 \times S^2$. In the present paper we complete the investigation begun by Sato. For the reader familiar with the geometries of 3-manifolds (in the sense of Thurston) we can now state our main results; all the notation will be explained below.

THEOREM 1. A closed 3-manifold admits a normal contact form if and only if it is diffeomorphic to one of the following manifolds:

(a) $\Gamma \setminus S^3$ with $\Gamma \subset SO(4) = \text{Isom}_0(S^3)$,

- (b) $\Gamma \setminus \widetilde{SL}_2$ with $\Gamma \subset \operatorname{Isom}_0(\widetilde{SL}_2)$,
- (c) $\Gamma \setminus Nil^3$ with $\Gamma \subset \text{Isom}_0(Nil^3)$.

REMARK. The manifolds in this theorem are precisely the Seifert fibred 3-manifolds with non-zero Euler number over orientable base orbifolds (without reflectors).

THEOREM 2. A closed 3-manifold admits a normal almost contact structure if and only if it is diffeomorphic to one of the manifolds listed in Theorem 1 or one of the following manifolds:

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C15; Secondary 57M50, 32J15.

H. GEIGES

(a) $\Gamma \setminus (H^2 \times E^1)$ with $\Gamma \subset \text{Isom}_0(H^2 \times E^1)$,

- (b) T^2 -bundles over S^1 with periodic monodromy,
- (c) $S^2 \times S^1$.

Our notation here is that of [9], to which we refer for all basic facts about geometric 3-manifolds. \widetilde{SL}_2 denotes the universal cover of PSL_2R , Nil^3 the Heisenberg group of upper triangular (3 × 3)-matrices and H^2 the hyperbolic plane. Isom₀(X) stand for the identity component of the isometry group of a Riemannian manifold X. In each case Γ denotes any discrete subgroup of Isom₀(X) acting freely on X.

We note in passing that the manifolds in (b) of Theorem 2 can also be described as left-quotients of the universal cover of the Euclidean group, that is, the group of orientation preserving isometries of the Euclidean plane E^2 . This class comprises exactly five manifolds.

As a consequence of Theorems 1 and 2 there are 3-manifolds that admit normal almost contact structures not induced from a contact form.

2. Compact complex surfaces. If a closed 3-manifold M admits a normal contact form, then $M \times R$ admits an R-invariant integrable almost complex structure, hence $M \times S^1$ is a compact complex surface with a smooth S^1 -action by holomorphic automorphisms. Therefore the starting point for our proof of Theorem 1 is the following theorem from [3]. Part of the argument employed there to prove this theorem is parallel to that of Sato. We should like to point out to the reader that Section 4 of [3], which contains Theorem 3 and its proof as well as other arguments relevant to the discussion here, can be read independently of the preceding sections of that paper.

THEOREM 3. A compact complex surface W is diffeomorphic to a complex surface of the form $M \times S^1$ on which the obvious smooth S^1 -action is by holomorphic automorphisms, if and only if W is one of the following.

(a) A Hopf surface that is (topologically) of the form $(\Gamma \setminus S^3) \times S^1$ with $\Gamma \subset U(2)$.

(b) A property elliptic surface of the form $(\Gamma \setminus (H^2 \times E^1)) \times S^1$ or $(\Gamma \setminus \widetilde{SL}_2) \times S^1$ with $\Gamma \subset \text{Isom}_0(H^2 \times E^1)$ or $\Gamma \subset \text{Isom}_0(\widetilde{SL}_2)$, respectively.

(c) One of the hyperelliptic surfaces (which are topologically T^2 -bundles over T^2 with monodromy A, I, where $A \in SL_2 \mathbb{Z}$ is periodic and I the identity matrix, $A \neq I$) with Euler class (0, 0). Up to diffeomorphism, there are four such surfaces.

(d) A complex torus, diffeomorphic to T^4 .

(e) A primary or secondary Kodaira surface of the form $(\Gamma \setminus Nil^3) \times S^1$ with $\Gamma \subset \text{Isom}_0(Nil^3)$.

(f) A ruled surface of genus 1 diffeomorphic to $S^2 \times T^2$.

In the following sections we deal with each of the geometries in turn.

416

3. Spherical geometry. Suppose (M, ω) is a 3-manifold with normal contact form ω such that $W = M \times S^1$ with the induced complex structure is a Hopf surface.

If $\pi_1(W)$ is non-abelian, then W is elliptic. Furthermore, the elliptic structure is unique and has no singular fibres by (the proof of) Lemma 7.2 of [13]. By [7, Theorem 27], cf. [11], the base orbifold B of the elliptic fibration $W \rightarrow B$ is a sphere with three cone points and positive orbifold characteristic. We now have the following argument from [3]: Since the general fibre of the elliptic fibration represents a homology class with self-intersection zero, positivity of intersections implies that the holomorphic S^1 -action generated by ∂_t sends general fibres to general fibres and fixes the exceptional (i.e. multiple) fibres. So the action descends to an S^1 -action on B with fixed points in the three cone points, which must be the trivial action. Hence ∂_t is tangent to the fibres.

Thus ξ is also tangent to the elliptic fibres, and the flow of ξ induces a Seifert fibration on the quotient $M = W/\langle \partial_t \rangle$. (In $W = M \times S^1$ an orbit of ξ is tangent to the *M*-factor and cuts an orbit of ∂_t at most once. Since both the orbits of ξ and of ∂_t are along the fibres of $W \to B$, it follows that the orbits of ξ are closed. By a fundamental result of Epstein [1], this implies that *M* is Seifert fibred.) Hence *M* is a geometric manifold (cf. [9]), and the geometric type can only be S^3 since the geometric type (if any) of a Hopf surface can only be $S^3 \times E^1$ [13, Theorem 10.1].

If $\pi_1(W)$ is abelian, then $\pi_1(M) = \mathbb{Z} \oplus \mathbb{Z}_m$ (including the case m = 1 of primary Hopf surfaces, that is, $\pi_1(W) = \mathbb{Z}$) by [6], and $\pi_1(W)$, considered as the deck transformation group on $\mathbb{C}^2 \setminus \{(0, 0)\}$, is generated by a contraction T and, if m > 1, a torsion generator U. There are two possible cases:

Case (1):

$$T(z_1, z_2) = (\alpha z_1, \beta z_2), \quad 0 < |\alpha| \le |\beta| < 1,$$

$$U(z_1, z_2) = (\varepsilon_1 z_1, \varepsilon_2 z_2), \quad \varepsilon_1^m = \varepsilon_2^m = 1.$$

Case (2):

$$T(z_1, z_2) = (\beta^n z_1 + \gamma z_2^n, \beta z_2), \quad 0 < |\beta| < 1, \quad \gamma \neq 0,$$

$$U(z_1, z_2) = (\varepsilon_2^n z_1, \varepsilon_2 z_2), \quad \varepsilon_2^m = 1, \quad (m, n) = 1.$$

Now let φ_t denote the flow of ∂_t on $W = M \times S^1$. Lift φ_t to a one-parameter group of holomorphic automorphisms of $C^2 \setminus \{(0, 0)\}$ (still denoted by φ_t). Since φ_t commutes with T, the arguments on pp. 230–231 of [6] show that φ_t has to be of the form

$$\varphi_t(z_1, z_2) = (\tilde{a}(t)z_1, b(t)z_2)$$

in case (1) and

$$\varphi_t(z_1, z_2) = (\tilde{b}^n(t)z_1 + \tilde{c}(t)z_2^n, \tilde{b}(t)z_2)$$

in case (2). The condition $\varphi_{t+t_0} = \varphi_t \circ \varphi_{t_0}$ implies

$$\varphi_t(z_1, z_2) = (e^{at}z_1, e^{bt}z_2)$$

or

$$\varphi_t(z_1, z_2) = (e^{nbt}z_1 + cte^{nbt}z_2^n, e^{bt}z_2)$$

respectively, where the real parts of a and b are non-zero and have the same sign (since there is a time t_0 such that φ_{t_0} is equal to T up to sign and up to a power of U, so φ_{t_0} is contracting or expanding).

Now consider the set

$$S = \{(z_1, z_2) \in C^2 : |z_1|^2 + K |z_2|^2 = 1\}$$

with K a positive real constant. This set is U-invariant and diffeomorphic to S^3 , and it is easy to check that the flow of φ_t is transverse to S for K sufficiently large. This implies that M is diffeomorphic to a lens space $S/\langle U \rangle = L(m, n)$.

Conversely, suppose M is of the form $\Gamma \setminus S^3$ with Γ a discrete subgroup of U(2) (or SO(4), which amounts to the same thing; see the remark below) acting freely on S^3 . Identifying S^3 with the unit sphere in C^2 , we have a natural multiplication of S^3 on itself given by

$$(z_1, z_2)(w_1, w_2) = (z_1w_1 - z_2\bar{w}_2, z_2\bar{w}_1 + z_1w_2).$$

(This formula is simply quaternionic multiplication when identifying (z_1, z_2) with $q = z_1 + z_2 j$.) There is a natural epimorphism

$$\Phi: S^3 \times S^3 \to SO(4)$$

given by

$$\Phi(q_1, q_2)(x) = q_1 x q_2^{-1} ,$$

where q_1, q_2, x are unit quaternions, see [9]. Moreover, it is shown there that any finite subgroup of SO(4) acting freely on S^3 is conjugate in O(4) to a subgroup of $\Phi(S^3 \times S^1)$, where S^1 is identified with $\{(z_1, 0) \in \mathbb{C}^2 : |z_1|=1\}$. Hence, up to diffeomorphism, we may assume that $M = \Gamma \setminus S^3$ with $\Gamma \subset \Phi(S^3 \times S^1)$.

REMARK. Alternatively, one may conjugate Γ in O(4) to a subgroup of $\Phi(S^1 \times S^3)$. It is easy to seen that $\Phi(S^1 \times S^3) = U(2)$, with U(2) acting on C^2 by matrix multiplication from the left. This implies the statement above about the equivalence of considering subgroups $\Gamma \subset U(2)$ or $\Gamma \subset SO(4)$.

We leave the proof of the following lemma to the reader (cf. Lemma 6 below).

LEMMA 4. The Lie algebra (of left-invariant vector fields) su(2) of $S^3 = SU(2)$ admits a basis e_1 , e_2 , e_3 with $[e_i, e_j] = e_k$ for any cyclic permutation (i, j, k) of (1, 2, 3) such that the right action of S^1 is given by the flow of e_1 . Hence, this action preserves e_1 and rotates the (e_2, e_3) -plane uniformly.

It follows from Lemma 4 that the dual 1-form $\omega = e_1^*$ is a contact form on S^3

418

invariant under the action of $\Phi(S^3 \times S^1)$. The fact that ω is a contact form follows directly from the non-integrability condition $[e_2, e_3] \notin \mathcal{D}$ of the 2-plane field $\mathcal{D} = \ker \omega$, indeed

$$\omega \wedge d\omega(e_1, e_2, e_3) = d\omega(e_2, e_3) = -\omega([e_2, e_3]) \neq 0$$
.

It remains to show that ω is a normal contact form. Here (and in the following sections) we use the following result of Fröhlicher [2], cf. [12].

LEMMA 5. Let J be a left-invariant almost complex structure on the real Lie group G. Then J is integrable if and only if the (+i)-eigenspace $(T_e G \otimes C)^{(1,0)}$ of J on the complexified Lie algebra $T_e G \otimes C$ is a Lie subalgebra.

In other words, the integrability condition is that the bracket of two left-invariant vector fields of type (1, 0) is again of type (1, 0); by writing two arbitrary vector fields of type (1, 0) as linear combinations (with coefficients in $C^{\infty}(G, \mathbf{R})$) of left-invariant vector fields of that type it is easy to see that their bracket is also of type (1, 0).

The almost complex structure J on $M \times S^1$ induced by ω is given by $Je_1 = \partial_i$ and $Je_3 = e_2$ on $S^3 \times E^1$. Observe that J is invariant under the action of $S^3 \times S^1$ on S^3 . Hence a basis of $(T_e G \otimes C)^{(1,0)}$ (where $G = S^3 \times E^1$) is given by

$$\partial_t - iJ\partial_t = \partial_t + ie_1$$
 and $e_2 - iJe_2 = e_2 + ie_3$.

We compute

$$[\partial_t + ie_1, e_2 + ie_3] = e_2 + ie_3,$$

which proves that J is integrable.

4. \widetilde{SL}_2 -geometry. Now let (M, ω) be a 3-manifold with normal contact form ω such that $W = M \times S^1$ with the induced complex structure is a properly elliptic surface of the form $W = (\Gamma \setminus \widetilde{SL}_2) \times S^1$ with $\Gamma \subset \text{Isom}_0(\widetilde{SL}_2)$. By arguments completely analogous to those used in Section 3 (cf. [3]) we deduce that $M = \Gamma \setminus \widetilde{SL}_2$.

For the converse we have the following analogue of Lemma 4, which is proved in [4].

LEMMA 6. The Lie algebra sl_2 of \widetilde{SL}_2 has a basis e_1 , e_2 , e_3 with

$$[e_1, e_2] = e_3$$
, $[e_2, e_3] = -e_1$, $[e_3, e_1] = e_2$,

such that the **R**-factor of $\text{Isom}_0(\widetilde{SL}_2) = \widetilde{SL}_2 \times_{\mathbf{Z}} \mathbf{R}$ is given by the flow of e_1 .

As before we define $\omega = e_1^*$. This is invariant under the action of $\text{Isom}_0(\widetilde{SL}_2)$, and the induced almost complex structure is given by $Je_1 = \partial_t$, $Je_2 = e_3$. The same computation as in Section 3 shows that J is integrable.

5. The Heisenberg group. The Heisenberg group Nil^3 is the group of upper triangular (3×3) -matrices

$$\left(\begin{array}{rrrr}1 & x & z\\0 & 1 & y\\0 & 0 & 1\end{array}\right).$$

 $Isom_0(Nil^3)$ is generated by left multiplication,

$$(x_0, y_0, z_0)(x, y, z) = (x_0 + x, y_0 + y, z_0 + z + x_0y),$$

and the action of the isotropy group S^1 (cf. [9]),

 $(x, y, z) \mapsto (x \cos \theta + y \sin \theta, -x \sin \theta + y \cos \theta, z + (\sin \theta (y^2 \cos \theta - x^2 \cos \theta - 2xy \sin \theta)/2)).$

Set $\omega = dz - xdy$. A straightforward computation shows that ω is a contact form on Nil^3 invariant under the action of $Isom_0(Nil^3)$. The induced invariant almost complex structure on $Nil^3 \times E^1$ is given by

$$J\partial_x = -(\partial_y + x\partial_z), \quad J\partial_z = \partial_t,$$

and J is integrable since

$$[\partial_x + i(\partial_y + x\partial_z), \partial_z - i\partial_t] = 0.$$

It remains to show that if $W = M \times S^1$ is a Kodaira surface with complex structure induced from a normal contact form on M, then M is modelled on Nil^3 . The fact that $M \times S^1$ is diffeomorphic to $(\Gamma \setminus Nil^3) \times S^1$ implies that M is homotopy equivalent to $\Gamma \setminus Nil^3$. By a result of Scott [10], M and $\Gamma \setminus Nil^3$ are homeomorphic and hence diffeomorphic by the uniqueness of differentiable structures on topological 3-manifolds, cf. [5].

Alternatively, one can again observe that the holomorphic S^1 -action on W sends fibres to fibres and that the flow of ∂_t actually has to be along the fibres of the (unique) elliptic fibration, so the quotient M under this S^1 -action is a Seifert fibred manifold by the argument used in Section 3. Hence M is a geometric manifold, and the geometric type can only be Nil^3 because of the uniqueness of the geometric type of W.

6. The remaining geometries. Let W be a complex surface diffeomorphic to $(\Gamma \setminus (H^2 \times E^1)) \times S^1$ with holomorphic S^1 -action. Such a surface has an elliptic fibration with Euler number zero, and the S^1 -action has to go along the fibres, because the base orbifold is of negative orbifold characteristic and does not admit any non-trivial S^1 -actions. If the complex structure on $W = M \times S^1$ were induced from a normal contact form on M, this argument would show that M is a Seifert manifold of the form $M = \Gamma \setminus (H^2 \times E^1)$ with Seifert fibration given by the flow of the Reeb vector field ξ . Since the Euler number of this Seifert fibration is zero, ω would lift to a contact form on $\Sigma_q \times S^1$, where Σ_q denotes a surface of genus g > 1, with Reeb vector field ξ tangent

to the S¹-factor. But then $d\omega$ would induce an exact area form on the transversal Σ_g , which is absurd.

The argument in the remaining cases of Theorem 3 is analogous. If W were a complex torus, then $\partial_t - iJ\partial_t$ would lift to a holomorphic vector field on C^2 with fourfold periodic coefficient functions and thus would have to be constant; hence so would $\xi = -J\partial_t$. Then M would have to be a 3-torus and ξ a constant slope vector field on T^3 , which would admit a transverse 2-torus.

If W were a ruled surface of genus 1 of the form $W=S^2 \times T^2$, the flow of ∂_t would have to be transverse to the S²-factor by the hairy ball theorem (cf. [3, Section 5.1]). Hence we would have $M=S^2 \times S^1$ with ξ transverse to the S²-factor (see Section 7 below), which leads to a contradiction as before.

This concludes the proof of Theorem 1.

7. Normal almost contact structures. By Theorem 3 and the arguments used in the preceding sections, the only manifolds other than those from Theorem 1 that might admit a normal almost contact structure are manifolds that are homotopy equivalent to one of those listed in Theorem 2. In case (a) the arguments from Section 3 are actually strong enough to prove that M is diffeomorphic to a manifold of the form $\Gamma \setminus (H^2 \times E^1)$. In cases (a) and (b) homotopy equivalence implies diffeomorphism by the result of Scott [10] mentioned above.

In case (c) we argue as follows. Suppose M is a 3-manifold with normal almost contact structure such that $W = M \times S^1$ is a ruled surface diffeomorphic to $S^2 \times T^2$. Let $\pi : W \to T^2$ denote the ruling. By the same arguments as in the elliptic case the S^1 -action has to send fibres to fibres and induces an S^1 -action on the base T^2 of the ruling (which can be seen to be given by a constant slope vector field because of the holomorphicity of $\pi_*(\partial_t - iJ\partial_t)$). We claim that the period of this S^1 -action equals the period of the S^1 -action on W. Assuming this claim, we see that a fibre of W descends to an embedded sphere in $M = W/\langle \partial_i \rangle$, and from [5, Lemma 3.13] or by a direct geometric argument it follows that M is diffeomorphic to $S^2 \times S^1$ (with ξ transverse to the S^2 -factor, thus proving the assertion at the end of Section 6). To prove the claim we argue by contradiction. If the period of the S^1 -action on W were k times the period of the S^1 -action on $T^2(k>1)$, we would get an induced holomorphic \mathbb{Z}_k -action on a fixed fibre S^2 . However, such an action would necessarily have a fixed point, contradicting the fact that the S^1 -action on W is principal.

Thus, to complete the proof of Theorem 2 it only remains to exhibit a normal almost contact structure on each of the manifolds listed there. In each case there is an obvious complex structure on $M \times S^1$ compatible with the geometry, see [13]. Denote the S^1 -coordinate by t and set $\xi = -J\partial_t$. Furthermore, one finds an S^1 -invariant complex line complementary to $\{\partial_t, J\partial_t\}$ and tangent to the *M*-factor. Let η be the 1-form on *M* defining this complex line; then $(J | \ker \eta, \xi, \eta)$ defines a normal almost contact structure on *M*.

H. GEIGES

References

- [1] D. B. A. EPSTEIN, Periodic flows on 3-manifolds, Ann. of Math. 95 (1972), 66-82.
- [2] A. FRÖHLICHER, Zur Differentialgeometrie der komplexen Strukturen, Math. Ann. 129 (1955), 50–95.
- [3] H. GEIGES AND J. GONZALO, Contact geometry and complex surfaces, Invent. Math. 121 (1995), 147–209.
- [4] H. GEIGES AND J. GONZALO, Seifert invariants of left-quotients of 3-dimensional simple Lie groups, Topology Appl. 66 (1995), 117-127.
- [5] J. HEMPEL, 3-Manifolds, Ann. of Math. Studies 86, Princeton University Press, Princeton NJ, 1976.
- [6] M. KATO, Topology of Hopf surfaces, J. Math. Soc. Japan 27 (1975), 222–238; erratum: ibid. 41 (1989), 173–174.
- [7] K. KODAIRA, On the structure of compact complex analytic surfaces II, Amer. J. Math. 88 (1966), 682-721.
- [8] H. SATO, Remarks concerning contact manifolds, Tôhoku Math. J. 29 (1977), 577-584.
- [9] P. SCOTT, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487.
- [10] P. SCOTT, There are no fake Seifert fibre spaces with infinite π_1 , Ann. of Math. 117 (1983), 35–70.
- [11] M. UE, Geometric 4-manifolds in the sense of Thurston and Seifert 4-manifolds II, J. Math. Soc. Japan 43 (1991), 149–183.
- [12] C. T. C. WALL, Geometries and geometric structures in real dimension 4 and complex dimension 2, in: Geometry and Topology, Lecture Notes in Math. 1167, Springer, Berlin (1985), 268–292.
- [13] C. T. C. WALL, Geometric structures on compact complex analytic surfaces, Topology 25 (1986), 119-153.

DEPARTEMENT MATHEMATIK ETH Zentrum CH-8092 Zürich Switzerland

E-mail address: geiges@math.ethz.ch