NORMAL FAMILIES AND UNIQUENESS THEOREM OF HOLOMORPHIC FUNCTIONS

Feng Lü, Kai Liu and Hongxun Yi

Abstract

In the paper, we have two purposes. Firstly, we prove two theorems and two corollaries of normal families which improve and generalize some results of Pang and Zalcman [9], Zhang, Sun and Pang [13], Chang and Fang [2]. Secondly, we use the theory of normal families and differential equations to obtain a uniqueness theorem of entire function which is an improvement of Chang and Fang [1].

1. Introduction and main results

Let f and g denote some non-constant meromorphic functions. We say f and g share a value $b \mathrm{IM}(\mathrm{CM})$ if $f(z)-b=0 \Leftrightarrow g(z)-b=0(f(z)-b=0 \Leftrightarrow$ $g(z)-b=0$ counting multiplicities) (see [12]).

In 2000, X. Pang and L. Zalcman [9] proved the following famous theorem.
Theorem A. Let \mathscr{F} be a family of meromorphic functions on domain D, all of whose zeros are of multiplicity (at least) k. Suppose that there exist $a, b, c \in \mathbf{C}$ such that $b, c \neq 0$ and, for every $f \in \mathscr{F}$,

$$
\bar{E}_{f}(a)=\bar{E}_{f^{(k)}}(b) \subset \bar{E}_{f^{(k+1)}}(c) .
$$

Then \mathscr{F} is normal in D.
In 2005, G. Zhang, W. Sun and X. Pang [13] obtained a related result.
Theorem B. Let \mathscr{F} be a family of holomorphic functions in a domain D, and let $h(z)$ be a function holomorphic in D such that $h(z)$ has only simple zeros. If, for every function $f \in \mathscr{F}$, we have
(a) $f(z)=0 \Leftrightarrow f^{\prime}(z)=h(z)$ and $f^{\prime}(z)=h(z) \Rightarrow\left|f^{\prime \prime}(z)\right| \leq M$, where M is a positive number;
(b) $f(z)$ and $h(z)$ don't have common zeros, then \mathscr{F} is normal in D.

[^0]It's naturally to ask whether the conditions (a) and (b) can be weakened or not? We study the problem and obtain the following result.

Theorem 1. Let \mathscr{F} be a family of holomorphic functions in a domain D, let $h(z)(\not \equiv 0)$ be a function holomorphic in D, and let $k \geq 2$ be a positive integer. If for every function $f \in \mathscr{F}$, we have
(a) $f(z)=0 \Rightarrow f^{\prime}(z)=h(z), f^{\prime}(z)=h(z) \Rightarrow\left|f^{(k)}(z)\right| \leq M$, where $M>0$ is a constant;
(b) $\frac{f_{n}^{\prime}-h(z)}{f_{n}}$ is holomorphic in D, then \mathscr{F} is normal in D.

Remark 1. If in addition $f(z)$ and $h(z)$ don't have common zeros, it is easy to deduce that $\frac{f_{n}^{\prime}-h(z)}{f_{n}}$ is holomorphic in D. Thus, we immediately have the following corollary.

Corollary 1. Let \mathscr{F} be a family of holomorphic functions in a domain D, let $h(z)(\not \equiv 0)$ be a function holomorphic in D, and let $k \geq 2$ be a positive integer. If for every function $f \in \mathscr{F}$, we have
(a) $f(z)=0 \Rightarrow f^{\prime}(z)=h(z), f^{\prime}(z)=h(z) \Rightarrow\left|f^{(k)}(z)\right| \leq M$, where $M>0$ is a constant;
(b) $f(z)$ and $h(z)$ don't have common zeros, then \mathscr{F} is normal in D.

Clearly, Corollary 1 is an improvement of Theorem B.
Remark 2. The following example shows that there exists normal family that does not satisfy the conditions of Theorem B yet does satisfy the conditions of Theorem 1 .

Example 1. Let $\mathscr{F}=\left\{f_{n}: f_{n}=\frac{1}{n} z^{3}+z^{2}, n=2,3, \ldots\right\}$, let $D=\{z:|z|<$ $1\}$, and let $k \geq 4$ and $h(z)=2 z$. Then \mathscr{F} is normal in D. We have

$$
f_{n}(z)=0 \Leftrightarrow f_{n}^{\prime}(z)=2 z, \quad f_{n}^{\prime}(z)=2 z \Rightarrow f_{n}^{(k)}(z)=0
$$

and $\frac{f_{n}^{\prime}-h(z)}{f_{n}}=\frac{3}{z+n}$ is holomorphic in D. Thus, the family satisfies the conditions of Theorem 1. But f_{n} and $h(z)$ have common zeros at $z=0$, so it does not satisfies the conditions of Theorem B.

The following example shows that condition (b) of Theorem 1 is necessary.
Example 2. Let $\mathscr{F}=\left\{f_{n}: f_{n}=n z^{2}, n \in N\right\}$ and $h(z)=z$. Then $f_{n}(z)=0$ $\Rightarrow f_{n}^{\prime}(z)=z, \quad f_{n}^{\prime}(z)=z \Rightarrow f_{n}^{\prime \prime \prime}(z)=0$. But $\frac{f_{n}^{\prime}-h(z)}{f_{n}}=\frac{2 n-1}{n z}$ has a pole at
$z=0$, and indeed \mathscr{F} is not normal at $z=0$.

In 2005, J. Chang and M. Fang [2] derived a theorem of normal family.
Theorem C. Let \mathscr{F} be a family of holomorphic functions in a domain D, and let $a(z)$ be an analytic function in D such that $a(z) \not \equiv a^{\prime}(z)$. If for every function $f \in \mathscr{F}, f(z)=a(z) \Leftrightarrow f^{\prime}(z)=a(z), f^{\prime}(z)=a(z) \Leftrightarrow f^{\prime \prime}(z)=a(z)$ and $f(z)-a(z)$ $=0 \rightarrow f^{\prime}(z)-a(z)=0$ in D, then \mathscr{F} is normal in D.

Here $f(z)-a(z)=0 \rightarrow f^{\prime}(z)-a(z)=0$ means: if z_{0} is a zero of $f(z)-a(z)$ with multiplicity n, then z_{0} is a zero of $f^{\prime}(z)-a(z)$ with multiplicity at least n.

From the Theorem 1, it is not difficult to deduce the following corollary.
Corollary 2. Let \mathscr{F} be a family of holomorphic functions in a domain D, and let $a(z)$ be an analytic function in D such that $a(z) \not \equiv a^{\prime}(z)$, and let $k \geq 2$ be an integer. If, for every function $f \in \mathscr{F}$,

$$
f(z)-a(z)=0 \rightarrow f^{\prime}(z)-a(z)=0, \quad f^{\prime}(z)-a(z)=0 \Rightarrow\left|f^{(k)}(z)\right| \leq M
$$

in D, where $M>0$ is a constant. Then \mathscr{F} is normal in D.
Remark 3. Let $\mathscr{G}=\{F: F=f-a, f \in \mathscr{F}\}$ and $h=a-a^{\prime}$. Then, for every $z_{0} \in D$, there exist a disc $D\left(z_{0}, r\right)=\left\{z:\left|z-z_{0}\right|<r\right\}$ such that for $z \in$ $D\left(z_{0}, r\right)$,

$$
F(z)=0 \rightarrow F^{\prime}(z)=h(z), \quad F^{\prime}(z)=h(z) \Rightarrow\left|f^{(k)}(z)\right| \leq \tilde{M},
$$

where $\tilde{M}=\tilde{M}\left(z_{0}\right)=M+\max _{z \in D\left(z_{0}, r\right)}\left|a^{(k)}(z)\right|$. Since normality is a local property, with Theorem 1, it is easy to deduce that \mathscr{G} is normal in D. Hence, the family \mathscr{F} is normal as well. In fact, Corollary 2 improves the Theorem C.

In the same paper [2], they also obtained a corollary.
Theorem D. Let \mathscr{F} be a family of holomorphic functions in a domain D. If, for every function $f \in \mathscr{F}, f, f^{\prime}$ and $f^{\prime \prime}$ have the same fixed points in D, then \mathscr{F} is normal in D.

From Theorem 1, we deduce the following result which is an improvement of Theorem D.

Theorem 2. Let \mathscr{F} be a family of holomorphic functions in a domain D. If, for every function $f \in \mathscr{F}$, we have

$$
f(z)=z \Rightarrow f^{\prime}(z)=z, \quad f^{\prime}(z)=z \Rightarrow f^{\prime \prime}(z)=z
$$

then \mathscr{F} is normal in D.
In 2002, J. Chang and M. Fang [1] proved a uniqueness theorem.

Theorem E. Let $f(z)$ be a nonconstant entire function. If

$$
f(z)=z \Leftrightarrow f^{\prime}(z)=z, \quad f^{\prime}(z)=z \Rightarrow f^{\prime \prime}(z)=z
$$

then $f(z)=f^{\prime}(z)$.
Naturally, we will ask what will happen if we replace the assumption $f(z)=$ $z \Leftrightarrow f^{\prime}(z)=z$ by $f(z)=z \Rightarrow f^{\prime}(z)=z$. With the theory of normal family, we study the problem and find the conclusion of Theorem D still holds. In fact, we deduce the following result.

Theorem 3. Let $f(z)$ be a nonconstant entire function. If

$$
f(z)=z \Rightarrow f^{\prime}(z)=z, \quad f^{\prime}(z)=z \Rightarrow f^{\prime \prime}(z)=z
$$

then $f(z)=f^{\prime}(z)$.
Remark 4. Some ideas of the paper are based on [7].

2. Some lemmas

Lemma 2.1 [9]. Let \mathscr{F} be a family of functions holomorphic on the unit disc, all of whose zeros have multiplicity at least k, and suppose that there exists $A \geq 1$ such that $\left|f^{(k)}\right| \leq A$ whenever $f=0$, then if \mathscr{F} is not normal, there exist, for each $0 \leq \alpha \leq k$,
(a) a number $0<r<1$;
(b) points $z_{n}, z_{n}<1$;
(c) functions $f_{n} \in \mathscr{F}$, and
(d) positive number $\rho_{n} \rightarrow 0$ such that $\rho_{n}^{-\alpha} f_{n}\left(z_{n}+\rho_{n} \xi\right)=g_{n}(\xi) \rightarrow g(\xi)$ locally uniformly, where g is a nonconstant entire function on \mathbf{C}, all of whose zeros have multiplicity at least k, such that $g^{\sharp}(\xi) \leq g^{\sharp}(0)=k A+1$.

Here, as usual, $g^{\sharp}(\xi)=\frac{\left|g^{\prime}(\xi)\right|}{1+|g(\xi)|^{2}}$ is the spherical derivative.
Lemma 2.2 [3]. Let g be a nonconstant entire function with $\rho(g) \leq 1$, let $k \geq 2$ be an integer, and let a be a nonzero finite value. If $g(z)=0 \Rightarrow g^{\prime}(z)=a$, and $g^{\prime}(z)=a \Rightarrow g^{(k)}(z)=0$, then $g(z)=a\left(z-z_{0}\right)$, where z_{0} is a constant.

Lemma 2.3 [14]. If g is a meromorphic function with bounded spherical derivative, then the order of g is at most two.

Lemma 2.4 [6, Corollary 1]. Let $f(z)$ be a transcendental meromorphic function with $\sigma(f)=\sigma<\infty, H=\left\{\left(k_{1}, j_{1}\right),\left(k_{2}, j_{2}\right), \ldots,\left(k_{q}, j_{q}\right)\right\}$ be a finite set of distinct pairs of integers that satisfy $0 \leq j_{i}<k_{i}$, for $i=1, \ldots, q$. And let $\varepsilon>0$ be a given constant. Then there exists a set $E \subset[0,2 \pi)$ that has linear measure zero,
such that if $\psi \in[0,2 \pi] \backslash E$, then there is a constant $R_{0}=R_{0}(\psi)>1$ such that for all z satisfying $\arg z=\psi$ and $|z| \geq R_{0}$ and for all $(k, j) \in H$, we have

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leq|z|^{(k-j)(\sigma-1+\varepsilon)} \tag{2.1}
\end{equation*}
$$

Relying on Markushevich's book [8, see p. 253-255], we can deduce the following lemma. It also can be seen in [4].

Lemma 2.5. Let

$$
Q(z)=b_{n} z^{n}+b_{n-1} z^{n-1}+\cdots+b_{0}
$$

where n is a positive integer and $b_{n}=\alpha_{n} e^{i \theta_{n}}, \alpha_{n}>0, \theta_{n} \in[0,2 \pi)$. For any given $0<\varepsilon<\frac{\pi}{4 n}$, we introduce $2 n(j=0,1, \ldots, 2 n-1)$ open angles

$$
S_{j}=\left\{r e^{i \theta}: r>0,-\frac{\theta_{n}}{n}+(2 j-1) \frac{\pi}{2 n}+\varepsilon<\theta<-\frac{\theta_{n}}{n}+(2 j+1) \frac{\pi}{2 n}-\varepsilon\right\}
$$

Then there exists a positive number $R=R(\varepsilon)$ such that for $|z|=r>R$,

$$
\begin{equation*}
\operatorname{Re}\{Q(z)\}>\alpha_{n}(1-\varepsilon) \sin (n \varepsilon) r^{n} \tag{2.2}
\end{equation*}
$$

if $z \in S_{j}$ where j is even; while

$$
\begin{equation*}
\operatorname{Re}\{Q(z)\}<-\alpha_{n}(1-\varepsilon) \sin (n \varepsilon) r^{n} \tag{2.3}
\end{equation*}
$$

if $z \in S_{j}$ where j is odd.
Proof. Suppose $z=r e^{i \theta}, b_{k}=\alpha_{k} e^{i \theta_{k}}$ and $\alpha_{k}>0, k=0,1 \ldots, n-1$. Then

$$
\begin{align*}
\operatorname{Re} Q(z) & =\alpha_{n} r^{n} \cos \left(\theta_{n}+n \theta\right)+\sum_{k=0}^{n-1} \alpha_{k} r^{k} \cos \left(\theta_{k}+k \theta\right) \tag{2.4}\\
& =\alpha_{n} r^{n}\left[\cos \left(\theta_{n}+n \theta\right)+\sum_{k=0}^{n-1} \frac{\alpha_{k} \cos \left(\theta_{k}+k \theta\right)}{\alpha_{n} r^{n-k}}\right] .
\end{align*}
$$

For any $0<\varepsilon<\frac{\pi}{4 n}$, we introduce $2 n$ open angles

$$
S_{j}:-\frac{\theta_{n}}{n}+(2 j-1) \frac{\pi}{2 n}+\varepsilon<\theta<-\frac{\theta_{n}}{n}+(2 j+1) \frac{\pi}{2 n}-\varepsilon \quad(j=0,1, \ldots, 2 n-1) .
$$

Thus, we have

$$
(2 j-1) \frac{\pi}{2}+n \varepsilon<\theta_{n}+n \theta<(2 j+1) \frac{\pi}{2}-n \varepsilon \quad(j=0,1, \ldots, 2 n-1) .
$$

Furthermore,

$$
\begin{equation*}
(2 j-1) \frac{\pi}{2}<(2 j-1) \frac{\pi}{2}+n \varepsilon<\theta_{n}+n \theta<(2 j+1) \frac{\pi}{2}-n \varepsilon<(2 j+1) \frac{\pi}{2} . \tag{2.5}
\end{equation*}
$$

Now, we consider into two cases.
Case 1. j is even.
Then, it is not difficult to deduce that

$$
\begin{equation*}
\cos \left(\theta_{n}+n \theta\right)>\cos \left((2 j-1) \frac{\pi}{2}+n \varepsilon\right)=\sin (n \varepsilon)>\cos \left((2 j-1) \frac{\pi}{2}\right)=0 . \tag{2.6}
\end{equation*}
$$

Noting that

$$
\left.\left\lvert\, \sum_{k=0}^{n-1} \frac{\alpha_{k} \cos \left(\theta_{k}+k \theta\right)}{\alpha_{n} r^{n-k}}\right.\right] \mid \rightarrow 0, \quad \text { as } r \rightarrow \infty,
$$

we deduce that there exists a positive number $R=R(\varepsilon)$ satisfying

$$
\begin{equation*}
\left.\left\lvert\, \sum_{k=0}^{n-1} \frac{\alpha_{k} \cos \left(\theta_{k}+k \theta\right)}{\alpha_{n} r^{n-k}}\right.\right] \mid<\varepsilon \sin (n \varepsilon), \quad \text { if } r>R \tag{2.7}
\end{equation*}
$$

Combining (2.4), (2.6) and (2.7) yields that there exists a positive number $R=R(\varepsilon)$ such that for $|z|=r>R$,

$$
\operatorname{Re}\{Q(z)\}>\alpha_{n}(1-\varepsilon) \sin (n \varepsilon) r^{n} .
$$

Case 2. j is odd.
With the similar way, we can obtain that there exists a positive number $R=R(\varepsilon)$ such that for $|z|=r>R$,

$$
\operatorname{Re}\{Q(z)\}<-\alpha_{n}(1-\varepsilon) \sin (n \varepsilon) r^{n} .
$$

Thus, we finish the proof of this lemma.
With the idea in [4], we deduce the following result.
Lemma 2.6. Let $P(z)(\not \equiv 0), H(z)(\not \equiv 0)$ and $Q(z)$ be three polynomials with that $Q(z)$ is nonconstant. Then, every entire solution $F(z)$ of the following differential equation

$$
\begin{equation*}
F^{\prime}(z)-P(z) e^{Q(z)} F(z)=H(z) \tag{2.8}
\end{equation*}
$$

has infinite order.
Proof. Obviously, $F(z)$ is transcendental. Now, we suppose that $F(z)$ is of finite order, we will deduce that $F(z)$ is a polynomial. By Lemma 2.4, we see
that there exists a set $E \subset[0,2 \pi)$ that has linear measure zero, such that for any ray $\arg z=\theta \in[0,2 \pi] \backslash E$ and any given $0<\varepsilon<1$, there is a $R(>0)$, as $r>R$,

$$
\begin{equation*}
\left|\frac{F^{\prime}\left(r e^{i \theta}\right)}{F\left(r e^{i \theta}\right)}\right| \leq r^{\sigma(F)-1+\varepsilon} \tag{2.9}
\end{equation*}
$$

Set $\operatorname{deg} H(z)=h$ and $Q(z)=b_{n} z^{n}+\cdots+b_{0}$, where n is a positive integer and $b_{n}=\alpha_{n} e^{i \theta_{n}}, \quad \alpha_{n}>0, \theta_{n} \in[0, \pi)$. By Lemma 2.5 , we know that if $\theta \neq-\frac{\theta_{n}}{n}+$ $(2 j-1) \frac{\pi}{2 n}(j=0, \ldots, 2 n-1)$, as r sufficiency large, we have

$$
\operatorname{Re}\{Q(z)\}>\alpha_{n \theta} r^{n} \quad \text { or } \quad \operatorname{Re}\{Q(z)\}<-\alpha_{n \theta} r^{n}
$$

where $\alpha_{n \theta}>0$ is a constant.
Now, we take

$$
\arg z=\theta \in[0,2 \pi)\rangle\left(E \cup\left[\bigcup_{j=0}^{2 n-1}\left\{\frac{\theta_{n}}{n}+(2 j-1) \frac{\pi}{2 n}\right\}\right]\right)
$$

By (2.8), we get

$$
\begin{equation*}
\frac{F^{\prime}\left(r e^{i \theta}\right)}{F\left(r e^{i \theta}\right)}-P\left(r e^{i \theta}\right) e^{Q\left(r e^{i \theta}\right)}=\frac{H\left(r e^{i \theta}\right)}{F\left(r e^{i \theta}\right)} \tag{2.10}
\end{equation*}
$$

If $\operatorname{Re}\left\{Q\left(r e^{i \theta}\right)\right\}>\alpha_{n \theta} r^{n}$, from (2.9), we see that as $r \rightarrow \infty$,

$$
\begin{equation*}
\left|\frac{F^{\prime}\left(r e^{i \theta}\right)}{F\left(r e^{i \theta}\right)}\right| \frac{1}{r^{\sigma(F)+h+1}} \rightarrow 0, \quad\left|\frac{H\left(r e^{i \theta}\right)}{r^{\sigma(F)+h+1}}\right| \rightarrow 0, \quad\left|\frac{P(z) e^{Q\left(r e^{i \theta}\right)}}{r^{\sigma(F)+h+1}}\right| \rightarrow \infty \tag{2.11}
\end{equation*}
$$

From (2.10) and (2.11), we see that as $r \rightarrow \infty$,

$$
\begin{equation*}
\left|F\left(r e^{i \theta}\right)\right| \rightarrow 0 \tag{2.12}
\end{equation*}
$$

If $\operatorname{Re}\left\{Q\left(r e^{i \theta}\right)\right\}<-\alpha_{n \theta} r^{n}$, by (2.8) we get

$$
\begin{equation*}
1-\frac{F\left(r e^{i \theta}\right)}{F^{\prime}\left(r e^{i \theta}\right)} P\left(r e^{i \theta}\right) e^{Q\left(r e^{i \theta}\right)}=\frac{H\left(r e^{i \theta}\right)}{F^{\prime}\left(r e^{i \theta}\right)} \tag{2.13}
\end{equation*}
$$

Let

$$
M\left(r, F^{\prime}, \theta\right)=\max \left\{\left|F^{\prime}(z)\right|: 0 \leq|z| \leq r, \arg z=\theta\right\}
$$

We claim that

$$
\left|F^{\prime}(z)\right|=o\left(|z|^{h+1}\right)
$$

as $r \rightarrow \infty$ for all $z=r e^{i \theta}$.
Otherwise, there exists a positive number M_{1} and an infinite sequence of points $z_{n}=r_{n} e^{i \theta}$ satisfying $r_{n} \rightarrow \infty$ and

$$
\left|F^{\prime}\left(r_{n} e^{i \theta}\right)\right|=M\left(r_{n}, F^{\prime}, \theta\right)>M_{1}\left|z_{n}\right|^{h+1}
$$

Thus,

$$
\begin{equation*}
\left|\frac{H\left(z_{n}\right)}{F^{\prime}\left(z_{n}\right)}\right| \rightarrow 0 \quad \text { as } r_{n} \rightarrow \infty \tag{2.14}
\end{equation*}
$$

Since

$$
F\left(z_{n}\right)=F\left(z_{1}\right)+\int_{z_{1}}^{z_{n}} F^{\prime}(\omega) d \omega,
$$

it is easy to deduce

$$
\left|F\left(z_{n}\right)\right| \leq\left|F\left(z_{1}\right)\right|+\left|F^{\prime}\left(z_{n}\right)\right|\left|z_{n}\right| .
$$

Dividing $\left|F^{\prime}\left(z_{n}\right)\right|$ on both sides of the above inequality yields

$$
\begin{equation*}
\left|\frac{F\left(z_{n}\right)}{F^{\prime}\left(z_{n}\right)}\right| \leq(1+o(1))\left|z_{n}\right| \quad \text { as } r_{n} \rightarrow \infty . \tag{2.15}
\end{equation*}
$$

By (2.15) and the fact $\operatorname{Re}\left\{Q\left(r e^{i \theta}\right)\right\}<-\alpha_{n \theta} r^{n}$, we deduce

$$
\begin{equation*}
\left|\frac{F\left(z_{n}\right)}{F^{\prime}\left(z_{n}\right)} P\left(z_{n}\right) e^{Q\left(z_{n}\right)}\right| \rightarrow 0 \tag{2.16}
\end{equation*}
$$

which, together with (2.13) and (2.14), implies a contradiction. Thus, the claim is proved.

From the claim, we have

$$
\begin{equation*}
|F(z)|=o\left(|z|^{h+2}\right) \tag{2.17}
\end{equation*}
$$

as $r \rightarrow \infty$ for all $z=r e^{i \theta}$, where M_{2} is a positive number.
In view of (2.12) and (2.17), it is obvious that

$$
\begin{equation*}
\left|F\left(r e^{i \theta}\right)\right|=o\left(r^{h+2}\right) \tag{2.18}
\end{equation*}
$$

as $r \rightarrow \infty$ for each $\theta \in[0,2 \pi) \backslash\left(E \cup\left[\bigcup_{j=0}^{2 n-1}\left\{\frac{\theta_{n}}{n}+(2 j-1) \frac{\pi}{2 n}\right\}\right]\right)$, where M is a
positive integer.
The facts that the linear measure of $E \cup\left[\bigcup_{j=0}^{2 n-1}\left\{\frac{\theta_{n}}{n}+(2 j-1) \frac{\pi}{2 n}\right\}\right]$ equal to 0 and F is of finite order, together with (2.18) and Phragmén-Lindelöf theorem yield F is a polynomial. It is a contradiction.

3. Proof of Theorem $\mathbf{1}$

In the following, we prove Theorem 1 with the method of J. Grahl and Meng C. in [7].

Since normality is a local property, it is enough to show that \mathscr{F} is normal at each $z_{0} \in D$. We distinguish two cases.

CASE 1. $h\left(z_{0}\right) \neq 0$.

Then, there exists a disc (which we may assume to be Δ) contained in D, on which $\left\{f_{n}\right\}$ is not normal, $h(z) \neq 0$ and $|h(z)| \leq M>1$, where M is a positive number. Thus, $f_{n}=0$ implies that $\left|f_{n}^{\prime}\right|=|h| \leq M$.

Taking an appropriate subsequence of f_{n} and renumbering, we have, by Lemma 2.1 (with $\alpha=k=1$ and $A=M$), points $z_{n} \rightarrow z_{0}\left(\left|z_{n}\right|<r<1\right)$ and numbers $\rho_{n} \rightarrow 0$ such that

$$
\begin{equation*}
\frac{f_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}}=g_{n}(\zeta) \rightarrow g(\zeta) \tag{3.1}
\end{equation*}
$$

locally uniformly, where g is a nonconstant entire function on \mathbf{C} satisfying $\rho(g) \leq 1$ and

$$
g^{\sharp}(\zeta) \leq g^{\sharp}(0)=M+1 .
$$

We claim:

$$
g(\zeta)=0 \Rightarrow g^{\prime}(\zeta)=h\left(z_{0}\right), \quad g^{\prime}(\zeta)=h\left(z_{0}\right) \Rightarrow g^{(k)}(\zeta)=0
$$

From (3.1), it is easy to derive that

$$
\begin{equation*}
g_{n}^{\prime}(\zeta)=f_{n}^{\prime}\left(z_{n}+\rho_{n} \zeta\right) \rightarrow g^{\prime}(\zeta) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{n}^{(k)}(\zeta)=\rho_{n}^{k-1} f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta\right) \rightarrow g^{(k)}(\zeta) \tag{3.3}
\end{equation*}
$$

The (3.2) leads to

$$
\begin{equation*}
f_{n}^{\prime}\left(z_{n}+\rho_{n} \zeta\right)-h\left(z_{n}+\rho_{n} \zeta\right) \rightarrow g^{\prime}(\zeta)-h\left(z_{0}\right) \tag{3.4}
\end{equation*}
$$

Suppose that $g\left(a_{0}\right)=0$, then by Hurwitz's theorem, there exists a sequence $\left\{a_{n}\right\}$ such that $a_{n} \rightarrow a_{0}$ and (for n sufficiently large) $f_{n}\left(z_{n}+\rho_{n} a_{n}\right)=0$. With the assumption, we have $f_{n}^{\prime}\left(z_{n}+\rho_{n} a_{n}\right)=h\left(z_{n}+\rho_{n} a_{n}\right)$. Thus

$$
g^{\prime}\left(a_{0}\right)=\lim _{n \rightarrow \infty} f_{n}^{\prime}\left(z_{n}+\rho_{n} a_{n}\right)=\lim _{n \rightarrow \infty} h\left(z_{n}+\rho_{n} a_{n}\right)=h\left(z_{0}\right)
$$

which implies that $g(\zeta)=0 \Rightarrow g^{\prime}(\zeta)=h\left(z_{0}\right)$.
Now suppose that $g^{\prime}\left(b_{0}\right)=h\left(z_{0}\right)$. We assume that $g^{\prime}(z) \not \equiv h\left(z_{0}\right)$. Otherwise, $g(z)=h\left(z_{0}\right)(z-b), b$ is a constant. Therefore, $g^{\sharp}(z) \leq g^{\sharp}(0) \leq\left|h\left(z_{0}\right)\right|<$ $M+1$, a contradiction. Since $g^{\prime}\left(b_{0}\right)=h\left(z_{0}\right)$ and $g^{\prime} \not \equiv h\left(z_{0}\right)$, by Hurwitz's theorem and (3.4), there exist a sequence $\left\{b_{n}\right\}$ such that $b_{n} \rightarrow b_{0}$ and (for n sufficiently large)

$$
f_{n}^{\prime}\left(z_{n}+\rho_{n} b_{n}\right)-h\left(z_{n}+\rho_{n} b_{n}\right)=0 .
$$

Furthermore, with (3.3) we deduce that

$$
g^{(k)}\left(b_{0}\right)=\lim _{n \rightarrow \infty} \rho_{n}^{k-1} f_{n}^{(k)}\left(z_{n}+\rho_{n} b_{n}\right)=0
$$

Thus, we have shown that $g^{\prime}(z)=h\left(z_{0}\right) \Rightarrow g^{(k)}(z)=0$. This completes the proof of the claim.

By Lemma 2.2 and the claim, we obtain $g(z)=h\left(z_{0}\right)\left(z-b_{1}\right)$, where b_{1} is a constant. But, we have $g^{\sharp}(0) \leq\left|h\left(z_{0}\right)\right|<M+1$, a contradiction.

CASE 2. $h\left(z_{0}\right)=0$.
Since $h(z) \not \equiv 0$, there exists a r such that $h(z) \neq 0$ in $D^{\prime}\left(z_{0}, r\right)=\{z: 0<$ $\left.\left|z-z_{0}\right|<r\right\}$. Then, Case 1 implies that \mathscr{F} is normal in $D^{\prime}\left(z_{0}, r\right)$. Then for any sequence $\left\{f_{n}\right\} \subset \mathscr{F}$, there exist a subsequence $\left\{f_{n, j}\right\}$ such that $\left\{f_{n, j}\right\}$ converges locally uniformly to a function H in $D^{\prime}\left(z_{0}, r\right)$, where H is either holomorphic or identically infinite in $D^{\prime}\left(z_{0}, r\right)$.

Case 2.1. H is holomorphic in $D^{\prime}\left(z_{0}, r\right)$.
Then there exists a positive number M_{1} such that $|H(z)| \leq M_{1}$ on $\left|z-z_{0}\right|=$ $r / 2$. It follows that $\left|f_{n, j}(z)\right| \leq 2 M_{1}$ on $\left|z-z_{0}\right|=r / 2$ for large j. By the maximum principle, we have $\left|f_{n, j}(z)\right| \leq 2 M_{1}$ in $D\left(z_{0}, r / 2\right)=\left\{z:\left|z-z_{0}\right| \leq\right.$ $r / 2\}$. Then H is bounded in $D\left(z_{0}, r / 2\right)$, and H extends to be holomorphic in $D\left(z_{0}, r / 2\right)$. Again by the maximum principle, we get $f_{n, j}(z) \rightarrow H(z)$ in $D\left(z_{0}, r / 2\right)$.

CASE 2.2. $H \equiv \infty$.
Note that $f_{n, j}(z) \rightarrow \infty$ on $\Gamma:=\left\{z:\left|z-z_{0}\right|=r / 2\right\}$. Thus we have (for sufficiently large n)

$$
\begin{equation*}
\left|\int_{\Gamma} \frac{h(z)}{f_{n, j}(z)} d z\right| \leq \pi . \tag{3.5}
\end{equation*}
$$

We know

$$
\frac{f_{n, j}^{\prime}-h(z)}{f_{n, j}}
$$

is holomorphic in $D\left(z_{0}, r\right)$. Thus by Cauchy's Theorem, we have

$$
\begin{equation*}
\int_{\Gamma} \frac{f_{n, j}^{\prime}(z)-h(z)}{f_{n, j}(z)} d z=0 \tag{3.6}
\end{equation*}
$$

By $n\left(\Gamma, f_{n, j}\right)$ we denote the number of zeros of $f_{n, j}$ in $D_{2}=\left\{z:\left|z-z_{0}\right|<\right.$ $r / 2\}$ counting multiplicities. By the argument principle (3.5) and (3.6) (for sufficiently large n), we get

$$
n\left(\Gamma, f_{n, j}\right)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f_{n, j}^{\prime}(z)}{f_{n, j}(z)} d z=\frac{1}{2 \pi}\left|\int_{\Gamma} \frac{h(z)}{f_{n, j}(z)} d z\right| \leq \frac{1}{2}
$$

hence

$$
n\left(\Gamma, f_{n, j}\right)=0 .
$$

So $f_{n, j}$ has no zeros in $D\left(z_{0}, r / 2\right)$. Thus, $\frac{1}{f_{n, j}}$ is holomorphic and $\frac{1}{f_{n, j}} \rightarrow 0$ on $D^{\prime}\left(z_{0}, r / 2\right)$. Similarly as Case 2.1 , we can get $f_{n, j}(z) \rightarrow \infty$ in $D\left(z_{0}, r / 2\right)$.

From the above discussion, we get \mathscr{F} is normal at z_{0}. Hence, we complete the proof of the Theorem 1 .

4. Proof of Theorem 2

From the assumption of Theorem 2, for each $f \in \mathscr{F}$ we have

$$
f(z)=z \Rightarrow f^{\prime}(z)=z, \quad f^{\prime}(z)=z \Rightarrow f^{\prime \prime}(z)=z
$$

Let $F=f(z)-z$, then

$$
F(z)=0 \Rightarrow F^{\prime}(z)=z-1, \quad F^{\prime}(z)=z-1 \Rightarrow F^{\prime \prime}(z)=z
$$

Suppose that a_{0} is a zero of $F(z)$.
If $a_{0} \neq 1$, then a_{0} is a simple zero of $F(z)$. Suppose that $G=F^{\prime}-(z-1)$, then a_{0} is also a zero of $G(z)$.

If $a_{0}=1$, then $F^{\prime}\left(a_{0}\right)=a_{0}-1=0$ and $F^{\prime \prime}\left(a_{0}\right)=a_{0}=1$, which indicates that a_{0} is a zero of $F(z)$ with multiplicity 2 . Note that $G\left(a_{0}\right)=0$ and $G^{\prime}\left(a_{0}\right)=$ $F^{\prime \prime}\left(a_{0}\right)-1=0$, we know that a_{0} is a zero of $G(z)$ with multiplicity at least 2 .

By the above discussion, we obtain

$$
\frac{G(z)}{F(z)}=\frac{F^{\prime}-(z-1)}{F(z)}
$$

is holomorphic in D. Thus, the family $\mathscr{G}=\{F: F=f-z, f \in \mathscr{F}\}$ satisfies the conditions of Theorem 1. By Theorem 1, we get \mathscr{G} is normal in D. Hence \mathscr{F} is normal in D. This completes the proof of Theorem 2.

5. Proof of Theorem 3

We consider the function $F=\frac{f}{z}$.
Case 1. F has bounded spherical derivative.
Then by Lemma 2.3, F has finite order. Hence $f=F z$ has finite order as well.

Let $h=f-z$, then h has finite order and

$$
\begin{equation*}
h=0 \Rightarrow h^{\prime}=z-1, \quad h^{\prime}=z-1 \Rightarrow h^{\prime \prime}=z . \tag{5.1}
\end{equation*}
$$

Set

$$
\begin{equation*}
\mu=\frac{z h^{\prime}-(z-1) h^{\prime \prime}}{h} \tag{5.2}
\end{equation*}
$$

Suppose that $\mu \equiv 0$, then $z h^{\prime}=(z-1) h^{\prime \prime}$. Integrating the differential equation yields

$$
\begin{equation*}
h^{\prime}=A(z-1) e^{z} \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
h=A(z-2) e^{z}+B \tag{5.4}
\end{equation*}
$$

where $A \neq 0$ and B are two constants. With (5.1), (5.3) and (5.4), it is not different to obtain a contradiction. Thus, $\mu \not \equiv 0$.

Now, we consider the equation (5.2). It is easy to see that

$$
\begin{align*}
m(r, \mu) & =m\left(r, \frac{z h^{\prime}-(z-1) h^{\prime \prime}}{h}\right) \tag{5.5}\\
& \leq m\left(r, \frac{z h^{\prime}}{h}\right)+m\left(r, \frac{(z-1) h^{\prime \prime}}{h}\right)+O(1) \leq O(\log r)
\end{align*}
$$

Next we discuss the poles of μ. From (5.1) we obtain h has at most one zero which is multiple, at $z=1$. And the points which are the simple zeros of h are not poles of μ. Then we derive that

$$
\begin{equation*}
N(r, \mu)=N\left(r, \frac{z h^{\prime}-(z-1) h^{\prime \prime}}{h}\right) \leq O(\log r) . \tag{5.6}
\end{equation*}
$$

Combining (5.5) and (5.6) yields

$$
T(r, \mu)=m(r, \mu)+N(r, \mu)=O(\log r)
$$

which implies that μ is a rational function.
We denote by $N\left(r, h^{\prime}-(z-1) ; h \neq 0\right)$ the counting function of those 0 points of $h^{\prime}-(z-1)$, counted according to multiplicity, which are not the 0 points of h. Because of μ is a rational function we get $N\left(r, \frac{1}{\mu}\right)=O(\log r)$.
Furthermore, we have

$$
\begin{equation*}
N\left(r, h^{\prime}-(z-1) ; h \neq 0\right) \leq N\left(r, \frac{1}{\mu}\right)+O(\log r)=O(\log r) \tag{5.7}
\end{equation*}
$$

Put

$$
\begin{equation*}
\phi=\frac{h^{\prime}-(z-1)}{h} . \tag{5.8}
\end{equation*}
$$

Suppose that $\phi \equiv 0$, then $h^{\prime}(z)=z-1$. But from (5.1) we know that $h^{\prime}(z)=$ $z-1$ implies $h^{\prime \prime}=z$, and this is a contradiction. Thus, $\phi \not \equiv 0$. In the following, we discuss the zeros and poles of ϕ.

We know h has at most one multiple zero.
If $z=1$ is not a zero of h, then h has only simple zeros. Thus, ϕ does not has poles and ϕ is an entire function.

If $z=1$ is a zero of h, then $h^{\prime}(1)=z-1=0$ and $h^{\prime \prime}(1)=1$. Thus, $z=1$ is a zero of h with multiplicity 2 . Meanwhile, $z=1$ is a zero of $h^{\prime}-(z-1)$. So, $h^{\prime \prime}(1)-1=0$, which implies that $z=1$ is a zero of $h^{\prime}-(z-1)$ with multiplicity at least 2. It also yields that ϕ is an entire function.

Thus, we deduce that ϕ is an entire function. From (5.1) we obtain $h^{\prime}-(z-1)$ has at most one multiple zero at $z=1$. It follows from (5.7) and (5.8) that $N\left(r, \frac{1}{\phi}\right)=O(\log r)$ and ϕ has only finitely many zeros. Hence we
can assume that

$$
\phi=P(z) e^{Q(z)}
$$

where $P(z) \not \equiv 0$ and $Q(z)$ are two polynomials. From (5.8), we have

$$
\begin{equation*}
h^{\prime}-P(z) e^{Q(z)} h=z-1 \tag{5.9}
\end{equation*}
$$

Noting that h is of finite order, by Lemma 2.6, we can easily deduce that $Q(z)=C$, a constant. Let $P_{1}(z)=e^{C} P(z)$. Rewriting (5.9) as

$$
\begin{equation*}
h^{\prime}-P_{1}(z) h=z-1 \tag{5.10}
\end{equation*}
$$

Now, we discuss the equation (5.10) by considering two subcases.
CASE 1.1. h has infinite many zeros.
Let $\left\{z_{n}\right\}_{n=1}^{\infty}$ be a sequence of complex numbers with $h\left(z_{n}\right)=0$ and $\left|z_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$. It is clear from (5.1) that

$$
h^{\prime}\left(z_{n}\right)=z_{n}-1 \quad \text { and } \quad h^{\prime \prime}\left(z_{n}\right)=z_{n}
$$

By differentiating both sides of Eq. (5.10), we have

$$
\begin{equation*}
h^{\prime \prime}-P_{1}^{\prime}(z) h-P_{1}(z) h^{\prime}=1 \tag{5.11}
\end{equation*}
$$

Substitute z_{n} into Eq. (5.11) yields

$$
\begin{equation*}
z_{n}-P_{1}\left(z_{n}\right)\left(z_{n}-1\right) \equiv 1 \tag{5.12}
\end{equation*}
$$

If $\operatorname{deg}\left(P_{1}(z)\right) \geq 1$, the left side of Eq. (5.12) $z_{n}-P_{1}\left(z_{n}\right)\left(z_{n}-1\right) \rightarrow \infty$ as $n \rightarrow \infty$, this is a contradiction. Thus, $P_{1}(z)$ is a constant. Again by (5.12), we obtain $P_{1}=1$. Then we have

$$
\begin{equation*}
h^{\prime}-h=z-1 \tag{5.13}
\end{equation*}
$$

which implies that $f \equiv f^{\prime}$.
CASE 1.2. h has finitely many zeros.
Then we can set $h(z)=P_{2}(z) e^{Q_{2}(z)}$, where $P_{2}(z)$ and $Q_{2}(z)$ are two polynomials. Substituting h into Eq. (5.10) yields that

$$
\begin{equation*}
\left[P_{2}^{\prime}+P_{2} Q_{2}^{\prime}-P_{1} P_{2}\right] e^{Q_{2}(z)}=z-1 \tag{5.14}
\end{equation*}
$$

From the above equation, it is obvious that $Q_{2}(z)$ is a constant and h is a polynomial. Let $Q_{2}=C_{1}$. Rewriting (5.14) as $e^{C_{1}}\left(P_{2}^{\prime}-P_{1} P_{2}\right)=z-1$. Thus,

$$
\operatorname{deg}\left(P_{2}^{\prime}-P_{1} P_{2}\right)=1
$$

Suppose $\operatorname{deg}\left(P_{1}\right) \geq 1$, then P_{2} is a constant and h is a constant, which is a contradiction. Thus, $\operatorname{deg}\left(P_{1}\right)=0$ and P_{1} is a constant. Again by $\operatorname{deg}\left(P_{2}^{\prime}-P_{1} P_{2}\right)$
$=1$, we derive that $\operatorname{deg} P_{2}=1$. Thus, $\operatorname{deg} h=1$. Furthermore, we can assume that $h(z)=A_{2}\left(z-B_{2}\right)$, where $A_{2} \neq 0, B_{2}$ are two constants. By (5.1), it is not difficult that $A_{2}=-1$ and $B_{2}=0$. Thus, $h(z)=-z$ and $f \equiv 0$, which is a contradiction. Hence, we finish the proof of Case 1.

CASE 2. F has unbounded spherical derivative.
Next, with a similar way in [7], we will prove this case cannot occur.
From the assumption of Case 2, there exists a sequence $\left(w_{n}\right)_{n}$ such that $\lim _{n \rightarrow \infty} F^{\sharp}\left(w_{n}\right)=\infty$. Since F^{\sharp} is continuous and bounded in every compact set, so $w_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Let $D=\{z:|z| \geq 1\}$, then F is analytic in D. We may assume $\left|w_{n}\right| \geq 2$ for all n. We define $D_{1}=\{z:|z|<1\}$ and

$$
F_{n}(z)=F\left(w_{n}+z\right) .
$$

Then all $F_{n}(z)$ are analytic in D_{1} and $F_{n}^{\sharp}(0)=F^{\sharp}\left(w_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$. It follows from Marty's criterion that $\left(F_{n}\right)_{n}$ is not normal at $z=0$.

Assume that $F_{n}\left(z_{0}\right)=1$ for some $z_{0} \in D_{1}$. Then for n large enough, we have

$$
\left|F_{n}^{\prime}\left(z_{0}\right)\right|=\left|\frac{f^{\prime}\left(w_{n}+z_{0}\right)}{w_{n}+z_{0}}-\frac{f\left(w_{n}+z_{0}\right)}{\left(w_{n}+z_{0}\right)^{2}}\right|=\left|1-\frac{1}{w_{n}+z_{0}}\right| \leq 2 .
$$

Therefore, we can apply Lemma 2.1 with $\alpha=1$. Choosing an appropriate subsequence of $\left(F_{n}\right)_{n}$ if necessary, we may assume that there exist sequence $\left(z_{n}\right)_{n} \in D_{1}$ and $\left(\rho_{n}\right)_{n}$ such that $z_{n} \rightarrow 0, \rho_{n} \rightarrow 0$ and

$$
\begin{equation*}
g_{n}(\zeta)=\rho_{n}^{-1}\left(F_{n}\left(z_{n}+\rho_{n} \zeta\right)-1\right)=\rho_{n}^{-1}\left(\frac{f\left(w_{n}+z_{n}+\rho_{n} \zeta\right)}{w_{n}+z_{n}+\rho_{n} \zeta}-1\right) \rightarrow g(\zeta) \tag{5.15}
\end{equation*}
$$

locally uniformly in \mathbf{C} with g is a nonconstant entire function. We also have $g^{\sharp}(\zeta) \leq g^{\sharp}(0)=3$ for all $\zeta \in \mathbf{C}$ and $\rho(g) \leq 1$. We claim that

$$
g=0 \Rightarrow g^{\prime}=1, \quad g^{\prime}=1 \Rightarrow g^{\prime \prime}=0 .
$$

From (5.15), we deduce that

$$
\begin{equation*}
G_{n}(\zeta)=\frac{f^{\prime}\left(w_{n}+z_{n}+\rho_{n} \zeta\right)}{w_{n}+z_{n}+\rho_{n} \zeta}=g_{n}^{\prime}(\xi)+\frac{\rho_{n} g_{n}(\zeta)+1}{w_{n}+z_{n}+\rho_{n} \zeta} \rightarrow g^{\prime}(\zeta) \tag{5.16}
\end{equation*}
$$

locally uniformly in \mathbf{C}.
Suppose that $g\left(\zeta_{0}\right)=0$. Then by Hurwitz's theorem, there exist a sequence $\left\{\zeta_{n}\right\}$ such that $\zeta_{n} \rightarrow \zeta_{0}$ and (for n sufficiently large)

$$
g_{n}\left(\zeta_{n}\right)=\rho_{n}^{-1}\left(F_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)-1\right)=0 .
$$

Thus $F_{n}\left(z_{n}+\rho_{n} \zeta_{n}\right)=1$ and $f\left(w_{n}+z_{n}+\rho_{n} \zeta_{n}\right)=w_{n}+z_{n}+\rho_{n} \zeta_{n}$. It follows from the assumption that

$$
\frac{f^{\prime}\left(w_{n}+z_{n}+\rho_{n} \zeta_{n}\right)}{w_{n}+z_{n}+\rho_{n} \zeta_{n}}=1 .
$$

Thus, by (5.16) we derive that

$$
g^{\prime}\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} \frac{f^{\prime}\left(w_{n}+z_{n}+\rho_{n} \zeta_{n}\right)}{w_{n}+z_{n}+\rho_{n} \zeta_{n}}=1
$$

which implies that $g(\zeta)=0 \Rightarrow g^{\prime}(\zeta)=1$. Next we prove $g^{\prime}(\zeta)=1 \Rightarrow g^{\prime \prime}(\zeta)=$ 0 . Again by (5.16), we obtain

$$
\begin{equation*}
\rho_{n} \frac{f^{\prime \prime}\left(w_{n}+z_{n}+\rho_{n} \zeta\right)}{w_{n}+z_{n}+\rho_{n} \zeta}=G_{n}^{\prime}(\zeta)+\rho_{n} \frac{G_{n}(\zeta)}{w_{n}+z_{n}+\rho_{n} \zeta} \rightarrow g^{\prime \prime}(\zeta) . \tag{5.17}
\end{equation*}
$$

Suppose that $g^{\prime}\left(\eta_{0}\right)=1$. Obviously $g^{\prime} \not \equiv 1$, for otherwise $g^{\sharp}(0) \leq g^{\prime}(0)=1<3$, which is a contradiction. Again by Hurwitz's theorem, there exist a sequence $\left\{\eta_{n}\right\}, \eta_{n} \rightarrow \eta_{0}$ and (for n sufficiently large)

$$
\frac{f^{\prime}\left(w_{n}+z_{n}+\rho_{n} \eta_{n}\right)}{w_{n}+z_{n}+\rho_{n} \eta_{n}}=1 .
$$

Thus $f^{\prime}\left(w_{n}+z_{n}+\rho_{n} \eta_{n}\right)=w_{n}+z_{n}+\rho_{n} \eta_{n}$. By the assumption, we have $f^{\prime \prime}\left(w_{n}+\right.$ $\left.z_{n}+\rho_{n} \eta_{n}\right)=w_{n}+z_{n}+\rho_{n} \eta_{n}$. Then

$$
g^{\prime \prime}\left(\eta_{0}\right)=\lim _{n \rightarrow \infty} \rho_{n} \frac{f^{\prime \prime}\left(w_{n}+z_{n}+\rho_{n} \eta_{n}\right)}{w_{n}+z_{n}+\rho_{n} \eta_{n}}=\lim _{n \rightarrow \infty} \rho_{n}=0
$$

Thus we prove the claim. By Lemma 2.2 an the claim, we get $g=\zeta-b$, where b is a constant. Thus we have $g^{\sharp}(0) \leq 1<3$, a contradiction. So the case cannot occur.

Hence, we complete the proof of Theorem 3.
For further study, we propose the following questions.
Question 1. Let $f(z)$ be a nonconstant entire function and $k \geq 2$ be a positive integer. If

$$
f(z)=z \Rightarrow f^{\prime}(z)=z, \quad f^{\prime}(z)=z \Rightarrow f^{(k)}(z)=z
$$

what will happen?
Question 2. Let $f(z)$ be a nonconstant entire function and $Q(z)$ be a nonzero polynomial. If

$$
f(z)=Q(z) \Rightarrow f^{\prime}(z)=Q(z), \quad f^{\prime}(z)=Q(z) \Rightarrow f^{\prime \prime}(z)=Q(z)
$$

what will happen?
Acknowledgment. The authors owe many thanks to the referee for valuable comments and suggestions made to the present paper.

References

[1] J. M. Chang and M. L. Fang, Uniqueness of entire functions and fixed points, kodai Math. J. 25 (2002), 309-320.
[2] J. M. Chang and M. L. Fang, Normality and ahared functions of holomorphic functions and their derivatives, Michigan Math. J. 53 (2005), 625-645.
[3] J. M. Chang, M. L. Fang and L. Zalcman, Normal families of holomorphic functions, Illinois J. Math. 48 (2004), 319-337.
[4] Z. X. Chen and Z. L. Zhang, Entire functions sharing fixed points with their higher order derivatives, Acta Mathmatic Sinica. (Chinese Series) 50 (2007), 1213-1222.
[5] J. Clunie and W. K. Hayman, The spherical derivative of integral and meromorphic functions, Comment. Math. Helv. 40 (1966), 117-148.
[6] G. G. Gundersen, Estimates for the logarithmic derivative of meromorphic function, plus similar estimate, J. London Math. Soc. 37 (1988), 88-104.
[7] J. Grahl and C. Meng, Entire functions sharing a polynomial with their derivatives and normal families, Analysis. 28 (2008), 51-61.
[8] A. I. Markushevich, Theory of functions of a complex variable, translated by R. A. Silverman, New York, 1977.
[9] X. Pang and L. Zalcman, Normal families and shared values, Bull. London Math. Soc. 32 (2000), 325-331.
[10] J. Schiff, Normal families, Springer, 1993.
[11] J. P. Wang and H. X. Yi, Entire functions that have the same fixed points with their first derivatives, J. Math. Anal. Appl. 290 (2004), 235-246.
[12] H. X. Yi and C. C. Yang, Uniqueness theory of meromorphic functions, Science Press, Beijing, 1995.
[13] G. M. Zhang, W. Sun and X. C. Pang, On the normality of certain kind function, China. Ann. Math. 26A (2005), 765-770.
[14] L. Zalcman, Normal families: new perspectives, Bull. Amer. Math. Soc., New Ser. 35 (1998), 215-230.

Feng Lü
Department of Mathematics
China University of Petroleum
Dongying, Shandong, 257061
P.R. China

E-mail: lvfeng18@gmail.com
Kai Liu
Department of Mathematics
Nanchang University
NANCHANG 330031
P.R. China

E-mail: liuk@mail.sdu.edu.cn
Hongxun Yi
Department of Mathematics
Shandong University
Jinan 250100
P.R. China

E-mail: hxyi@sdu.edu.cn

[^0]: Keywords: Entire functions, Uniqueness, Nevanlinna theory, Normal family, Differential equation.

 2000 MR subject classification: 30D35; 30D45.
 Received September 2, 2008; revised November 24, 2009.

