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Abstract

Based on the semantic concepts developed by M. Dunn and N. Belnap,
a four-valued language containing only two logical symbols is proposed. We
show that this language is functionally complete with regard to the given
semantics. Specifically, we prove that every truth-function is expressed by
a formula of the language. To do this, we define two concepts akin to the
disjunctive and conjunctive normal forms. Using these concepts, we estab-
lish that every truth-function for a four-valued semantics can be represented
by a formula in a disjunctive form or in a conjunctive form.

1 Introduction

The functional completeness of four-valued languages is a well known topic that
has been extensively discussed. However, it appears that some results have yet
to be shown. In particular, the fact that two logical connectives are enough to
define a functionally complete four-valued language does not seem to have been
proven.

Using the semantic concepts developed by M. Dunn (see [3]) and N. Belnap
(see [2]), this article intends to show that a four-valued language containing only
one unary logical symbol and one binary logical symbol is expressive enough to
represent any truth-function. In other words, we show that such a language is
functionally complete with regard to the four-valued semantics described here-
after.
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Although the functional completeness of the set of connectives that we have
identified can be verified on the basis of previous results, especially those
obtained by R. Muskens (see [5]) and A. Avron (see [1]), we provide here an origi-
nal and self-contained proof of this result. This proof consists in showing that any
function defined on a set of four values, regarded as subsets of the set of classical
truth-values (see [6]), can be represented by a formula having a structure akin to
the disjunctive and conjunctive normal forms.

In short, the aim of this paper is twofold. It consists, firstly, in showing that
two logical connectives are enough to define a functionally complete four-valued
language and, secondly, in proposing a disjunctive normal form and a conjunc-
tive normal form suitable for the four-valued semantics.

2 Language and semantics

A language L is composed of a countable set of propositional symbols plus the
unary logical symbol − and the binary logical symbol ⊖. As for the syntax, the
concept of formula is defined inductively in the usual way.

Four values are identified using the two classical truth-values 1 and 0, where 1
denotes the truth-value truth and 0 denotes the truth-value falsehood. Assuming
that truth and falsehood are neither exhaustive nor exclusive, four values are
defined in terms of sets of truth-values: b = {0, 1} (which stands for ‘both true
and false’), t = {1} (which stands for ‘true’), f = {0} (which stands for ‘false’),
and n = ∅ (which stands for ‘neither true nor false’). Also, the structure of these
values is given by the lattice formed by the power set of {0, 1} under the partial
ordering by inclusion.
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A model M for a language L is a function from the set of propositional symbols
of L to the power set of {0, 1}. The value assigned to a propositional symbol P in
the model M is denoted by M[P]. This definition is extended inductively to all
formulas of the language as follows:

1 ∈ M[− A] if and only if 0 /∈ M[A]
0 ∈ M[− A] if and only if 1 /∈ M[A]
1 ∈ M[(A ⊖ B)] if and only if 1 ∈ M[A] or 1 ∈ M[B]
0 ∈ M[(A ⊖ B)] if and only if 0 /∈ M[A] and 0 /∈ M[B]
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The unary logical symbol − is interpreted as a dualisation connective that in-
verts truth and non-falsehood on the one hand and falsehood and non-truth on
the other hand. In this way, this logical connective corresponding to what M. Fit-
ting calls conflation (see [4]) highlights the symmetry between the approaches
dealing with truth-value gaps and those dealing with truth-value gluts. As for
the binary logical symbol, it will be called alternative disjunction and denoted ⊖.
Its semantic interpretation can be regarded as a combination of two well-known
classical connectives, namely the inclusive disjunction (with regard to the defini-
tion of truth) and the Sheffer stroke (with regard to the definition of falsehood).
The truth tables for − and ⊖ are as follows:

−
t t
f f
n b
b n

⊖ t f n b
t b t b t
f t n n t
n b n f t
b t t t t

To simplify the notation, some abbreviations are introduced. Through the
semantic interpretation of the logical symbols, it is easy to verify the following
properties for these abbreviations:

¬A =de f (−(A ⊖ A)⊖−(A ⊖ A))

1 ∈ M[¬A] if and only if 0 ∈ M[A]

0 ∈ M[¬A] if and only if 1 ∈ M[A]

⊳ A =de f (A ⊖ A)

1 ∈ M[⊳ A] if and only if 1 ∈ M[A]

0 ∈ M[⊳ A] if and only if 0 /∈ M[A]

⊲ A =de f −(− A ⊖− A)

1 ∈ M[⊲ A] if and only if 1 /∈ M[A]

0 ∈ M[⊲ A] if and only if 0 ∈ M[A]

(A ∨ B) =de f ((A ⊖ A)⊖ (B ⊖ B))

1 ∈ M[(A ∨ B)] if and only if 1 ∈ M[A] or 1 ∈ M[B]

0 ∈ M[(A ∨ B)] if and only if 0 ∈ M[A] and 0 ∈ M[B]

(A ∧ B) =de f ¬(¬A ∨ ¬B)

1 ∈ M[(A ∧ B)] if and only if 1 ∈ M[A] and 1 ∈ M[B]

0 ∈ M[(A ∧ B)] if and only if 0 ∈ M[A] or 0 ∈ M[B]
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◦ A =de f (A ∧− A)

1 ∈ M[◦ A] if and only if 1 ∈ M[A] and 0 /∈ M[A]

0 ∈ M[◦ A] if and only if 1 /∈ M[A] or 0 ∈ M[A]

• A =de f (A ∨− A)

1 ∈ M[• A] if and only if 1 ∈ M[A] or 0 /∈ M[A]

0 ∈ M[• A] if and only if 1 /∈ M[A] and 0 ∈ M[A]

(A @ B) =de f ((A ∨ ⊳ A) ∧ (B ∨ ⊲ B))

1 ∈ M[(A @ B)] if and only if 1 ∈ M[A]

0 ∈ M[(A @ B)] if and only if 0 ∈ M[B]

These properties are reflected in the following truth tables:

¬
t f
f t
n n
b b

⊳

t b
f n
n f
b t

⊲

t n
f b
n t
b f

◦
t t
f f
n f
b f

•
t t
f f
n t
b t

∨ t f n b
t t t t t
f t f n b
n t n n t
b t b t b

∧ t f n b
t t f n b
f f f f f
n n f n f
b b f f b

@ t f n b
t t b t b
f n f n f
n n f n f
b t b t b

The abbreviations denoted by ¬A, (A ∨ B), and (A ∧ B) correspond respec-
tively to the notions of negation, disjunction, and conjunction as defined in Dunn-
Belnap’s four-valued logic (see [3] and [2]). Abbreviations ⊳ A and ⊲ A can be
thought of as reflecting a swap between what N. Belnap calls the approximation
lattice and the logical lattice (see [2]). The expression ⊳ A is both true and false
if and only if A is (only) true, and it is neither true nor false if and only if A is
(only) false. On the other hand, the expression ⊲ A is neither true nor false if and
only if A is (only) true, and it is both true and false if and only if A is (only) false.
As for the abbreviations ◦ A and • A, their value is always either t or f . More
precisely, ◦ A is assigned the value t if A is both true and not false (one could
say ‘when A is strongly acceptable’), otherwise its value is f . Symmetrically, • A
is assigned the value t if A is either true or not false (one could say ‘when A is
weakly acceptable’), otherwise its value is f . Finally, the last abbreviation (A @ B)
is particularly useful and plays a crucial role in the definition of the adapted dis-
junctive and conjunctive normal forms (see [5] for a similar use). Indeed, the truth
of this expression is only determined by the truth of A and its falsehood is only
determined by the falsehood of B. In this way, this abbreviation will allow us to
deal with the truth and falsehood of a formula separately.
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3 Functional completeness

Let g : {t, f , n, b}n → {t, f , n, b} be an n-ary truth-function and let A be a formula
of a language L in which exactly the propositional symbols P1, . . . , Pn occur. Then,
g is expressed by A if g(M[P1], . . . ,M[Pn]) = M[A], for every model M for L. A
language L is functionally complete if every n-ary truth-function is expressed by a
formula of L.

Theorem 1. For every n-ary truth-function g, there is a formula in a disjunctive normal
form Aδ of L such that g is expressed by Aδ.

Proof. Let P1, . . . , Pn be a finite sequence of distinct propositional symbols of a lan-
guage L and let L(P1, . . . , Pn) denote the sublanguage of L whose propositional
symbols are exactly those occurring in the sequence. Also, let g : {t, f , n, b}n →
{t, f , n, b} be an n-ary truth-function.

The proof amounts to showing that there exists a formula Aδ of L such that P1,
. . . , Pn are exactly the atomic formulas occurring in Aδ and such that M[Aδ] =
g(M[P1], . . . ,M[Pn]), for every model M for L(P1, . . . , Pn). To do this, let us
define such a formula Aδ and show that it satisfies the desired property.

Given that there are 4n models for L(P1, . . . , Pn), denoted M1, . . . ,M4n , the
formula Aδ is defined as follows. For every i such that 1 ≤ i ≤ 4n, let Ci be the
formula ◦(Pi

1 ∧ · · · ∧ Pi
n) where, for all j such that 1 ≤ j ≤ n:

Pi
j is the formula Pj if and only if Mi[Pj] = t

Pi
j is the formula ¬Pj if and only if Mi[Pj] = f

Pi
j is the formula ⊲ Pj if and only if Mi[Pj] = n

Pi
j is the formula ⊳ Pj if and only if Mi[Pj] = b

The formula Aδ is defined as the formula (D1 @ D2) where D1 is the dis-
junction of the Ci formulas such that 1 ∈ g(Mi[P1], . . . ,Mi[Pn]) (i.e. such that
g(Mi[P1], . . . ,Mi[Pn]) equals either t or b) and where D2 is the disjunction of the
Ci formulas such that 0 /∈ g(Mi[P1], . . . ,Mi[Pn]) (i.e. such that g(Mi[P1], . . . ,
Mi[Pn]) equals either t or n), for all i such that 1 ≤ i ≤ 4n.

If there is no model M for L(P1, . . . , Pn) such that g(M[P1], . . . ,M[Pn]) equals
either t or b, then D1 is equated to the formula ◦(P1 ∧ · · · ∧ Pn ∧¬Pn), and if there
is no model M for L(P1, . . . , Pn) such that g(M[P1], . . . ,M[Pn]) equals either t or
n, then D2 is equated to the formula ◦(P1 ∧ · · · ∧ Pn ∧ ¬Pn).

To verify that the truth-function g is indeed expressed by the formula Aδ, we
first show that 1 ∈ Mi[Ck] if and only if i = k and 0 ∈ Mi[Ck] if and only if i 6= k,
for all i and k such that 1 ≤ i, k ≤ 4n.

Suppose that i = k. Then, by the definition of the formula Ck, 1 ∈ Mi[P
k
j ] and

0 /∈ Mi[P
k
j ], for all j such that 1 ≤ j ≤ n. From the semantic definition of the

logical symbols, it follows that 1 ∈ Mi[Ck] and 0 /∈ Mi[Ck].
Suppose that i 6= k. Then, the formulas Ck and Ci differ in that there is a j such

that 1 ≤ j ≤ n and Pi
j is distinct from Pk

j . By inspecting the possible cases, it can

be shown that 1 /∈ Mi[Ck] and 0 ∈ Mi[Ck].
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We now prove that, for all i such that 1 ≤ i ≤ 4n, 1 ∈ Mi[D1] if and only if
g(Mi[P1], . . . ,Mi[Pn]) equals either t or b. A similar argument can be made to
establish that 0 ∈ Mi[D2] if and only if g(Mi[P1], . . . ,Mi[Pn]) equals either f or
b.

Suppose that Mi is a model such that g(Mi[P1], . . . ,Mi[Pn]) equals either t
or b. Then, by the definition of D1, the formula Ci is one of the disjuncts of D1.
From the foregoing result, it follows that 1 ∈ Mi[Ci]. Therefore, by the semantic
definition of the logical symbols, 1 ∈ Mi[D1].

Suppose that Mi is a model such that 1 ∈ Mi[D1]. Then, by the definition
of the formula D1 and the semantic definition of the logical symbols, there is a
formula Ck such that Ck is one of the disjuncts of D1 and 1 ∈ Mi[Ck], where 1 ≤
k ≤ 4n. From the foregoing result, it follows that i = k. In other words, this means
that Ci is a disjunct of D1. Hence, by the definition of D1, g(Mi[P1], . . . ,Mi[Pn])
equals either t or b.

Finally, we conclude the proof by observing that, for every model M for
L(P1, . . . , Pn), 1 ∈ g(M[P1], . . . ,M[Pn]) if and only if 1 ∈ M[D1] if and only
if 1 ∈ M[Aδ] on the one hand, and 0 ∈ g(M[P1], . . . ,M[Pn]) if and only if
0 ∈ M[D2] if and only if 0 ∈ M[Aδ] on the other hand.

Theorem 2. For every n-ary truth-function g, there is a formula in a conjunctive normal
form Aγ of L such that g is expressed by Aγ.

Proof. This proof is very similar to that of Theorem 1. Let L be a language and g
be an n-ary truth-function such that g : {t, f , n, b}n → {t, f , n, b}. Given that there
are 4n models for L(P1, . . . , Pn), denoted M1, . . . ,M4n , the formula Aγ is defined
as follows. For every i such that 1 ≤ i ≤ 4n, let Di be the formula •(Pi

1 ∨ · · · ∨ Pi
n)

where, for all j such that 1 ≤ j ≤ n:

Pi
j is the formula Pj if and only if Mi[Pj] = f

Pi
j is the formula ¬Pj if and only if Mi[Pj] = t

Pi
j is the formula ⊲ Pj if and only if Mi[Pj] = b

Pi
j is the formula ⊳ Pj if and only if Mi[Pj] = n

The formula Aγ is then defined as the formula (C1 @ C2) where C1 is the con-
junction of the Di formulas such that 1 /∈ g(Mi[P1], . . . ,Mi[Pn]) (i.e. such that
g(Mi[P1], . . . ,Mi[Pn]) equals either f or n) and where C2 is the conjunction of
the Di formulas such that 0 ∈ g(Mi[P1], . . . ,Mi[Pn]) (i.e. such that g(Mi[P1], . . . ,
Mi[Pn]) equals either f or b), for all i such that 1 ≤ i ≤ 4n.

If there is no model M for L(P1, . . . , Pn) such that g(M[P1], . . . ,M[Pn]) equals
either f or n, then C1 is equated to the formula •(P1 ∨ · · · ∨ Pn ∨¬Pn), and if there
is no model M for L(P1, . . . , Pn) such that g(M[P1], . . . ,M[Pn]) equals either
f or b, then C2 is equated to the formula •(P1 ∨ · · · ∨ Pn ∨ ¬Pn).

It can be verified that the truth-function g is expressed by the formula Aγ as
follows. We first show that 1 ∈ Mi[Dk] if and only if i 6= k and 0 ∈ Mi[Dk] if
and only if i = k, for all i and k such that 1 ≤ i, k ≤ 4n. Then, we prove that, for
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all i such that 1 ≤ i ≤ 4n, 1 ∈ Mi[C1] if and only if g(Mi[P1], . . . ,Mi[Pn]) equals
either t or b and that 0 ∈ Mi[C2] if and only if g(Mi[P1], . . . ,Mi[Pn]) equals
either f or b. The desired result follows from the definition of Aγ.

It is worth noting that Theorem 2 can be deduced from Theorem 1 by using the
fact that M[¬(A @ B)] = M[(¬B @ ¬A)], for every model M for L. However,
such a proof is not as straightforward as in classical logic and provides no real
insight into the concept of conjunctive normal form.

4 Sheffer stroke and Peirce arrow

Alternative disjunction actually belongs to a family of eight binary connectives,
denoted ♯i (1 ≤ i ≤ 8), whose semantic interpretation can be obtained by com-
bining those of the inclusive disjunction and the Sheffer stroke, or those of the
conjunction and the Peirce arrow.

Let L′ be the extension of a language L by these logical symbols (where ♯3 is
equated with ⊖) and the unary logical symbol ¬ (which is taken as primitive).
The definition of model is extended inductively to all formulas of L′ as follows:

1 ∈ M[(A ♯1 B)] if and only if 1 ∈ M[A] and 1 ∈ M[B]
0 ∈ M[(A ♯1 B)] if and only if 0 /∈ M[A] or 0 /∈ M[B]
1 ∈ M[(A ♯2 B)] if and only if 0 ∈ M[A] and 0 ∈ M[B]
0 ∈ M[(A ♯2 B)] if and only if 1 /∈ M[A] or 1 /∈ M[B]
1 ∈ M[(A ♯3 B)] if and only if 1 ∈ M[A] or 1 ∈ M[B]
0 ∈ M[(A ♯3 B)] if and only if 0 /∈ M[A] and 0 /∈ M[B]
1 ∈ M[(A ♯4 B)] if and only if 0 ∈ M[A] or 0 ∈ M[B]
0 ∈ M[(A ♯4 B)] if and only if 1 /∈ M[A] and 1 /∈ M[B]
1 ∈ M[(A ♯5 B)] if and only if 1 /∈ M[A] and 1 /∈ M[B]
0 ∈ M[(A ♯5 B)] if and only if 0 ∈ M[A] or 0 ∈ M[B]
1 ∈ M[(A ♯6 B)] if and only if 0 /∈ M[A] and 0 /∈ M[B]
0 ∈ M[(A ♯6 B)] if and only if 1 ∈ M[A] or 1 ∈ M[B]
1 ∈ M[(A ♯7 B)] if and only if 1 /∈ M[A] or 1 /∈ M[B]
0 ∈ M[(A ♯7 B)] if and only if 0 ∈ M[A] and 0 ∈ M[B]
1 ∈ M[(A ♯8 B)] if and only if 0 /∈ M[A] or 0 /∈ M[B]
0 ∈ M[(A ♯8 B)] if and only if 1 ∈ M[A] and 1 ∈ M[B]

The idea behind the connectives ♯3, ♯4, ♯7, and ♯8 is that they result from com-
binations of the dual version of the disjunction and the Sheffer stroke, or the dis-
junction and the dual version of the Sheffer stroke. On the other hand, the con-
nectives ♯1, ♯2, ♯5, and ♯6 can be understood as combinations of the dual version
of the conjunction and the Peirce arrow, or the conjunction and the dual version
of the Peirce arrow. This view is not only suggested by the semantic definitions
but is also supported by the following properties for every model M for L′:

M[(A ♯1 B)] = M[((A ∧ B) @ (¬− A ∧ ¬− B))]
M[(A ♯2 B)] = M[((¬A ∧ ¬B) @ (− A ∧− B))]
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M[(A ♯3 B)] = M[((A ∨ B) @ (¬− A ∨ ¬− B))]
M[(A ♯4 B)] = M[((¬A ∨ ¬B) @ (− A ∨− B))]
M[(A ♯5 B)] = M[((¬− A ∧ ¬− B) @ (A ∧ B))]
M[(A ♯6 B)] = M[((− A ∧− B) @ (¬A ∧ ¬B))]
M[(A ♯7 B)] = M[((¬− A ∨ ¬− B) @ (A ∨ B))]
M[(A ♯8 B)] = M[((− A ∨− B) @ (¬A ∨ ¬B))]

Let S1 and S2 be two sets of logical symbols of L′. Let FS1 and FS2 be the
sets of formulas of L′ such that all their logical symbols belong to S1 and S2,
respectively. Then, S1 and S2 have the same expressive power if for every model
M for L′: (1) for every formula A in FS1 there is a formula B in FS2 such that
M[A] = M[B] and (2) for every formula B in FS2 there is a formula A in FS1

such that M[A] = M[B].

Theorem 3. Let {♯, ∗} and {♯′, ∗′} be two sets of logical symbols of L′ where ♯ and ♯′

belong to {♯i | 1 ≤ i ≤ 8} and where ∗ and ∗′ belong to {¬,−}. Then, {♯, ∗} and
{♯′, ∗′} have the same expressive power.

Proof. The proof proceeds by induction on the complexity of the formulas. The
basis case is trivial and the induction case can be established by means of the
following properties. For every model M for L′ and every i such that 1 ≤ i ≤ 8:

1. M[(A ♯i B)] = M[¬(A ♯9−i B)]

2. M[(A ♯i B)] = M[−(A ♯i+1 B)], if i is odd

3. M[(A ♯i B)] = M[−(A ♯i−1 B)], if i is even

4. M[¬A] = M[(−(A ♯i A) ♯i −(A ♯i A))], if i is odd

5. M[¬A] = M[−((A ♯i A) ♯i (A ♯i A))], if i is even

6. M[− A] = M[(¬(A ♯i A) ♯i ¬(A ♯i A))], if i is odd

7. M[− A] = M[¬((A ♯i A) ♯i (A ♯i A))], if i is even

In order to complete the proof it remains to note that M[(A ♯3 B)] =
M[¬(− A ♯1 − B)] and M[(A ♯1 B)] = M[¬(− A ♯3 − B)], for every model M
for L′. Then, by the fourth property, it follows, first, that for every formula of the
form (A ♯3 B) there is a formula C whose only logical symbols belong to {♯1,−}
and such that M[(A ♯3 B)] = M[C] and, second, that for every formula of the
form (A ♯1 B) there is a formula C whose only logical symbols belong to {♯3,−}
and such that M[(A ♯1 B)] = M[C].

From Theorems 1–3, we conclude that any four-valued language containing a
symbol ♯i (1 ≤ i ≤ 8) plus the conflation or the negation is functionally complete.
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5 Concluding remarks

Two remarks can be made on the basis of Theorems 1 and 2. The first point
concerns the minimal functionally complete sets of four-valued connectives and
the second concerns the concepts of disjunctive and conjunctive normal forms
introduced in the proof of these theorems.

In his article [1], A. Avron defines a functionally complete set of four-valued
connectives consisting of two unary and two binary connectives and shows that
this set is minimal in the sense that ‘no proper subset of it is functionally com-
plete’. In this connection, we show that a set consisting of only one unary con-
nective and one binary connective can still be functionally complete. In addition,
after a quick review of the truth tables for − and ⊖, it appears that neither {−}
nor {⊖} is functionally complete and therefore that {−,⊖} is minimal. Indeed,
no formula whose only logical symbol is ⊖ will have a value in {t, b} or { f , n}
if all its propositional symbols are assigned a value from { f , n} or {t, b}, respec-
tively.

Moreover, the proofs presented in this article are based on the view that the
four values are actually combinations of two primary truth-values, namely, truth
and falsehood. The originality of these proofs is also mainly due to this aspect of
our approach. A good example of this is the use made of the abbreviation (A @ B),
which plays a crucial role in the definition of the adapted disjunctive and conjunc-
tive normal forms. Using this abbreviation, the revised concept of the disjunctive
normal form, Aδ, consists in combining two disjunctive forms such that the first
determines the truth of the formula and the second determines its falsehood, and
similarly for the revised concept of the conjunctive normal form, Aγ.
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