NORMAL-CONVEX EMBEDDINGS OF INVERSE SEMIGROUPS

by PEDRO V. SILVA

(Received 20 September, 1991)

Normal-convex embeddings are introduced for inverse semigroups, generalizing the group-theoretic concept, due to Papakyriakopoulos [4]. It is shown that every E-unitary inverse semigroup admits a normal-convex embedding into a semidirect product of a semilattice by a group, a stronger version of a result by O^{\prime} Carroll [3]. A general embedding result for inverse semigroups is also obtained.

1. Preliminaries. The general terminology and notation are those of Petrich [5].

Let S be an inverse semigroup and let $R \subseteq S \times S$ be a relation on S. We denote by $R^{\#}$ the congruence on S generated by R, that is, the transitive closure of $\{(a u b, a v b): a, b \in$ S^{1} and $\left.(u, v) \in R \cup R^{-1}\right\}$. The natural projection $S \rightarrow S / R^{\#}$ is denoted by $\left(R^{\#}\right)^{4}$.

Let $\varphi: S \rightarrow T$ be a homomorphism of inverse semigroups and let R be a relation on S. The relation

$$
R \varphi=\{(u \varphi, v \varphi):(u, v) \in R\}
$$

is said to be the relation on T induced by R and φ. It follows easily that

$$
\begin{equation*}
R^{\#} \varphi \subseteq(R \varphi)^{\#} . \tag{1.1}
\end{equation*}
$$

If φ is injective, we say that φ is an embedding of inverse semigroups.
Now let $\varphi: S \rightarrow T$ be an embedding of inverse semigroups. We say that φ is normal-convex if and only if, for every relation R on S,

$$
(R \varphi)^{\#} \cap(S \times S) \varphi \subseteq R^{\#} \varphi
$$

Note that, by (1.1), the inclusion $R^{\#} \varphi \subseteq(R \varphi)^{\#} \cap(S \times S) \varphi$ is always true. Also by (1.1), we know that φ induces a unique homomorphism $\varphi_{R}: S / R^{\#} \rightarrow T /(R \varphi)^{\#}$ such that the canonical diagram

commutes. Now we have
Lemma 1.1. Let $\varphi: S \rightarrow T$ be an embedding of inverse semigroups. Then φ is normal-convex if and only if φ_{R} is injective for every relation R on S.

Proof. Suppose that φ is normal-convex and let R be a relation on S. Let $a, b \in S$ be such that $\left(a R^{\#}\right)_{\varphi_{R}}=\left(b R^{\#}\right)_{\varphi_{R}}$. Since (1.2) commutes, we have $(a \varphi)(R \varphi)^{\#}=(b \varphi)(R \varphi)^{\#}$. Hence $(a \varphi, b \varphi) \in(R \varphi)^{\#} \cap(S \times S) \varphi$. Since φ is normal-convex, this yields $(a \varphi, b \varphi) \in$ $R^{\#} \varphi$. Thus $a R^{\#}=b R^{\#}$ and so φ_{R} is injective.

Conversely, suppose that φ_{R} is injective for every relation R on S. Suppose that $(a \varphi, b \varphi) \in(R \varphi)^{\#}$ for some $a, b \in S$. Since (1.2) commutes, we have $\left(a R^{\#}\right)_{\varphi_{R}}=\left(b R^{\#}\right)_{\varphi_{R}}$,
and since φ_{R} is injective, $a R^{\#}=b R^{\#}$. Therefore $(a \varphi, b \varphi) \in R^{\#} \varphi$ and so φ is normalconvex.

The following result shows that the class of normal-convex embeddings is closed under composition.

Lemma 1.2. Let $\varphi: S \rightarrow T$ and $\psi: T \rightarrow U$ be normal-convex embeddings of inverse semigroups. Then $\varphi \psi$ is a normal-convex embedding.

Proof. It is trivial that $\varphi \psi$ is an embedding. Now let R be a relation on S. Since $(\varphi \psi)_{R}$ is uniquely defined, we certainly have $(\varphi \psi)_{R}=\varphi_{R} \psi_{R \varphi}$ and so $(\varphi \psi)_{R}$ is injective. Thus, by Lemma 1.1, $\varphi \psi$ is normal-convex.

The next result shows an application of the concept of normal-convex embedding.
Given a semigroup S and a relation R on S, the word problem for R consists in finding an algorithm which determines, for every $a, b \in S$, whether or not $(a, b) \in R^{\#}$.

- Theorem 1.3. Let $\varphi: S \rightarrow T$ be a normal-convex embedding of inverse semigroups and let R be a relation on S. Then the word problem for R is solvable if the word problem for $R \varphi$ is solvable.

Proof. Suppose that the word problem for $R \varphi$ is solvable. Let $a, b \in S$. By Lemma 1.1, φ_{R} is injective and so $a R^{\#}=b R^{\#} \Leftrightarrow\left(a R^{\#}\right) \varphi_{R}=\left(b R^{\#}\right) \varphi_{R}$. Since (1.2) commutes, we have $\left(a R^{\#}\right)_{\varphi_{R}}=\left(b R^{\#}\right)_{\varphi_{R}} \Leftrightarrow(a \varphi)(R \varphi)^{\#}=(b \varphi)(R \varphi)^{\#}$. Since the word problem for $R \varphi$ is solvable, we can determine whether or not this latter equality holds, hence the word problem for R is solvable and the theorem is proved.

Now let S be an inverse semigroup with semilattice of idempotents $E(S)$. The least group congruence on S is defined by

$$
(a, b) \in \sigma \Leftrightarrow \exists e \in E(S): a e=b e
$$

We say that S is E-unitary if

$$
\forall a \in S, \quad a \sigma=1 \Rightarrow a \in E(S)
$$

Let M denote an inverse monoid with least group congruence σ. Then M is said to be F-inverse if every σ-class of M has a maximal element under the natural partial order. It is well-known that every F-inverse monoid is E-unitary [5, §VII.5].

Let G be a group and let K be a semilattice. An action of G on K by left automorphisms is a map $G \times K \rightarrow K:(g, A) \mapsto g A$ such that, for every $g, h \in G$ and $A, B \in K$,

$$
\begin{aligned}
g(h A) & =(g h) A, \\
g(A B) & =(g A)(g B), \\
1 A & =A .
\end{aligned}
$$

It follows easily that, for every $g \in G$ and $A, B \in K$, we have

$$
A \leqslant B \Rightarrow g A \leqslant g B
$$

The semidirect product of K by G induced by this action is the inverse semigroup $K \times G$ with the operation given by $(A, g)(B, h)=(A(g B), g h)$. When no ambiguity arises about the action, we shall denote this semigroup by $K \overline{\times} G$.

Now suppose that L is an ideal of K such that $G L=K$. Then we say that (G, K, L) is a strong McAlister triple and

$$
P(G, K, L)=\left\{(A, g) \in L \times G: g^{-1} A \in L\right\}
$$

is an inverse subsemigroup of $K \overline{\times} G[\mathbf{1}]$.
Lemma 1.4 [1]. Let M be an inverse monoid. Then M is F-inverse if and only if $M \simeq P(G, K, L)$ for some strong McAlister triple (G, K, L) such that L has a unity.

Let S be an inverse semigroup and let τ be a congruence on S. We say that τ is idempotent-pure if, for every $(a, b) \in \tau$,

$$
a \in E(S) \Rightarrow b \in E(S)
$$

We say that τ is idempotent-separating if, for every $(a, b) \in \tau$,

$$
a \in E(S) \Rightarrow b \notin E(S) .
$$

Finally, an inverse semigroup S is said to be quasi-free if $T \simeq F / \tau$ for some free inverse semigroup F and some idempotent-pure congruence τ on F.

Lemma 1.5 [2]. Let S be a quasi-free inverse semigroup. Then $S \simeq P(G, K, L)$ for some strong McAlister triple (G, K, L) with G free.
2. Strong McAlister triples. In this section we show that, for every strong McAlister triple (G, K, L), there exists a canonical embedding of $P(G, K, L)$ into a semidirect product of a semilattice by a group.

Theorem 2.1. Let (G, K, L) be a strong McAlister triple. Then the inclusion map $\varphi: P(G, K, L) \rightarrow K \overline{\times} G$ is normal-convex.

Proof. Let $S=P(G, K, L)$ and let $T=K \overline{\times} G$. Let R be a relation on S, say $R=\left\{\left(\left(A_{i}, g_{i}\right),\left(B_{i}, h_{i}\right)\right): i \in I\right\}$. Without loss of generality, we can assume that R is symmetric. Let $(U, u),(V, v) \in S$ be such that $(U, u)(R \varphi)^{\#}=(V, v)(R \varphi)^{\#}$. We want to prove that $(U, u) R^{\#}=(V, v) R^{\#}$. Since R is symmetric, we know that there exist $\left(W_{0}, w_{0}\right), \ldots,\left(W_{n}, w_{n}\right) \in T$ such that

$$
\begin{gathered}
\left(W_{0}, w_{0}\right)=(U, u) \\
\left(W_{n}, w_{n}\right)=(V, v) \\
\forall j \in\{1, \ldots, n\} \exists\left(P_{j}, p_{j}\right),\left(Q_{j}, q_{j}\right) \in T \exists i_{j} \in I: \\
\left(W_{j-1}, w_{j-1}\right)=\left(P_{j}, p_{j}\right)\left(A_{i}, g_{i}\right)\left(Q_{j}, q_{j}\right)
\end{gathered}
$$

and

$$
\left(W_{j}, w_{j}\right)=\left(P_{j}, p_{j}\right)\left(\dot{B_{i}}, h_{i j}\right)\left(Q_{j}, q_{j}\right)
$$

Now we show that, for every $m \in\{0, \ldots, n\}$,

$$
\begin{align*}
& \exists P_{m}^{\prime}, Q_{m}^{\prime}, W_{m}^{\prime} \in L: \\
& \quad\left(W_{m}^{\prime}, w_{m}\right) \in S \\
& \quad\left(W_{m}^{\prime}, w_{m}\right) R^{\#}=(U, u) R^{\#} \\
& \quad\left(W_{m}^{\prime}, w_{m}\right)=\left(P_{m}^{\prime}, 1\right)\left(W_{m}, w_{m}\right)\left(Q_{m}^{\prime}, 1\right) \tag{2.1}
\end{align*}
$$

We use induction on m. Defining $P_{0}^{\prime}=U, Q_{0}^{\prime}=u^{-1} U$ and $W_{0}^{\prime}=U$, we see that (2.1) holds for $m=0$.

Now suppose that (2.1) holds for $m=j-1$, with $j \in\{1, \ldots, n\}$. Then

$$
\begin{aligned}
\left(W_{j-1}^{\prime}, w_{j-1}\right) & =\left(W_{j-1}^{\prime}, 1\right)\left(W_{j-1}^{\prime}, w_{j-1}\right)\left(w_{j-1}^{-1} W_{j-1}^{\prime}, 1\right) \\
& =\left(W_{j-1}^{\prime}, 1\right)\left(P_{j-1}^{\prime}, 1\right)\left(W_{j-1}, w_{j-1}\right)\left(Q_{j-1}^{\prime}, 1\right)\left(w_{j-1}^{-1} W_{j-1}^{\prime}, 1\right) \\
& =\left(W_{j-1}^{\prime}, 1\right)\left(P_{j-1}^{\prime}, 1\right)\left(P_{j}, p_{j}\right)\left(A_{i j}, g_{i j}\right)\left(Q_{j}, q_{j}\right)\left(Q_{j-1}^{\prime}, 1\right)\left(w_{j-1}^{-1} W_{j-1}^{\prime}, 1\right)
\end{aligned}
$$

It is clear that

$$
\begin{equation*}
W_{j-1}^{\prime} \leqslant P_{j-1}^{\prime} P_{j} \tag{2.2}
\end{equation*}
$$

and so

$$
\left(W_{j-1}^{\prime}, 1\right)\left(P_{j-1}^{\prime}, 1\right)\left(P_{j}, p_{j}\right)=\left(W_{j-1}^{\prime}, p_{j}\right)
$$

Similarly,

$$
W_{i-1}^{\prime} \leqslant\left(p_{i} g_{i j} Q_{j}\right)\left(p_{i} g_{i j} q_{j} Q_{i-1}^{\prime}\right)
$$

and so

$$
\begin{equation*}
g_{i_{j}}^{-1} p_{j}^{-1} W_{j-1}^{\prime} \leqslant Q_{j}\left(q_{j} Q_{j-1}^{\prime}\right) \tag{2.3}
\end{equation*}
$$

Hence

$$
\left(Q_{j}, q_{j}\right)\left(Q_{j-1}^{\prime}, 1\right)\left(w_{j-1}^{-1} W_{j-1}^{\prime}, 1\right)=\left(g_{i_{j}}^{-1} p_{j}^{-1} W_{j-1}^{\prime}, q_{j}\right)
$$

Thus

$$
\left(W_{j-1}^{\prime}, w_{j-1}\right)=\left(W_{j-1}^{\prime}, p_{j}\right)\left(A_{i_{i}}, g_{i_{i}}\right)\left(g_{i_{j}}^{-1} p_{j}^{-1} W_{j-1}^{\prime}, q_{j}\right)
$$

Since $W_{j-1}^{\prime} \leqslant p_{j} A_{i_{j}}$, we have $p_{j}^{-1} W_{j-1}^{\prime} \leqslant A_{i_{j}} \in L$. But L is an ideal of K and so $p_{j}^{-1} W_{j-1}^{\prime} \in L$. Since $W_{j-1}^{\prime} \in L$, we obtain $\left(W_{j-1}^{\prime}, p_{j}\right) \in S$. Similarly, we have $g_{i_{j}}^{-1} p_{j}^{-1} W_{j-1}^{\prime} \leqslant$ $g_{i_{j}}^{-1} p_{j}^{-1}\left(p_{j} A_{i_{j}}\right)=g_{i_{j}}^{-1} A_{i_{j}} \in L$, and $q_{j}^{-1} g_{i_{j}}^{-1} p_{j}^{-1} W_{j-1}^{\prime}=w_{j-1}^{-1} W_{j-1}^{\prime} \in L$. Hence

$$
\left(g_{i_{j}}^{-1} p_{j}^{-1} W_{j-1}^{\prime}, q_{j}\right) \in S
$$

Let $\quad P_{j}^{\prime}=W_{j-1}^{\prime}, \quad Q_{j}^{\prime}=w_{j-1}^{-1} W_{j-1}^{\prime} \quad$ and $\quad W_{j}^{\prime}=W_{j-1}^{\prime}\left(p_{j} B_{i j}\right)\left(w_{j} w_{j-1}^{-1} W_{j-1}^{\prime}\right) . \quad$ Obviously, $P_{j}^{\prime}, Q_{j}^{\prime} \in L$ and since L is an ideal of K, we have $W_{j}^{\prime} \in L$ as well. We have $\left(W_{j}^{\prime}, w_{j}\right)=\left(W_{j-1}^{\prime}, p_{j}\right)\left(B_{i_{j}}, h_{i j}\right)\left(g_{i_{j}}^{-1} p_{j}^{-1} W_{j-1}^{\prime}, q_{j}\right)$, that is, $\left(W_{j}^{\prime}, w_{j}\right)$ is a product of elements of S. Therefore $\left(W_{j}^{\prime}, w_{j}\right) \in S$. Moreover,

$$
\begin{aligned}
\left(W_{j}^{\prime}, w_{j}\right) R^{\#} & =\left[\left(W_{j-1}^{\prime}, p_{j}\right)\left(B_{i_{j}}, h_{i_{j}}\right)\left(g_{i_{j}}^{-1} p_{j}^{-1} W_{j-1}^{\prime}, q_{j}\right)\right] R^{\#} \\
& =\left[\left(W_{j-1}^{\prime}, p_{j}\right)\left(A_{i_{i}}, g_{i_{j}}\right)\left(g_{i_{j}}^{-1} p_{j}^{-1} W_{j-1}^{\prime}, q_{j}\right)\right] R^{\#}=\left(W_{j-1}^{\prime}, w_{j-1}\right) R^{\#}=(U, u) R^{\#}
\end{aligned}
$$

It follows from (2.2) that $\left(W_{j-1}^{\prime}, p_{j}\right)=\left(W_{j-1}^{\prime}, 1\right)\left(P_{j}, p_{j}\right)$. Similarly, (2.3) yields $\left(g_{i_{j}}^{-1} p_{j}^{-1} W_{j-1}^{\prime}, q_{j}\right)=\left(Q_{j}, q_{j}\right)\left(w_{j-1}^{-1} W_{j-1}^{\prime}, 1\right)$. Hence

$$
\begin{aligned}
\left(W_{j}^{\prime}, w_{j}\right) & =\left(W_{j-1}^{\prime}, p_{j}\right)\left(B_{i j}, h_{i j}\right)\left(g_{i_{j}}^{-1} p_{j}^{-1} W_{j-1}^{\prime}, q_{j}\right) \\
& =\left(W_{j-1}^{\prime}, 1\right)\left(P_{j}, p_{j}\right)\left(B_{i}, h_{i j}\right)\left(Q_{j}, q_{j}\right)\left(w_{j-1}^{-1} W_{j-1}^{\prime}, 1\right)=\left(P_{j}^{\prime}, 1\right)\left(W_{j}, w_{j}\right)\left(Q_{j}^{\prime}, 1\right)
\end{aligned}
$$

and so (2.1) holds for $m=j$.
Thus (2.1) holds for every $m \in\{0, \ldots, n\}$. In particular, we have $\left(W_{n}^{\prime}, v\right) R^{\#}=$ $\left(W_{n}^{\prime}, w_{n}\right) R^{\#}=(U, u) R^{\#} \quad$ and $\quad\left(W_{n}^{\prime}, v\right)=\left(P_{n}^{\prime}, 1\right)\left(W_{n}, w_{n}\right)\left(Q_{n}^{\prime}, 1\right)=\left(P_{n}^{\prime}, 1\right)(V, v)\left(Q_{n}^{\prime}, 1\right)$. Therefore $W_{n}^{\prime} \leqslant V$ and so $\left(W_{n}^{\prime}, v\right)=\left(W_{n}^{\prime}, 1\right)(V, v)$. It follows that $(U, u) R^{\#}=$ $\left(W_{n}^{\prime}, 1\right) R^{\#}(V, v) R^{\#}$ and so $(U, u) R^{\#} \leqslant(V, v) R^{\#}$. Similarly, we obtain $(V, v) R^{\#} \leqslant$ $(U, u) R^{\#}$ and so $(U, u) R^{\#}=(V, v) R^{\#}$. Thus φ is normal-convex.

Now, Lemma 1.5 and Theorem 2.1 immediately yield

Corollary 2.2. Every quasi-free inverse semigroup admits a normal-convex embedding into a semidirect product of a semilattice by a free group.

Since every free inverse semigroup is quasi-free, we also obtain
Corollary 2.3. Every free inverse semigroup admits a normal-convex embedding into a semidirect product of a semilattice by a free group.
3. E-unitary inverse semigroups. In this section we prove that every E-unitary inverse semigroup admits a normal-convex embedding into a semidirect product of a semilattice by a group.

Let S be an E-unitary inverse semigroup. Let $M(S)=\{\varnothing \nsubseteq A \subseteq S: E(S) . A \subseteq A \subseteq a \sigma$ for some $a \in S\}$ with the operation described by $A B=\{a b: a \in A$ and $b \in B\}$. The following result is due to O'Carroll.

Lemma 3.1 [3]. Let S be an E-unitary inverse semigroup. Then $M(S)$ is an F-inverse monoid and the map $\varphi: S \rightarrow M(S): s \mapsto\{t \in S: t \leqslant s\}$ is an embedding. Moreover, if σ_{S} and $\sigma_{M(S)}$ denote respectively the least group congruences of S and $M(S)$, then $\sigma_{M(S)} \cap$ $(S \times S) \varphi=\sigma_{S} \varphi$.

We prove that this embedding is in fact normal-convex.
Lemma 3.2. Let S be an E-unitary inverse semigroup. Then the embedding $\varphi: S \rightarrow$ $M(S): s \mapsto\{t \in S: t \leqslant s\}$ is normal-convex.

Proof. Let R be a relation on S. Without loss of generality, we can assume that R is symmetric. Let $a, b \in S$ be such that $(a \varphi, b \varphi) \in(R \varphi)^{\#}$. We want to prove that $(a, b) \in R^{\#}$.

Since $(a \varphi, b \varphi) \in(R \varphi)^{\#}$, there exist $W_{0}, \ldots, W_{n} \in M(S)$ such that

$$
\begin{gathered}
W_{0}=a \varphi ; \\
W_{n}=b \varphi ; \\
\forall i \in\{1, \ldots, n\} \exists P_{i}, Q_{i} \in M(S) \exists\left(u_{i}, v_{i}\right) \in R: \\
W_{i-1}=P_{i}\left(u_{i} \varphi\right) Q_{i} \text { and } \quad W_{i}=P_{i}\left(v_{i} \varphi\right) Q_{i} .
\end{gathered}
$$

We prove the following result. Let $z \in S$ and $C, D \in M(S)$ be such that $C(z \varphi) D \in S \varphi$. Then

$$
\begin{equation*}
\exists c, d \in S: c \varphi \subseteq C, \quad d \varphi \subseteq D \quad \text { and } \quad(c z d) \varphi=C(z \varphi) D . \tag{3.1}
\end{equation*}
$$

Since $C(z \varphi) D \in S \varphi$, there exists some $w \in S$ such that $C(z \varphi) D=w \varphi$. Since $w \in w \varphi$, there exist $c \in C, z^{\prime} \in z \varphi$ and $d \in D$ such that $c z^{\prime} d=w$. Since $c \varphi \subseteq C, z^{\prime} \varphi \subseteq z \varphi$ and $d \varphi \subseteq D$, we obtain $w \varphi=\left(c z^{\prime} d\right) \varphi=(c \varphi)\left(z^{\prime} \varphi\right)(d \varphi) \subseteq(c \varphi)(z \varphi)(d \varphi) \subseteq C(z \varphi) D=w \varphi$. Therefore $(c z d) \varphi=C(z \varphi) D$ and (3.1) holds.

Since S is E-unitary, it is clear that

$$
\begin{equation*}
\forall A \in M(S), \quad A A^{-1} \subseteq 1 \sigma \subseteq E(S) . \tag{3.2}
\end{equation*}
$$

Now we show that, for every $j \in\{0, \ldots, n\}$

$$
\begin{equation*}
\exists w_{j} \in S: w_{j} \varphi \subseteq W_{j} \quad \text { and } \quad\left(a, w_{j}\right) \in R^{\#} . \tag{3.3}
\end{equation*}
$$

Let $w_{0}=a$. It follows that (3.3) holds for $j=0$.
Now suppose that (3.3) holds for $j=i-1$, with $i>0$. Then $w_{i-1} \varphi \subseteq W_{i-1}$ and so, since S is inverse, $w_{i-1} \varphi \subseteq W_{i-1} W_{i-1}^{-1}\left(w_{i-1} \varphi\right)$. By (3.2), we also have $W_{i-1} W_{i-1}^{-1}\left(w_{i-1} \varphi\right) \subseteq$ $w_{i-1} \varphi$. Hence $w_{i-1} \varphi=W_{i-1} W_{i-1}^{-1}\left(w_{i-1} \varphi\right)=P_{i}\left(u_{i} \varphi\right) Q_{i} W_{i-1}^{-1}\left(w_{i-1} \varphi\right)$. Now we can apply (3.1) with $z=u_{i}, C=P_{i}$ and $D=Q_{i} W_{i-1}^{-1}\left(w_{i-1} \varphi\right)$. Hence there exist $p_{i}, q_{i} \in S$ such that $p_{i} \varphi \subseteq P_{i}, q_{i} \varphi \subseteq Q_{i} W_{i-1}^{-1}\left(w_{i-1} \varphi\right)$ and $\left(p_{i} u_{i} q_{i}\right) \varphi=P_{i}\left(u_{i} \varphi\right) Q_{i} W_{i-1}^{-1}\left(w_{i-1} \varphi\right)=w_{i-1} \varphi$. We define $w_{i}=p_{i} v_{i} q_{i}$. Now $w_{i} \varphi=\left(p_{i} \varphi\right)\left(v_{i} \varphi\right)\left(q_{i} \varphi\right) \subseteq P_{i}\left(v_{i} \varphi\right) Q_{i} W_{i-1}^{-1}\left(w_{i-1} \varphi\right)=W_{i} W_{i-1}^{-1}\left(w_{i-1} \varphi\right) \subseteq$ $W_{i} W_{i-1}^{-1} W_{i-1}$ and so, by (3.2), we have $w_{i} \varphi \subseteq W_{i} . E(S)$. For every $s \in S$ and $e \in E(S)$, we have $a e=a e a^{-1} a$, and hence $W_{i} . E(S) \subseteq E(S) . W_{i}$. Therefore $w_{i} \varphi \subseteq W_{i} . E(S) \subseteq$ $E(S) . W_{i} \subseteq W_{i}$. Moreover, $w_{i} R^{\#}=\left(p_{i} v_{i} q_{i}\right) R^{\#}=\left(p_{i} u_{i} q_{i}\right) R^{\#}=w_{i-1} R^{\#}=a R^{\#}$ and so (3.3) holds for $j=i$. Thus (3.3) holds for every $j \in\{0, \ldots, n\}$.

In particular, $w_{n} \varphi \subseteq W_{n}=b \varphi$ and $\left(a, w_{n}\right) \in R^{\#}$. Hence $w_{n} \leqslant b$ and $a R^{\#}=w_{n} R^{\#} \leqslant$ $b R^{\#}$. Similarly, we prove that $b R^{\#} \leqslant a R^{\#}$. Thus $(a, b) \in R^{\#}$ and the lemma is proved.

Now we obtain
Theorem 3.3. Every E-unitary inverse semigroup admits a normal-convex embedding into a semidirect product of a semilattice by a group.

Proof. Let S be an E-unitary inverse semigroup. By Lemma 3.2, the embedding $\varphi: S \rightarrow M(S): s \mapsto\{t \in S: t \leqslant s\}$ is normal-convex. By Lemma 3.1, $M(S)$ is F-inverse and so, by Lemma 1.4 and Theorem 2.1, there exists a normal-convex embedding $\psi: M(S) \rightarrow$ P, where P is a semidirect product of a semilattice by a group. By Lemma 1.2 , the composition $\varphi \psi: S \rightarrow P$ is a normal-convex embedding and the theorem is proved.
4. Inverse semigroups. The results of Section 2 can be used to obtain a general embedding result on inverse semigroups. We shall make use of the following result on quasi-free covers, due to Munn and Reilly.

Lemma 4.1 [2]. Let S be an inverse semigroup. Then there exists a quasi-free inverse semigroup F and an idempotent-separating congruence τ on F such that $S \simeq F / \tau$.

Now we have
Theorem 4.2. Every inverse semigroup admits a normal-convex embedding into an idempotent-separating homomorphic image of a semidirect product of a semilattice by a free group.

Proof. Let S be an inverse semigroup. By Lemma 4.1, we can assume that $S=F / \tau$, with F quasi-free and τ idempotent-separating. By Lemma 1.5 , we can assume that $F=P(G, K, L)$ for some strong McAlister triple (G, K, L), with G free. By Theorem 2.1, the inclusion $\varphi: F \rightarrow K \overline{\times} G$ is normal-convex. Therefore, by Lemma 1.1, the induced map $\psi: F / \tau \rightarrow(K \overline{\times} G) /(\tau \varphi)^{\#}$ defined by $(a \tau) \psi=a(\tau \varphi)^{\#}$ is injective. We must prove that ψ is normal-convex and $(\tau \varphi)^{\#}$ is idempotent-separating.

First we prove that ψ is normal-convex. Let $T=(K \overline{\times} G) /(\tau \varphi)^{\#}$. Let R be a relation on S. We want to show that $(R \psi)^{\#} \cap(S \times S) \psi \subseteq R^{\#} \psi$.

Let μ be the congruence on F such that $\mu / \tau=R^{\#}$. It follows that, for every $a, b \in F$, $(a, b) \in \mu$ if and only if $(a \tau, b \tau) \in R^{\#}$. We prove that

$$
\begin{equation*}
(R \psi)^{\#} \subseteq(\mu \varphi)^{\#} /(\tau \varphi)^{\#} . \tag{4.1}
\end{equation*}
$$

Since $\tau \subseteq \mu$, we have $\tau \varphi \subseteq \mu \varphi$ and so $(\tau \varphi)^{\#} \subseteq(\mu \varphi)^{\#}$. Hence $(\mu \varphi)^{\#} /(\tau \varphi)^{\#}$ is a congruence on T and we only need to show that $R \psi \subseteq(\mu \varphi)^{\#} /(\tau \varphi)^{\#}$. Let $a, b \in F$ be such
that $(a \tau, b \tau) \in R$. Then $(a \tau, b \tau) \in R^{\#}$ and so, by definition of μ, we have $(a, b) \in \mu$. Hence $(a \varphi, b \varphi) \in \mu \varphi \subseteq(\mu \varphi)^{\#}$. Therefore $\left(a \varphi(\tau \varphi)^{\#}, b \varphi(\tau \varphi)^{\#}\right) \in(\mu \varphi)^{\#} /(\tau \varphi)^{\#}$, that is, $((a \tau) \psi,(b \tau) \psi) \in(\mu \varphi)^{\#} /(\tau \varphi)^{\#}$. Hence (4.1) holds.

Now suppose that $a, b \in F$ and $((a \tau) \psi,(b \tau) \psi) \in(R \psi)^{\#}$. Then, by (4.1), we have $((a \tau) \psi,(b \tau) \psi) \in(\mu \varphi)^{\#} /(\tau \varphi)^{\#}$. Hence $\left(a \varphi(\tau \varphi)^{\#}, b \varphi(\tau \varphi)^{\#}\right) \in(\mu \varphi)^{\#} /(\tau \varphi)^{\#}$ and so $(a \varphi, b \varphi) \in(\mu \varphi)^{\#}$. Since φ is normal-convex and μ is a congruence on F, we have $(\mu \varphi)^{\#} \cap(F \times F) \varphi \subseteq \mu \varphi$. Hence $(a \varphi, b \varphi) \in \mu \varphi$ and so $(a, b) \in \mu$ and $(a \tau, b \tau) \in R^{\#}$. Therefore $((a \tau) \psi,(b \tau) \psi) \in R^{\#} \psi$ and so ψ is normal-convex.

Now we prove that $(\tau \varphi)^{\#}$ is idempotent-separating. Obviously, $E(K \overline{\times} G)=$ $\{(A, 1): A \in K\}$. Suppose that $A, B \in K$ are such that $(A, 1)(\tau \varphi)^{\#}=(B, 1)(\tau \varphi)^{\#}$. Since $G L=K$, there exists $g \in G$ and $C \in L$ such that $g C=A$. Hence $g^{-1} A=C \in L$ and we have

$$
\begin{aligned}
\left(g^{-1} A, 1\right)(\tau \varphi)^{\#} & =\left[\left(g^{-1} A, g^{-1}\right)(A, 1)(A, g)\right](\tau \varphi)^{\#}=\left[\left(g^{-1} A, g^{-1}\right)(B, 1)(A, g)\right](\tau \varphi)^{\#} \\
& =\left(\left(g^{-1} A\right)\left(g^{-1} B\right), 1\right)(\tau \varphi)^{\#}
\end{aligned}
$$

Since $\left(g^{-1} A\right)\left(g^{-1} B\right) \leqslant g^{-1} A \in L$ and L is an ideal of K, we have $\left(g^{-1} A\right)\left(g^{-1} B\right) \in L$. Hence $\left(g^{-1} A, 1\right),\left(\left(g^{-1} A\right)\left(g^{-1} B\right), 1\right) \in F$. But

$$
\left[\left(g^{-1} A, 1\right) \tau\right] \psi=\left(g^{-1} A, 1\right)(\tau \varphi)^{\#}=\left(\left(g^{-1} A\right)\left(g^{-1} B\right), 1\right)(\tau \varphi)^{\#}=\left[\left(\left(g^{-1} A\right)\left(g^{-1} B\right), 1\right) \tau\right] \psi
$$

and so, since ψ is injective, $\left(g^{-1} A, 1\right) \tau=\left(\left(g^{-1} A\right)\left(g^{-1} B\right), 1\right) \tau$. Since τ is idempotentseparating, we obtain $\left(g^{-1} A, 1\right)=\left(\left(g^{-1} A\right)\left(g^{-1} B\right), 1\right)$, that is, $g^{-1} A=\left(g^{-1} A\right)\left(g^{-1} B\right)$. Hence $A=A B$ and $A \leqslant B$. Similarly, we obtain $B \leqslant A$ and so $A=B$. Thus $(A, 1)=(B, 1)$ and $(\tau \varphi)^{\#}$ is idempotent-separating.

Acknowledgements. This work has been carried out while I held a research grant from the Calouste Gulbenkian Foundation, which I thank. I am also grateful to Prof. W. D. Munn for all the help and advice provided.

REFERENCES

1. D. B. McAlister, Groups, semilattices and inverse semigroups II, Trans. Amer. Math. Soc. 196 (1974), 351-370.
2. W. D. Munn and N. R. Reilly, E-unitary congruences on inverse semigroups, Glasgow Math. J. 17 (1976), 57-75.
3. L. O'Carroll, Reduced inverse and partially ordered semigroups, J. London Math. Soc. (2)9 (1974), 293-301.
4. C. D. Papakyriakopoulos, A new proof for the invariance of the homology groups of a complex, Bull. Soc. Math. Grèce 22 (1943), 1-154.
5. M. Petrich, Inverse semigroups, (Wiley, 1984).

Departamento de Matemática	Department of Mathematics
Universidade do Porto	University Gardens
4000 Porto	Glasgow G12 8QW

Portugal

