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NORMAL FAMILIES AND UNIQUENESS THEOREM

OF HOLOMORPHIC FUNCTIONS
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Abstract

In the paper, we have two purposes. Firstly, we prove two theorems and two

corollaries of normal families which improve and generalize some results of Pang and

Zalcman [9], Zhang, Sun and Pang [13], Chang and Fang [2]. Secondly, we use the

theory of normal families and di¤erential equations to obtain a uniqueness theorem of

entire function which is an improvement of Chang and Fang [1].

1. Introduction and main results

Let f and g denote some non-constant meromorphic functions. We say f
and g share a value b IM(CM) if f ðzÞ � b ¼ 0 , gðzÞ � b ¼ 0 ( f ðzÞ � b ¼ 0 ,
gðzÞ � b ¼ 0 counting multiplicities) (see [12]).

In 2000, X. Pang and L. Zalcman [9] proved the following famous theorem.

Theorem A. Let F be a family of meromorphic functions on domain D, all
of whose zeros are of multiplicity (at least) k. Suppose that there exist a; b; c A C
such that b; c0 0 and, for every f A F,

Ef ðaÞ ¼ Ef ðkÞ ðbÞHEf ðkþ1Þ ðcÞ:
Then F is normal in D.

In 2005, G. Zhang, W. Sun and X. Pang [13] obtained a related result.

Theorem B. Let F be a family of holomorphic functions in a domain D, and
let hðzÞ be a function holomorphic in D such that hðzÞ has only simple zeros. If,
for every function f A F, we have

(a) f ðzÞ ¼ 0 , f 0ðzÞ ¼ hðzÞ and f 0ðzÞ ¼ hðzÞ ) j f 00ðzÞjaM, where M is a
positive number;

(b) f ðzÞ and hðzÞ don’t have common zeros,
then F is normal in D.
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It’s naturally to ask whether the conditions (a) and (b) can be weakened or
not? We study the problem and obtain the following result.

Theorem 1. Let F be a family of holomorphic functions in a domain D, let
hðzÞð2 0Þ be a function holomorphic in D, and let kb 2 be a positive integer. If
for every function f A F, we have

(a) f ðzÞ ¼ 0 ) f 0ðzÞ ¼ hðzÞ, f 0ðzÞ ¼ hðzÞ ) j f ðkÞðzÞjaM, where M > 0 is a
constant;

(b)
f 0
n � hðzÞ

fn
is holomorphic in D,

then F is normal in D.

Remark 1. If in addition f ðzÞ and hðzÞ don’t have common zeros, it is easy

to deduce that
f 0
n � hðzÞ

fn
is holomorphic in D. Thus, we immediately have the

following corollary.

Corollary 1. Let F be a family of holomorphic functions in a domain D,
let hðzÞð2 0Þ be a function holomorphic in D, and let kb 2 be a positive integer.
If for every function f A F, we have

(a) f ðzÞ ¼ 0 ) f 0ðzÞ ¼ hðzÞ, f 0ðzÞ ¼ hðzÞ ) j f ðkÞðzÞjaM, where M > 0 is a
constant;

(b) f ðzÞ and hðzÞ don’t have common zeros,
then F is normal in D.

Clearly, Corollary 1 is an improvement of Theorem B.

Remark 2. The following example shows that there exists normal family
that does not satisfy the conditions of Theorem B yet does satisfy the conditions
of Theorem 1.

Example 1. Let F ¼ fn : fn ¼
1

n
z3 þ z2; n ¼ 2; 3; . . .

� �
, let D ¼ fz : jzj <

1g, and let kb 4 and hðzÞ ¼ 2z. Then F is normal in D. We have

fnðzÞ ¼ 0 , f 0
n ðzÞ ¼ 2z; f 0

n ðzÞ ¼ 2z ) f ðkÞn ðzÞ ¼ 0

and
f 0
n � hðzÞ

fn
¼ 3

zþ n
is holomorphic in D. Thus, the family satisfies the con-

ditions of Theorem 1. But fn and hðzÞ have common zeros at z ¼ 0, so it does
not satisfies the conditions of Theorem B.

The following example shows that condition (b) of Theorem 1 is necessary.

Example 2. Let F ¼ f fn : fn ¼ nz2; n A Ng and hðzÞ ¼ z. Then fnðzÞ ¼ 0

) f 0
n ðzÞ ¼ z, f 0

n ðzÞ ¼ z ) f 000
n ðzÞ ¼ 0. But

f 0
n � hðzÞ

fn
¼ 2n� 1

nz
has a pole at

z ¼ 0, and indeed F is not normal at z ¼ 0.
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In 2005, J. Chang and M. Fang [2] derived a theorem of normal family.

Theorem C. Let F be a family of holomorphic functions in a domain D, and
let aðzÞ be an analytic function in D such that aðzÞ2 a 0ðzÞ. If for every function
f A F, f ðzÞ ¼ aðzÞ , f 0ðzÞ ¼ aðzÞ, f 0ðzÞ ¼ aðzÞ , f 00ðzÞ ¼ aðzÞ and f ðzÞ � aðzÞ
¼ 0 ! f 0ðzÞ � aðzÞ ¼ 0 in D, then F is normal in D.

Here f ðzÞ � aðzÞ ¼ 0 ! f 0ðzÞ � aðzÞ ¼ 0 means: if z0 is a zero of f ðzÞ � aðzÞ
with multiplicity n, then z0 is a zero of f 0ðzÞ � aðzÞ with multiplicity at least
n.

From the Theorem 1, it is not di‰cult to deduce the following corollary.

Corollary 2. Let F be a family of holomorphic functions in a domain D,
and let aðzÞ be an analytic function in D such that aðzÞ2 a 0ðzÞ, and let kb 2 be an
integer. If, for every function f A F,

f ðzÞ � aðzÞ ¼ 0 ! f 0ðzÞ � aðzÞ ¼ 0; f 0ðzÞ � aðzÞ ¼ 0 ) j f ðkÞðzÞjaM

in D, where M > 0 is a constant. Then F is normal in D.

Remark 3. Let G ¼ fF : F ¼ f � a; f A Fg and h ¼ a� a 0. Then, for
every z0 A D, there exist a disc Dðz0; rÞ ¼ fz : jz� z0j < rg such that for z A
Dðz0; rÞ,

FðzÞ ¼ 0 ! F 0ðzÞ ¼ hðzÞ; F 0ðzÞ ¼ hðzÞ ) j f ðkÞðzÞja ~MM;

where ~MM ¼ ~MMðz0Þ ¼ M þmaxz ADðz0; rÞjaðkÞðzÞj. Since normality is a local prop-
erty, with Theorem 1, it is easy to deduce that G is normal in D. Hence, the
family F is normal as well. In fact, Corollary 2 improves the Theorem C.

In the same paper [2], they also obtained a corollary.

Theorem D. Let F be a family of holomorphic functions in a domain D.
If, for every function f A F, f , f 0 and f 00 have the same fixed points in D, then F
is normal in D.

From Theorem 1, we deduce the following result which is an improvement of
Theorem D.

Theorem 2. Let F be a family of holomorphic functions in a domain D. If,
for every function f A F, we have

f ðzÞ ¼ z ) f 0ðzÞ ¼ z; f 0ðzÞ ¼ z ) f 00ðzÞ ¼ z;

then F is normal in D.

In 2002, J. Chang and M. Fang [1] proved a uniqueness theorem.
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Theorem E. Let f ðzÞ be a nonconstant entire function. If

f ðzÞ ¼ z , f 0ðzÞ ¼ z; f 0ðzÞ ¼ z ) f 00ðzÞ ¼ z;

then f ðzÞ ¼ f 0ðzÞ.

Naturally, we will ask what will happen if we replace the assumption f ðzÞ ¼
z , f 0ðzÞ ¼ z by f ðzÞ ¼ z ) f 0ðzÞ ¼ z. With the theory of normal family, we
study the problem and find the conclusion of Theorem D still holds. In fact, we
deduce the following result.

Theorem 3. Let f ðzÞ be a nonconstant entire function. If

f ðzÞ ¼ z ) f 0ðzÞ ¼ z; f 0ðzÞ ¼ z ) f 00ðzÞ ¼ z;

then f ðzÞ ¼ f 0ðzÞ.

Remark 4. Some ideas of the paper are based on [7].

2. Some lemmas

Lemma 2.1 [9]. Let F be a family of functions holomorphic on the unit disc,
all of whose zeros have multiplicity at least k, and suppose that there exists Ab 1
such that j f ðkÞjaA whenever f ¼ 0, then if F is not normal, there exist, for each
0a aa k,

(a) a number 0 < r < 1;
(b) points zn, zn < 1;
(c) functions fn A F, and
(d) positive number rn ! 0 such that r�a

n fnðzn þ rnxÞ ¼ gnðxÞ ! gðxÞ locally
uniformly, where g is a nonconstant entire function on C, all of whose zeros have
multiplicity at least k, such that g]ðxÞa g]ð0Þ ¼ kAþ 1.

Here, as usual, g]ðxÞ ¼ jg 0ðxÞj
1þ jgðxÞj2

is the spherical derivative.

Lemma 2.2 [3]. Let g be a nonconstant entire function with rðgÞa 1, let
kb 2 be an integer, and let a be a nonzero finite value. If gðzÞ ¼ 0 ) g 0ðzÞ ¼ a,
and g 0ðzÞ ¼ a ) gðkÞðzÞ ¼ 0, then gðzÞ ¼ aðz� z0Þ, where z0 is a constant.

Lemma 2.3 [14]. If g is a meromorphic function with bounded spherical
derivative, then the order of g is at most two.

Lemma 2.4 [6, Corollary 1]. Let f ðzÞ be a transcendental meromorphic
function with sð f Þ ¼ s < y, H ¼ fðk1; j1Þ; ðk2; j2Þ; . . . ; ðkq; jqÞg be a finite set of
distinct pairs of integers that satisfy 0a ji < ki, for i ¼ 1; . . . ; q. And let e > 0 be
a given constant. Then there exists a set EH ½0; 2pÞ that has linear measure zero,
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such that if c A ½0; 2p�nE, then there is a constant R0 ¼ R0ðcÞ > 1 such that for all
z satisfying arg z ¼ c and jzjbR0 and for all ðk; jÞ A H, we have

f ðkÞðzÞ
f ð jÞðzÞ

����
����a jzjðk�jÞðs�1þeÞ:ð2:1Þ

Relying on Markushevich’s book [8, see p. 253–255], we can deduce the
following lemma. It also can be seen in [4].

Lemma 2.5. Let

QðzÞ ¼ bnz
n þ bn�1z

n�1 þ � � � þ b0

where n is a positive integer and bn ¼ ane
iyn , an > 0, yn A ½0; 2pÞ. For any given

0 < e <
p

4n
, we introduce 2n ð j ¼ 0; 1; . . . ; 2n� 1Þ open angles

Sj ¼ reiy : r > 0;� yn

n
þ ð2j � 1Þ p

2n
þ e < y < � yn

n
þ ð2j þ 1Þ p

2n
� e

� �

Then there exists a positive number R ¼ RðeÞ such that for jzj ¼ r > R,

RefQðzÞg > anð1� eÞ sinðneÞrnð2:2Þ

if z A Sj where j is even; while

RefQðzÞg < �anð1� eÞ sinðneÞrnð2:3Þ

if z A Sj where j is odd.

Proof. Suppose z ¼ reiy, bk ¼ ake
iyk and ak > 0, k ¼ 0; 1 . . . ; n� 1. Then

Re QðzÞ ¼ anr
n cosðyn þ nyÞ þ

Xn�1

k¼0

akr
k cosðyk þ kyÞð2:4Þ

¼ anr
n cosðyn þ nyÞ þ

Xn�1

k¼0

ak cosðyk þ kyÞ
anrn�k

" #
:

For any 0 < e <
p

4n
, we introduce 2n open angles

Sj : �
yn

n
þ ð2j � 1Þ p

2n
þ e < y < � yn

n
þ ð2j þ 1Þ p

2n
� e ð j ¼ 0; 1; . . . ; 2n� 1Þ:

Thus, we have

ð2j � 1Þ p
2
þ ne < yn þ ny < ð2j þ 1Þ p

2
� ne ð j ¼ 0; 1; . . . ; 2n� 1Þ:
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Furthermore,

ð2j � 1Þ p
2
< ð2j � 1Þ p

2
þ ne < yn þ ny < ð2j þ 1Þ p

2
� ne < ð2j þ 1Þ p

2
:ð2:5Þ

Now, we consider into two cases.

Case 1. j is even.
Then, it is not di‰cult to deduce that

cosðyn þ nyÞ > cos ð2j � 1Þ p
2
þ ne

� �
¼ sinðneÞ > cos ð2j � 1Þ p

2

� �
¼ 0:ð2:6Þ

Noting that

Xn�1

k¼0

ak cosðyk þ kyÞ
anrn�k

������
�����! 0; as r ! y;

we deduce that there exists a positive number R ¼ RðeÞ satisfying

Xn�1

k¼0

ak cosðyk þ kyÞ
anrn�k

������
����� < e sinðneÞ; if r > R:ð2:7Þ

Combining (2.4), (2.6) and (2.7) yields that there exists a positive number
R ¼ RðeÞ such that for jzj ¼ r > R,

RefQðzÞg > anð1� eÞ sinðneÞrn:

Case 2. j is odd.
With the similar way, we can obtain that there exists a positive number

R ¼ RðeÞ such that for jzj ¼ r > R,

RefQðzÞg < �anð1� eÞ sinðneÞrn:

Thus, we finish the proof of this lemma.

With the idea in [4], we deduce the following result.

Lemma 2.6. Let PðzÞð2 0Þ, HðzÞð2 0Þ and QðzÞ be three polynomials with
that QðzÞ is nonconstant. Then, every entire solution F ðzÞ of the following di¤er-
ential equation

F 0ðzÞ � PðzÞeQðzÞF ðzÞ ¼ HðzÞð2:8Þ
has infinite order.

Proof. Obviously, FðzÞ is transcendental. Now, we suppose that FðzÞ is of
finite order, we will deduce that FðzÞ is a polynomial. By Lemma 2.4, we see
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that there exists a set EH ½0; 2pÞ that has linear measure zero, such that for any
ray arg z ¼ y A ½0; 2p�nE and any given 0 < e < 1, there is a Rð> 0Þ, as r > R,

F 0ðreiyÞ
FðreiyÞ

����
����a rsðFÞ�1þe:ð2:9Þ

Set deg HðzÞ ¼ h and QðzÞ ¼ bnz
n þ � � � þ b0, where n is a positive integer and

bn ¼ ane
iyn , an > 0, yn A ½0; pÞ. By Lemma 2.5, we know that if y0� yn

n
þ

ð2j � 1Þ p

2n
ð j ¼ 0; . . . ; 2n� 1Þ, as r su‰ciency large, we have

RefQðzÞg > anyr
n or RefQðzÞg < �anyr

n;

where any > 0 is a constant.
Now, we take

arg z ¼ y A ½0; 2pÞ
-

E U 6
2n�1

j¼0

yn

n
þ ð2j � 1Þ p

2n

� �" # !
:

By (2.8), we get

F 0ðreiyÞ
FðreiyÞ � PðreiyÞeQðre iyÞ ¼ HðreiyÞ

FðreiyÞ :ð2:10Þ

If RefQðreiyÞg > anyr
n, from (2.9), we see that as r ! y,

F 0ðreiyÞ
FðreiyÞ

����
���� 1

rsðFÞþhþ1
! 0;

HðreiyÞ
rsðFÞþhþ1

����
����! 0;

PðzÞeQðre iyÞ

rsðFÞþhþ1

�����
�����! y:ð2:11Þ

From (2.10) and (2.11), we see that as r ! y,

jFðreiyÞj ! 0:ð2:12Þ

If RefQðreiyÞg < �anyr
n, by (2.8) we get

1� FðreiyÞ
F 0ðreiyÞPðre

iyÞeQðre iyÞ ¼ HðreiyÞ
F 0ðreiyÞ :ð2:13Þ

Let

Mðr;F 0; yÞ ¼ maxfjF 0ðzÞj : 0a jzja r; arg z ¼ yg:
We claim that

jF 0ðzÞj ¼ oðjzjhþ1Þ
as r ! y for all z ¼ reiy.

Otherwise, there exists a positive number M1 and an infinite sequence of
points zn ¼ rne

iy satisfying rn ! y and

jF 0ðrneiyÞj ¼ Mðrn;F 0; yÞ > M1jznjhþ1:
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Thus,

HðznÞ
F 0ðznÞ

����
����! 0 as rn ! y:ð2:14Þ

Since

F ðznÞ ¼ F ðz1Þ þ
ð zn
z1

F 0ðoÞ do;

it is easy to deduce

jF ðznÞja jFðz1Þj þ jF 0ðznÞj jznj:

Dividing jF 0ðznÞj on both sides of the above inequality yields

FðznÞ
F 0ðznÞ

����
����a ð1þ oð1ÞÞjznj as rn ! y:ð2:15Þ

By (2.15) and the fact RefQðreiyÞg < �anyr
n, we deduce

FðznÞ
F 0ðznÞ

PðznÞeQðznÞ
����

����! 0;ð2:16Þ

which, together with (2.13) and (2.14), implies a contradiction. Thus, the claim
is proved.

From the claim, we have

jFðzÞj ¼ oðjzjhþ2Þð2:17Þ
as r ! y for all z ¼ reiy, where M2 is a positive number.

In view of (2.12) and (2.17), it is obvious that

jFðreiyÞj ¼ oðrhþ2Þð2:18Þ

as r ! y for each y A ½0; 2pÞ
�

E U 62n�1

j¼0

yn

n
þ ð2j � 1Þ p

2n

� �� �� �
, where M is a

positive integer.

The facts that the linear measure of E U 62n�1

j¼0

yn

n
þ ð2j � 1Þ p

2n

� �� �
equal to

0 and F is of finite order, together with (2.18) and Phragmén-Lindelöf theorem
yield F is a polynomial. It is a contradiction.

3. Proof of Theorem 1

In the following, we prove Theorem 1 with the method of J. Grahl and
Meng C. in [7].

Since normality is a local property, it is enough to show that F is normal at
each z0 A D. We distinguish two cases.

Case 1. hðz0Þ0 0.
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Then, there exists a disc (which we may assume to be D) contained in D, on
which f fng is not normal, hðzÞ0 0 and jhðzÞjaM > 1, where M is a positive
number. Thus, fn ¼ 0 implies that j f 0

n j ¼ jhjaM.
Taking an appropriate subsequence of fn and renumbering, we have, by

Lemma 2.1 (with a ¼ k ¼ 1 and A ¼ M), points zn ! z0 ðjznj < r < 1Þ and
numbers rn ! 0 such that

fnðzn þ rnzÞ
rn

¼ gnðzÞ ! gðzÞð3:1Þ

locally uniformly, where g is a nonconstant entire function on C satisfying
rðgÞa 1 and

g]ðzÞa g]ð0Þ ¼ M þ 1:

We claim:

gðzÞ ¼ 0 ) g 0ðzÞ ¼ hðz0Þ; g 0ðzÞ ¼ hðz0Þ ) gðkÞðzÞ ¼ 0:

From (3.1), it is easy to derive that

g 0
nðzÞ ¼ f 0

n ðzn þ rnzÞ ! g 0ðzÞð3:2Þ
and

gðkÞn ðzÞ ¼ rk�1
n f ðkÞn ðzn þ rnzÞ ! gðkÞðzÞ:ð3:3Þ

The (3.2) leads to

f 0
n ðzn þ rnzÞ � hðzn þ rnzÞ ! g 0ðzÞ � hðz0Þ:ð3:4Þ

Suppose that gða0Þ ¼ 0, then by Hurwitz’s theorem, there exists a sequence fang
such that an ! a0 and (for n su‰ciently large) fnðzn þ rnanÞ ¼ 0. With the
assumption, we have f 0

n ðzn þ rnanÞ ¼ hðzn þ rnanÞ. Thus

g 0ða0Þ ¼ lim
n!y

f 0
n ðzn þ rnanÞ ¼ lim

n!y
hðzn þ rnanÞ ¼ hðz0Þ;

which implies that gðzÞ ¼ 0 ) g 0ðzÞ ¼ hðz0Þ.
Now suppose that g 0ðb0Þ ¼ hðz0Þ. We assume that g 0ðzÞ2 hðz0Þ. Other-

wise, gðzÞ ¼ hðz0Þðz� bÞ, b is a constant. Therefore, g]ðzÞa g]ð0Þa jhðz0Þj <
M þ 1, a contradiction. Since g 0ðb0Þ ¼ hðz0Þ and g 0 2 hðz0Þ, by Hurwitz’s the-
orem and (3.4), there exist a sequence fbng such that bn ! b0 and (for n
su‰ciently large)

f 0
n ðzn þ rnbnÞ � hðzn þ rnbnÞ ¼ 0:

Furthermore, with (3.3) we deduce that

gðkÞðb0Þ ¼ lim
n!y

rk�1
n f ðkÞn ðzn þ rnbnÞ ¼ 0:

Thus, we have shown that g 0ðzÞ ¼ hðz0Þ ) gðkÞðzÞ ¼ 0. This completes the proof
of the claim.
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By Lemma 2.2 and the claim, we obtain gðzÞ ¼ hðz0Þðz� b1Þ, where b1 is a
constant. But, we have g]ð0Þa jhðz0Þj < M þ 1, a contradiction.

Case 2. hðz0Þ ¼ 0.
Since hðzÞ2 0, there exists a r such that hðzÞ0 0 in D 0ðz0; rÞ ¼ fz : 0 <

jz� z0j < rg. Then, Case 1 implies that F is normal in D 0ðz0; rÞ. Then for any
sequence f fngHF, there exist a subsequence f fn; jg such that f fn; jg converges
locally uniformly to a function H in D 0ðz0; rÞ, where H is either holomorphic or
identically infinite in D 0ðz0; rÞ.

Case 2.1. H is holomorphic in D 0ðz0; rÞ.
Then there exists a positive number M1 such that jHðzÞjaM1 on jz� z0j ¼

r=2. It follows that j fn; jðzÞja 2M1 on jz� z0j ¼ r=2 for large j. By the
maximum principle, we have j fn; jðzÞja 2M1 in Dðz0; r=2Þ ¼ fz : jz� z0ja
r=2g. Then H is bounded in Dðz0; r=2Þ, and H extends to be holomorphic
in Dðz0; r=2Þ. Again by the maximum principle, we get fn; jðzÞ ! HðzÞ in
Dðz0; r=2Þ.

Case 2.2. H1y.
Note that fn; jðzÞ ! y on G :¼ fz : jz� z0j ¼ r=2g. Thus we have (for

su‰ciently large n) ð
G

hðzÞ
fn; jðzÞ

dz

����
����a p:ð3:5Þ

We know

f 0
n; j � hðzÞ

fn; j

is holomorphic in Dðz0; rÞ. Thus by Cauchy’s Theorem, we haveð
G

f 0
n; jðzÞ � hðzÞ

fn; jðzÞ
dz ¼ 0ð3:6Þ

By nðG; fn; jÞ we denote the number of zeros of fn; j in D2 ¼ fz : jz� z0j <
r=2g counting multiplicities. By the argument principle (3.5) and (3.6) (for
su‰ciently large n), we get

nðG; fn; jÞ ¼
1

2pi

ð
G

f 0
n; jðzÞ
fn; jðzÞ

dz ¼ 1

2p

ð
G

hðzÞ
fn; jðzÞ

dz

����
����a 1

2
;

hence

nðG; fn; jÞ ¼ 0:

So fn; j has no zeros in Dðz0; r=2Þ. Thus,
1

fn; j
is holomorphic and

1

fn; j
! 0 on

D 0ðz0; r=2Þ. Similarly as Case 2.1, we can get fn; jðzÞ ! y in Dðz0; r=2Þ.
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From the above discussion, we get F is normal at z0. Hence, we complete
the proof of the Theorem 1.

4. Proof of Theorem 2

From the assumption of Theorem 2, for each f A F we have

f ðzÞ ¼ z ) f 0ðzÞ ¼ z; f 0ðzÞ ¼ z ) f 00ðzÞ ¼ z:

Let F ¼ f ðzÞ � z, then

FðzÞ ¼ 0 ) F 0ðzÞ ¼ z� 1; F 0ðzÞ ¼ z� 1 ) F 00ðzÞ ¼ z:

Suppose that a0 is a zero of FðzÞ.
If a0 0 1, then a0 is a simple zero of F ðzÞ. Suppose that G ¼ F 0 � ðz� 1Þ,

then a0 is also a zero of GðzÞ.
If a0 ¼ 1, then F 0ða0Þ ¼ a0 � 1 ¼ 0 and F 00ða0Þ ¼ a0 ¼ 1, which indicates that

a0 is a zero of F ðzÞ with multiplicity 2. Note that Gða0Þ ¼ 0 and G 0ða0Þ ¼
F 00ða0Þ � 1 ¼ 0, we know that a0 is a zero of GðzÞ with multiplicity at least 2.

By the above discussion, we obtain

GðzÞ
FðzÞ ¼

F 0 � ðz� 1Þ
F ðzÞ

is holomorphic in D. Thus, the family G ¼ fF : F ¼ f � z; f A Fg satisfies the
conditions of Theorem 1. By Theorem 1, we get G is normal in D. Hence F is
normal in D. This completes the proof of Theorem 2.

5. Proof of Theorem 3

We consider the function F ¼ f

z
.

Case 1. F has bounded spherical derivative.
Then by Lemma 2.3, F has finite order. Hence f ¼ Fz has finite order as

well.
Let h ¼ f � z, then h has finite order and

h ¼ 0 ) h 0 ¼ z� 1; h 0 ¼ z� 1 ) h 00 ¼ z:ð5:1Þ
Set

m ¼ zh 0 � ðz� 1Þh 00

h
:ð5:2Þ

Suppose that m1 0, then zh 0 ¼ ðz� 1Þh 00. Integrating the di¤erential equation
yields

h 0 ¼ Aðz� 1Þez;ð5:3Þ
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and

h ¼ Aðz� 2Þez þ B;ð5:4Þ

where A0 0 and B are two constants. With (5.1), (5.3) and (5.4), it is not
di¤erent to obtain a contradiction. Thus, m2 0.

Now, we consider the equation (5.2). It is easy to see that

mðr; mÞ ¼ m r;
zh 0 � ðz� 1Þh 00

h

� �
ð5:5Þ

am r;
zh 0

h

� �
þm r;

ðz� 1Þh 00

h

� �
þOð1ÞaOðlog rÞ:

Next we discuss the poles of m. From (5.1) we obtain h has at most one zero
which is multiple, at z ¼ 1. And the points which are the simple zeros of h are
not poles of m. Then we derive that

Nðr; mÞ ¼ N r;
zh 0 � ðz� 1Þh 00

h

� �
aOðlog rÞ:ð5:6Þ

Combining (5.5) and (5.6) yields

Tðr; mÞ ¼ mðr; mÞ þNðr; mÞ ¼ Oðlog rÞ;

which implies that m is a rational function.
We denote by Nðr; h 0 � ðz� 1Þ; h0 0Þ the counting function of those 0-

points of h 0 � ðz� 1Þ, counted according to multiplicity, which are not the 0-

points of h. Because of m is a rational function we get N r;
1

m

� �
¼ Oðlog rÞ.

Furthermore, we have

Nðr; h 0 � ðz� 1Þ; h0 0ÞaN r;
1

m

� �
þOðlog rÞ ¼ Oðlog rÞ:ð5:7Þ

Put

f ¼ h 0 � ðz� 1Þ
h

:ð5:8Þ

Suppose that f1 0, then h 0ðzÞ ¼ z� 1. But from (5.1) we know that h 0ðzÞ ¼
z� 1 implies h 00 ¼ z, and this is a contradiction. Thus, f2 0. In the following,
we discuss the zeros and poles of f.

We know h has at most one multiple zero.
If z ¼ 1 is not a zero of h, then h has only simple zeros. Thus, f does not

has poles and f is an entire function.
If z ¼ 1 is a zero of h, then h 0ð1Þ ¼ z� 1 ¼ 0 and h 00ð1Þ ¼ 1. Thus, z ¼ 1 is

a zero of h with multiplicity 2. Meanwhile, z ¼ 1 is a zero of h 0 � ðz� 1Þ. So,
h 00ð1Þ � 1 ¼ 0, which implies that z ¼ 1 is a zero of h 0 � ðz� 1Þ with multiplicity
at least 2. It also yields that f is an entire function.
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Thus, we deduce that f is an entire function. From (5.1) we obtain
h 0 � ðz� 1Þ has at most one multiple zero at z ¼ 1. It follows from (5.7)

and (5.8) that N r;
1

f

� �
¼ Oðlog rÞ and f has only finitely many zeros. Hence we

can assume that

f ¼ PðzÞeQðzÞ;

where PðzÞ2 0 and QðzÞ are two polynomials. From (5.8), we have

h 0 � PðzÞeQðzÞh ¼ z� 1:ð5:9Þ
Noting that h is of finite order, by Lemma 2.6, we can easily deduce that
QðzÞ ¼ C, a constant. Let P1ðzÞ ¼ eCPðzÞ. Rewriting (5.9) as

h 0 � P1ðzÞh ¼ z� 1:ð5:10Þ
Now, we discuss the equation (5.10) by considering two subcases.

Case 1.1. h has infinite many zeros.
Let fzngyn¼1 be a sequence of complex numbers with hðznÞ ¼ 0 and jznj ! y

as n ! y. It is clear from (5.1) that

h 0ðznÞ ¼ zn � 1 and h 00ðznÞ ¼ zn:

By di¤erentiating both sides of Eq. (5.10), we have

h 00 � P 0
1ðzÞh� P1ðzÞh 0 ¼ 1:ð5:11Þ

Substitute zn into Eq. (5.11) yields

zn � P1ðznÞðzn � 1Þ1 1:ð5:12Þ
If degðP1ðzÞÞb 1, the left side of Eq. (5.12) zn � P1ðznÞðzn � 1Þ ! y as n ! y,
this is a contradiction. Thus, P1ðzÞ is a constant. Again by (5.12), we obtain
P1 ¼ 1. Then we have

h 0 � h ¼ z� 1;ð5:13Þ
which implies that f 1 f 0.

Case 1.2. h has finitely many zeros.
Then we can set hðzÞ ¼ P2ðzÞeQ2ðzÞ, where P2ðzÞ and Q2ðzÞ are two poly-

nomials. Substituting h into Eq. (5.10) yields that

½P 0
2 þ P2Q

0
2 � P1P2�eQ2ðzÞ ¼ z� 1:ð5:14Þ

From the above equation, it is obvious that Q2ðzÞ is a constant and h is a
polynomial. Let Q2 ¼ C1. Rewriting (5.14) as eC1ðP 0

2 � P1P2Þ ¼ z� 1. Thus,

degðP 0
2 � P1P2Þ ¼ 1:

Suppose degðP1Þb 1, then P2 is a constant and h is a constant, which is a con-
tradiction. Thus, degðP1Þ ¼ 0 and P1 is a constant. Again by degðP 0

2 � P1P2Þ
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¼ 1, we derive that deg P2 ¼ 1. Thus, deg h ¼ 1. Furthermore, we can assume
that hðzÞ ¼ A2ðz� B2Þ, where A2 0 0, B2 are two constants. By (5.1), it is not
di‰cult that A2 ¼ �1 and B2 ¼ 0. Thus, hðzÞ ¼ �z and f 1 0, which is a
contradiction. Hence, we finish the proof of Case 1.

Case 2. F has unbounded spherical derivative.
Next, with a similar way in [7], we will prove this case cannot occur.
From the assumption of Case 2, there exists a sequence ðwnÞn such that

limn!y F ]ðwnÞ ¼ y. Since F ] is continuous and bounded in every compact set,
so wn ! y as n ! y. Let D ¼ fz : jzjb 1g, then F is analytic in D. We may
assume jwnjb 2 for all n. We define D1 ¼ fz : jzj < 1g and

FnðzÞ ¼ F ðwn þ zÞ:

Then all FnðzÞ are analytic in D1 and F ]
n ð0Þ ¼ F ]ðwnÞ ! y as n ! y. It

follows from Marty’s criterion that ðFnÞn is not normal at z ¼ 0.
Assume that Fnðz0Þ ¼ 1 for some z0 A D1. Then for n large enough, we have

jF 0
nðz0Þj ¼

f 0ðwn þ z0Þ
wn þ z0

� f ðwn þ z0Þ
ðwn þ z0Þ2

�����
����� ¼ 1� 1

wn þ z0

����
����a 2:

Therefore, we can apply Lemma 2.1 with a ¼ 1. Choosing an appropriate
subsequence of ðFnÞn if necessary, we may assume that there exist sequence
ðznÞn A D1 and ðrnÞn such that zn ! 0, rn ! 0 and

gnðzÞ ¼ r�1
n ðFnðzn þ rnzÞ � 1Þ ¼ r�1

n

f ðwn þ zn þ rnzÞ
wn þ zn þ rnz

� 1

� �
! gðzÞð5:15Þ

locally uniformly in C with g is a nonconstant entire function. We also have
g]ðzÞa g]ð0Þ ¼ 3 for all z A C and rðgÞa 1. We claim that

g ¼ 0 ) g 0 ¼ 1; g 0 ¼ 1 ) g 00 ¼ 0:

From (5.15), we deduce that

GnðzÞ ¼
f 0ðwn þ zn þ rnzÞ
wn þ zn þ rnz

¼ g 0
nðxÞ þ

rngnðzÞ þ 1

wn þ zn þ rnz
! g 0ðzÞð5:16Þ

locally uniformly in C.
Suppose that gðz0Þ ¼ 0. Then by Hurwitz’s theorem, there exist a sequence

fzng such that zn ! z0 and (for n su‰ciently large)

gnðznÞ ¼ r�1
n ðFnðzn þ rnznÞ � 1Þ ¼ 0:

Thus Fnðzn þ rnznÞ ¼ 1 and f ðwn þ zn þ rnznÞ ¼ wn þ zn þ rnzn. It follows from
the assumption that

f 0ðwn þ zn þ rnznÞ
wn þ zn þ rnzn

¼ 1:
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Thus, by (5.16) we derive that

g 0ðz0Þ ¼ lim
n!y

f 0ðwn þ zn þ rnznÞ
wn þ zn þ rnzn

¼ 1;

which implies that gðzÞ ¼ 0 ) g 0ðzÞ ¼ 1. Next we prove g 0ðzÞ ¼ 1 ) g 00ðzÞ ¼
0. Again by (5.16), we obtain

rn
f 00ðwn þ zn þ rnzÞ
wn þ zn þ rnz

¼ G 0
nðzÞ þ rn

GnðzÞ
wn þ zn þ rnz

! g 00ðzÞ:ð5:17Þ

Suppose that g 0ðh0Þ ¼ 1. Obviously g 0 2 1, for otherwise g]ð0Þa g 0ð0Þ ¼ 1 < 3,
which is a contradiction. Again by Hurwitz’s theorem, there exist a sequence
fhng, hn ! h0 and (for n su‰ciently large)

f 0ðwn þ zn þ rnhnÞ
wn þ zn þ rnhn

¼ 1:

Thus f 0ðwn þ zn þ rnhnÞ ¼ wn þ zn þ rnhn. By the assumption, we have f 00ðwn þ
zn þ rnhnÞ ¼ wn þ zn þ rnhn. Then

g 00ðh0Þ ¼ lim
n!y

rn
f 00ðwn þ zn þ rnhnÞ
wn þ zn þ rnhn

¼ lim
n!y

rn ¼ 0:

Thus we prove the claim. By Lemma 2.2 an the claim, we get g ¼ z� b, where
b is a constant. Thus we have g]ð0Þa 1 < 3, a contradiction. So the case
cannot occur.

Hence, we complete the proof of Theorem 3.
For further study, we propose the following questions.

Question 1. Let f ðzÞ be a nonconstant entire function and kb 2 be a
positive integer. If

f ðzÞ ¼ z ) f 0ðzÞ ¼ z; f 0ðzÞ ¼ z ) f ðkÞðzÞ ¼ z;

what will happen?

Question 2. Let f ðzÞ be a nonconstant entire function and QðzÞ be a
nonzero polynomial. If

f ðzÞ ¼ QðzÞ ) f 0ðzÞ ¼ QðzÞ; f 0ðzÞ ¼ QðzÞ ) f 00ðzÞ ¼ QðzÞ;
what will happen?
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