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NORMAL FAMILIES AND UNIQUENESS THEOREM
OF HOLOMORPHIC FUNCTIONS
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Abstract

In the paper, we have two purposes. Firstly, we prove two theorems and two
corollaries of normal families which improve and generalize some results of Pang and
Zalcman [9], Zhang, Sun and Pang [13], Chang and Fang [2]. Secondly, we use the
theory of normal families and differential equations to obtain a uniqueness theorem of
entire function which is an improvement of Chang and Fang [1].

1. Introduction and main results

Let f and g denote some non-constant meromorphic functions. We say f
and g share a value b IM(CM) if f(z) —b=0<¢g(z) —b=0 (f(z) —b=0&
g(z) — b =0 counting multiplicities) (see [12]).

In 2000, X. Pang and L. Zalcman [9] proved the following famous theorem.

THEOREM A. Let F be a family of meromorphic functions on domain D, all
of whose zeros are of multiplicity (at least) k.  Suppose that there exist a,b,c € C
such that b,c # 0 and, for every f e F,

Ef‘(a) = Ef(’f) (b) < Ef(kﬂ)(c).
Then F is normal in D.

In 2005, G. Zhang, W. Sun and X. Pang [13] obtained a related result.

THEOREM B. Let & be a family of holomorphic functions in a domain D, and
let h(z) be a function holomorphic in D such that h(z) has only simple zeros. If,
for every function f e, we have

(@) f(z2)=0< f'(z) =h(z) and f'(z) = h(z) = |f"(2)| < M, where M is a
positive number;

(b) f(z) and h(z) don’t have common zeros,
then & is normal in D.
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It’s naturally to ask whether the conditions (a) and (b) can be weakened or
not? We study the problem and obtain the following result.

THEOREM 1. Let F be a family of holomorphic functions in a domain D, let
h(z)(#£ 0) be a function holomorphic in D, and let k > 2 be a positive integer. If
for every function f e F, we have

(@) f(z) =0= f'(2) = h(z), f'(z) = h(z) = |fP)(2)] < M, where M >0 is a

constant,
Jo —h(2)
(b) 7

then F is normal in D.

is holomorphic in D,

Remark 1. 1If in addition f(z) and /(z) don’t have common zeros, it is easy

Ji = h(2)

to deduce that B is holomorphic in D. Thus, we immediately have the

following corollary.

COROLLARY 1. Let F be a family of holomorphic functions in a domain D,
let h(z)(#£ 0) be a function holomorphic in D, and let k > 2 be a positive integer.
If for every function f e %, we have

(@) f(z2)=0= f'(z) = h(z), f'(2) = h(z) = |fR(2)] < M, where M >0 is a
constant;

(b) f(z) and h(z) don’t have common zeros,
then & is normal in D.

Clearly, Corollary 1 is an improvement of Theorem B.

Remark 2. The following example shows that there exists normal family
that does not satisfy the conditions of Theorem B yet does satisfy the conditions
of Theorem 1.

Example 1. Let & = {fn:fn %z3+22,n2,3,...}, let D={z:]z] <
1}, and let kK >4 and h(z) =2z. Then & is normal in D. We have
h(@)=0e fl(2)=2z fl()=2= () =0
Ji=hz) 3

and =7 is holomorphic in D. Thus, the family satisfies the con-
o z+n

ditions of Theorem 1. But f, and /(z) have common zeros at z = 0, so it does

not satisfies the conditions of Theorem B.

The following example shows that condition (b) of Theorem 1 is necessary.

Example 2. Let F ={f,: fu=nz’>ne N} and h(z) =z. Then f,(z) =0
. . _p m— 1
RO =5 [ =z 0 =0, Bu L) 2

n
n

z=0, and indeed Z is not normal at z =0. Jn

has a pole at
nz
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In 2005, J. Chang and M. Fang [2] derived a theorem of normal family.

THEOREM C. Let F be a family of holomorphic functions in a domain D, and
let a(z) be an analytic function in D such that a(z) # a'(z). If for every function

feZ, [(2)=alz) & ['(z) =alz), ['(2) = alz) & ["(z) = a(z) and f(z) - a(z)
=0— f'(z) —a(z) =0 in D, then F is normal in D.

Here f(z) —a(z) =0 — f'(z) — a(z) = 0 means: if z; is a zero of f(z) — a(z)
with multiplicity n, then z; is a zero of f'(z) —a(z) with multiplicity at least
n.

From the Theorem 1, it is not difficult to deduce the following corollary.

COROLLARY 2. Let F be a family of holomorphic functions in a domain D,
and let a(z) be an analytic function in D such that a(z) # a'(z), and let k > 2 be an
integer. If, for every function f € F,

[ =az2)=0— f'(z) —a(z) =0, [f'(z)—a(z) =0=|fW(z)| <M
in D, where M >0 is a constant. Then Z is normal in D.
Remark 3. Let 9={F:F=f—a,feZ} and h=a—a'. Then, for

every zo € D, there exist a disc D(zp,r) ={z:|z—zo| <r} such that for ze
D(ZOa r)a

F(z) =0~ F'(z) =h(z), F'(z)=h(z)= /") <M,

where M = M (zp) = M + max.. D(Z()_,.)\a(k>(z)|. Since normality is a local prop-
erty, with Theorem 1, it is easy to deduce that ¢ is normal in D. Hence, the
family &% is normal as well. In fact, Corollary 2 improves the Theorem C.

In the same paper [2], they also obtained a corollary.
THEOREM D. Let F be a family of holomorphic functions in a domain D.
If, for every function f € F, [, f' and f" have the same fixed points in D, then F

is normal in D.

From Theorem 1, we deduce the following result which is an improvement of
Theorem D.

THEOREM 2. Let F be a family of holomorphic functions in a domain D. If,
for every function f €%, we have

f@=z=f')=2z [f@)=z=/1"()=z

then F is normal in D.

In 2002, J. Chang and M. Fang [1] proved a uniqueness theorem.
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THEOREM E. Let f(z) be a nonconstant entire function. If
f@) =z fl2)=z [fll@)=z=/"(2)=z
then f(z) = f'(z2).

Naturally, we will ask what will happen if we replace the assumption f(z) =
z& fl(z) =z by f(z) =z= f'(z) =z With the theory of normal family, we
study the problem and find the conclusion of Theorem D still holds. In fact, we
deduce the following result.

THEOREM 3. Let f(z) be a nonconstant entire function. If

f@=z=f)=z [f@)=z=/"0C)=¢
then f(z) = f'(z).

Remark 4. Some ideas of the paper are based on [7].

2. Some lemmas

LemMmA 2.1 [9]. Let & be a family of functions holomorphic on the unit disc,
all of whose zeros have multiplicity at least k, and suppose that there exists A > 1
such that |f%)| < A whenever f =0, then if F is not normal, there exist, for each
0<ac<k,

(@) @ number 0 <r < 1;

(b) points z,, z, < 1;

(c) functions f, € F, and

(d) positive number p, — O such that p,*fy(z, + p,&) = gu(E) — g(&) locally
uniformly, where ¢ is a nonconstant entire function on C, all of whose zeros have
multiplicity at least k, such that g*(¢) < g*(0) = kA + 1.

9" ()l
L+ lg(&)l”
LemMa 2.2 [3]. Let g be a nonconstant entire function with p(g) <1, let

k =2 be an integer, and let a be a nonzero finite value. If g(z) =0 = ¢'(z) = a,
and g'(z) = a= g% (z) =0, then g(z) = a(z — z,), where zq is a constant.

Here, as usual, g*(&) = is the spherical derivative.

Lemma 2.3 [14]. If g is a meromorphic function with bounded spherical
derivative, then the order of g is at most two.

Lemma 2.4 [6, Corollary 1]. Let f(z) be a transcendental meromorphic
Sunction with o(f) =0 < w0, H={(ki, 1), (ka, ), ..., (kq, Jq)} be a finite set of
distinct pairs of integers that satisfy 0 < j; < k;, for i =1,...,q. And let ¢ > 0 be
a given constant. Then there exists a set E < [0,27n) that has linear measure zero,
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such that if € [0,2n)\E, then there is a constant Ry = Ro(y) > 1 such that for all
z satisfying arg z = and |z| > Ry and for all (k,j) e H, we have

()

f(l) (Z)

Relying on Markushevich’s book [8, see p. 253-255], we can deduce the
following lemma. It also can be seen in [4].

(2.1) < |z,

Lemma 2.5. Let
O(z) =bpz" + by 1z V4 4 by
where n is a positive integer and b, = o,e", «, >0, 0, € [0,27). For any given

0<e< %, we introduce 2n (j =0,1,...,2n—1) open angles

; 0 T 0 T
i0 n P zn 1 —
= : — (2 -1 - 2%+ 1) —
S {re r>0,—t4 (=) +e<0< -+ (1) 8}

Then there exists a positive number R = R(e) such that for |z| =r > R,
(2.2) Re{O(z)} > a,(1 — &) sin(ne)r"

if zeS; where j is even; while

(2.3) Re{Q(z2)} < —ou(1 — &) sin(ne)r"
if ze S; where j is odd.

Proof. Suppose z =re’, by = ope’® and a >0, k=0,1....n—1. Then
n—1
(2.4) Re Q(z) = oyr" cos(by + n) + > ayr® cos(Or + ko)
=0
o cos(Ox + k@)
ok

= o, 1" | cos(8, + nb) + Z

For any 0<8<1

1 we introduce 2n open angles

0, .
St =t (2 - =

0
2n+5<0<f;+(2j+1)£fe (j=0,1,....2n—1).

2n

Thus, we have

2j—1 +n8<9 +nl < 2]+1——n8 j=0,1,....2n—1).
2 2
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Furthermore,

(2.5) (2j—l)g< (2j—1)2+nc<0,,+n0< (2j+1)§—n8< 2j+1)

NI:%

Now, we consider into two cases.

Case 1. j is even.
Then, it is not difficult to deduce that

(2.6) cos(0, + nl) > cos<(2j - 1)%4— ns) = sin(ne) > cos((Zj - 1);) =0.

Noting that

n—1

oy cos(Oy + k6)
V” k

} — 0, asr— oo,
k=0

we deduce that there exists a positive number R = R(¢) satisfying

(2.7 < ¢sin(ng), if r> R

a1k

"z—i oy cos(6 + k@)}

=0
Combining (2.4), (2.6) and (2.7) yields that there exists a positive number
R = R(¢) such that for |z| =r > R,

Re{Q(z)} > a,(1 — &) sin(ne)r”

CAsE 2. j is odd.
With the similar way, we can obtain that there exists a positive number
R = R(¢) such that for |z| =r > R,

Re{Q(z)} < —oy,(1 — &) sin(ne)r"
Thus, we finish the proof of this lemma.

With the idea in [4], we deduce the following result.

LEmMMA 2.6. Let P(z)(#0), H(z)(#0) and Q(z) be three polynomials with
that Q(z) is nonconstant. Then, every entire solution F(z) of the following differ-
ential equation

(2.8) F'(z) — P(z)e?9F(z) = H(2)

has infinite order.

Proof. Obviously, F(z) is transcendental. Now, we suppose that F(z) is of
finite order, we will deduce that F(z) is a polynomial. By Lemma 2.4, we see
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that there exists a set £ = [0,27) that has linear measure zero, such that for any
ray argz =0 € [0,27]\E and any given 0 <& < I, there is a R(>0), as r > R,

F/(rei{?)

o(F)—1+¢
F(rei?) '

(29) |

Set deg H(z) = h and Q(z) = byz" +--- + by, where n is a positive integer and
by = e o, >0, 0, € [0,7). By Lemma 2.5, we know that if 6 # —%—f—
(2 — 1)% (j=0,...,2n—1), as r sufficiency large, we have

Re{O(2)} > oor™ or Re{Q(2)} < —oypr”,

where o, > 0 is a constant.
Now, we take
2n—1 0 T
2rji-1)=— .
/k_jo{n + (2 )Zn}D

argz=10¢€ [O,Zn)\(EU

By (2.8), we get

F'(re™) 0\ openy  H(re")
i i (re®) — Z2V° J
(2.10) Flre) P(re")e Flre)
If Re{Q(re’)} > aor", from (2.9), we see that as r — oo,
F'(re) 1 H(re) P(z)eQ0e")
(2’11) F(re”’) yo(F)+h+1 -0, yo(F)+h+1 ’ yo(F)+h+1 o0-
From (2.10) and (2.11), we see that as r — oo,
(2.12) |F(re')] — 0.
If Re{Q(re)} < —a,r", by (2.8) we get
F(reie) i0 Q(re’”) _ H(relﬁ)

Let
M(r,F',0) = max{|F'(z)| : 0 < |z| < r,arg z = 0}.
We claim that
|F'(2)] = o(|2]"")
as r— oo for all z = re'.

Otherwise, there exists a positive number M; and an infinite sequence of
points z, = r,e’ satisfying r, — co and

|F'(r,e®)| = M(ry, F',0) > Mj|z,|"".
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Thus,
H(z,
(2.14) ’F’((zn)) —0 as r, — oo.
Since

it is easy to deduce
|F(za)| < |F(21)| + [F'(zn)] |zn]

Dividing |F'(z,)| on both sides of the above inequality yields

F(z
(2.15) Ff(z’;)) < (1 +o0(1))|z,| as r, — .
By (2.15) and the fact Re{Q(re®)} < —a,r", we deduce
F(zy) 0(:1)
(2.16) F(z) P(z,)e — 0,
which, together with (2.13) and (2.14), implies a contradiction. Thus, the claim
is proved.
From the claim, we have
(2.17) |F(2)] = o(|z1""?)

as r — oo for all z=re, where M, is a positive number.
In view of (2.12) and (2.17), it is obvious that

(2.18) |F(re™)] = o(r"?)
n—1 [ On . :
as r — oo for each 0 € [O,Zn)\(EU {Uﬁ_ol{+ (2 — 1);}]), where M is a
positive integer. n n
The facts that the linear measure of EU [szno ! %—i— (2j-1) %H equal to

0 and F is of finite order, together with (2.18) and Phragmén-Lindel6f theorem
yield F is a polynomial. It is a contradiction.

3. Proof of Theorem 1

In the following, we prove Theorem 1 with the method of J. Grahl and
Meng C. in [7].

Since normality is a local property, it is enough to show that & is normal at
each zp e D. We distinguish two cases.

Casg 1. h(zp) #0.
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Then, there exists a disc (which we may assume to be A) contained in D, on
which {f,} is not normal, A(z) # 0 and |i(z)] < M > 1, where M is a positive
number. Thus, f, =0 implies that |f)| = |h| < M.

Taking an appropriate subsequence of f, and renumbering, we have, by
Lemma 2.1 (with o =k =1 and 4= M), points z, — zp (|z,] <r<1) and
numbers p, — 0 such that

Pn

locally uniformly, where ¢ is a nonconstant entire function on C satisfying
p(g) <1 and

= gu(&) — ¢(0)

g'0) <g"0) =M + L.
We claim:

9(0) = 0= ¢'(Q) = h(z0), ¢'() = h(z0) = g™ (0) =0.
From (3.1), it is easy to derive that

(32) 9,(0) = £/ (20 +pa0) — 9'(0)

and

(33) g0 (@) = i 1B G+ pal) = dM(0).
The (3.2) leads to

(3.4) I n + pul) = h(zn + pul) — g'(0) — h(zo).

Suppose that g(ap) = 0, then by Hurwitz’s theorem, there exists a sequence {a,}
such that a, — ay and (for n sufficiently large) f,(z,+ p,a,) =0. With the
assumption, we have f,(z, + p,a,) = h(z, + p,a,). Thus

g'(a0) = i f,(zy + pyan) = lim h(z, + pyan) = h(z0),

which implies that g({) =0 = ¢'({) = h(zo).

Now suppose that g'(by) = h(zp). We assume that g'(z) gé
wise, ¢(z) = h(zo)(z—b), b is a constant. Therefore g*(z) < ¢*(0) < |h(z0)| <
M + 1, a contradiction. Since ¢’(bo) = h(zo) and g’ # h(zo), by Hurwitz’s the-
orem and (3.4), there exist a sequence {b,} such that b, — by and (for n
sufficiently large)

h(zp). Other-

fn/(zn + pubn) — h(zw + p,bn) = 0.

Furthermore, with (3.3) we deduce that

“bo) = lim 3" (2 + pybu) = 0.

n—oo

Thus, we have shown that g'(z) = h(zo) = ¢¥)(z) = 0. This completes the proof
of the claim.
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By Lemma 2.2 and the claim, we obtain g(z) = h(z¢)(z — b1), where b; is a
constant. But, we have ¢*(0) < |i(z9)| < M + 1, a contradiction.

Cast 2. h(zp) =0.

Since #(z) # 0, there exists a r such that 4(z) #0 in D'(zp,r) ={z:0<
|z — zo| < r}. Then, Case | implies that & is normal in D’(z,r). Then for any
sequence {f,} = %, there exist a subsequence {f,;} such that {f, ;} converges
locally uniformly to a function H in D’(zo,r), where H is either holomorphic or
identically infinite in D’(zo,r).

Casg 2.1. H is holomorphic in D’(z,r).

Then there exists a positive number M| such that |H(z)| < M) on |z — zo| =
r/2. It follows that |f, ;(z)| <2M; on |z—zo|=r/2 for large j. By the
maximum principle, we have |f, ;(z)| <2M, in D(zp,r/2)={z:|z—z| <
r/2}. Then H is bounded in D(zy,r/2), and H extends to be holomorphic
in D(zp,r/2). Again by the maximum principle, we get f, ;(z) — H(z) in
D(zo,r/2).

CASE 2.2. H = o0.
Note that f, ;j(z) = o0 on I':={z:|z—z]|=r/2}. Thus we have (for
sufficiently large n)
J h(z) g
r

(3:5) Jnj(2)

<m.

We know
f;zl i h(z)
ey
is holomorphic in D(zy,r). Thus by Cauchy’s Theorem, we have
J n(2) = h(z)
r Jfui(2)

By n(T', f,,;) we denote the number of zeros of f,; in Dy ={z:|z—z| <
r/2} counting multiplicities. By the argument principle (3.5) and (3.6) (for
sufficiently large n), we get

(3.6) dz=0

: 1 () 1 h(z) 1
T, f)=— ./ = —
(L ) 2nij1- 0.7 (2) dz 27 L—_ 07 (2) dz| < 2’
hence
n(l",f,,,j) =0.
1 1
So f,; has no zeros in D(zo,r/2). Thus, I is holomorphic and 7 — 0 on
n,j n,j

D'(zp,r/2). Similarly as Case 2.1, we can get f, ;(z) — oo in D(zg,r/2).
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From the above discussion, we get & is normal at zo. Hence, we complete
the proof of the Theorem 1.

4. Proof of Theorem 2

From the assumption of Theorem 2, for each f €% we have
f@=z=[')=z [fl)=z=/["(7)=z
Let F = f(z) — z, then
Fz)=0=F'(z2)=z—-1, F'(z2)=z—-1=F"(z)==z.

Suppose that g is a zero of F(z).

If ap # 1, then q is a simple zero of F(z). Suppose that G =F' — (z — 1),
then ay is also a zero of G(z).

If ap = 1, then F'(ay) = ap — 1 = 0 and F”(ay) = ap = 1, which indicates that
ap is a zero of F(z) with multiplicity 2. Note that G(ay) =0 and G'(a) =
F’(ap) — 1 =0, we know that qy is a zero of G(z) with multiplicity at least 2.

By the above discussion, we obtain

G(z) F'—(z—1)
F(z)  F(2)
is holomorphic in D. Thus, the family ¥ = {F : F = f —z, f € &} satisfies the

conditions of Theorem 1. By Theorem 1, we get ¢ is normal in D. Hence & is
normal in D. This completes the proof of Theorem 2.

5. Proof of Theorem 3

We consider the function F = ]—(
z

Case 1. F has bounded spherical derivative.

Then by Lemma 2.3, F has finite order. Hence f = Fz has finite order as
well.

Let h= f —z, then & has finite order and

(5.1) h=0=h"=z-1, W=z—1=h"=z
Set

zh! — (z—Dh"
(52) ﬂ:%.

Suppose that u =0, then zi' = (z — 1)h”. Integrating the differential equation
yields

(5.3) h' = A(z — 1),
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and
(5.4) h=A(z—2)e’ + B,

where 4 #0 and B are two constants. With (5.1), (5.3) and (5.4), it is not
different to obtain a contradiction. Thus, u # 0.
Now, we consider the equation (5.2). It is easy to see that

535 g =m(rn PG00

< m(n%”) +m<r,(z_71)hﬁ> + O(1) < O(log r).

Next we discuss the poles of 4. From (5.1) we obtain 4 has at most one zero
which is multiple, at z=1. And the points which are the simple zeros of / are
not poles of u. Then we derive that

(5.6) N(ru) = NGW) < O(log 7).

Combining (5.5) and (5.6) yields
T(r,p) = m(r,p) + N(r, ) = O(log r),

which implies that u is a rational function.
We denote by N(r,h' —(z—1);h #0) the counting function of those 0-
points of ' — (z — 1), counted according to multiplicity, which are not the 0-

. . . . 1
points of h4. Because of u is a rational function we get N (r, —) = O(log r).
Furthermore, we have H

(5.7) N(r,h' —(z—=1);h #0) < N<r,/11> + O(log r) = O(log r).
Put
(5.8) ¢ = W

Suppose that ¢ =0, then 4'(z) =z —1. But from (5.1) we know that /'(z) =
z— 1 implies 2" = z, and this is a contradiction. Thus, ¢ # 0. In the following,
we discuss the zeros and poles of ¢.

We know /1 has at most one multiple zero.

If z=1 is not a zero of A, then & has only simple zeros. Thus, ¢ does not
has poles and ¢ is an entire function.

If z=11s a zero of i, then #'(1) =z—1=0and 2”’(1) =1. Thus, z=11is
a zero of i with multiplicity 2. Meanwhile, z =1 is a zero of &' — (z —1). So,
h"(1) — 1 =0, which implies that z =1 is a zero of A’ — (z — 1) with multiplicity
at least 2. It also yields that ¢ is an entire function.
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Thus, we deduce that ¢ is an entire function. From (5.1) we obtain
h' —(z—1) has at most one multiple zero at z=1. It follows from (5.7)

1 .
and (5.8) that N <r,—> = O(log r) and ¢ has only finitely many zeros. Hence we
can assume that ¢

= P(z)eQ(Z)7
where P(z) #0 and Q(z) are two polynomials. From (5.8), we have
(5.9) h —P(z)e?Ph=z—-1.

Noting that /& is of finite order, by Lemma 2.6, we can easily deduce that
Q(z) = C, a constant. Let Pi(z) = e¢“P(z). Rewriting (5.9) as

(5.10) h —Pi(z)h=z—1.
Now, we discuss the equation (5.10) by considering two subcases.
Casg 1.1. /& has infinite many zeros.

Let {z,},~, be a sequence of complex numbers with A(z,) =0 and |z,| — o0
as n— oo. It is clear from (5.1) that

h(zy)=2z,—1 and h"(z,) = z,.
By differentiating both sides of Eq. (5.10), we have

(5.11) h" — P{(z)h— Py (z)h’ = 1.
Substitute z, into Eq. (5.11) yields
(5.12) zn—Pi(zn)(zn— 1) = 1.

If deg(Pi(z)) = 1, the left side of Eq. (5.12) z, — Pi(z,)(zn — 1) — o0 as n — oo,
this is a contradiction. Thus, P;(z) is a constant. Again by (5.12), we obtain
Py =1. Then we have

(5.13) h—h=z-1,
which implies that f = f’.
Cast 1.2. & has finitely many zeros.

Then we can set /(z) = Py(z)e2), where P,(z) and Q,(z) are two poly-
nomials. Substituting / into Eq. (5.10) yields that

(5.14) [P} + P05 — P1Py]e®) =z — 1.

From the above equation, it is obvious that Q,(z) is a constant and /4 is a
polynomial. Let Q, = C;. Rewriting (5.14) as ¢“'(P} — PiP2) =z — 1. Thus,

deg(P5 — P1Py) = 1.

Suppose deg(P;) > 1, then P, is a constant and / is a constant, which is a con-
tradiction. Thus, deg(P;) =0 and P, is a constant. Again by deg(P) — P\ P»)
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= 1, we derive that deg P, = 1. Thus, degh =1. Furthermore, we can assume
that A(z) = A2(z — B,), where A # 0, B, are two constants. By (5.1), it is not
difficult that 4, = —1 and B, =0. Thus, i(z) = —z and f =0, which is a
contradiction. Hence, we finish the proof of Case 1.

CASE 2. F has unbounded spherical derivative.

Next, with a similar way in [7], we will prove this case cannot occur.

From the assumption of Case 2, there exists a sequence (w,), such that
lim,_ o, F u(wn) = . Since F* is continuous and bounded in every compact set,
sow, — o asn— 0. Let D={z:|z| > 1}, then F is analytic in D. We may

assume |w,| >2 for all n. We define D; = {z:|z] < 1} and
F,(z) = F(w, + 2).

Then all F,(z) are analytic in D; and F:(0) = F*(w,) — o0 as n— oo. It
follows from Marty’s criterion that (F,), is not normal at z = 0.
Assume that F,(z9) = 1 for some zp € D;. Then for n large enough, we have

f'wn+2z0)  fwy+ 20) 1

Wy, + Zo

3 <2.
Wi+ Z0 (Wn + 20)

|F,(20)] =

Therefore, we can apply Lemma 2.1 with o =1. Choosing an appropriate
subsequence of (F,), if necessary, we may assume that there exist sequence
(zu), € D1 and (p,), such that z, — 0, p, — 0 and

S Wn =+ zu +p,0)
Wy + Zn + p,C B 1) —9(0)

n

n

(5.15)  gu(0) = p,  (Fu(za + p,0) — 1) = p;,! (

locally uniformly in C with ¢ is a nonconstant entire function. We also have
g*(0) < ¢*(0) =3 for all {eC and p(g) <1. We claim that

g=0=4¢9'=1, ¢g=1=4¢"=0.
From (5.15), we deduce that

_ S Wn + 20+ p,0) o
(5.16) Gu({) = Wntn P L =g,(&) +

pngﬂ(C) +1
Wi =+ Zn + pul

—9'()

locally uniformly in C.
Suppose that g({y) = 0. Then by Hurwitz’s theorem, there exist a sequence
{¢,} such that {, — {, and (for n sufficiently large)

gn(Cn) = /)I;I(Fn(zn +pnCn) - 1) =0.

Thus F,(z, + p,(,) =1 and f(w, + z, + p,C0) = W + 20 + p,C,. Tt follows from
the assumption that

S Wa + 20+ p,Gy)

=1.
Wn + Zp +pnCn
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Thus, by (5.16) we derive that

/
o) = lim LU I DGy
n—o W, +z, + pnCn

which implies that g({) =0=¢'({) =1. Next we prove ¢'({)=1=g¢"({) =
0. Again by (5.16), we obtain
"W + 20+ pu0) Gn(£)

Wy + Zy +pnc nwn‘i‘zn +pnC
Suppose that g'(5,) = 1. Obviously g’ # 1, for otherwise g*(0) < g'(0) =1 < 3,
which is a contradiction. Again by Hurwitz’s theorem, there exist a sequence
{n,}s n, — ny, and (for n sufficiently large)

‘f,(Wn + Zn +pn77n) _
Wy + Zp + P,

(5.17) Pn =G (O +p —g"(0).

Thus f'(w, + zy + puty) = Wn + zu + pu1,- By the assumption, we have f”(w, +
Zn + pnﬂn) = Wn + Zn + Pnlln- Then

"
o' () = lim p, LI D) _ iy
n— o0 Wn + Zp + P, n—o0

=0.

n

Thus we prove the claim. By Lemma 2.2 an the claim, we get g = { — b, where
b is a constant. Thus we have ¢#(0) <1< 3, a contradiction. So the case
cannot occur.

Hence, we complete the proof of Theorem 3.

For further study, we propose the following questions.

QuestioNn 1. Let f(z) be a nonconstant entire function and k> 2 be a
positive integer. If

f@=z=f =z f=z2=Y0F=:
what will happen?

QuesTION 2. Let f(z) be a nonconstant entire function and Q(z) be a
nonzero polynomial. If

f(2)=0@) = f'(z) = 0(2), [f'(2)=0(z) = f"(z) = O(2),
what will happen?
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