Normal Elliptic Scrollar Varieties.

J. G. SEMPLE - J. A, TYRRELL (%)

Sammary. - In his classical memoir on the projective classification of elliptic ruled surfaces
Corrado Segre described in particular two most general normal types, of even and odd order
respectively, of which the former has precisely two minimum dirvectriz curves, while the latter
has an elliptic pencil of such curves. The preseni paper extends this work to normal elliptic
serollar varieties of dimension k, defining and describing k most general types of such varieties.
Particular attention is paid to one of these types, which we coll the simploid, in which the
poinis of the variety correspond to the unordered sets of k values of an elliptic parameter (modulo
its periods). The paper concludes with the ideniification of a series of self-dual « linked pairs »
of such serollar varieties, of which the simplest example is that of the elliptic guintic ruled surface
and the elliptic quintic scrollar threefold in four-dimensional space.

1. —~ In two of his classical memoirs, CORRADO SEGRE [1, 2] discussed the projective
classification and properties of elliptic eurves and elliptic serolls (ruled surfaces)
respectively. Not much appears to have been done, however, about the projective
classification of elliptic scrollar varieties of higher dimension—Ioci R, of elliptic systems
of spaces of dimengion % —1, where k>3; and it is the object of the present paper
to contribute to this topic.

For elliptic scrolls R} of order n, Segre showed that such a seroll, if it is not a
cone, is normal in {# — 1]; whereas an elliptic ruled surface R} that is normal in [n]
is necessarily a cone. In elassifying normal R}, excluding cones, by their directrix
curves of minimum order, he identified in particular two general types of special
significance, namely the type, for » even, which possesses precisely two minimum
directrix curves y, y,, each of order in, and the type, for #» odd, which possesses
an elliptic pencil (y), of index two, of direetrix curves of minimum order }(» - 1).
A seroll of either of these types projects from a general point of itself into a seroll
of the other type; and it is not difficult to deduce from Segre’s work that every other
type of normal seroll R}, including every type with a minimum directrix curve of
order less than 3n, can be obtained as a projection of a seroll of one or other of the
two types in question from a suitably chosen set of points lying on it.

As regards elliptic scrollar varieties of higher dimension, SEGRE [3] later recorded
an observation to the following effect:

An dlliptic scrollar variety of order n and dimension k, if @ is not a cone, is normal
in [n—11; and if it is a cone with a space [s] as vertew, then it is normal in [n 4 sl.

(*) Entrato in Redazione il 18 Maggio 1973,
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In this paper, we take it as our limited objective fo identify and describe & gene-
ral types of normal elliptic scrollar k-folds analogous to the two general types of normal
elliptic scrolls to which we have already referred. Among the & types so arising we
shall be specially interested in one of them—which we call the «simploidal » type (*)—
this being a type of elliptic scrollar k-fold whose points are in unexceptional (1,1)
correspondence with the unordered sets (uy, ..., %) (mod 2w,, 2w,) of k values of an
elliptic parameter 4 with periods 2w, and 2¢w,.

2. — An elliptic scrollar variety may be thought of primarily as a one-dimensional
elliptic system {Ek__l} of subspaces [k — 1} of a space §,, where £ may have any
one of the values 1,2, ..., N. Its order n is the number of its spaces II,_, that meet
a generic [N — k] of 8, or, equivalently, the number of its I/, , that are co-prime
with a generic [N —k]. The points of all the II,_, constitute a k-dimensional alge-
braic variety of order »— the whole space §, counted » times if k= N; and the
primes through the IT, , constitute an (N — k- 1)-dimensional algebraic enve-
lope of class n— the whole dual space of 8, counted » times if k==1.

In view of Segre’s observation quoted in §1, and because we shall be concerned
only with normal elliptic scrollar varieties that are not cones, it will be convenient
to adopt the following notation throughout the paper.

(i) A symbol of the form E} will always denote the locus, in its ambient space §,_;,
of generators [k — 1] of a normal elliptic serollar variety (not a cone) of order »; and

(ii) a symbol of the form &_, will always denote the envelope of primes through
the {4 —17s of an Ej.

A point which lies on s generators of E} will be s-fold on E}; and a prime which
contains s generators will be an s-fold prime of the associated &, ,. A locus E7_,
is the dual of an envelope &)_, .

If we fix ¥ and consider varieties K, for increasing #, then the exceptional case
with which we start is that of an EF*, this being a space 8, counted %-- 1 times,
its generating [k — 17’s being the primes of an elliptic envelope of class £+ 1—
dual of an elliptic curve 10*™* of §,. Thereafter, for n ==& 4 2, we have a scrol-
lar primal E¥** of §,.,, of which the simplest examples, for k=2 and k=3, are
the elliptic quartic scroll E? of §, with two double lines, and the well-known quintic Ej;
of 8, with an E; as its double surface. For n<2k—1, two generators [I,_, will meet
in a space {2k —n 1], and such spaces will generate the double locus Vi oy
of Ey; for n<}(3k—1), E} will possess similarly a triple locus Vi nis, locus of
the oo® spaces [3k— 2n—1] of intersection of triads of generators; and so on.
For n>2k —1, the generators II,_, of B will in general be skew to one another
(though some pairs may meet); and this is the case that we shall have principally
in mind.

(*) Properties of elliptie ruled surfaces of this type (the case k = 2) have been discussed
briefly in a paper by Du Var and Semerr [4].
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For the envelopes &._,, for fixed % as » increases from the value k- 1, the aggre-
gates of double primes, triple primes, ete., will come in as » increases, first with primes
containing pairs of generators, then with primes containing triads of generators,
and so on.

3. — Sections and projections of varieties E.

Complete linear sections of an EF, being subnormal if they are irreducible, can-
not be varieties Ej_, (x> 0); but, as will shortly appear, we do get partial linear
sections, residual to one or more generators, which are normal elliptic scrollar varieties.

As regards projections of an Ej from a space §;, we are only concerned with
those which are birational; and this excludes in particular any projection from a
space S, which contains a directrix eurve of E} (i.e. a curve meeting each generator
in one point). The special case in which Ej is projected into a space 8, counted k-1
times can be interpreted appropriately. When projections of varieties Ep for fixed k
and variable n are considered, it is an advantage to take » large enough (with respect
to k) 8o that complications arising from mutual intersections of generators are avoided.

Consider first, then, a birational projection of E} from a simple point P of itself
into a prime 8,_, of its arabient space 8,_,. Plainly this projeetion, not being a
cone, will be an E7* normal in 8,_,. If IT is the generator of Ej through P, then,
as is well-known for serollar varieties in general, the generators of Ej other than II
project into all but one of the generators of E; *; the tangent [k] to E} at P projects
into the remaining generator of E, %, say II*, and II* is indistinguishable from the
other generators of E;*; and I7 itself projects into a [k — 2] of IT*, likewise indistin-
guishable from the other [k — 21s of II* in relation to By

Now consider the projection of Ej from a line containing just two simple points P,
Q of E}, again supposing that the projection is birational. It follows from the above
observations that the projection is an E7%?; and this is true whether (a) P and @ lie
in distinet generators of E7, or (b) @ is consecutive to P, so that PQ is a tangent line
to Ep at P; the same remains true, in fact, even if (¢) P and @ lie in the same gene-
rator, so that their join lies on Ej but do s not pass through any multiple point of
this variety.

By repeated application of the above observations we obtain in particular the
following result:

PROPOSITION 3.1. — Provided that the projections coneerned are birational, an Ej
projects from one of its generators into an Hy *; and it projects from an (sk — 1)-dimen-
sional space B spanwing s of its generators (mutually skew to one another) into an Ey **.

From this there follows
PrOPOSITION 3.2. — Subject to the restrictions of Prop. 3.1, an [n — k — 1] through

a generator of E; meets this variety residually in n — k poinis; and, more generally,
an [n—k—17 through s generators meets By residually in n — sk poinis.
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If 11 is a generator of 7, then any general prime through [T meets E}, residually
in an Ep~! of which one generator lies in /1. For plainly this residual intersection
cannot be a cone; and if it belonged to a space of dimension # — 3, then primes through
this space would have to meet E; residually in its system of generators, which is
impossible. Similarly, if ¢ <k, a general space [n — 1 — ¢] through I7 will meet Ej
residually in an E7”! of which one generator [k—¢—1] lies in /7; while, if =k,
then the residual section is a set of n — & peints spanning an [n — k — 1],

By a straightforward extension of the above, we have

PRrOPOSITION 3.3. ~ If BY is a space, of dimension sk — 1<n — 2, which spans s
(mutually skew) generators II®, ..., IT" of an E7 and contains no directriz eurve of the ET,
then any general prime through B meets E* residually in an E77 of which one generator
lies in each 1. Further, if t <k, any general [n — 1 — t] through B® meets By resi-
dually in an E.°% of which one generator lies in each II¥; while, if t = k, the residual

intersection is a linearly independent set of n — sk points.

All the E”¢ which occur in the above propositions are directrix varieties of K
according to the following

DEFINITION. — A directriz d-fold of an Ej is any d-dimensional elliptic scrollar
subvariety of E7 which meets every generator of this variety in a [d— 1].

4. — Generation of E? by related directrix curves.

Let Gy, ..., Cr_; be a set of k equimodular normal elliptic curves, of orders ng, ...,
N, Whose ambient spaces [n, — 1] span a space S,_,, where 7= f,-+ ... #;_;;
and let points P, ..., P,_, describe birationally related ranges on the curves. Each
set (Py, ..., P._y) must span a [k — 1), say /[, since otherwise the spaces [n, — 1]
would not span 8,_,: We find easily, then, that as the set (P,, ..., P,_,) varies along
the curves, its ambient space I/, , generates an Er. A priori some of the curves
Gy, ...y Oy, may be isolated on E7, while others may belong to algebraic systems
of positive dimension.

In accord with our objective, ag stated in § 1, we now propose to define, for given %,
a set of k general types of EZ; and we begin by describing the general type for the
case when # is an integral multiple mk of & (m>2).

5. — The key variety " of 8,,,,.

From the preceding section it follows that if n,+ ...- n,_; = mk, then there
exist varieties B generated by birationally related ranges on k equimodular curves
10™, ..., *C™-* whose ambient spaces span a space [mk — 1]; and, in particular, tak-
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ing n;=m (4=20,..., k—1), there exist E* generated by hirationally related
ranges on k equimodular normal curves (™.

DEFINITION. — An Ep* will be called a key elliptic scrollar variety for k>2 and
m>2 if it possesses precisely & minimal directrix curves 0™, being then generated
by joins of eorresponding points of birationally related ranges on the curves.

The above definition, as should be noted, excludes the case in which the corre-
spondence between any two of the curves is projective; for in such case the ruled
surface generated by the projective correspondence between the two curves would
be of the projectively generated type of E}”, and this contains a rational pencil of
directrix curves 0™ which would also be directrix curves of Ey”.

We propose now to regard the key E7*, as above defined, as the most general
type of normal elliptic scrollar k-fold whose order is an integral multiple of its dimen-
sion. Some justification of the importance we thus attach to it, apart from its being
an obvious generalization of one of the two basic types of elliptic serollar surface (§1),
is provided by the following result.

THEOREM 5.1. — If an EF* (k>2, m>3) possesses no directriz curve of order less
than m, then it possesses in general k dirvectric curves of order m.

Proor. — Let B™ ¥ denote the space, of dimensgion (m — 1)k — 1= (mk—1) —k,
spanned by a set of m — 1 generators of E[*. Plainly, since E;* contains no direc-
trix curve of order less than m, we may suppose that B™ contains no directrix
curve of the variety; whence, by Prop. 3.3, it meets E¥, residually to the m —1
generators, in a set of k points spanning a [k — 1]. Let P be any one of these points.
Then through P there passes a unique space [m — 2] which meets each of the m — 1
generators in a point; and we denote this space by m. Since x meets E;* in m points,
the projection of E™ from z will be a scrollar variety Rp*™™ whose ambient space
is of dimension mk— 1 — (m — 2) — 1 = mk — m; whence, by the observation quoted
in §1, R ™ must be a point-cone.

If O is the vertex of this cone, then all the generators of H** must meet the [m — 1]
whieh joins z to O; and they will meet it in the points of a directrix curve of B,
plainly a 10" [m — 1]. It follows then, since one such curve arises from each of the &
points such as P (in general distinet), that EJ** possesses in general k directrix curves
of order m, as was to be proved.

We now proceed to investigate the properties of a key E7* and also those of the
general types of E7** that can be obtained from it by projection.

6. — Directrix varieties of the key ET*.

In what follows we shall be largely concerned with systems of direetrix (k — 1)-folds
on an E? residual, within the complete system |H| of prime sections of £}, to a set G
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of s generators of this variety. In this connection we introduce the

DEFINITION. — An s-residual variety R on an Hy is the residual intersection of B7
with a prime (of its ambient space) which contains s of its generators.

If, as will in general be the case, R is neither reducible nor a cone, then, by
Prop. 3.3, it is a directrix variety E;; of E}.

Any set G of s generators of E7 belongs to a linear series G°_ = |G| of sets
of s generators; primes through G, as we may suppose, meet B residually in a com-
plete linear system of s-residuals |R*“|= |E;~3|; the co' primes through the am-
bient [n — s - 1] of any one of these E;; meet X residually in the sets of the above-
mentioned G%_; in brief, |R“'| and @?_, are residual within the complete prime sec-
tion system |H|.

Now consider the key variety 7. A set G™ of m of its generators is not in gene-
ral contained in any prime; but there exist, nevertheless, certain sets G which are

contained in primes, as follows from the following observation:

The key variety By possesses, along with its k minimal directriz curves 1C™, a set
of k minimal directriz (k — 1)-folds. These are, namely, the k key varieties B~ each
of which has k — 1 of the 1C™ as directriz curves and is generated by the original corre-
spondences between these curves.

Residual to each of these H;%™? there is a linear series G™_, of sets of m gene-
rators; and the sets of the & series G,_, so arising are the only sets G™ of E7* that
lie in primes.

We pass on now to the (m - 1)-residuals R™ on E*, these being in general
varieties HJ*7™** residual to generator sets ™. They form, in aggregate, a non-
linear system which we shall denote by {E™¥}; and this is composed of co! linear
systems |R™¥| each residual, within the complete linear system |H| of prime sec-
tions of E}*, to one of the linear series G7."} of generators.

If B™~7 jg the space [mk — 1 — k] spanning a generator set G'*~?, then the co*™*
primes through B™™" cut a complete system |R™*|on E™™; whence the dimensions
of |[R™ | and {R™} are k — 1 and k respectively. As previously noted in § 5, B™?
meets Ey*—residually to G V—in [k points Py, ..., Pi; and these are therefore base
points of the associated system |R™ Y|, The points P;, moreover, lie one on each
of the % directrix curves 10™; for primes through B ¥ glready meet each *(™ in
m — 1 known points, and they therefore meet it in one further fixed point, the whole
group of m points on this *C™ having the property that the m generators through
them are co-prime. This gives

PROPOSITION 6.1. — The (m — 1)-residual varieties R™ % on E™ form an alge-
braic oo®-system {R™ Y} composed of an elliptic col-system of linear oo*i-systems
|R™Y| residual to the oo linear series G™~r of generators. Each |R™ | has k base

points, one on each of the k directriz curves *C™ of E*.
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Our next result—a generalization of one of SBegre’s for k= 2—is as follows:

PROPOSITION 6.2. — The oof-system {R™ U}, as above defined, is k-atie, in the sense
that the number of members of it that pass through k general points of Ey* is k.

PrOOF. — Let G2 be a fixed set of m — 2 generators of E;*. We observe, then,
that every member of {R™1} is residual to a unique set of the form G=—2 4 GO,
Let A,, ..., 4, be k points of general position on E;*; and let X' be the [mk — 1 — k]
that contains G2 and A4,,..., 4;. By Prop. 3.3, 2 has %k further intersections
P;, ..., P, with Ef*. Through each P, (i=1,..., k) there passes a generator G{°
which, since it meets X in a point, lies with 2'in a prime; and this prime meets F**,
residually to Gm-2+ G, in a variety of {R™V} which passes through A, ..., 4,.
Since one such variety arises from each of Py, ..., P,, and since any member of {R—1}
that passes through 4,, ..., 4, determines one of the P,, the Proposition is established.

COROLLARY 6.2.1. — If {R™ ™V} is the oo*-subsystem of {R Y} with k — s assigned
base points (L<s<k — 1), then {R™} is also k-atic in the sense that k of its members
pass through any general set of s points of Ep™.

To obtain further information about directrix varieties on E7*, we now make
two observations of which the second will be particularly useful:

(@) BT (m>>3) projects from a generator of itself into a key variety B,
the & minimal directrix curves 10» of the former projecting into the k minimal direc-
trix curves '0n1 of the latter. By this projection the k-atic system {R"V} of the
former projects into the k-atic system {R2} of the latter.

(b) E™ (m>3) also projects into a key H™1* from any general set A, ..., 4;
of points of itself, the & members of {R™ 1} that pass through 4,, ..., 4, projecting
into the % minimal directrix varieties B\";9% of B{™"*, In this projection, by which
the orders of directrix varieties of E7T* that pass (simply) through 4,,..., 4 are
reduced by %, the minimal directrix curves 10m* of E;c’““”‘ are projections of the
curves of infersection of sets of k — 1 of the &k members of {R"7} that pass through
Agy ey 4y,

From (b) in particular, we deduce at once the following comprehensive result:

PRrOPOSITION 6.3. — The (m — 1)-residucl system {R"0} of B has the following
properties:

(i) k& members of {R™ 1} meet, in general, in precisely k points;

(ii) k- 1 members of { R} meet, in general, in a curve 10m+%1; and, of the cot—1
curves so arising, precisely k pass through k general poinis of ET*;

(ili) more generally, s members of {R= D} (1<s<k—1) meet in goneral in a
directri variety B 0E 9t = Fri-ots

2 — Annali di Matematica
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As regards (ii), however, we should note that co* of the co**1 intersection curves
10mtt-1 are exceptional, namely those curves each of which is an intersection of & — 1
members of a linear system |[R 1| and is therefore the base curve of a linear co*—*-
gubsystem of the |[Rwm-1|

If we put s=Fk~— 2 in (iii), it appears that the members of {R" 1} meet by
sets of k& — 2 in oco*2 ruled surfaces E:™~% of general type; and each of these
contains, if % is even, two directrix curves of order 1(2m + k—2), or, if k is odd,
an elliptic pencil of directrix curves of order 1(2m -+ &k —1).

We now ask, generally, what directrix curves 0™ (1<a<k — 2) exist on E}*,
of orders intermediate between that of the minimal directrix curves *C™ and that
of the complete intersection curves *0m+1, Any such curve *0™* will be a residual
intersection of & — 1 members of {R» b} that contain k— 1 — « lines lying each in
a generator of E**. A straightforward calculation, on this basis, of the dimension
of the system of 1C™* on E* leads to the result:

PROPOSITION 6.4. — For 0 <a<k — 1, the directriz curves '0™* on EI* form an oo™
system, there being oo™ of them that pass through o general points of E7*.

The case k= 3. For elliptic scrollar threefolds, the first two key varieties that
arise are B [5] and Ej [8], given respectively by m =2 and m = 3.

The variety E} [6] has three (equimodular) elliptic double lines as its minimal
directrix eurves. This means, if these are carried by lines p, ¢, r (spanning S;), that ES
is generated by the planes that join corresponding points in eertain (2, 2) correspon-
dences between the lines, say between p and ¢ and between p and r. Ej has three
minimal direetrix scrolls Ff, each having two of p, ¢, r as double lines; and it pos-
sesses an oo’-system {RW} of scrolls H which is composed of oco! linear nets [R™|,
each residual to a unique generating plane of H;. The directrix *(® on Ef form an
ood-gystem, while the surfaces of {RV} meet by pairs in oc® directrix curves 104,

The variety E [8] has three minimal directrix cubies 1C* and three minimal
directrix scrolls Ef. Sections residual to pairs of generating planes form an oo
system {R®} of septimic scrolls E]; and this, being again 3-atie, is composed of ool
linear nets |R®|, each residual to a @3 of generators. The 14 on E; form an oo
system; and the surfaces of {R®} meet by pairs in co® directrix eurves 1C°. Ej projects
from any generating plane of itself into an E?.

7. — The general types Ey**(1<s<k—1).

As previously remarked, a general projection of a key variety EF* (m>3) from &
of its points (or from a generator) is another key variety E™V*. We now propose to
fill the gap between these two varieties as follows:



J. G. SeMpLE - J. A. TYRRELL: Normal elliptic scrollar wvarieties 19

DEFINITION. — For m>2, we shall say that an E*™ (L<s<k— 1) is of general
type (or briefly general) it it is a projection of a key E;** from s points of general posi-
tion on this variety.

We now summarize briefly the principal properties of such Ey*™.

When a key Ep* (m>2) is projected into an Ep™ (1<s<k—1) from a set
of & points P,, ..., P, of general position on itself, the oco* s members of the %-atic
system {R9} that pass through P,, ..., P, projeect into an oo* sgystem {Rg")“”
of directrix varieties Er%~U+1~s on ™~ this being plainly the system of (m — 1)-
residual varieties (residual to sets of m —1 generators) on E;**. Further, this system
{R{™Y} is k-atic in the sense that & of its members pass through k — s general points
of Hy*°; also k — 1 of its members meet in general in a direetrix curve 1(mti—i—s
of B *. More generally, from Prop. 6.4, we derive

PrOPOSITION 7.1. — For 0<a<k — 1, the direciriz curves 0™ on the general type
of wvariety EF ™ (1<s<k—1) form an oo™ -system, there being oo™ of them that

pass through o general points of BT,

In particular, the intersection curves *0™+—1 of sets of k — 1 members of {R{™
form an oo#¢—D.gystem on E;*°; and the dimension of the system of minimal
directrix curves *C™ on E**° increases steadily from 1 to k¥ — 1 as s increases from 1
to k—1. A further projection (putting s==%) sees the first appearance of direc-
trix eurves 0™ on a key variety E™ V%

The co* minimal directrix curves 10 on E;*~* (1 <s<k — 1) generate a variety N, ,
which we may call the nuclear variety of Ey*~*— a surface if s=1 and the va-
riety B7*®Y jtgelf if s=Fk—1.

For k= 3, the general type E; (projection of E; from a point) is the well-known
serollar quintic primal of 8, whose double surface is an Ej (its dual); its oot elliptic
double lines (minimal directrix curves) lie along the generators of ES, and its gen-
erating planes are those which contain the oo! directrix cubic curves of ES.

The most interesting member of the sequence By (1<s<k— 1) is undoub-

tedly the last, given by s= %k —1; and we now consider this in more detail.

s 3 2 mik—(E—1) __ {1 e+1
8. — The simploidal variety Ej = B,

The general type that we now discuss is such that m — 1 of its generators always
span a prime of its ambient space S, ;.. Its (m — 1)-residual varieties form there-
fore an elliptic ool-system {R{rY} which we shall denote briefly by {®}; and this
system has the following properties:

(i) each @ is a directrix variety B V*071 of B 9¥1 and it is residual to

a linear generator series G7~%;

m-2?
{(ii) {®}, being of dimension 1, is such that k of its members meet in one point,
and % of its members (distinet or otherwise) pass through any point of B2+t
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By virtue of (i) we shall eall {®} a simploidal system on E™P*1; and we shall
say that E™ V%1 ig a simploidal variety with {@} as its system of simploids.

If « (mod 2m;, 20,) is an elliptic parameter for the generators of B{™ ¥+ then
the linear generator series G»_» also form an elliptic system; and this system has
an elliptic parameter w with the same periods 2w,, 2w, as «. Plainly then, by (i)
and (ii) above, w is also an elliptic parameter for {@}, and each point of B 2* ig
uniquely associated with the unordered k-ad (w;, ..., w,) of values of w (mod 2cw;, 2w,)
that correspond to the %k members of {®} that pass through it. Furthermore, the
correspondence between the points of B % and the unordered k-ads (wy, ..., wy)
is {1,1) without exception. We have thus proved

PROPOSITION 8.1. — The general type of elliptic serollar variety B V¥ is simploidal,
possessing an elliptic ool-system {®@} of divectrin (k — 1)-folds BF =+t sych that k
members of {@} meet in one point, while k members of {P}, distinet or otherwise, pass
through any point of BS"~Y¥*L The points of this variety are in unexceptional (1,1) cor-
respondence with the unordered sets of k values of an elliptic parameter w (mod periods
21, 20w,).

From the above, and with reference to Prop. 7.1 (for s=%—1 and a«=0) we
derive

COROLLARY 8.2. — The variety B " possesses oo*~* minimal directriz curves *C™,
and these are the curves of intersection of sets of k—1 members of {@}—the simploidal
curves of the variety. Each of them is given by equations of the form w,= a; (constant)
(mod 204, 2w5,) for i=1, ..., k—1; and k of them, distinct or otherwise, pass through
any point of Bim1kH,

Finally, in the above connection, we agk what kind of relation between w,, ..., w;
represents a generator I7, , of E™ ¥ Tf we think of w as the parameter for points
on a (non-singular) elliptic curve €, then the points of I7,_; correspond to the sets
of an algebraic series y;_, on C; and this y%_, is (a) rational, and (b) such that k¥ — 1
points of ¢ belong to a unique set of the series. This last. in fact, follows from the
observation that the (™ common to k — 1 members of {@} is a directrix curve of
BVt gnd therefore meets /7, , in one point. It follows, then, by the Castelnuovo-
Humbert Theorem (cf. ENRIQUES and CHISINI [5], Vol. III, p. 32 and p. 476) that
h_, i8 a linear series; and it is therefore given by a parametric equation of the
form w,+ ... wy = const. (mod 2w,, 2w,). This gives

PROPOSITION 8.3. — In the representation of the points of a simploidal variety BV
by the unordered k-ads (wy, ..., w,) of values of an elliptic parameter w (mod 2w, 21,),
the generators of B V¥ are each given by a parametric equation of the form w,-+ ...+
+ wy, = const. (Mmod 2wy, 20,).

For k=2, the simploidal character and parametric representation of the general
type of elliptic scroll E*™* have already been noted by DU VAL and SEMPLE [4].
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For k=3, the simplest example (m=3) is that of an B} in S8, for which {®} is
the ool-gystem of scrolls E) residual to pairs of generating planes of EI; and thig
variety possesses oo? minimal directrix curves *(0? which are the intersections of
pairs of members of {@}. The simploids @ have parametric equations of the form
w; = const., simploidal curves 0% have equations of the form w, == const., w,=
= const., and generating planes have equations of the form w, - w, - w; = const. (¥).

From the results of this section, it will be noted that any simploidal variety
Efm0%1 (52 m>3) is an unexceptional model of all the sets of % points of a (non-
singular) elliptie curve. We now note further that the simploids @ on such a variety
are themselves in general simploidal varieties B V* 9+, anqd it will appear later
that their ambient spaces [{m — 1}(k— 1)] generate an elliptic scrollar variety

Bt | which has B V¥ ag its k-ple locus.

9. — The focal curve of an E{"~V*+,

In extension of certain observations of Segre for the case k=2, we now remark
that a simploidal variety E{™ **1 has various types of coincidence loci—loci of points
of the variety for which coincidences of different kinds occur in the sets of & members
of {®@} that pass through them. More especially, B V¥ possesses a focal curve f
such that the & simploids through any point of f all coincide. The equations of f are

W =Wy == ... =W, (modzwl, 2w2) B

As in the case k=2, the simploids @ envelop the curve f, each of them having
k-point contact with f at its only common point with this curve; and the points of f
are thereby in (1,1) correspondence with the members of {®}.

If 17, , is the generator of E;c”’“l”‘“ with parametric equation

w1+ ...+ We=¢C (mod 2601, 26{)2) 3

then IT,_, meets f in the k? points (w, ..., w) for which kw=¢ (mod 2w,, 2w,). Further f
has k coincident intersections with any simploid @, and it has k® intersections with
each of the m—1 generators in which E™V*1ig met residually by a prime through &;
so that the order of f is (m—1)k24 k. This gives

PROPOSITION 9.1. — A simploidal variety BV (k>2, m>3) has an elliptic focal
curve f, locus of points P for which the k simploids @ through P all coincide. This curve f

(*) It may be shown that the surfaces on E; with equations of the form wy -+ w, = const
constitute an ocol-system {J} of elliptic sextic scrolls ES, of which only one is residual to
each generating plane of Ej. Each J, unlike the general Ej residual to a generating plane,
is projectively generated, possessing a rational peneil of minimal directrix curves 103, Through
each point of B] there pass three of the serolls J; but three such serolls, on the other hand,
meet in general in four points,
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is met by each D in k consecutive points; it meels each generator of ES"**1in k2 points;
and its order is (m— 1) k*-+ k.

Plainly B{™V¥! projects from any point of f into a specialization of the key
Em=2% for which the k minimal directrix curves 10~ all coincide.

10. — Principal curves on the simploidal ™V,

For the case k==2, Segre pointed out the existence on the general (simploidal)
type of scroll Ei™* of three normal elliptic curves 10?1, bisecant to the generators,
to which he gave the name principal curves of Ei™ ', In the parametric representa-
tion of F™! by unordered parameter pairs (w;, w,) (mod 2w,, 2w,), the three curves
in question have parametric equations w,=w,+ w,, w,=1w,-+ w, and w,=w, |
+ w;+ w,. We now extend this result to E™ vk,

Let » be the number of cyclic elliptic involutions that are properly of order k
on an elliptic col-gystem with parameter w (mod 2w,, 2w,). For a discussion of these
involutions we refer the reader to ENriQUES and CHISINI [5], Vol. IV, 91-94. The
general set of any one of them ean be defined by a parameter set

(w, w+ o, w+ 20, ..., w+ (E—1)e)  (mod 2wy, 2w,),
where « is a k-th part of a period,

:W {m, n integers, 0<m, n<k—1),
such that the %k numbers 0, «, 2«,..., (k — 1)a are distinet (mod 2w,, 2w,). For
any one involution the choice of an « which generates it as above is by no means
unique, the number of equivalent choices for « being largely dependent on the prime
factor decomposition of k. The values of » for the values 2, 3, 4, 5 of k are 3, 4, 6, 6
respectively.

Now let w, as in the preceding seetion, be the elliptic parameter for {@} on B
and let 7(x) be the involution—properly of order k—on {@} generated as above by
a suitably chosen «. As w varies, the point of B V* with parameter k-ad (w, w + o,
wooy W (B — 1) o) describes a curve O(x) which we shall call a principal curve on Bim—v+1,
The number of such curves is ».

We observe first, then, that C(x) meets the simploid @ given by w,=§ in the
unique point with parameter k-ad (8, 8+ «, ..., §+ (k—1)a). Further, if [T, , is
the generator of E™ Y*1 with parametric equation w, - ...+ w = ¢, then the points
of O(x) that lie on IT,., are those for which

et

fbw=c¢—k(k—1)oo  (mod 2w, 2w,) ;
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and as all the values of w that satisfy this congruence relation arrange themselves
{mod 2wy, 2w,) into k sets of the involution (), it follows that C(x) meets I1, ,in %
points. Finally, by considering the intersections of O(«) with a prime that meets B %+
in a simploid @ and m — 1 generators, we see that C(e«) is of order (m— 1)k 1,
equal to the order of E™ " Thisy gives

ProrosiTioN 10.1. — If v is the nwmber of cyclic elliptic involutions that are properly
of order k on an elliptic co-system, then B P*1 possesses v principal curves, each a
normal *C-Ve1 and each k-secant to the generators. Thus B+ oan be envisaged as
the locus of [k — 11's spanning the sets of an elliptic involution of order & on any one of
the v principal curves.

This completes our outline of the prineipal properties of simploidal elliptic serollar
varieties.

11. — The nuclear surface N of a general F;*"

In § 7 we pointed out that an E** of general type—projection of a key E* from
a general point of itself—possesses oo! minimal directrix eurves 10, and we defined
the nuclear surface of Ey**to be the surface N generated by these *C. This surface,
as will appear, has the remarkable property that it is simply generated not only by the
0= but also by each of two other elliptic pencils of elliptic curves, each intrinsie to
the geometry of E™** We proceed now to investigate N; but since the arguments
to be used will be adequately illustrated by their application to a typical partie-
ular case, it will be sufficient to set them out for the variety E} (the case k=m=3)
and then to state the results for general & and m.

Consider then the variety E} which is the projection of a key Ej from a general
point A of the latter (not lying, in particular, on any one of the three directrix cubie
curves of the Bf). We shall be concerned with three col-gystems of curves on the
nuclear surface N of £}, namely (i) the directrix ecubics, which we shall eall the curves «,
(i) the curves traced by these on generating planes of B}, which we shall call the
curves f, and (iil) a third system of gpecial directrix eurves, to be called the curves y,
which we now proceed to define.

The 3-atic system {R®} of Ej is composed of co! linear systems |R®| each of which
is residual to every pair of generating planes of a G2 of EJ. Among the oo® intersec-
tion curves *(® of pairs of members of {R®} there are oo® special curves, to be denoted
by (5, each of which is the base of a pencil in one of the systems |[R®|; and each
such 1C5 lies in a [6] with each pair of the associated 6%, being in fact the residual
intersection of this [6]—other than the plane pair—with E?. The point 4 defines
2 unique pencil in each |R®|—of those members of |[R®| that pass through A-—and
hence A lies on co! curves 05 (an elliptic system), each associated with one of the
systems |R®|, and each therefore associated with a unique G3 in such a way that
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it lies in a [6] with every pair of planes of this (3. On projection from A, then, it
appears that

B contains a unique elliptic pencil of special directriz curves ‘C—the curves y
that were to be defined—each associated with a unique G of generators of Ef in such a
way that it lies in the [B] joining the planes of any pair of this G3.

Consider then a pair of generating planes ,, =, of E;. Let B be the [5] contain-
ing them; let y be the !(* in which B meets B} residually to m, m,; and let Ty, T,
be the points in which y meets m;, 7,. Further, let P be a variable point of y, and
let H,, H, be the points in which s, and m, are met by the unique transversal from P

\ \I 7Ty
T, H,

Figura 1.

to these two planes. Since this line PH, H, is a trisecant of B}, it must lie in the plane
of one of the directrix cubics «; and as P describes y, the point H,, for example,
describes a curve f§ in s, , locus of the intersections of m, with all the curves o. Further,
this curve 8, being the projection of y from z, into ,, is a 10® through 7,. It follows
now that the co' minimal directrix curves « of Ef each meet every y in one point;
and they meet every generating plane of E} in a plane cubic curve 8. Hence:

The surface N on ES is simply generated by each of the three elliptic pencils («), (8)
and (y).

To find the order of N we consider the section of it by a prime 2 through a pair
of generating planes m,, 7,. X meets E] residually in an elliptic sextic scroll Bi—it-
self a key variety and possessing therefore two directrix cubic curves which are curves g
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of Ef. Further, as previously shown, 2 contains just one curve y (lying in the [5]
joining =, to m,); and finally it contains the two curves § that lie in =, and =,
respectively. Hence the order of N is 2.3 2.3+ 4=16. We find then, by a well-
known formula (cf. SEMPLE and RoTH [6], p. 414, (7)) that the section genus of ¥
is 9. Hence:

The nudear surface of ES is a surface *N*.

When we now follow step-by-step the same procedure as we have used above to
investigate the nuclear surface N of an F;*™* of general type, we find with little dif-
ficulty the following general results:

PROPOSITION 11.1. The nuclear surface N of an EJ*™* of general type is simply
generated by each of three elliptic pencils of curves, namely
(i) the pencil (o) of minimal directriz 10™ of EF*™,

(ii) the pencil (B) of curves *C* in which the gemerators of EM** are met by the
curves o, and

(iii) a pencil (p) of special directriz curves 1C™*2, cach of which is the fized resi-
dual intersection of Ey*~* with any space spanning a set of m — 1 generators

of a Gnt associated with the 0™ in question.

Further the order of N is 2(mk — 1) and ils section genus is mk.

It may be noted, finally, that the curves «, § and y on N satisfy the intersection
equations

ar=fr=192=0, Py=yo=of=1;
and the order » of & is expressed by the formula

v=[(k—1)a+ (m—1)f+y]*
= 2(k—1)(m—1) = 2(m — 1) + 2(k— 1) = 2(mk — 1) .

12. — Review of the general types of E.

We have now largely completed our limited objective which was to isolate and
study what we take to be the most general types of E} for all possible values of &
and n. From our discussion it has emerged that, for any given value of k, the general
types of E; can be arranged in sefs of & members

Su(m):  EM(0<s<k—1),

each set being defined by a value of the integer m>2. The leading member of a set
&;(m), given by s= 0, is a key variety with preeisely k minimal directrix curves *C™;
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while the last member, given by s= & —1, is a simploidal variety with oo* ! mi-
nimal directrix curves *0m.

By way of illustration we now look briefly at the first two sets for k= 3.

The set ©,(2) consists of the three varieties

Eg[5], with three elliptic double lines as minimal directrix curves,
E3[4], which is the well-known quintic planar threefold of 8,, and

E}[3], which is the 4-ple space §; defined by an elliptic envelope, dual of a curve 'C*
of §,.

As regards EY, we note that it possesses three minimal directrix scrolls Bi, each
having two double lines; and its 3-atic system consists of the oco® quintic scrolls K}
residual to generating planes of the variety. As regards EZ, we note that this is the
dual of its double surface Ef; and its nuclear surface is By counted doubly, the oot
double directrix lines of E lying along the generators of K.

The set &;(3) consists of the three varieties

EZ[8], with three minimal directrix cubic curves «;, «, %,
E§[7], which possesses an elliptic pencil («) of directrix curves (%, and

E][6], which is simploidal, having oo? scrolls B} (residual to pairs of generating
planes) as its simploidal system.

Details of B and Ef have been given in §11; and here we add only two remarks
concerning the three elliptic pencils of eurves (), () and (y) that generate the nueclear
surface °N1¢ of E; (cf. §11). In the first place the planes of the directrix cubics o
of B plainly generate a second planar scroll £° with the same nuclear surface as Ef,
the roles of the curves « and f being interchanged for the two varieties. Secondly,
when E; is projected from one of its generating planes (the plane of a curve f) into
an B, its nuclear surface projects doubly into the double surface E? of K:; the curves «
project doubly into the generators of EZ; and the pencils of curves § and y both project
into the same set of directrix cubics on E}. As regards E!, besides the details given
in §8, we note that this variety has a focal curve (% which is enveloped by the
the simploids on the variety and is 9-secant to its generating planes; and it possesses
four principal curves, each a normal 1C7 and each trisecant to the generating planes.

13. — Note on linked simploidal varieties and envelopes.

In this final section, we add a note on simploidal envelopes defined by simploidal
elliptic varieties. We whall find it convenient, however, for a reason that will shortly
appear, to replace m — 1 in our previous notation by w, so that the typical simploidal
variety is now taken to be an BY*
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We recall then (§ 8) that the oco! simploids on E#** are varieties EF¢9. gnd
we now consider the aggregate of primes that each contain the ambient space I7,,
of one of these simploids. These primes, namely, are all those that span sets of p
generators of EY*™, those of them that pass through a given space /T, , being
those that span sets of a generator series G%_, of E**. Thus, if w (mod 2w,, 2w,)
ig an elliptic parameter for the generators, it follows that the primes in question can
be represented without exception by the unordered sets (%, ..., u,) of u values of
{mod 2w,, 2w,); and they form accordingly a simploidal envelope 82’“”1 whose gene-

rators (in the dual sense) are the co! spaces /1, ,, each defined by an equation of
the form

U+ ...+ u,=const.  (mod 2wy, 2w,) .

Tt follows then (cf. §2(ii)) that the locus of these same spaces [T, ,,is a variety B, . .

Recalling now that any k simploids of BZ*** meet in a point, it follows that any &
generators 11, , of it meet in a point of B4 This gives

PROPOSITION 13.1. — The ambient spaces 11, ., of the oo simploids on a simploidal
variety E4*** gonerate am BipS, . with E¥* as dts k-ple locus. The associated enve-
lope of BAeH,.. is a simploidal & whose primes are all those spanning sets of u
generators of B,

A pair of varieties E4y** and Ef5Y, ., related in the above manner, such that
the former is the k-ple locus of the latter, while the latter is the u-ple envelope (ag-
gregate of u-ple primes) of the former, will be called a linked pair.

Recalling then, generally, that the associated envelope of an Ej is an &_,, we
may conveniently define the formal dual of an E; to be an E; .. In this sense the

formal duals of the two varieties deseribed above are an Ef*L. = and an E/** respec-
tively; and these two, in reversed order, will also form a linked pair—the dual of

the former. It is notable, then, that the two linked pairs

gkt 1 pkt-1 k41 Bk--1
(B By and (B, BTG )

arise from each other by interchange of y and k.
By taking p= k we get a simple sequence

( E;:’%-z’ Ek‘—i—z }

Ei—k+1

of self-dual linked pairs for k=2,3,.... For k=2 this gives the well-known dual
pair E; and F; of S§,; and the next such pair, for k=3, iy E;* and B of §,.
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