
Normal Elliptic Scrollar Varieties. 

J. G. SAMPLE - J. A. TYI~I~ELL (*) 

S u m m a r y .  - In  his classical memoir on the projective classi]ication o/ elliptic ruled sur/aees 

Corrado Segre described in particular two most general normal types, o/ even and odd order 

respectively, o/which the ]ormer has precisely two .minimum directrix curves, while the latter 

has an elliptic pencil o] such curves. The present paper extends this work to normal elliptic 

scrollar varieties o] dimension k, de]ining and describing k most general types of such varieties. 

2)articular attention is paid to one o] these types, which we call the simploid, in which the 

points o] the variety correspond to the ~nordered sets o] k val4~.es o] an elliptic parameter (modulo 

its periods). The paper concludes with the identi]ieation of a series o] sell.dual ~ linked pairs ~ 

o] such scrollar varieties, o] which the simplest example is that of the elliptic qu/intie ruled sur]aee 

and the elliptic quintie scrollar threefold in ]our-dimensional space. 

1 .  - In  two of his classical memoirs, CORR)~DO S E ~ E  [1, 2] discussed the projective 

classification and properties of elliptic curves and elliptic scrolls (ruled surfaces) 

respectively. 57ot much appears to have been done, however, about the projective 

classification of elliptic scrollar varieties of higher dimension--loci R~ of elliptic systems 

of spaces of dimension k - - l ,  where k > 3 ;  and it is the object oi the present paper 

to contribute to this topic. 

For elliptic scrolls / ~  of order n, Segre showed tha t  such a scroll, if it is not a 

cone, is normal in In -- 1]; whereas an elliptic ruled surface R~ tha t  is normal in [n] 

is necessarily a cone. In classifying normal R~, excluding cones, by  their  directrix 

curves ol min imum order, he identified in paI~ieular two general types of special 

significance, namely the type,  for n even, which possesses precisely two minimum 

directrix curves y~, yp~ each of order in ,  and the type, for n odd, which possesses 

an elliptic pencil (y)~ of index two, of direetrix curves of minimum order ½(n + 1). 

A scroll oi either of these types projects from a general point of itself into a scroll 

of the other type ;  and it is not  difficult to deduce from Segre's work tha t  every other 

type  of normal scroll R~, including every type  with a minimum directrix curve o~ 

order less t han  ½n, can be obtained as a projection oi a scroll of one or other of the 

two types in question from a suitably chosen set of points lying on it. 

As regards elliptic scrollar varieties of higher dimension, SEG~E [3] later recorded 

an observation to the following effect: 

A n  elliptic scrottar variety o] order n and dimension k, i f  it is not a cone, is normal 

i n  [ n - - 1 ] ;  and i] it is a cone with a space [s] as vertex, then it is normal in  [n ~ s]. 

(*) Enfrafo in Redazione il 18 Maggio 1973, 
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In this paper, we take it as our limited objective to identify and describe k gene- 

ral types of normal elliptic scrollar k-folds analogous to the two general types of normal 

elliptic scrolls to which we have already referred. Among the k types so arising we 

shall be specially interested in one of them--which we call the (~ simploidal ~> type ( * ) -  

this being a type of elliptic scrollar k-fold whose points are in unexceptional (1,1) 

correspondence with the unordered sets (u~, ..., uk) (rood 2o~, 2w2) of k values of an 

elliptic parameter u with periods 2co~ and 2o~. 

2 .  - -  An elliptic scrollar variety may be thought of primarily as a one-dimensional 

elliptic system {//~-1) of subspaces [ k -  1] of a space S~, where k may have any 

one of the values 1, 2, ..., N. Its order n is the number of its spaces Hk_l that  meet 

a generic [ 2 / -  k] of S x or, equivalently, the number of its//~_1 that  are co-prime 

with a generic IN--k]. The points of all the//7~_1 constitute a k-dimensional alge- 

braic variety of order n - - t h e  whole space S~, counted n times if k - - N ;  and the 

primes through the //~_1 constitute an ( N - - k - ~  1)-dimensional algebraic enve- 

lope of class n -  the whole dual space of S~ counted n times if k : 1. 

In view of Segre's observation quoted in § 1, and because we shall be concerned 

only with normal elliptic scrollar varieties that  are not cones, it will be convenient 

to adopt the following notation throughout the paper. 

(i) 2~ symbol of the form E~ will always denote the locus, in its ambient space S,_~, 

of generators [k -- 1] of a normal elliptic scrollar variety (not a cone) of order n; and 

(if) a symbol of the form g:_~ will always denote the envelope of primes through 

the [ k -  l]'s of an E~'. 

A point which lies on s generators of E~ will be s-fold on E~; and a prime which 

contains s generators wilt be an s-fold prime of the associated g~ ~_~. A locus E~_~ 

is the dual of an envelope g:_~. 

If we fix k and consider varieties JT~ for increasing n, then the exceptional case 

with which we start is that  of an E~ +~, this being a space Sk counted k + 1 times, 

its generating [ k -  1]'s being the primes of an elliptic envelope of class k +  1 -  

dual of an elliptic curve ~C k+l of So. Thereafter, for n =  k +  2, we have a scrol- 

lar prim~l E~ +~ of S~+~, of which the simplest examples, for k =  2 and k =  3, are 

the elliptic quartic scroll E~ of S 3 with two double lines, and the well-known quintic E~ 

of S t with an E~ as its double surface. For n < 2 k -  1, two generators H~_~ will meet 

in a space [ 2 k -  n -  1], and such spaces will generate the double locus V2~_,+~ 

of E"" for n<½(3k--1),  E" will possess similarly a triple locus V37~_2,+2, locus of 

the oo a spaces [3k- -2n- -1 ]  of intersection of triads of generators; and so on. 

For n > 2 k -  1, the generators H~_~ of E" will in general be skew to one another 

(though some pairs may meet); and this is the case that  we shall have principally 

in mind. 

(*) Properties of elliptic ruled surfaces of this type (the case k = 2) have been discussed 
briefly in a paper by Du VAL and SE~IPLE [4]. 
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For the envelopes g:_~, for fixed k as n increases from the value k ~ 1, the aggre- 

gates of double primes, triple primes, etc., will come in as n increases, first with primes 

containing pairs of generators, then with primes containing triads of generators, 

and so on. 

3.  - Sec t ions  and project ions  o f  var iet ies  E ~. 

Complete linear sections of an E~, being subnormal if they are irreducible, can- 

not be varieties E~_~ (~ > 0); but, as will shortly appear, we do get partial linear 

sections, residual to one or more generators, which are normal elliptic scrotlar varieties. 

As regards projections of an E~ from a space S~, we are only concerned with 

those which are birational; and this excludes in particular any projection from a 

space S~ which contains a directrix curve of E~ (i.e. a curve meeting each generator 

in one point). The special case in which E~ is projected into a space S~ counted k ~ 1 

times can be interpreted appropriately. ~Vhen projections of varieties E~ for fixed k 

and variable n are considered, it is an advantage to take n large enough (with respect 

to k) so that  complications arising from mutual intersections of generators are avoided. 

Consider first, then, a birational projection of E" from a simple point P of itself 
k 

into a prime S._~ of its ambient space S,_~. Plainly this projection, not being a 

cone, will be an E~ -~ normal in S._2. I f / / i s  the generator of E~ through P, then, 

~s is well-known for scrollar varieties in general, the generators of E~ other than H 

project into all but one of the generators of E ~-~" the tangent [k] to E~, at P projects 
k 

into the remaining generator of E "-~ say / /* ,  a n d / / *  is indistinguishable from the 
k , 

other generators of ~-~" E~ , a n d / / i t s e l f  projects into a [k -- 2] of H*, likewise indistin- 

guishable from the other [k -- 2]'s of H* in relation to E~ . 

Now consider the projection of E~ from a line containing just two simple points P, 

Q of E ~ again supposing that  the projection is bir~tional. I t  follows from the above 
n ~ 2 ,  observations that  the projection is an E~ , and this is true whether (a) P and Q lie 

in distinct generators of 1~ or (b) Q is consecutive to P, so that  PQ is a tangent line k, 
to E~ at P ;  the same remains true, in fact, even if (c) P and Q lie in the same gene- 

rator, so that  their join lies on E" but do s not pass through any multiple point of 

this variety. 

By repeated application of the above observations we obtain in particular the 

following result: 

P~oPOSITIO~ 3.1. - Provided that the pro~ections concerned are birational, an E~ 

projects ]rom one o] its generators into an E~ , and it pro~eets ]rom an (sk --  1)-dimen- 

sional space B ~ spanning so]  its generators (mutually skew to one another) into an E~ -~ .  

From this there follows 

PROPOSITIO~ 3.2. - Subject to the restrictions o] Prop. 3.1, an In -- k -- 1] through 

a generator o] E~ meets this variety residually in n -- k points; and, more generally, 

an In -- k -- 1] through s generators meets E~ residually in n -- sk points. 
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I f  H is a generator  of E "~, then  any general prime through H meets E~ residually 

in an E ~-~ of which one generator  lies i n / / .  For  plainly this residual intersection k--:t  

cannot  be a cone; and if it belonged to a space of dimension n -- 3, then  primes through 

this space would have to meet  E~ residually in its system of generators,  which is 

impossible. Similarly, if t ~ k, a general sp~ce [n -- :1 -- t] througil  / /  will meet  E~ 

residually in an E~itt of which one generator [ k -  t -  1] lies i n / / ;  while, if t = k, 

then  the  residual section is a set of n -- k points sp~nning an [n -- k -  1]. 

B y  a s traightforward extension of the  above, we have 

PROPOSITION 3.3. -- I] B (~) is a space~ o/ dimension s k -  l < n -  2, which spans s 

(mutually skew) generators l l  (~), ..., 11 (~) o] an E~ and contains no directrix curve o/the E~, 

then any general prime through B (~) meets E~ residually in an E~~ o] which one generator 

lies in each 1Y (~. Further, i] t ~ k, any general In -- 1 -- t] through B (~ meets E~ resi- 

dually in an E~-t/ of which one generator lies in each II(~); while, i] t = k, the residual 

intersection is a linearly independent set of n -  sk points. 

All the  E *-~ which occur in the  above propositions are directr ix varieties of E~ ~-~ 

according to the following 

DEFInITIOn. -- A directrix d-]old o/ an E~ is any d-dimensional elliptic scrollar 

subvar ie ty  of E~ which meets every  generator  of this var ie ty  in ~ [ d -  1]. 

4. - Generat ion o f  E$ by related direetrix curves .  

Let  Co, ..., Ck_l be a set of k equimodular normal elliptic curves, of orders no, ..., 

n~_l, whose ambient  spaces [ n ~ -  1] span a space S~_I, where n~-no~- . . . ~nk_~;  

and let  points Po, ..., P~-~ describe birat ionally related ranges on the  curves. Each 

set (Po, ..., Pk-~) must  span a [k --  1], say T[~_~, since otherwise the  spaces [ n ~ -  1] 

would not  span S,_~: We find easily, then,  t ha t  as the set (P0, ..., P~-~) varies along 

the curves~ its ambient  space //~_~ generates an E~. A priori some of the curves 

Co, ..., C~_~ may  be isolated on E~, while others ma y  belong to algebruic systems 

of posit ive dimension. 

In  accord with our objective, as s ta ted in § 1, we now propose to define, for given k, 

a set of k general types of E~; and we begin by  describing the general type  for the 

case when n is an integral  mult iple mk of 1¢ (m>~2). 

5. - The k e y  var ie ty  E ~  ~ o f  S ~ _  1. 

From the  preceding section it follows tha t  if no-~-... ~ -n ~_ l =  ink, t hen  there  

exist varieties E~ ~ generated by  birat ionally re la ted ranges on k equimodular  curves 

1C"°, ..., 1C~" whose ambient  spaces span a space [ i n k -  1]; and, in partieular~ tak- 
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ing ni~--m (i--~ 0, ..., k - - l ) ,  there  exist  /E~ ~ genera ted  b y  b i ra t ional ly  re la ted  

ranges on k equimodular  normal  curves 1C% 

DEFI~TIO~.  -- An E~ ~ will be  called a key ell iptic scrollar variety  for k >  2 and 

m > 2  if i t  possesses precisely k min ima l  directr ix curves 1C~, being then  genera ted  

by  joins of corresponding points  of b i ra t ional ly  re la ted ranges on the  curves. 

The above  definition, as should be  noted,  excludes the  case in which the  corre- 

spondence be tween  any  two of the  curves is pro jec t ive ;  for in such case the  ruled 

surface genera ted  b y  the  pro jec t ive  correspondence be tween the  two curves would 

be of the  projec t ive ly  genera ted  type  of E~ ~, and  this contains a ra t ional  pencil  of 

directr ix cmwes ~C ~ which would also be directr ix curves of E ~ 

~¥e propose now to regard the  key  E~ ~, as above  defined, as the  mos t  general  

t y p e  of normal  elliptic scroll~r k-fold whose order is an  integral  mul t ip le  of its dimen- 

sion. Some justif ication of the  impor tance  we thus  a t t ach  to  it, apa r t  f rom its being 

an obvious general izat ion of one of the  two basic types  of elliptic scrollar surface (§ 1), 

is provided b y  the  following result.  

Tm~o~E~ 5.1. - I ]  an  E'~ ~ ( k > 2 ,  m > 3 )  possesses no direetr ix  curve o] order less 

than  m,  then it  possesses i n  general  k direetrix curves o / o r d e r  m.  

P~ooF. - Le t  B (~-~) denote  the space, of dimension ( m -  1 ) k -  1 = ( m k - - 1 ) -  k, 

spanned by  a set of m --  1 generators  of E~ ~. Plainly,  since E~ "~ contains no diree- 

t r ix  curve of order less t h a n  m, we m a y  suppose t ha t  B ( ' - ~  contains no directr ix 

curve of the  var ie ty ;  whence, b y  Prop.  3.3, it meets  E ~ residually to the  m -  1 
k ' 

generators,  in a set of k points  spanning a [k --  1]. Le t  P be any  one of these points.  

Then through P there  passes a unique space [~a . -  2] which meets  each of the  m --  1 

generators  in a point ;  and  we denote this space b y  ,~. Since ~ meets  E~ ~ in m points,  

R ~ - ~  whose ambien t  space the  project ion of E ~ f rom ~ will be  a scrollar va r i e ty  _~ 
k 

is of dimension m k  - -  1 - -  (m - -  2) - -  1 : m k  --  m;  whence, b y  the  observat ion quoted 

in § 1, R~ k-~ mus t  be a point-cone.  

I i  0 is the ve r t ex  of this cone, then  all the  generators  of J~,'~ mus t  mee t  the [m --  1] 

which joins ~ to  0 ;  and  t hey  will mee t  it in the  points  of a directr ix curve  of E ~ k ' 

pla in ly  a ~C ~ [m - -  1]. I t  follows then,  since one such curve arises f rom each of the  k 

points  such as P (in general  distinct),  t h a t  E~ ~ possesses in general  k directr ix curves 

of order n~., as was to be  proved.  

We now proceed to  inves t igate  the  proper t ies  of a k e y  E~ ~ and  also those of the  

general  types  of E ~ - ~  t h a t  can be obta ined  f rom it  b y  project ion.  
- - I ¢  

6. - Directrix varieties o f  the key ~ .  

I n  what  follows we shall be largely concerned with sys tems of directr ix (k - -  1)-folds 

on an  E~ residual,  wi thin  the  comple te  sys tem ]H] of pr ime sections of E~, to a set G (~) 
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of s generators of this var ie ty .  In  this connect ion we introduce the 

D E ~ O N .  -- An s-residual variety R (~) on an E ~ is the residual intersection of E~ 

with a prime (of its ambient  space) which contains s of its generators. 

If ,  as will in general be the  case, R (') is nei ther  reducible nor ~ cone, then,  by  

Prop.  3.3, it  is a directrix var ie ty  E~-~ of E~. 

. _ l ~ ( . )  I Any set G (~ of s generators of E"~ belongs to a linear series G~_I-- of sets 

of s generators;  primes through G (~, as we ma y  suppose, meet  E~ residually in a com- 

plete linear system of s-residuals jR(") l ~ IE~-~]; the c~ ~-1 primes through the am- 

bient  [n -- s -- 1] of any  one of these E~_-~ meet  E~ residually in the sets of the  above- 

ment ioned G]_~; in brief, IR(~t and G~_~ are residual within the complete prime sec- 

t ion system IHI. 

~ o w  consider the key var ie ty  E~ ~. A set G (~) of m of its generators is not  in gene- 

ral  contained in any prime;  but  there  exist, nevertheless, certain sets G (~) which are 

contained in primes, as follows f rom the following observation:  

The key variety E~ ~ possesses, along with its k minimal directrix curves ~0 '~, a set 

o] k minimal direetrix (k --  1)-]olds. These are, namely, the k key varieties E "(~-~) each 

o] which has k -- ~ o] the ~C" as directrix curves and is generated by the original corre- 

spondences between these curves. 

Residual to  each of these -~-1/~'~(~-~) there  is a l inear series G:_~ of sets of m gene- 

ra tors ;  and the sets of the k series G:_~ so arising are the only sets G ~) of E~ ~ tha t  

lie in primes. 

We pass on now to the ( m - / ) - r e s i d u a l s  R (~-1) on E~ ~, these being in general 

varieties ~ - ~ + ~  residual to generator  sets G (~-~) They  form, in aggregate, a non- 
~ / ¢ - -  1 ° 

linear system which we shall denote by  (R(~-x)}; and this is composed of c~ ~ linear 

systems IR(~-~)I, each residual, within the  complete linear system IHI of prime sec- 

t ions Of m~ ~-1 E ,  , to one of the  linear series G~_~ of generators. 

I f  B ¢m-1~ is the space [ink -- 1 -- k] spanning a generator  set G ~-~), then  the  c~ *-~ 

primes through B ~-~ cut a complete system I/~(~-~) I on E~*; whence the dimensions 

of IR(~-~II and {R(~-~)~ are k -- 1 and k respectively. As previously noted  in § 5, B ~-1~ 

meets E ~ - - r e s i d u a l l y  to G(~-~)~in k points P~, ..., P~; and these are therefore base 

points of the  associated system 1R(~-I)I. The points P~, moreover~ lie one on each 

of the  k directr ix curves ~C~; for primes through B ~-~) already meet  each ~C ~ in 

m -- 1 known points, and they  therefore meet  it in one fur ther  fixed point,  the whole 

group of m points on this ~C" having the proper ty  tha t  the m generators through 

them are co-prime. This gives 

P:aOPOSITIO~ 6.1. - The ( m -  1)-residual varieties R (~-t) on E~ ~ ]orm an alge- 

braic c,=)~-system {R ¢~-1~} composed o] an elliptic c~l-system o/ linear ~k-l-system8 

IR("-I) 1 residual to the o¢ 1 linear series G '~-~ o] generators. Each IR~-~)I has k base 
m ~ 2  

points, one on each of the k direetrix curves 1C'~ of E "k . 
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Our nex t  r e su l t - - a  generalizat ion of one of Segre's for  k =  2- - i s  as follows: 

P~oPosITIOX 6.2. - The c~-system {R(~-I)}~ as above defined, is k-atic, in the sense 

that the number of members of it that pass through k general points of E'~ ~ is k. 

P~ooF. - Let  G (m-~) be a fixed set of m -- 2 generators of E~ ~. We observe, then,  

tha t  every  member  of {R (~-1)} is residual to a unique set of the  form G ~-~) d- G (1). 

Le t  A1, ..., A~ be k points of general position on E~ ~; and let  I be the  [ink -- 1 -- k] 

t ha t  contains G ~-2) and A~, . . . ,A~.  B y  Prop.  3.3~ 2." has k fur ther  intersections 

P1, ..., Pk with E~ ~. Through each P~- ( i =  1, ..., k) there  passes a generator  G~ s 

which, since it meets I in a point ,  lies with I in a pr ime;  and this prime meets E'~ ~, 

residually to G("-2)d-G~ 1), in a var ie ty  of {R (~-x)} which passes through A1, ..., Ak. 

Since one such var ie ty  arises f rom each of P~, ..., Pk, and since any  member  of {R (~-1)} 

tha t  passes through A~, ..., A~ determines one of the P~, the Proposi t ion is established. 

CO~OLLAI~Y 6.2.1. -- I f  {R(~ -1)} is the oo~-subsystem of {/~(~-~)} with ~: -- s assigned 

(t~ } is also k-atic in the sense that k of its members base points ( l < s < k  -- I),  then ~m-~) 

pass through any general set of s points of E ~'~ 
k " 

To obtain fur ther  informat ion about  directrix varieties on E~ ~, we now make  

two observations of which the second will be par t icular ly  useful: 

(a) E~ ~ (m>3)  projects f rom a generator  of itself into a key  var ie ty  E(,~-t)~ 

the  k minimal  directr ix curves 1C~ of the  lormer  project ing into the  k minimal  direc- 

t r ix  curves ~C " ~  of the  lat ter .  B y  this project ion the  k-atic system {R (~-1)} of the  

former p r o j e c t  into the  k-atic system {R (m-2)} of the latter .  

(b) E~ ~ (m>3)  also projects into a key  E (~-~)~ from any general set A1, ..., Ak 

of points of itself, the  k members of {R ('-~)} tha t  pass through A~, ..., A~ project ing 
(m 1)(/¢ 1) into the  k minimal  directrix varieties E~_~ - of E~ ~ - ~  In  this projection~ by  which 

the  orders of direetr ix varieties of E~ ~ tha~ pass (simply) through A1, ..., A~ are 

reduced by  k, the  minimal  directr ix curves 1C~-t of ~(~-1)~ gre projections of the  

curves of intersection of sets of k -- 1 of the  k members of {R (~-1)} tha t  pass through 

A~, ..., A~. 

F rom (b) in particular,  we deduce at  once the following comprehensive result:  

PROPOSITIO~ 6.3. - The ( m -  1)-residual system {R (~-~)} of E "~ has the following 

properties: 

(i) k members of {R (~-1)} meet, in general, in precisely k points; 

(if) k -- 1 members of {R (~-~)} meet, in general, in a curve ~C~+~-~; and, of the c~ ~(~-1) 

curves so arising, precisely k pass through k general points of E~"~', 

(iii) more generally, s members of {R (~-~)} ( l < s < k - - 1 )  meet in general in a 

directrix variety ~(~-~(~-~)+~- ~(~-~)+~ 

2 - A n n a t l  e l i  M a t e m a t i c a  
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As regards (ii), however, we should note  tha t  c~ • of the c~ 7~(~-~) intersection curves 

~C ~+~-1 are exceptional,  namely those curves each of which is an intersection of ~ -- 1 

members of a linear system [RI~-~) I and is therefore the base curve of a linear c~ ~-~- 

subsystem of the [RI~-~)I. 

I f  we put  s = k - - 2  in (iii), it appears tha t  the members of {R ~-~)} meet  b y  

sets of k -  2 in c¢ ~(~-~) ruled surfaces E~ ~+~-~ of general type ;  and each of these 

contains, if k is even, two directrix curves of order ½(2m + k -  2), or, if k is odd, 

an elliptic pencil of directrix curves of order ½(2m-{-k--1) .  

~Ve now ask~ generally, what  directrix curves ~C ~+~ ( l~<=~<k-  2) exist on E~ ~, 

of orders in termediate  between tha t  of the minimal directrix curves ~C ~ and tha t  

of the complete intersection curves ~C ~+~-~. Any  such curve ~C ~+~ will be a residual 

intersection of k -  1 members of {R ~-~)} tha t  contain k -  1 -  ~ lines lying each in 

a generator  of E~ ~. A straightforward calculation, on this basis, of the  dimension 

of the system of ~C ~+~ on E~ ~ leads to the result:  

P~OPOSITTO~¢ 6.4. - -Fo r  0 <=~< k -- 1, the direetrix c u r v e s  1C~-~ 0 ~  E ~  I¢ ]orm an oo7 '~ 

system, there being c~ ~ of them that pass through ~ general points o] E ~ .  

The ease k = 3. For  elliptic serollar threefolds, the first two key  varieties tha t  

arise are E~ [5] and E~ [8], given respectively by  m = 2 and m = 3. 

The var ie ty  /~'~ [5] has three (equimodnlar) elliptic double lines as its minimal 

directrix curves. This means, if these are carried by  lines p, ~, r (spanning $5) , t ha t  E~ 

is generated by  the planes tha t  join corresponding points in certain (2, 2) correspon- 

dences between the ]Lees, say between p and q and between p and r. E~ has three 

minimal directrix s c ro l l s /~ ,  each having two of p, q, r as double lines; and it pos- 

sesses an c~3-system {/~c1~) of scrolls E~ which is composed of c~1 linear nets tRIbal, 

each residual to a unique generat ing plane of E~. The directrix 1C3 on E~ form an 

c~8-system, while the surfaces of {R ¢1~} meet  by  pairs in c¢ 6 directr ix curves ~C a. 

The var ie ty  E~ [8] has three minimal  directrix cubics ~C 3 and three minimal 

directrix scrolls E~. Sections residual to pairs of generat ing planes form an c~ 3- 

system {/~2~} of septimie scrolls E~; and this, being again 3-uric, is composed of c¢ 1 

linear nets ]R~2~I, each residual to a G~ of generators.  The ~C ~ on E~ form an c¢ 3- 

system; and the surfaces of {R m~} meet  b y  pairs in c~ 6 direetrix curves ~C ~. E~ projects 

f rom any  generat ing plane of itself into an E~. 

7. - T h e  g e n e r a l  types  E [ ~ - ' ( 1  ~< s ~< k - -  1) .  

As previously remarked,  a general project ion of a key var ie ty  E~ ~ (m~>3) from k 

of its points (or f rom a generator) is another  key var ie ty  ~¢~-1~ We now propose to 

fill the  gap between these two varieties as follows: 
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DEI~Ii~ITIO~. - For  m>2,  we shall say t h a t  an E~ *-~ ( l < s < k  --  1) is of general 

type (or briefly general) i t  i t  is a project ion of a key  E~ ~ f rom s points  of general  posi- 

t ion on this va r i e ty .  

We now summar ize  briefly the  principal  propert ies  of such E~ k-'. 

W h e n  a key  E~ '~ ( m > 2 )  is pro jec ted  into an  E~ -~  ( l < s < k -  1) f rom a set 

of s points  P~, ..., P~ of general  posi t ion on itself, the  ¢¢~-~ members  of the  k-atic 

sys t em {R (~-~)} t ha t  pass th rough  P1, ..., P~ project  into an  c ~ - ' - s y s t e m  -rn ~-l)~- t~(~)  ) 

of directr ix variet ies  E ~  -~+~-' on E~ ~-=, this being pla inly  the  sys tem of ( m -  1)- 

residual variet ies  (residual to sets of m - - 1  generators)  on E ~  ~-~. Fur ther ,  this  sys tem 

{ ~ ( ~ - ~  is k-at ic  in the  sense t h a t  k of its members  pass th rough  k - -  s general  points  

of E ~ - ' ;  also ] ¢ -  1 of its member s  mee t  in general  in a directr ix curve  ~C ~+~-~-. 

of E~ ~-~. More generally,  f r o m  Prop.  6.4, we derive 

l~oeos~mio~ 7.1. - ~or 0 < ~ < k  --  1, the direetrix curves ~C m+~ on the general type 

o] variety E~ -~ ( l < s < k - - 1 )  ]orm an c~+~-system, there being c~ ~+~ o] them that 

pass through o~ general points o] E~ ~-~. 

I n  par t icular ,  the  intersect ion curves ~C ~+~-'-~ of sets of k - -  1 members  of [~(~-I)~ 

fo rm an  c¢(~-~)(~-~)-system on E ~ - ' ;  and  the  dimension of the  sys tem of minimal  

directr ix curves ~C ~ on E ~  ~-~ increases s teadi ly  f rom 1 to k - -  1 ~s s increases f rom 1 

to k - - 1 .  A fur ther  project ion (put t ing  s = k) sees the  first appearance  of direc- 

t r ix  curves ~C ~-~ on a key  va r i e ty  E(~ ~ - ~ .  

The c~ ~ min imal  directr ix curves ~C ~ on E~ ~-~ (1 < s < k - -  1) generate  a va r i e ty  _~,+~ 

which we m a y  call the  nuclear variety of E~ ~-~-  ~ surface if s : 1 and  the  va-  

r ie ty  E~ ~-(~-~ itself i~ s - - - - k -  1. 

For  k---- 3, the  general t y p e  E~ (projection of E~ f rom a point) is the  well-known 

scrollar qulntic pr imal  of S 4 whose double surface is ~n E~ (its dual);  its c~1 elliptic 

double lines (minimal  directr ix curves) lie along the  generators  of E~, and  its gen- 

era t ing  planes are those which contain the  c ~  directr ix cubic curves of E : .  

The mos t  interest ing m e m b e r  of the  sequence E ~ - ~  ( l < s < k - - 1 )  is undoub-  

ted ly  the  last,  g iven b y  s = k - - 1 ;  and  we now consider this in more  detail.  

8 . -  The simploidal variety E~-(~-I> ~ E~  '-1>~+I. 

The general  t y p e  t h a t  we now discuss is such t h a t  m - -  1 of its generators  a lways 

span a p r ime  of its ambien t  space S~_~, .  I t s  (m - -  1)-residual vaxieties fo rm there-  

fore an  elliptic c~l-system ~ . - 1 ) 1  which we shall denote  briefly b y  {¢}; and  this 

sys tem has  the  following proper t ies :  

(i) each ~b is a directr ix va r i e ty  E (~-~)(~-1~-~ of ~(m-~)~+l and  it  is residual to  

a l inear  genera tor  series ~-~- 

(if) {¢}, being of dimension 1, is such t h a t  k of its members  mee t  in one point ,  

and  k of its members  (distinct or otherwise) pass th rough  a n y  point  ^f E c~-uk+l U k " 
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By virtue of (if) we shall call {~b} a simploidaI system on E(~-~)~+~; and we shall 

say tha t  E(~ ~-~)~+~ is a simploidal variety with {~b} as its system of simploids. 

I f  u (rood 20)~, 2co~) is an elliptic pargmeter for the generators of ~(~-s~+~ then 

the linear generator series G ~-~ also form an elliptic system; and this system has 

an elliptic parameter w with the s~me periods 20~, 2~o~ as ~. Plainly then, by  (i) 

and (if) above, w is also an elliptic parameter  for {q~}, and each point of _~(~-I)~+~ is 

uniquely associated with the nnordered k-ad (w~, ..., w~) of values of w (rood 2co~, 2co~) 

tha t  correspond to the k members of (q~} tha t  pass through it. Furthermore,  the 

correspondence between the points of E (~-~)~+~ and the unordered k-ads (w~, ..., w~) 

is (1,1) without  exception. 15~e have thus proved 

P~OPOS~T~O~ 8.1. - The general type o] elliptic scrollar variety E(~ m-~)~+x is simploidat, 

possessing an elliptic co~-system (~5} o] directrix (k --  1)-]olds E (~-~)('~-~)+~ such that k 

members o] {C5} meet in one point, while l~ members o] {~}, distinct or otherwise, pass 

through any point o] E (~-~)~+~ The points o] this variety are in unexceptional (1,1) cor- 

respondence with the unordered sets o] k values o] an elliptic parameter w (rood periods 

2o9~, 2~o~). 

From the above, and with reference to Prop. 7.1 (for s = k -  1 and ~----0) we 

derive 

CO~¢OLLA]~¥ 8.2. -- The variety E(~ ~-~)~+~ possesses co ~-~ minimal directrix curves ~C'*, 

and these are the curves o] intersection o] sets o] k - - 1  members o] {¢}-- the  simploidal 

curves o] the variety. Each o] them is given by equations of the ]orm w~ ~ ~ (constant) 

(mod2cg~, 2o9~) ]or i~---], ..., k - - l ;  and k of them, distinct or otherwise, pass through 

any point o] F, (m-~)~+~ 

l~inally, in the above connection, we ~sk what  kind of relation between w~, ..., w~ 

represents a generator H~_~ of E(k ~-*)~+~. I f  we th ink of w as the parameter  for points 

on a (non-singular) elliptic curve C, then the points of Hk_~ correspond to the sets 

of an algebraic series ~ Yk-, on C; and this y~_~ is (a) rational, and (b) such tha t  k -- 1 

points of C belong to ~ unique set of the series. This last. in fact~ follows from the 

observation tha t  the ~C ~ common to k -  t members of {~b} is a directrix curve of 

E (~-*1~+1 and therefore meets / /~_,  in one point. I t  follows, then, by  the Castelnuovo- 

Humber t  Theorem (cf. EN]~IqUES and C~xSINI [5], Vol. I I I ,  p. 32 and p. ~76) tha t  

y~_~ is ~ linear series; and it  is therefore given by a p~rametric equation of the 

form w~ ~ ... d- w~ -- const. (rood 2co~, 2co~). This gives 

P~OPOSITIO~ 8.3. - I n  the representation o] the points o] a simploidal variety E~ ~-~)~+~ 

by the u.nordered k-ads (wt, ..., w~) o] values o/a:~ elliptic parameter w (mod 2col, 2~o~), 

the generators o/~(~-~)~+~ are each given by a parametric equation o] the ]orm wz d- d- 

~- wk ~-- const. (mod2~9~, 2co2). 

For  k ---- 2, the simploidal character and parametric representation of the general 

type of elliptic scroll E~ ~-1 have already been noted by Du VAL and SE~PLE [4]. 
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For  k = 3, the  simplest example (m = 3) is t ha t  of an E~ in S 6 for which {~} is 

t he  oo~-sys~em of scrolls E~ residual to  pairs of generat ing planes of E~; ~nd this 

va r i e ty  possesses oo~ minimal  directr ix curves ~C a which are the  intersections of 

pairs of members  of {q)}. The simploids qi have parametr ic  equations of the  form 

w~ ~-const . ,  simploidM curves ~C 3 have equations of the  form w~ ~ const., w ~ -  

=-- const.,  and generat ing planes have equations of the form Wl + w2 ~- w~ ~ const. (*). 

F rom the  results of this section~ it will be noted  tha t  any  simploidM var ie ty  

E(~-u~+~ (k>~2, m > 3 )  is an unexcept ional  model of all the  sets of k points of a (non- 
k 

singular) elliptic curve. We now note  fur ther  tha t  the simploids ~b on such a var ie ty  

are themselves in general simploidM varieties ~(~-~)(~-~)+~- and it  will appear  la ter  
~ - - I  

t ha t  thei r  ambient  spaces [(vn~--1)(k--1)]  generate an elliptic scrollax var ie ty  

E (~-~)~+1 which has E (~-~)~+~ as its k-ple locus. 
{e$--l} ~--I)-}-I - - ~  

9. - The  focal  curve  o f  an  E~ ~-1)k+1. 

In  extension of certain observations of Segre for the case k----2, we now remark  

tha t  a simploidM var ie ty  E~ m-~'~+~ has various types of coincidence loci~loci of points 

of the  var ie ty  for which coincidences of different kinds occur in the sets of k members 

of {q~} tha t  pass through them. More especially, _~(~-~)~+t possesses a local curve ] 

such t h a t  the  k simploids through ~ny point  of ] all coincide. The equations of ] are 

w~ --~ w2 ~ . . .  ~ w~ (mod 2(ol, 2~2~). 

As in the case k= -2 ,  the simploids ¢ envelop the curve ], each of them having 

k-point contact  with ] at  its only common point  with this curve;  and the points of ] 

axe the reby  in (1,1) correspondence with the members of {¢}. 

I f / /~_~ is the  generator  of E (~-~)~+1 with parametr ic  equat ion 
k 

w~ ~- ... ~ w~ ~= c (rood 2~ol, 2~o2), 

then/ /~-1  meets  ] in the  k ~ points (w, ..., w) for which kw =~ c (mod 2col, 2 ~ ) .  Fur the r  ] 

has k coincident intersections with any  simploid ~,  and i t  has k 2 intersections with 

each of the  m- -  1 generators in which E~ m-~)~+1 is met  residually by  a prime through ~b; 

so tha t  the order of ] is ( m - - 1 ) k 2 ~  k. This gives 

PI~OPOSITIol~ 9.1. - A simploidal variety F~ ('~-~)~+~ (k> 2, m~>3) has an elliptic ]ocal 

curve ], locus o] points 2 ) ]or which the k simploids q) through P all coincide. This curve ] 

(*) I t  may be shown that the surfaces on E~ with equations of the form w 1 + w2 --= const 
constitute an ool-system {J} of elliptic sextic scrolls E~, of which only one is residual to 
each generating plane of E~. Each J, unlike the general E~ residual to a generating plane, 
is projectively generated, possessing a rational pencil of minimal directrix curves 1Ca. Through 
each point of E~ there pass three of the scrolls J ;  but three such scrolls, on the other hand, 
meet in general in four points. 
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is met by each q~ in k consecutive points; it meets each generator (~-~>~+~ " o] E~ ~n I~ ~ points; 

and its order is (m--1)k~-~  k. 

Pla inly  E~ ~-1~+~ projects f rom any  point  of ] into a specialization of the key  

/~-~)~ for which the  k minimal  directrix curves a C ~-~ all coincide. 

10.  - Pr inc ipa l  curves  o n  the  s implo ida l  ~(~-~)~+~. 

For  the  case k ~ 2, Segre pointed out  the  existence on the general (simploidal) 

type  of scroll E~ ~-~ of three normal  elliptic curves ~C ~-~, bisecant to the generators,  

to which he gave the name principal curves of E~-~  In  the parametr ic  representa- 

t ion o f / ~ - ~  by  unordered parameter  pairs (w~, w2) (mod 2~o~, 209~), the three curves 

in question have parametr ic  equations w~ --~ w~-[- ~o~, w2 ~ w~-~ co~ and w2 ~ w~ 

-~ ~o~+ 0~2. We now extend this result  to E(~ ~-~)~+~. 

Le t  v be the number  of cyclic elliptic involutions tha t  are properly of order k 

on an elliptic c~-sys tem with parameter  w (mod 2co~, 2co~). For  a discussion of these 

involutions we refer the reader  to  E~R.~Q~:ES and C~S~Z~ [5], VoI. IV, 91-9~. The 

general set of any  one of t hem can be defined b y  a parameter  set 

( w , w + ~ , w + 2 ~ , . . . , w - ~ ( k - - 1 ) ~ )  (rood 2c9i, 2oJ~), 

where a is a k-th par t  of a period, 

2mco~ + 2n~o2 

k 
(m, n integers,  0~<m, n ~ < k ~ l ) ,  

such tha t  the  k numbers 0, ~, 2~, ..., (k -- 1)g are distinct (rood 2o~1, 2o~2). For  

any  one involut ion the choice of an a which generates it  as above is by  no means 

unique, the number  of equivalent  choices for ~ being largely dependent  on the  prime 

factor  decomposit ion of k. The values of v for the values 2, 3, 4, 5 of k are 3, 4, 6, 6 

respectively. 

Now let w, as in the preceding section, be the  elliptic parameter  for (q~) on E ~-~+1 
k 

and let ~(~) be the invo lu t ion- -proper ly  of order k - - o n  (~b} generated as above b y  

a sui tably chosen a. As w varies, the  point  of E~ (~-~+~ with parameter  k-ad (w, w -}- ~, 

..., w + (k -- 1) ~) describes a curve C(~) which we shall call aprincipat  curve on E(~ ~-~)~+1. 

The number  of such curves is v. 

We observe first, then,  t ha t  C(~) meets the simploid ¢ given by  w~ ~ /3  in the  

unique point  with parameter  k-ad (/3,/3-}-~, . . . , /3 -{- (k- -1)~) .  Fur ther ,  if /L:_~ is 

the generator  of E(~-~)I~ with parametr ic  equat ion w~-+- ... -~ wk ~ c, then  the points 

of C(~) tha t  lie on//~_~ are those for which 

kW ~ c - - ½ k ( k - - 1 ) ~  (mod2~ol, 2co2) ; 
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and as all the values of w that  satisfy this congruence relation arrange themselves 

(modPw~, 2(o~) into k sets of the involution T(~), it follows that  C(~) meets//~-1 in k 

points. Finally, by considering the intersections of C(~) with a prime that  meets E ~  -1~+~ 

in a simploid q~ and m -  1 generators, we see that  C(a) is of order (m--1)k  ~ 1, 

equal to the order of E(~ ~-1)~+~. This gives 

P~O1,OSIT~O~ 10.1. - I / v  is the number o] cyclic elliptic involutions that are properly 

o] order k on an elliptic ool-system~ then E~ "~-~+~ possesses ~ principal curves, each a 

normal ~C ~-1)~+~ and each k-secant to the generators. Thus E ('~-~+~ can be envisaged as ~ k  

the locus o] [ k -  1]~s spanning the sets o] an elliptic involution o] order k on any one o] 

the r principal curves. 

This completes our outline of the principal properties of simploidal elliptic scrollar 

varieties. 

11. - The nuclear surface N o f  a general  E~  ~-I. 

In § 7 we pointed out that  an E~ ~-~ of general type--projection of a key E~ ~ from 

a general point of itself--possesses 001 minimal directrix curves 1Cm, and we defined 

the nuclear surface of E~ ~-~ to be the surface h T generated by these 1Cm. This surface, 

as will appear, has the remarkable property that  it is simply generated not only by the 

1C~ but also by each of two other elliptic pencils of elliptic curves, each intrinsic to 

the geometry of ~:~-1 We proceed now to investigate ~Y; but since the arguments 

to be used will be adequately illustrated by their application to a typical partic- 

ular case, it will be sufficient to set them out for the variety Es S (the case k ~ m---- 3) 

and then to state the results for general k and m. 

Consider then the variety E] which is the projection of a key E~ from a general 

point A of the latter (not lying, in particular~ on any one of the three directrix cubic 

curves of the El). We shall be concerned with three ool-systems of curves on the 

nuctear surface N of El, n~mely (i) the directrix cubics, which we shall call the curves ~, 

(ii) the curves traced by these on generating plunes of Es S, which we shall call the 

curves fl, and (iii) a third system of special directrix curves, to be called the curves ~, 

which we now proceed to define. 

The 3-uric system {R (~)} of E] is composed of oo ~ linear systems IR (~)] each of which 

is residual to every pair of generating planes of a G~ of El. Among the ~e  intersec- 

tion curves 1C5 of pairs of members of {R (:)} there are oo 8 special curves, to be denoted 

by ~C~, each of which is the base of a pencil in one of the systems IR(~)I; and each 

such ~C 5 lies in a [6] with each pair of the associated G~, being in fact the residual 

intersection of this [6J--other than the plane pair--with El. The point A defines 

a unique pencil in each IR (~)l-of those members of 1R(2) I that  pass through A--and 

hence A ties on co 1 curves ~C 5 (an elliptic system), each associated with one of the 

systems IR(2~I, and each therefore associated with a unique G~ in such a way that  
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it  lies in a [6] with every  pair  of planes of this G~. On project ion f rom A, then,  i t  

appears t ha t  

Es3 contains a unique elliptic pencil o] special directrix curves ~C4--the curves 

that were to be de/fried--each associated with a unique G~ o] generators o] E~ in such a 

way that it ties in the [5] joining the planes o /any  pair o] this G~,. 

Consider then a pair  of generat ing planes ~ ,  ~ of E~. Let  B be the [5] contain- 

ing them;  let  y be the  *C 4 in which B meets  Es s residually to z l ,  ~2; and let  T~, Ts 

be the  points in which ~ meets 7c~, s2. :Farther, let  P be a vgriable point  of ?, and 

l e t / / 1 ,  H2 be the  points in which ~ and  ~ are met  b y  the  unique t ransversal  f rom/~  

/ t \ ;  :7 

Figur~ 1. 

to  these two planes. Since this line PH1H~ is a t r isecant  of E~, it  must  lie in the  plane 

of one of the  directrix cubics a; and as P describes y, the  point  //1, for exampl% 

describes a curve fl in ~1, locus of the intersections of ~ with all the  curves ~. :Further, 

this curve fi, being the project ion of 7, f rom z~ into zc~, is a 1Ca through T~. I t  follows 

now tha t  the c~ ~ minimal  directrix curves ~ of El  each meet  every  y in one point ;  

and they  meet  every  generating plane of E~ in a plane cubic curve ft. Hence:  

The surface IY on E~ is simply generated by each o] the three elliptic pencils (c~), (fl) 

and (y). 

To find the  order of 2~ we consider the  section of it by  a prime X through a pair  

of generat ing planes gl ,  ~2. Z meets E~ residually in an elliptic sextic scroll E2s--it- 

self a key var ie ty  and possessing therefore two directrix cubic curves which are curves g 
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of El .  Further ,  as previously shown, X contains just one curve y (lying in the [5] 

joining ~1 to z~); and  finally it  contains the two curves fi t ha t  lie in g~ and g2 

respectively. Hence the order of N is 2.3 -~ 2.3-~ 4 ~ 16. We find then, by  a well- 

known formula (cL SE~eLE and ROT~ [6], p. 414, (7)) tha t  the section genus of N 

is 9. Hence: 

The nuclear surface of E~ is a surface ~N 18. 

When we now follow step-by-step the same procedure us we have used above to 

investigate the nuclear surface iV of an E~ ~-1 of general type,  we find with li t t le dif- 

f iculty the  following generM results: 

13~oPosITm~ i1.1. The nuclear surface N o/ an E ~  ~I o] general type is simply 

generated by each of three elliptic pencils of curves, namely 

(i) the pencil (~) o / m i n i m a l  directrix ~C" o] ~ ' ~  

(ii) the pencil (fl) o] curves ~C k in which the generators of E'~ ~ are met by the 

curve8  ~, a n d  

(iii) a pencil (y) of special directrix curves IC~+~-2~ each o] which is the ]ixed resi- 

dual intersection o / E ~  ~-~ with any space spanning a set of m -- 1 generators 

o] a G,~_ 2 associated with the ~C '~+~-2 in question. 

Further the order o ] N  is 2 ( m k -  1) and its section genus is ink. 

I t  m a y  be noted, finally, tha t  the curves a~ fi and y o a  N satisfy the intersection 

equations 

and the order v of N is expressed by the formula 

= 2 ( k  - -  1 ) ( m  - -  1) -F  2 ( m  - -  1) -[- 2 ( k  - -  1) = 2 ( m k  - -  1 ) .  

12. - Review of  the general types of  ~ .  

We have now largely completed our limited objective which was to isolate and 

s tudy  what  we take  to be the most general types of E2 for all possible values of k 

and n. From our discussion it has emerged that ,  for any  given vMue of k, the general 

types of E~ can be arranged in sets of k members 

®~(m): / ~ - ' ( 0  < s <  k -  1), 

each set being defined by a value of the integer m > 2. The leading member of a set 

®~(m), given by s ---- 07 is a key variety with precisely k minimal directrix curves 1C~; 
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while the la.st member, given by s = k -  1, is a simploidal variety with co k-1 mi- 

nimal direetrix curves 1C~. 

By way of illustration we now look briefly at the first two sets for k = 3. 

The set. ~3(2) consists of the three varieties 

E~[5], with three elliptic double lines as minimal directrix curves, 

E~[4], which is the well-known quintic planar threefold of S,, and 

E~[3], which is the 4-ple space $8 defined by an elliptic envelope, dual of a curve 1C4 

of S~. 

As regards El, we note that  it possesses three minimal directrix scrolls E~, each 

having two double lines; and its 3-uric system consists of the c~ 3 quintic scrolls E~ 

residual to generating planes of the variety. As regards E~, we note that  this is the 

dual of its double surface E~; and its nuclear surface is E:  counted doubly, the c~ ~ 

double directrix lines of E~ lying along the generators of E~. 

The set ~3(3) consists of the three varieties 

E~[8], with three minimal directrix cubic curves ~1, ~2, ~ ,  

El[7], which possesses an elliptic pencil (~) of directrix carves ~C ~, and 

E~[6], which is simploidal, having ~8 scrolls E~ (residual to pairs of generating 

planes) as its simploidat system. 

Details of E~ and E~ have been given in § 11; and here we add only two remarks 

concerning the three elliptic pencils of curves (a), (fl) and (y) that  generate the nuclear 

surface 9N~6 of El (cf. § 11). In the first place the planes of the directrix eubics 

of E~ plainly generate n second planar scroll/?~ with the same nuclear surface as El, 

the roles of the curves a and fi being interchanged for the two varieties. Secondly, 

when E~ is projected from one of its generating planes (the plane of u curve fi) into 

an E~, its nuclear surface projects doubly into the double surface E~ of E~; the curves 

project doubly into the generators of E~; and the pencils of curves fl and y both project 

into the same set of directrix cubics on E~. As regards E~, besides the details given 

in § 8, we note that  this variety has a focal curve ~C ~1 which is enveloped by the 

the simploids on the variety and is 9-secant to its generating planes; and it possesses 

four principal curves, each a normal ~C 7 and each trisecant to the generating planes. 

13. - Note on  l inked simploidal  varieties and envelopes.  

In this final section, we add a note on simploidal envelopes defined by simploidal 

elliptic varieties. We whall find it convenient, however, for a reason that  will shortly 

appear, to replace m -- 1 in our previous notation by/~, so that  the typical simploidal 

variety is now taken to be an ~ . 
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We recall then  (§ 8) tha t  the oo ~ simploids on E~ ~+* are varieties E~(~-~)+~ and 

we now consider the aggregate of primes tha t  each contain the ambient  space//~(~_~) 

of one of these simploids. These primes, namely,  are all those tha t  span sets of # 

generators of /~+~, those of them tha t  pass through a given space H~(~_~ being 

those tha t  span sets of a generator series G~_~ of E~ ~+~. Thus, if u (mod 2c~, 2co~) 

is an elliptic parameter  for the  generators, it  follows tha t  the primes in question can 

be represented without  exception by  the unordered sets {u~, ..., %) of # values of u 

(mod 2 ~ ,  2co~); and they  form accordingly a simploidat envelope ~+~ whose gene- 

rators (in the dual sense) are the oo t spaces II~(~), each defined by  an  equation of 

the form 

u~+ ...~- % - -  const. (rood 2o~, 2~9~). 

I t  follows then  (el. §2(if)) tha t  the locus of these same spaces//~l~ l)is a variety E~+~l,+~ - -  / ~ ( - -  • 

l~ecalling now tha t  any  k simploids of E~ ~ meet in a point, it follows tha t  any  k 

F.~+~ This gives generators H.(~_I) of E ~+~ meet in a point of _~ . 
~(k--l)+l 

PROPOSITION 13.1. -- The ambient spaces II~(~_~) o] the ~ simploids on a simploidal 

variety ~ + ~  generate an El' ~+~ with E~ ~ --~ ~(~-l)+t as it~ k-ple locus. The associated enve- 

lope o] E~ ~+~ is a simploidal g~+~ whose primes are all those spanning sets o] # 
f~(~--l)+l 

generators o] E~ ~+~. 

A pair of varieties E~+I and ~.~+i related in the above manner,  such tha t  

the former is the k-ple locus of the latter,  while the lat ter  is the tt-ple envelope (ag- 

gregate of #-ple primes) of the former, will be called a linked pair. 

Recalling then, generally, tha t  the associated envelope of an E~ is an g" n ,~_~, w e  

may  conveniently define the ]ormal dual of an E" to be an E~_~ In  this sense the 
k 

formal duals of the two varieties described above are an E~'~+~+~ and an E~ k+~ respec- 

t ive]y; and these two, in reversed order, will also form a linked pa i r - - the  dual of 

the former. I t  is notable, then, tha t  the two linked pairs 

arise from each other by  interchange of/~ and k. 

By  taking  # = k we get a simple sequence 

(E~%x Ek'+i 

of sell-dual linked pairs for k----2, 3, .... For k = 2 this gives the well-known dual 

pair E~ and E~ of $4; and the next  such pair, for k----3, is E~ ° and E~ ° of S~. 
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