Normal Elliptic Scrollar Varieties.

J. G. Semple - J. A. Tyrrell (*)

Abstract

Summary, - In his classical memoir on the projective classification of elliptio ruled surfaces Corrado Segre described in particular two most general normal types, of even and odd order respectively, of which the former has precisely two minimum directrix curves, while the latter has an elliptic pencil of such curves. The present paper extends this worle to normal elliptic scrollar varieties of dimension k, defining and describing k most general types of such varieties. Particular attention is paid to one of these types, which we call the simploid, in which the points of the variety correspond to the unordered sets of k values of an elliptic parameter (modulo its periods). The paper conoludes with the identification of a series of self-dual "linled pairs" of such scrollar varieites, of which the simplest example is that of the elliptic quintic ruled surface and the elliptic quintic sorallar threefold in four-dimensional space.

1. - In two of his classical memoirs, Corrado Segre [1, 2] discussed the projective classification and properties of elliptic eurves and elliptic scrolls (ruled surfaces) respectively. Not much appears to have been done, however, about the projective classification of elliptic scrollar varieties of higher dimension-loci R_{k} of elliptic systems of spaces of dimension $k-1$, where $k \geqslant 3$; and it is the object of the present paper to contribute to this topic.

For elliptic scrolls R_{2}^{n} of order n, Segre showed that such a scroll, if it is not a cone, is normal in $[n-1]$; whereas an elliptic ruled surface R_{2}^{n} that is normal in $[n]$ is necessarily a cone. In classifying normal R_{2}^{n}, excluding cones, by their directrix curves of minimum order, he identified in particular two general types of special significance, namely the type, for n even, which possesses precisely two minimum directrix curves γ_{1}, γ_{2}, each of order $\frac{1}{2} n$, and the type, for n odd, which possesses an elliptic pencil (γ), of index two, of directrix curves of minimum order $\frac{1}{2}(n+1)$. A scroll of either of these types projects from a general point of itself into a scroll of the other type; and it is not difficult to deduce from Segre's work that every other type of normal scroll R_{2}^{n}, including every type with a minimum directrix curve of order less than $\frac{1}{2} n$, can be obtained as a projection of a scroll of one or other of the two types in question from a suitably chosen set of points lying on it.

As regards elliptic scrollar varieties of higher dimension, Segre [3] later recorded an observation to the following effect:

An elliptic scrollar variety of order n and dimension k, if it is not a cone, is normal in $[n-1]$; and if it is a cone with a space $[s]$ as vertex, then it is normal in $[n+s]$.

[^0]In this paper, we take it as our limited objective to identify and describe k general types of normal elliptic scrollar k-folds analogous to the two general types of normal elliptic scrolls to which we have already referred. Among the k types so arising we shall be specially interested in one of them-which we call the «simploidal» type (*)this being a type of elliptic scrollar k-fold whose points are in unexceptional $(1,1)$ correspondence with the unordered sets $\left(u_{1}, \ldots, u_{k}\right)\left(\bmod 2 \omega_{1}, 2 \omega_{2}\right)$ of k values of an elliptic parameter u with periods $2 \omega_{1}$ and $2 \omega_{2}$.
2. - An elliptic scrollar variety may be thought of primarily as a one-dimensional elliptic system $\left\{\Pi_{k-1}\right\}$ of subspaces $[k-1]$ of a space ξ_{k}, where k may have any one of the values $1,2, \ldots, N$. Its order n is the number of its spaces Π_{k-1} that meet a generic $[N-k]$ of S_{N} or, equivalently, the number of its Π_{k-1} that are co-prime with a generic $[N-k]$. The points of all the Π_{t-1} constitute a k-dimensional algebraic variety of order n - the whole space δ_{N} counted n times if $k=N$; and the primes through the Π_{k-1} constitute an $(N-k+1)$-dimensional algebraic envelope of class n - the whole dual space of S_{N} counted n times if $k=1$.

In view of Segre's observation quoted in $\S 1$, and because we shall be concerned only with normal elliptic scrollar varieties that are not cones, it will be convenient to adopt the following notation throughout the paper.
(i) A symbol of the form $E_{k_{i}}^{n}$ will always denote the locus, in its ambient space S_{n-1}, of generators [$k-1]$ of a normal elliptic scrollar variety (not a cone) of order n; and
(ii) a symbol of the form ε_{n-k}^{n} will always denote the envelope of primes through the $[k-1]$'s of an E_{k}^{n}.

A point which lies on s generators of E_{k}^{n} will be s-fold on E_{k}^{n}; and a prime which contains s generators will be an s-fold prime of the associated ε_{n-k}^{n}. A locus E_{n-k}^{n} is the dual of an envelope \mathcal{E}_{n-k}^{n}.

If we fix k and consider varieties E_{k}^{n} for increasing n, then the exceptional case with which we start is that of an E_{k}^{k+1}, this being a space S_{k} counted $k+1$ times, its generating [$k-1$]'s being the primes of an elliptic envelope of class $k+1-$ dual of an elliptic curve ${ }^{1} \mathrm{C}^{k+1}$ of S_{k}. Thereafter, for $n=k+2$, we have a scrollar primal E_{k}^{k+2} of S_{k+1}, of which the simplest examples, for $k=2$ and $k=3$, are the elliptic quartic scroll E_{2}^{4} of S_{3} with two double lines, and the well-known quintic E_{3}^{5} of S_{4} with an E_{2}^{5} as its double surface. For $n \leqslant 2 k-1$, two generators Π_{k-1} will meet in a space $[2 k-n-1]$, and such spaces will generate the double locus $V_{2 k-n+1}$ of E_{k}^{n}; for $n \leqslant \frac{1}{2}(3 k-1)$, E_{k}^{n} will possess similarly a triple locus $V_{3 k-2 n+2}$, locus of the ∞^{3} spaces [3k-2n-1] of intersection of triads of generators; and so on. For $n>2 k-1$, the generators Π_{k-1} of E_{k}^{n} will in general be skew to one another (though some pairs may meet); and this is the case that we shall have principally in mind.

[^1]For the envelopes δ_{n-k}^{n}, for fixed k as n increases from the value $k+1$, the aggregates of double primes, triple primes, etc., will come in as n increases, first with primes containing pairs of generators, then with primes containing triads of generators, and so on.

3. - Sections and projections of varieties E^{n}.

Complete linear sections of an E_{k}^{n}, being subnormal if they are irreducible, cannot be varieties $E_{k-\alpha}^{n}(\alpha>0)$; but, as will shortly appear, we do get partial linear sections, residual to one or more generators, which are normal elliptic scrollar varieties.

As regards projections of an E_{k}^{n} from a space S_{β}, we are only concerned with those which are birational; and this excludes in particular any projection from a space S_{β} which contains a directrix curve of E_{k}^{n} (i.e. a curve meeting each generator in one point). The special case in which E_{k}^{n} is projected into a space $\$_{k}$ counted $k+1$ times can be interpreted appropriately. When projections of varieties E_{k}^{n} for fixed k and variable n are considered, it is an advantage to take n large enough (with respect to k) so that complications arising from mutual intersections of generators are avoided.

Consider first, then, a birational projection of $E_{r k}^{n}$ from a simple point P of itself into a prime S_{n-2} of its ambient space S_{n-1}. Plainly this projection, not being a cone, will be an E_{k}^{n-1} normal in S_{n-2}. If Π is the generator of E_{k}^{n} through P, then, as is well-known for scrollar varieties in general, the generators of E_{k}^{n} other than Π project into all but one of the generators of E_{k}^{n-1}; the tangent $[k]$ to E_{k}^{n} at P projects into the remaining generator of E_{k}^{n-1}, say Π^{*}, and Π^{*} is indistinguishable from the other generators of E_{k}^{n-1}; and $I I$ itself projects into a [k-2] of ΠI^{*}, likewise indistinguishable from the other $[k-2]^{\prime} s$ of Π^{*} in relation to E_{k}^{n-1}.

Now consider the projection of E_{k}^{n} from a line containing just two simple points P, Q of E_{k}^{n}, again supposing that the projection is birational. It follows from the above observations that the projection is an E_{k}^{n-2}; and this is true whether (a) P and Q lie in distinct generators of E_{k}^{n}, or $(b) Q$ is consecutive to P, so that $P Q$ is a tangent line to E_{k}^{n} at P; the same remains true, in fact, even if (c) P and Q lie in the same generator, so that their join lies on E_{k}^{n} but do s not pass through any multiple point of this variety.

By repeated application of the above observations we obtain in particular the following result:

Proposition 3.1. - Provided that the projections concerned are birational, an B_{k}^{n} projects from one of its generators into an E_{k}^{n-k}; and it projects from an (sk-1)-dimensional space $B^{(s)}$ spanning s of its generators (mutually skew to one another) into an $E_{k}^{n-s k}$.

From this there follows

Proposition 3.2. - Subject to the restrictions of Prop. 3.1, an $[n-k-1]$ through a generator of E_{k}^{n} meets this variety residually in $n-k$ points; and, more generally, an $[n-k-1]$ through s generators meets E_{k}^{n} residually in $n-s k$ points.

If Π is a generator of E_{k}^{n}, then any general prime through Π meets E_{k}^{n} residually in an E_{k-1}^{n-1} of which one generator lies in Π. For plainly this residual intersection cannot be a cone; and if it belonged to a space of dimension $n-3$, then primes through this space would have to meet E_{k}^{n} residually in its system of generators, which is impossible. Similarly, if $t<k$, a general space $[n-1-t]$ through $I I$ will meet E_{k}^{n} residually in an E_{k-t}^{n-t} of which one generator $[k-t-1]$ lies in Π; while, if $t=k$, then the residual section is a set of $n-k$ points spanning an $[n-k-1]$.

By a straightforward extension of the above, we have
Proposition 3.3. - If $B^{(s)}$ is a space, of dimension sk $-1 \leqslant n-2$, which spans s (mutually skew) generators $\Pi^{(1)}, \ldots, \Pi^{(s)}$ of an E_{k}^{n} and contains no directrix curve of the E_{k}^{n}, then any general prime through $B^{(s)}$ meets E_{k}^{n} residually in an E_{k-1}^{n-s} of which one generator lies in each $\Pi^{(i)}$. Further, if $t<k$, any general $[n-1-t]$ through $B^{(s)}$ meets E_{k}^{n} residually in an $E_{k-t}^{n-t s}$ of which one generator lies in each $\Pi^{(i)}$; while, if $t=k$, the residual intersection is a linearly independent set of n-sk points.

All the $E_{k=\beta}^{n-\alpha}$ which occur in the above propositions are directrix varieties of E_{k}^{n} according to the following

Definition. - A directrix d-fold of an E_{k}^{n} is any d-dimensional elliptic serollar subvariety of E_{k}^{n} which meets every generator of this variety in a $[d-1]$.

4. - Generation of E_{n}^{n} by related directrix curves.

Let C_{0}, \ldots, C_{k-1} be a set of k equimodular normal elliptic curves, of orders n_{0}, \ldots, n_{k-1}, whose ambient spaces $\left[n_{i}-1\right]$ span a space S_{n-1}, where $n=n_{0}+\ldots+n_{k-1}$; and let points P_{0}, \ldots, P_{k-1} describe birationally related ranges on the curves. Each set $\left(P_{0}, \ldots, P_{k-1}\right)$ must span a $[k-1]$, say Π_{k-1}, since otherwise the spaces $\left[n_{i}-1\right]$ would not span S_{n-1} : We find easily, then, that as the set (P_{0}, \ldots, P_{k-1}) varies along the curves, its ambient space Π_{k-1} generates an E_{k}^{n}. A priori some of the curves C_{0}, \ldots, C_{k-1} may be isolated on E_{k}^{n}, while others may belong to algebraic systems of positive dimension.

In accord with our objective, as stated in $\S 1$, we now propose to define, for given k, a set of k general types of E_{k}^{n}; and we begin by describing the general type for the case when n is an integral multiple $m k$ of k ($m \geqslant 2$).

5. - The key variety $E_{k}^{m k}$ of $S_{m k-1}$.

From the preceding section it follows that if $n_{0}+\ldots+n_{k-1}=m k$, then there exist varieties $E_{k}^{m z}$ generated by birationally related ranges on k equimodular curves ${ }^{1} 0^{n_{0}}, \ldots,{ }^{1} 0^{m_{k-1}}$ whose ambient spaces span a space $[m k-1]$; and, in particular, tak-
ing $n_{i}=m(i=0, \ldots, k-1)$, there exist $A_{k}^{m k}$ generated by birationally related ranges on k equimodular normal curves ${ }^{1} C^{m}$.

Definition. - An $E_{k}^{m k}$ will be called a key elliptic scrollar variety for $k \geqslant 2$ and $m \geqslant 2$ if it possesses precisely k minimal directrix curves ${ }^{1} C^{m}$, being then generated by joins of corresponding points of birationally related ranges on the curves.

The above definition, as should be noted, excludes the case in which the correspondence between any two of the curves is projective; for in such case the ruled surface generated by the projective correspondence between the two curves would be of the projectively generated type of $E_{2}^{2 m}$, and this contains a rational pencil of directrix curves ${ }^{1} O^{m}$ which would also be directrix curves of $E_{k}^{m k}$.

We propose now to regard the key $E_{k}^{m k}$, as above defined, as the most general type of normal elliptic scrollar k-fold whose order is an integral multiple of its dimension. Some justification of the importance we thus attach to it, apart from its being an obvious generalization of one of the two basic types of elliptic scrollar surface ((1), is provided by the following result.

Theorem 5.1. - If an $E_{k}^{m k}(k \geqslant 2, m \geqslant 3)$ possesses no directrix curve of order less than m, then it possesses in general k directrix curves of order m.

Proof. - Let $B^{(m-1)}$ denote the space, of dimension $(m-1) k-1=(m k-1)-k$, spanned by a set of $m-1$ generators of $E_{k}^{m k}$. Plainly, since $E_{k}^{m k}$ contains no directrix curve of order less than m, we may suppose that $B^{(m-1)}$ contains no directrix curve of the variety; whence, by Prop. 3.3 , it meets $E_{c}^{m x}$, residually to the $m-1$ generators, in a set of k points spanning a $[k-1]$. Let P be any one of these points. Then through P there passes a unique space $[m-2]$ which meets each of the $m-1$ generators in a point; and we denote this space by π. Since π meets $E_{k}^{m k}$ in m points, the projection of $E_{k}^{m k}$ from π will be a scrollar variety $R_{k}^{m k-m}$ whose ambient space is of dimension $m k-1-(m-2)-1=m k-m$; whence, by the observation quoted in $\S 1, R_{k}^{m k-m}$ must be a point-cone.

If O is the vertex of this cone, then all the generators of $E_{k}^{m k}$ must meet the [m-1] which joins π to O; and they will meet it in the points of a directrix curve of $E_{k}^{m k}$, plainly a ${ }^{1} C^{m}[m-1]$. It follows then, since one such curve arises from each of the k points such as P (in general distinct), that $E_{k}^{m k}$ possesses in general k directrix curves of order m, as was to be proved.

We now proceed to investigate the properties of a key $E_{k}^{m k}$ and also those of the general types of $E_{k}^{m k-\alpha}$ that can be obtained from it by projection.

6. - Directrix varieties of the key $E_{k}^{m k}$.

In what follows we shall be largely concerned with systems of directrix $(k-1)$-folds on an E_{k}^{n} residual, within the complete system $|H|$ of prime sections of E_{k}^{n}, to a set $G^{(s)}$
of s generators of this variety. In this connection we introduce the
Definition. - An s-residual variety $R^{(s)}$ on an E_{k}^{n} is the residual intersection of E_{k}^{n} with a prime (of its ambient space) which contains s of its generators.

If, as will in general be the case, $P^{(s)}$ is neither reducible nor a cone, then, by Prop. 3.3, it is a directrix variety E_{k-1}^{n-s} of E_{k}^{n}.

Any set $G^{(s)}$ of s generators of E_{k}^{n} belongs to a linear series $G_{s-1}^{s}=\left|G^{(v)}\right|$ of sets of s generators; primes through $G^{(s)}$, as we may suppose, meet E_{k}^{n} residually in a complete linear system of s-residuals $\left|R^{(s)}\right|=\left|E_{k-1}^{n-s}\right|$; the ∞^{s-1} primes through the ambient $[n-s-1]$ of any one of these $E_{t s-1}^{n-s}$ meet E_{s}^{n} residually in the sets of the abovementioned G_{s-1}^{s}; in brief, $\left|R^{(s)}\right|$ and G_{s-1}^{s} are residual within the complete prime section system $|H|$.

Now consider the key variety $E_{x}^{m k}$. A set $G^{(m)}$ of m of its generators is not in general contained in any prime; but there exist, nevertheless, certain sets $G^{(m)}$ which are contained in primes, as follows from the following observation:

The key variety $E_{k}^{m i c}$ possesses, along with its k minimal directrix curves ${ }^{1} O^{m}$, a set of k minimal directrix $(k-1)$-folds. These are, namely, the k key varieties $E_{k-1}^{m(n-1)}$ each of which has $k-1$ of the ${ }^{1} G^{m}$ as directrix curves and is generated by the original correspondences between these curves.

Residual to each of these $E_{k-1}^{m(h-1)}$ there is a linear series G_{m-1}^{m} of sets of m generators; and the sets of the k series G_{m-1}^{m} so arising are the only sets $G^{(m)}$ of $E_{k}^{m k}$ that lie in primes.

We pass on now to the (m-1)-residuals $R^{(m-1)}$ on $E_{k}^{m k}$, these being in general varieties $E_{l c-1}^{m k-m+1}$ residual to generator sets $G^{(m-1)}$. They form, in aggregate, a nonlinear system which we shall denote by $\left\{R^{(m-1)}\right\}$; and this is composed of ∞^{1} linear systems $\left|R^{(m-1)}\right|$, each residual, within the complete linear system $|H|$ of prime sections of $E_{k}^{m / h}$, to one of the linear series G_{m-2}^{m-1} of generators.

If $B^{(m-1)}$ is the space $[m k-1-k]$ spanning a generator set $G^{(m-1)}$, then the ∞^{k-1} primes through $B^{(m-1)}$ cut a complete system $\left|R^{(m-1)}\right|$ on $E_{k}^{m k}$; whence the dimensions of $\left|R^{(m-1)}\right|$ and $\left\{R^{(m-1)}\right\}$ are $k-1$ and k respectively. As previously noted in $\S 5, B^{(m-1)}$ meets $E_{k}^{m a}$-residually to $G^{(m-1)}$-in k points P_{1}, \ldots, P_{k}; and these are therefore base points of the associated system $\left|R^{(n-1)}\right|$. The points P_{i}, moreover, lie one on each of the k directrix curves ${ }^{1} C^{m}$; for primes through $B^{(m-1)}$ already meet each ${ }^{1} C^{m}$ in $m-1$ known points, and they therefore meet it in one further fixed point, the whole group of m points on this ${ }^{1} C^{m}$ having the property that the m generators through them are co-prime. This gives

Proposimion 6.1. - The $(m-1)$-residual varieties $R^{(m-1)}$ on $E_{k}^{m b}$ form an algebraic ∞^{k}-system $\left\{R^{(m-1)}\right\}$ composed of an elliptic ∞^{1}-system of linear ∞^{k-1}-systems $\left|R^{(m-1)}\right|$ residual to the ∞^{1} linear series G_{m-2}^{m-1} of generators. Each $\left|R^{(m-1)}\right|$ has k base points, one on each of the k directrix curves ${ }^{1} C^{m}$ of $E_{k}^{m k}$.

Our next result-a generalization of one of Segre's for $k=2$-is as follows:
Proposition 6.2. - The ∞^{k}-system $\left\{R^{(m-1)}\right\}$, as above defined, is k-atic, in the sense that the number of members of it that pass through k general points of $E_{k}^{m \hbar}$ is k.

Proof. - Let $G^{(m-2)}$ be a fixed set of $m-2$ generators of $E_{k}^{m \hbar}$. We observe, then, that every member of $\left\{R^{(m-1)}\right\}$ is residual to a unique set of the form $G^{(m-2)}+G^{(1)}$. Let A_{1}, \ldots, A_{k} be k points of general position on $E_{k}^{m k}$; and let Σ be the $[m k-1-k]$ that contains $G^{(m-2)}$ and A_{1}, \ldots, A_{k}. By Prop. 3.3, Σ has k further intersections P_{1}, \ldots, P_{k} with $E_{k}^{m k}$. Through each $P_{i}(i=1, \ldots, k)$ there passes a generator $G_{i}^{(1)}$ which, since it meets Σ in a point, lies with Σ in a prime; and this prime meets $E_{k}^{m k}$, residually to $G^{(m-2)}+G_{i}^{(1)}$, in a variety of $\left\{R^{(m-1)}\right\}$ which passes through A_{1}, \ldots, A_{k}. Since one such variety arises from each of P_{1}, \ldots, P_{k}, and since any member of $\left\{R^{(m-1)}\right\}$ that passes through A_{1}, \ldots, A_{k} determines one of the P_{i}, the Proposition is established.

Corollary 6.2.1. - If $\left\{R_{s}^{(m-1)}\right\}$ is the ∞^{s}-subsystem of $\left\{R^{(m-1)}\right\}$ with $k-s$ assigned base points $(1 \leqslant s \leqslant k-1)$, then $\left\{R_{s}^{(m-1)}\right\}$ is also k-atic in the sense that k of its members pass through any general set of s points of $E_{k}^{m k}$.

To obtain further information about directrix varieties on $E_{z}^{m k}$, we now make two observations of which the second will be particularly useful:
(a) $E_{k}^{m / c}(m \geqslant 3)$ projects from a generator of itself into a key variety $E_{k}^{(m-1) k}$, the k minimal directrix curves ${ }^{1} \mathrm{C}^{m}$ of the former projecting into the k minimal directrix curves ${ }^{1} 0^{m-1}$ of the latter. By this projection the k-atic system $\left\{R^{(m-1)}\right\}$ of the former projects into the k-atic system $\left\{R^{(m-2)}\right\}$ of the latter.
(b) $E_{k}^{m k}(m \geq 3)$ also projects into a key $E_{k}^{(m-1) k}$ from any general set A_{1}, \ldots, A_{k} of points of itself, the k members of $\left\{R^{(m-1)}\right\}$ that pass through A_{1}, \ldots, A_{k} projecting into the k minimal directrix varieties $E_{k-1}^{(m-1)(k-1)}$ of $E_{k}^{(m-1) k}$. In this projection, by which the orders of directrix variefies of $E_{k}^{m z}$ that pass (simply) through A_{1}, \ldots, A_{k} are reduced by k, the minimal directrix curves ${ }^{1} O^{m-1}$ of $E_{k}^{(m-1) k}$ are projections of the curves of intersection of sets of $k-1$ of the k members of $\left\{R^{(m-1)}\right\}$ that pass through A_{1}, \ldots, A_{k}.

From (b) in particular, we deduce at once the following comprehensive result:
Proposition 6.3. - The $(m-1)$-residual system $\left\{R^{(m-1)}\right\}$ of $E_{k}^{m k}$ has the following properties:
(i) k members of $\left\{R^{(m-1)}\right\}$ meet, in general, in precisely k points;
(ii) $k-1$ members of $\left\{R^{(m-1)}\right\}$ meet, in general, in a ourve ${ }^{1} C^{m+k-1}$; and, of the $\infty^{k(k-1)}$ curves so arising, precisely k pass through k general points of $E_{k}^{m k}$;
(iii) more generally, s members of $\left\{R^{(m-1)}\right\}(1 \leqslant s \leqslant k-1)$ meet in general in a directrix variety $E_{k-s}^{(m-1)(k-s)+k} \equiv E_{k-s}^{m(t-s)+s}$.

[^2]As regards (ii), however, we should note that ∞^{k} of the $\infty^{k(k-1)}$ intersection curves ${ }^{1} C^{m+k-1}$ are exceptional, namely those curves each of which is an intersection of $k-1$ members of a linear system $\left|R^{(m-1)}\right|$ and is therefore the base curve of a linear $\infty^{k-2 .}$ subsystem of the $\left|R^{(m-1)}\right|$.

If we put $s=k-2$ in (iii), it appears that the members of $\left\{R^{(m-1)}\right\}$ meet by sets of $k-2$ in $\infty^{k(k-2)}$ ruled surfaces $E_{2}^{2 m+k-2}$ of general type; and each of these contains, if k is even, two directrix curves of order $\frac{1}{2}(2 m+k-2)$, or, if k is odd, an elliptic pencil of directrix curves of order $\frac{1}{2}(2 m+k-1)$.

We now ask, generally, what directrix curves ${ }^{1} 0^{m+\alpha}(1 \leqslant \alpha \leqslant k-2)$ exist on $E_{k}^{m k}$, of orders intermediate between that of the minimal directrix curves ${ }^{1} C^{m}$ and that of the complete intersection curves ${ }^{1} C^{m+k-1}$. Any such curve ${ }^{1} C^{m+\alpha}$ will be a residual intersection of $k-1$ members of $\left\{R^{(m-1)}\right\}$ that contain $k-1-\alpha$ lines lying each in a generator of $E_{k}^{m k}$. A straightforward calculation, on this basis, of the dimension of the system of ${ }^{1} C^{m+\alpha}$ on $E_{k}^{m k}$ leads to the result:

Proposition 6.4. - For $0 \leqslant \alpha \leqslant k-1$, the directrix curves ${ }^{1} \mathrm{C}^{m+\alpha}$ on $E_{k}^{m k}$ form an $\infty^{k \alpha}$ system, there being ∞^{α} of them that pass through α general points of $E_{i c}^{m k}$.

The case $k=3$. For elliptic scrollar threefolds, the first two key varieties that arise are E_{3}^{8} [5] and E_{3}^{9} [8], given respectively by $m=2$ and $m=3$.

The variety $E_{3}^{6}[5]$ has three (equimodular) elliptic double lines as its minimal directrix curves. This means, if these are carried by lines p, q, r (spanning S_{5}), that E_{3}^{6} is generated by the planes that join corresponding points in certain $(2,2)$ correspondences between the lines, say between p and q and between p and r. E_{3}^{6} has three minimal directrix scrolls E_{2}^{4}, each having two of p, q, r as double lines; and it possesses an ∞^{3}-system $\left\{R^{(1)}\right\}$ of scrolls E_{2}^{5} which is composed of ∞^{1} linear nets $\left|R^{(1)}\right|$, each residual to a unique generating plane of E_{3}^{6}. The directrix ${ }^{1} C^{3}$ on E_{3}^{6} form an ∞^{3}-system, while the surfaces of $\left\{R^{(1)}\right\}$ meet by pairs in ∞^{6} directrix curves ${ }^{1} C^{4}$.

The variety $E_{3}^{9}[8]$ has three minimal directrix cubics ${ }^{1} C^{3}$ and three minimal directrix scrolls E_{2}^{6}. Sections residual to pairs of generating planes form an ∞^{3} system $\left\{R^{(2)}\right\}$ of septimic scrolls E_{2}^{7}; and this, being again 3-atic, is composed of ∞^{1} linear nets $\left|R^{(2)}\right|$, each residual to a G_{1}^{2} of generators. The ${ }^{1} C^{4}$ on E_{3}^{9} form an $\infty^{3}-$ system; and the surfaces of $\left\{R^{(2)}\right\}$ meet by pairs in ∞^{6} directrix curves ${ }^{1} C^{5}$. E_{3}^{9} projects from any generating plane of itself into an $E_{3}^{\boldsymbol{e}}$.

7. - The general types $E_{k}^{m k-s}(1 \leqslant s \leqslant k-1)$.

As previously remarked, a general projection of a key variety $E_{k}^{m k}(m \geqslant 3)$ from k of its points (or from a generator) is another key variety $E_{k}^{(m-1) t}$. We now propose to fill the gap between these two varieties as follows:

Defintition. - For $m \geqslant 2$, we shall say that an $E_{k}^{m k-s}(1 \leqslant s \leqslant k-1)$ is of general type (or briefly general) it it is a projection of a key $E_{k}^{m k}$ from s points of general position on this variety.

We now summarize briefly the principal properties of such $E_{k}^{m k-s}$.
When a key $E_{k}^{m k}(m \geqslant 2)$ is projected into an $E_{k}^{m-k s}(1 \leqslant s \leqslant k-1)$ from a set of s points P_{1}, \ldots, P_{s} of general position on itself, the ∞^{k-s} members of the k-atic system $\left\{R^{(m-1)}\right\}$ that pass through P_{1}, \ldots, P_{s} project into an $\infty^{k-s-s y s t e m ~}\left\{R_{(9)}^{(m-1)}\right\}$ of directrix varieties $E_{k-1}^{m(k-1)+1-s}$ on $E_{s}^{m(k-s}$, this being plainly the system of $(m-1)$ residual varieties (residual to sets of $m-1$ generators) on $E_{k}^{m k-s}$. Further, this system $\left\{R_{(s)}^{(m-1)}\right\}$ is k-atic in the sense that k of its members pass through $k-s$ general points of $E_{k}^{m k-s}$; also $k-1$ of its members meet in general in a directrix curve ${ }^{1} \mathrm{C}^{m+k-1-s}$ of $E_{k}^{m k-s}$. More generally, from Prop. 6.4, we derive

Proposition 7.1. - For $0 \leqslant \alpha \leqslant k-1$, the directrix curves ${ }^{1} 0^{m+\alpha}$ on the general type of variety $E_{k}^{m-k s}(1 \leqslant s \leqslant k-1)$ form an $\infty^{k \alpha+s}$-system, there being $\infty^{\alpha+s}$ of them that pass through α general points of $E_{k}^{m k-s}$.

In particular, the intersection curves ${ }^{1} C^{m+k-s-1}$ of sets of $k-1$ members of $\left\{R_{(s)}^{(m-1)}\right\}$ form an $\infty^{(k-s)(k-1)}$-system on $E_{k}^{m k-s}$; and the dimension of the system of minimal directrix curves ${ }^{1} C^{m}$ on $E_{k}^{m k-s}$ increases steadily from 1 to $k-1$ as s increases from 1 to $k-1$. A further projection (putting $s=k$) sees the first appearance of directrix curves ${ }^{1} C^{m-1}$ on a key variety $E_{k}^{(m-1) k}$.

The ∞^{s} minimal directrix curves ${ }^{1} C^{m}$ on $E_{k}^{m k-s}(1 \leqslant s \leqslant k-1)$ generate a variety N_{s+1} which we may call the nuclear variety of $E_{k}^{m k-s}$ - a surface if $s=1$ and the variety $E_{k}^{m k-(k-1)}$ itself if $s=k-1$.

For $k=3$, the general type E_{3}^{5} (projection of E_{3}^{6} from a point) is the well-known scrollar quintic primal of S_{4} whose double surface is an E_{2}^{5} (its dual); its ∞^{1} elliptic double lines (minimal directrix curves) lie along the generators of E_{2}^{5}, and its genexating planes are those which contain the ∞^{1} directrix cubic curves of E_{2}^{5}.

The most interesting member of the sequence $E_{k}^{m k-s}(1 \leqslant s \leqslant k-1)$ is undoubtedly the last, given by $s=k-1$; and we now consider this in more detail.
8. - The simploidal variety $E_{k}^{m k-(k-1)} \equiv E_{k}^{(n-1) k+1}$.

The general type that we now discuss is such that $m-1$ of its generators always span a prime of its ambient space $S_{(m-1) k}$. Its ($m-1$)-residual varieties form therefore an elliptic ∞^{1}-system $\left\{R_{(k-1)}^{(m-1)}\right\}$ which we shall denote briefly by $\{\Phi\}$; and this system has the following properties:
(i) each Φ is a directrix variety $E_{k-1}^{(m-1)(k-1)-1}$ of $E_{k}^{(m-1) k+1}$, and it is residual to a linear generator series $G_{m-2}^{(2)}$;
(ii) $\{\Phi\}$, being of dimension 1 , is such that k of its members meet in one point, and k of its members (distinct or otherwise) pass through any point of $E_{k}^{(m-1) k+1}$.

By virtue of (ii) we shall call $\{\Phi\}$ a simploidal system on $E_{k}^{(m-1) x+1}$; and we shall say that $E_{k}^{(m-1) \pi+1}$ is a simploidal variety with $\{\Phi\}$ as its system of simploids.

If $u\left(\bmod 2 \omega_{1}, 2 \omega_{2}\right)$ is an elliptic parameter for the generators of $E_{k}^{(m-1) k+1}$, then the linear generator series $G_{m m-2}^{m-1}$ also form an elliptic system; and this system has an elliptic parameter w with the same periods $2 \omega_{1}, 2 \omega_{2}$ as u. Plainly then, by (i) and (ii) above, w is also an elliptic parameter for $\{\Phi\}$, and each point of $E_{k}^{(m-1) k+1}$ is uniquely associated with the unordered k-ad $\left(w_{1}, \ldots, w_{k}\right)$ of values of $w\left(\bmod 2 \omega_{1}, 2 \omega_{2}\right)$ that correspond to the k members of $\{\Phi\}$ that pass through it. Furthermore, the correspondence between the points of $E_{k}^{(m-1) k+1}$ and the unordered k-ads (w_{1}, \ldots, w_{k}) is $(1,1)$ without exception. We have thus proved

Proposition 8.1. - The general type of elliptic scrollar variety $E_{k}^{(m-1) k+1}$ is simploidal, possessing an elliptic ∞^{1}-system $\{\Phi\}$ of directrix $(k-1)$-folds $E_{k-1}^{(k-1)(m-1)+1}$ such that k members of $\{\Phi\}$ meet in one point, while k members of $\{\Phi\}$, distinct or otherwise, pass through any point of $E_{c}^{(m-1) k+1}$. The points of this variety are in unexceptional $(1,1)$ correspondence with the unordered sets of k values of an elliptic parameter w (mod periods $2 \omega_{1}, 2 \omega_{2}$).

From the above, and with reference to Prop. 7.1 (for $s=k-1$ and $\alpha=0$) we derive

Corollary 8.2. - The variety $E_{k}^{(m-1) k+1}$ possesses ∞^{k-1} minimal directrix curves ${ }^{1} C^{m}$, and these are the ourves of intersection of sets of $k-1$ members of $\{\Phi\}$-the simploidal curves of the variety. Each of them is given by equations of the form $w_{i}=\alpha_{i}$ (constant) $\left(\bmod 2 \omega_{1}, 2 \omega_{2}\right)$ for $i=1, \ldots, k-1$; and k of them, distinct or otherwise, pass through any point of $E_{k}^{(m-1) a+1}$.

Finally, in the above connection, we ask what kind of relation between w_{1}, \ldots, w_{k} represents a generator Π_{k-1} of $E_{k}^{(m-1) k+1}$. If we think of w as the parameter for points on a (non-singular) elliptic curve C, then the points of Π_{k-1} correspond to the sets of an algebraic series γ_{k-1}^{k} on O; and this γ_{k-1}^{k} is (a) rational, and (b) such that $k-1$ points of O belong to a unique set of the series. This last. in fact, follows from the observation that the ${ }^{1} C^{m}$ common to $k-1$ members of $\{\Phi\}$ is a directrix curve of $E_{k}^{(m-1) k+1}$ and therefore meets Π_{k-1} in one point. It follows, then, by the CastelnuovoHumbert Theorem (cf. Enriques and Chisini [5], Vol. III, p. 32 and p. 476) that γ_{k-1}^{k} is a linear series; and it is therefore given by a parametric equation of the form $w_{1}+\ldots+w_{k}=$ const. $\left(\bmod 2 \omega_{1}, 2 \omega_{2}\right)$. This gives

Propostrion 8.3. - In the representation of the points of a simploidal variety $E_{k}^{(m-1) k+1}$ by the unordered k-ads (w_{1}, \ldots, w_{k}) of values of an elliptic parameter $w\left(\bmod 2 \omega_{1}, 2 \omega_{2}\right)$, the generators of $E_{k}^{(m-1) k+1}$ are each given by a parametric equation of the form $w_{1}+\ldots+$ $+w_{k} \equiv$ const. $\left(\bmod 2 \omega_{1}, 2 \omega_{2}\right)$.

For $k=2$, the simploidal character and parametric representation of the general type of elliptic scroll $E_{2}^{2 m-1}$ have already been noted by DU VAL and SEMPLE [4].

For $k=3$, the simplest example $(m=3)$ is that of an E_{3}^{7} in $\$_{5}$ for which $\{\Phi\}$ is the ∞^{1}-system of scrolls E_{2}^{5} residual to pairs of generating planes of E_{3}^{7}; and this variety possesses ∞^{2} minimal directrix curves ${ }^{1} C^{3}$ which are the intersections of pairs of members of $\{\Phi\}$. The simploids Φ have parametric equations of the form $w_{1} \equiv$ const., simploidal curves ${ }^{1} C^{3}$ have equations of the form $w_{1} \equiv$ const., $w_{2} \equiv$ \equiv const., and generating planes have equations of the form $w_{1}+w_{2}+w_{3}=$ const. (*).

From the results of this section, it will be noted that any simploidal variety $E_{k}^{(m-1) k+1}(k \geqslant 2, m>3)$ is an unexceptional model of all the sets of k points of a (nonsingular) elliptic curve. We now note further that the simploids Φ on such a variety are themselves in general simploidal varieties $E_{k-1}^{(m-1)(k-1)+1}$; and it will appear later that their ambient spaces $[(m-1)(k-1)]$ generate an elliptic scrollar variety $D_{(m-1) k-1)+1}^{(m-1) k+1}$ which has $E_{k}^{(m-1) k+1}$ as its k-ple locus.

9. - The focal curve of an $E_{k}^{(m-1) k+1}$.

In extension of certain observations of Segre for the case $k=2$, we now remark that a simploidal variety $E_{k}^{\left(m-11_{k+1}\right.}$ has various types of coincidence loci-loci of points of the variety for which coincidences of different kinds occur in the sets of k members of $\{\Phi\}$ that pass through them. More especially, $E_{k}^{(m-1) k+1}$ possesses a focal curve f such that the k simploids through any point of f all coincide. The equations of f are

$$
w_{1} \equiv w_{2} \equiv \ldots \equiv w_{k} \quad\left(\bmod 2 \omega_{1}, 2 \omega_{2}\right)
$$

As in the case $k=2$, the simploids Φ envelop the curve f, each of them having k-point contact with f at its only common point with this curve; and the points of f are thereby in $(1,1)$ correspondence with the members of $\{\Phi\}$.

If Π_{k-1} is the generator of $E_{k}^{(m-1) k+1}$ with parametric equation

$$
w_{1}+\ldots+w_{k} \equiv c \quad\left(\bmod 2 \omega_{1}, 2 \omega_{2}\right)
$$

then Π_{k-1} meets f in the k^{2} points (w, \ldots, w) for which $k w \equiv c\left(\bmod 2 \omega_{1}, 2 \omega_{2}\right)$. Further f has k coincident intersections with any simploid Φ, and it has k^{2} intersections with each of the $m-1$ generators in which $E_{k}^{(m-1)_{k}+1}$ is met residually by a prime through Φ; so that the order of f is $(m-1) k^{2}+k$. This gives

Proposition 9.1. - A simploidal variety $E_{k}^{(m-1) k+1}(k \geqslant 2, m \geqslant 3)$ has an elliptic focal curve f, locus of points P for which the k simploids Φ through P all coincide. This curve f

[^3]is met by each Φ in k conseoutive points; it meets each generator of $E_{k-1) k+1}^{(m n} k^{2}$ points; and its order is $(m-1) k^{2}+k$.

Plainly $E_{k}^{(m-1) k+1}$ projects from any point of f into a specialization of the key $E_{k}^{(m-1) k}$ for which the k minimal directrix curves ${ }^{1} \mathrm{C}^{m-1}$ all coincide.

10. - Principal curves on the simploidal $E_{k}^{(m-1) k+1}$.

For the case $k=2$, Segre pointed out the existence on the general (simploidal) type of scroll $E_{2}^{2 m-1}$ of three normal elliptic curves ${ }^{1} C^{2 m-1}$, bisecant to the generators, to which he gave the name principal curves of $E_{2}^{2 m-1}$. In the parametric representation of $E_{2}^{2 m-1}$ by unordered parameter pairs $\left(w_{1}, w_{2}\right)\left(\bmod 2 \omega_{1}, 2 \omega_{2}\right)$, the three curves in question have parametric equations $w_{2} \equiv w_{1}+\omega_{1}, w_{2} \equiv w_{1}+\omega_{2}$ and $w_{2} \equiv w_{1}+$ $+\omega_{1}+\omega_{2}$. We now extend this result to $E_{k}^{(m-1) k+1}$.

Let y be the number of cyclic elliptic involutions that are properly of order k on an elliptic ∞^{1}-system with parameter $w\left(\bmod 2 \omega_{1}, 2 \omega_{2}\right)$. For a discussion of these involutions we refer the reader to Enriques and CHisind [5], Vol. IV, 91-94. The general set of any one of them can be defined by a parameter set

$$
(w, w+\alpha, w+2 \alpha, \ldots, w+(k-1) \alpha) \quad\left(\bmod 2 \omega_{1}, 2 \omega_{2}\right)
$$

where α is a k-th part of a period,

$$
\alpha=\frac{2 m \omega_{1}+2 n \omega_{2}}{k} \quad(m, n \text { integers }, 0 \leqslant m, n \leqslant k-1),
$$

such that the k numbers $0, \alpha, 2 \alpha, \ldots,(k-1) \alpha$ are distinct $\left(\bmod 2 \omega_{1}, 2 \omega_{2}\right)$. For any one involution the choice of an α which generates it as above is by no means unique, the number of equivalent choices for α being largely dependent on the prime factor decomposition of k. The values of ν for the values $2,3,4,5$ of k are $3,4,6,6$ respectively.

Now let w, as in the preceding section, be the elliptic parameter for $\{\Phi\}$ on $E_{t c}^{(m-1) s+1}$ and let $\tau(\alpha)$ be the involution-properly of order k-on $\{\Phi\}$ generated as above by a suitably chosen α. As w varies, the point of $E_{k}^{(m-1) k+1}$ with parameter k-ad $(w, w+\alpha$, $\ldots, w+(k-1) \alpha)$ describes a curve $O(\alpha)$ which we shall call a principal curve on $B_{k}^{(m-1) k+1}$. The number of such curves is v.

We observe first, then, that $C(\alpha)$ meets the simploid Φ given by $w_{1} \equiv \beta$ in the unique point with parameter $k-a d(\beta, \beta+\alpha, \ldots, \beta+(k-1) \alpha)$. Further, if I_{k-1} is the generator of $E_{k}^{(m-1) k+1}$ with parametric equation $w_{1}+\ldots+w_{k} \equiv c$, then the points of $C(\alpha)$ that lie on Π_{k-x} are those for which

$$
k w \equiv c-\frac{1}{2} k(k-1) \propto \quad\left(\bmod 2 \omega_{1}, 2 \omega_{2}\right)
$$

and as all the values of w that satisfy this congruence relation arrange themselves $\left(\bmod 2 \omega_{1}, 2 \omega_{2}\right)$ into k sets of the involution $\tau(\alpha)$, it follows that $O(\alpha)$ meets Π_{k-1} in k points. Finally, by considering the intersections of $O(\alpha)$ with a prime that meets $E_{k}^{(m-1) k+1}$ in a simploid Φ and $m-1$ generators, we see that $O(\alpha)$ is of order $(m-1) k+1$, equal to the order of $D_{k}^{(m-1) k+1}$. This gives

Proposition 10.1. - If v is the number of cyclic elliptic involutions that are properly of order k on an elliptic ∞^{1}-system, then $E_{k}^{(m-1) k+1}$ possesses v principal eurves, each a normal ${ }^{1} C^{(m-1) k+1}$ and each k-seoant to the generators. Thus $E_{k}^{(m-1) k+1}$ can be envisaged as the locus of $[k-1]$'s spanning the sets of an elliptic involution of order k on any one of the v principal curves.

This completes our outline of the principal properties of simploidal elliptic scrollar varieties.

11. - The nuclear surface N of a general $E_{k}^{m k-1}$.

In § 7 we pointed out that an $E_{k}^{m k-1}$ of general type-projection of a key $E_{k}^{m m}$ from a general point of itself-possesses ∞^{1} minimal directrix curves ${ }^{1} \mathrm{C}^{m}$, and we defined the nuclear surface of $E_{k}^{m k-1}$ to be the surface N generated by these ${ }^{1} C^{m}$. This surface, as will appear, has the remarkable property that it is simply generated not only by the ${ }^{1} C^{m}$ but also by each of two other elliptic pencils of elliptic curves, each intrinsic to the geometry of $E_{k}^{m k-1}$. We proceed now to investigate N; but since the arguments to be used will be adequately illustrated by their application to a typical particular case, it will be sufficient to set them out for the variety E_{3}^{8} (the case $k=m=3$) and then to state the results for general k and m.

Consider then the variety E_{3}^{8} which is the projection of a key E_{3}^{9} from a general point A of the latter (not lying, in particular, on any one of the three directrix cubic curves of the E_{3}^{9}). We shall be concerned with three ∞^{1}-systems of curves on the nuclear surface N of E_{3}^{8}, namely (i) the directrix cubics, which we shall call the curves α, (ii) the curves traced by these on generating planes of E_{3}^{8}, which we shall call the curves β, and (iii) a third system of special directrix curves, to be called the curves γ, which we now proceed to define.

The 3-atic system $\left\{R^{(2)}\right\}$ of E_{3}^{9} is composed of ∞^{1} linear systems $\left\{R^{(2)} \mid\right.$ each of which is residual to every pair of generating planes of a G_{1}^{2} of E_{3}^{9}. Among the ∞^{6} intersection curves ${ }^{1} C^{5}$ of pairs of members of $\left\{R^{(2)}\right\}$ there are ∞^{3} special curves, to be denoted by ${ }^{3} \bar{C}^{5}$, each of which is the base of a pencil in one of the systems $\left|R^{(2)}\right|$; and each such ${ }^{1} \bar{C}^{5}$ lies in a [6] with each pair of the associated G_{1}^{2}, being in fact the residual intersection of this [6]-other than the plane pair-with E_{3}^{9}. The point A defines a unique pencil in each $\left|R^{(2)}\right|$-of those members of $\left|R^{(2)}\right|$ that pass through A-and hence A lies on ∞^{1} curves ${ }^{1} \bar{C}^{5}$ (an elliptic system), each associated with one of the systems $\left.\mid R^{(2)}\right\}$, and each therefore associated with a unique G_{1}^{2} in such a way that
it lies in a [6] with every pair of planes of this G_{1}^{2}. On projection from A, then, it appears that
E_{3}^{8} contains a unique elliptic pencil of special directrix curves ${ }^{1} \bar{C}^{4}$-the curves γ that were to be defined-each associated with a unique G_{1}^{2} of generators of E_{3}^{8} in such a way that it lies in the [5] joining the planes of any pair of this G_{1}^{2}.

Consider then a pair of generating planes π_{1}, π_{2} of E_{3}^{8}. Let B be the [5] containing them; let γ be the ${ }^{1} \bar{C}^{4}$ in which B meets E_{3}^{8} residually to π_{1}, π_{2}; and let T_{1}, T_{2} be the points in which γ meets π_{1}, π_{2}. Further, let P be a variable point of γ, and let H_{1}, H_{2} be the points in which π_{1} and π_{2} are met by the unique transversal from P

Figura 1.
to these two planes. Since this line $P H_{1} H_{2}$ is a trisecant of E_{3}^{8}, it must lie in the plane of one of the directrix cubics α; and as P describes γ, the point H_{1}, for example, describes a curve β in π_{1}, locus of the intersections of π_{1} with all the curves α. Further, this curve β, being the projection of γ from π_{2} into π_{1}, is a ${ }^{1} G^{3}$ through T_{1}. It follows now that the ∞^{1} minimal directrix curves α of E_{3}^{8} each meet every γ in one point; and they meet every generating plane of E_{3}^{8} in a plane cubic curve β. Hence:

The surface N on E_{3}^{8} is simply generated by each of the three elliptic pencils $(\alpha),(\beta)$ and (γ).

To find the order of N we consider the section of it by a prime Σ through a pair of generating planes π_{1}, π_{2}. Σ meets E_{3}^{8} residually in an elliptic sextic scroll E_{2}^{6}-itself a key variety and possessing therefore two directrix cubic curves which are curves α
of E_{3}^{8}. Further, as previously shown, Σ contains just one curve γ (lying in the [5] joining π_{1} to π_{2}); and finally it contains the two curves β that lie in π_{1} and π_{2} respectively. Hence the order of N is $2.3+2.3+4=16$. We find then, by a wellknown formula (cf. SEmple and Roti [6], p. 414, (7)) that the section genus of N is 9 . Hence:

The nuclear surface of E_{3}^{8} is a surface ${ }^{9} N^{16}$.
When we now follow step-by-step the same procedure as we have used above to investigate the nuclear surface N of an $E_{k}^{m k-1}$ of general type, we find with little difficulty the following general results:

Proposition 11.1. The nuclear surface N of an $E_{k}^{m k-1}$ of general type is simply generated by each of three elliptic pencils of ourves, namely
(i) the pencil (α) of minimal directrix ${ }^{1} C^{m}$ of $E_{k}^{m k-1}$,
(ii) the pencil (β) of curves ${ }^{1} C^{k}$ in which the generators of $E_{k}^{m k-1}$ are met by the curves α, and
(iii) a pencil (γ) of special directrix curves ${ }^{2} C^{n+k-2}$, each of which is the fixed residual intersection of $E_{k}^{m k-1}$ with any space spanning a set of $m-\mathbf{1}$ generators of a G_{m-2}^{m-1} associated with the ${ }^{1} C^{m+k-2}$ in question.
Further the order of N is $2(m k-1)$ and its section genus is $m k$.
It may be noted, finally, that the curves α, β and γ on N satisfy the intersection equations

$$
\alpha^{2}=\beta^{2}=\gamma^{2}=0, \quad \beta \gamma=\gamma \alpha=\alpha \beta=1 ;
$$

and the order v of N is expressed by the formula

$$
\begin{aligned}
v & =[(k-1) \alpha+(m-1) \beta+\gamma]^{2} \\
& =2(k-1)(m-1)+2(m-1)+2(k-1)=2(m k-1)
\end{aligned}
$$

12. - Review of the general types of E_{k}^{n}.

We have now largely completed our limited objective which was to isolate and study what we take to be the most general types of E_{k}^{n} for all possible values of k and n. From our discussion it has emerged that, for any given value of k, the general types of E_{k}^{n} can be arranged in sets of k members

$$
\mathfrak{S}_{k}(m): \quad E_{k}^{m k-s}(0 \leqslant s \leqslant k-1)
$$

each set being defined by a value of the integer $m \geqslant 2$. The leading member of a set $\Im_{k}(m)$, given by $s=0$, is a key variety with precisely k minimal directrix curves ${ }^{1} \mathrm{C}^{m}$;
while the last member, given by $s=k-1$, is a simploidal variety with $\infty^{k-1} \mathrm{mi}$ nimal directrix curves ${ }^{1} \mathrm{O}^{\mathrm{m}}$.

By way of illustration we now look briefly at the first two sets for $k=3$.
The set $\Im_{3}(2)$ consists of the three varieties
$E_{3}^{6}[5]$, with three elliptic double lines as minimal directrix curves,
$E_{3}^{5}[4]$, which is the well-known quintic planar threefold of S_{4}, and
$E_{3}^{4}[3]$, which is the 4-ple space S_{3} defined by an elliptic envelope, dual of a curve ${ }^{1} C^{4}$ of S_{3}.

As regards E_{3}^{6}, we note that it possesses three minimal directrix scrolls E_{2}^{4}, each having two double lines; and its 3 -atic system consists of the ∞^{3} quintic scrolls E_{2}^{5} residual to generating planes of the variety. As regards E_{3}^{5}, we note that this is the dual of its double surface E_{2}^{5}; and its nuclear surface is E_{2}^{5} counted doubly, the ∞^{1} double directrix lines of E_{3}^{5} lying along the generators of E_{2}^{5}.

The set $\mathfrak{S}_{3}(3)$ consists of the three varieties
$E_{3}^{9}[8]$, with three minimal directrix cubic curves $\alpha_{1}, \alpha_{2}, \alpha_{3}$,
$E_{3}^{8}[7]$, which possesses an elliptic pencil (α) of directrix curves ${ }^{1} G^{3}$, and
$E_{3}^{7}[6]$, which is simploidal, having ∞^{3} scrolls D_{2}^{5} (residual to pairs of generating planes) as its simploidal system.

Details of E_{3}^{9} and E_{3}^{8} have been given in $\S 11$; and here we add only two remarks concerning the three elliptic pencils of curves $(\alpha),(\beta)$ and (γ) that generate the nuclear surface ${ }^{9} N^{16}$ of E_{3}^{8} (cf. §11). In the first place the planes of the directrix cubies α of E_{3}^{8} plainly generate a second planar scroll \bar{E}_{3}^{8} with the same nuclear surface as E_{3}^{8}, the roles of the curves α and β being interchanged for the two varieties. Secondly, when E_{3}^{8} is projected from one of its generating planes (the plane of a curve β) into an E_{3}^{5}, its nuclear surface projects doubly into the double surface E_{2}^{5} of E_{3}^{5}; the curves α project doubly into the generators of E_{2}^{5}; and the pencils of curves β and γ both project into the same set of directrix cubics on E_{2}^{5}. As regards E_{3}^{7}, besides the details given in $\S 8$, we note that this variety has a focal curve ${ }^{1} G^{22}$ which is enveloped by the the simploids on the variety and is 9 -secant to its generating planes; and it possesses four principal curves, each a normal ${ }^{1} 0^{7}$ and each trisecant to the generating planes.

13. - Note on linked simploidal varieties and envelopes.

In this final section, we add a note on simploidal envelopes defined by simploidal elliptic varieties. We whall find it convenient, however, for a reason that will shortly appear, to replace $m-1$ in our previous notation by μ, so that the typical simploidal variety is now taken to be an $E_{k}^{\mu k+1}$.

We recall then (§8) that the ∞^{1} simploids on $E_{k}^{\mu k+1}$ are varieties $E_{k}^{\mu(k-1)+1}$, and we now consider the aggregate of primes that each contain the ambient space $I_{\mu(k-1)}$ of one of these simploids. These primes, namely, are all those that span sets of μ generators of $E_{k}^{\mu k+1}$, those of them that pass through a given space $\Pi_{\mu(k-1)}$ being those that span sets of a generator series $G_{\mu-1}^{\mu}$ of $E_{k}^{\mu k+1}$. Thus, if $u\left(\bmod 2 \omega_{1}, 2 \omega_{2}\right)$ is an elliptic parameter for the generators, it follows that the primes in question can be represented without exception by the unordered sets (u_{1}, \ldots, u_{μ}) of μ values of u $\left(\bmod 2 \omega_{1}, 2 \omega_{2}\right)$; and they form accordingly a simploidal envelope $\varepsilon_{\mu}^{\mu+1}$ whose generators (in the dual sense) are the ∞^{1} spaces $\Pi_{\mu(k-1)}$, each defined by an equation of the form

$$
u_{1}+\ldots+u_{\mu} \equiv \text { const. } \quad\left(\bmod 2 \omega_{1}, 2 \omega_{2}\right)
$$

It follows then (cf. $\S 2(\mathrm{ii}))$ that the locus of these same spaces $\Pi_{\mu(k-1)}$ is a variety $E_{\mu(k-1)+1}^{\mu k+1}$.
Recalling now that any k simploids of $E_{\mu}^{\mu k+1}$ meet in a point, it follows that any k generators $\Pi_{\mu(k-1)}$ of $E_{\mu(k-1)+1}^{\mu k+1}$ meet in a point of $E_{k}^{\mu k+1}$. This gives

Proposition 13.1. - The ambient spaces $I_{\mu(t-1)}$ of the ∞^{1} simploids on a simploidal variety $E_{k}^{\mu k+1}$ generate an $E_{\mu(k-1)+1}^{\mu k+1}$ with $E_{k}^{\mu k+1}$ as its k-ple locus. The associated envelope of $E_{\mu(k-1)+1}^{\mu k+1}$ is a simploidal $\varepsilon_{\mu}^{\mu k+1}$ whose primes are all those spanning sets of μ generators of $E_{k}^{\mu k+1}$.

A pair of varieties $E_{k}^{\mu k+1}$ and $E_{\mu(k-1)+1}^{\mu k+1}$ related in the above manner, such that the former is the k-ple locus of the latter, while the latter is the μ-ple envelope (aggregate of μ-ple primes) of the former, will be called a linked pair.

Recalling then, generally, that the associated envelope of an E_{k}^{n} is an ε_{n-k}^{n}, we may conveniently define the formal dual of an E_{k}^{n} to be an E_{n-k}^{n}. In this sense the formal duals of the two varieties described above are an $E_{(\mu-1) k+1}^{\mu k+1}$ and an $E_{\mu}^{\mu_{k+1}}$ respectively; and these two, in reversed order, will also form a linked pair-the dual of the former. It is notable, then, that the two linked pairs

$$
\left(E_{k}^{\mu k+1}, E_{\mu(k-1)+1}^{\mu k+1}\right) \quad \text { and } \quad\left(E_{\mu}^{\mu k+1}, E_{(\mu-1 j k+1}^{\mu k+1}\right)
$$

arise from each other by interchange of μ and k.
By taking $\mu=k$ we get a simple sequence

$$
\left(E_{k}^{k^{2}+1}, E_{k^{2}-k+1}^{k^{3}+1}\right)
$$

of self-dual linked pairs for $k=2,3, \ldots$. For $k=2$ this gives the well-known dual pair E_{2}^{5} and E_{3}^{5} of S_{4}; and the next such pair, for $k=3$, is E_{3}^{10} and E_{7}^{10} of S_{0}.

REFERENCES

[1] C. Segre, Remarques sur les transformations uniformes des courbes elliptiques en elles. mếmes, Opere, Vol. 1, Rome, 1957, pp. 36-55.
[2] C. Segre, Ricerche sulle rigate ellittiche di qualunque ordine, Opere, Vol 1, Rome, 1957, pp. 56-77.
[3] C. Segre, Sulle varietà algebriche composte di una serie semplicemente infinita di spazi, Opere, Vol. 1, Rome, 1957, pp. 114-118.
[4] P. Du Val - J. G. Semple, Note on parametrizations of normal elliptic scrolls, Mathematika, 17 (1970), pp. 287-292.
[5] F. Enriques - O. Chisini, Teoria geometrica delle equazioni e delle funzioni algebriche, Zanichelli, Bologna; Vol. III, 1924 and Vol. IV, 1934.
[6] J. G. Semple - L. Roth, Introduction to algebraic geometry, Oxford, 1949.

[^0]: (*) Entrato in Redazione il 18 Maggio 1973.

[^1]: (*) Properties of elliptic ruled surfaces of this type (the case $k=2$) have been discussed briefly in a paper by Du Val and Semple [4].

[^2]: 2 - Annali ai Matematica

[^3]: (*) It may be shown that the surfaces on E_{3}^{7} with equations of the form $w_{1}+w_{2}=$ const constitute an ∞^{1}-system $\{J\}$ of elliptic sextic scrolls E_{2}^{6}, of which only one is residual to each generating plane of E_{3}^{7}. Each J, unlike the general E_{2}^{6} residual to a generating plane, is projectively generated, possessing a rational pencil of minimal directrix curves ${ }^{1} 0^{3}$. Through each point of E_{3}^{7} there pass three of the scrolls J; but three such scrolls, on the other hand, meet in general in four points.

