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NORMAL FORMS AND HOPF BIFURCATION
FOR PARTIAL DIFFERENTIAL EQUATIONS WITH DELAYS

TERESA FARIA

Abstract. The paper addresses the computation of normal forms for some
Partial Functional Differential Equations (PFDEs) near equilibria. The analy-
sis is based on the theory previously developed for autonomous retarded Func-
tional Differential Equations and on the existence of center (or other invariant)
manifolds. As an illustration of this procedure, two examples of PFDEs where
a Hopf singularity occurs on the center manifold are considered.

1. Introduction and preliminaries

The purpose of this paper is to compute normal forms on center manifolds (or
other invariant manifolds) for Partial Functional Differential Equations (PFDEs)
near equilibrium points, and use them to study the qualitative behavior of solutions
on those manifolds, namely when a Hopf bifurcation occurs. It turns out that the
coefficients of normal forms are explicitly given in terms of the coefficients of the
original PFDE. In [9], a center manifold theory for reaction–diffusion equations with
delays was developed and a coupled system of scalar ordinary differential equations
as the equation on the center manifold was obtained. However, this system is given
implicitly in terms of the considered PFDE. With the approach presented here, we
give explicit normal forms (in the usual sense of Ordinary Differential Equations
(ODEs)) for the equation giving the flow on the center manifold, without having to
compute the manifold beforehand. In the particular case of generic Hopf bifurcation
near equilibria, we show that, under certain conditions, that normal form coincides
(up to third order terms) with the normal form for the FDE associated (in a precise
and natural way) with the given PFDE. For partial differential equations with
delays, we adopt the hypotheses in [9], as well as most of the notation, and we
follow the work in [5], [6] for autonomous retarded Functional Differential Equations
(FDEs).

In the following, Ω ⊂ Rn is open, X is a Hilbert space of functions from Ω to
Rm with inner product 〈·, ·〉, and C = C([−r, 0];X) (r > 0) is the Banach space of
continuous maps from [−r, 0] to X with the sup norm. Nevertheless, all the theory
can be directly applied to the case where the functions in X have values in Cm.
We write ut ∈ C for ut(θ) = u(t+ θ),−r ≤ θ ≤ 0 (see [8] for standard notation and
results about FDEs). We consider PFDEs with an equilibrium point at the origin,
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given in abstract form (i.e., in the phase space C) as
d

dt
u(t) = d∆u(t) + L(ut) + F (ut) (t > 0),(1.1)

where d > 0, dom(∆) ⊂ X , L ∈ L(C;X), i.e., L : C → X is a bounded linear
operator, and F : C → X is a Ck function (k ≥ 2) such that F (0) = 0, DF (0) = 0.
As an example, we consider the Hutchinson equation with diffusion in Section 5.

For the linearized equation about the equilibrium zero, d
dtu(t) = d∆u(t)+L(ut),

we assume hypotheses (H1)-(H4) in [9] (see also [11]):
(H1) d∆ generates a C0 semigroup {T (t)}t≥0 on X with |T (t)| ≤Meωt (for some

M ≥ 1, ω ∈ R) for all t ≥ 0, and T (t) is a compact operator for t > 0;
(H2) the eigenfunctions {βk}∞k=1 of d∆, with corresponding eigenvalues {µk}∞k=1,

form an orthonormal basis for X , µk → −∞;
(H3) the subspaces Bk := {〈v(·), βk〉βk | v ∈ C} of C satisfy L(Bk) ⊂ span{βk};
(H4) L can be extended to a bounded linear operator from BC to X , where

BC = {ψ : [−r, 0] −→ X |ψ is continuous on [−r, 0), ∃ limθ→0− ψ(θ) ∈ X}, with the
sup norm.

Under (H1) and (H2), it was shown in [13] that the initial value problem

u(t) = T (t)φ(0) +
∫ t

0

T (t− s)L(us)ds, t ≥ 0,

u0 = φ ∈ C,
has a unique continuous solution u(t;φ) for t ≥ −r, and {W (t)}t≥0,W (t)φ =
ut(·;φ), is a C0–semigroup of linear (and compact for t > r) operators on C, with
infinitesimal generator A given by

(Aφ)(θ) = φ̇(θ), dom(A) = {φ ∈ C : φ̇ ∈ C, φ(0) ∈ dom(∆), φ̇(0) = d∆φ(0) + Lφ}.
A has only its point spectrum, and σ(A) = σP (A) = {λ ∈ C : ∆(λ)y = 0, for some
y ∈ dom(∆) \ {0}}, where

∆(λ)y = λy − d∆y − L(eλ·y) .(1.2)

For any a ∈ R, the number of solutions of (1.2) such that Re λ ≥ a is finite. Using
the decomposition of X by {βk}∞k=1 and (H3), equation ∆(λ)y = 0 is equivalent to
the sequence of “characteristic” equations

λβk − µkβk − L(eλ·βk) = 0 (k ∈ N),(1.3k)

and there exists an N such that all the solutions of (1.3k) satisfy Re λ < 0 for
k > N (cf. [9], [11], [13]). Under (H4), it was shown in [11] that the solutions
of (1.1) with initial conditions φ ∈ C in the integral formulation above satisfy the
variation of constants formula

ut = W (t)φ+
∫ t

0

W (t− s)X0F (us)ds, t ≥ 0 ,(1.4)

where

X0(θ) =

{
0, −r ≤ θ < 0,
I, θ = 0.

In [9], the existence of a local center manifold (invariant under the semiflow defined
by (1.4)) was proved. Its dimension is equal to the number of λ ∈ σ(A) with real
part zero, counting multiplicities.
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Let Λ be the finite set Λ = {λ ∈ σ(A) : Reλ = 0}, or another finite subset
of σ(A) with which an invariant manifold is associated (e.g., in [11] results on the
unstable manifold are stated, corresponding to the choice Λ = {λ ∈ σ(A) : Re λ >
0}), and suppose Λ 6= ∅. Let C := C([−r, 0]; R) and, for each k ∈ N, define
Lk : C −→ R by

Lk(ψ)βk = L(ψβk) .(1.5k)

Then, on Bk, the linear equation d
dtu(t) = d∆u(t) +L(ut) is equivalent to the FDE

on R

ż(t) = µkz(t) + Lkzt ,(1.6k)

with characteristic equation given by (1.3k). Throughout this paper, unless other-
wise stated, we assume that Λ = {λ ∈ σ(A) : Reλ = 0} and that the basis {βk}∞k=1

is ordered in such a way that Λ contains exactly the solutions on the imaginary
axis of the first N equations (1.3k): Λ = {λ ∈ C : λ is a solution of (1.3k) with
Reλ = 0, for some k ∈ {1, . . . , N}}. For 1 ≤ k ≤ N , defining ηk ∈ BV ([−r, 0]; R)
such that

µkψ(0) + Lkψ =
∫ 0

−r
dηk(θ)ψ(θ), ψ ∈ C ,(1.7k)

and (·, ·)k the adjoint bilinear form on C∗ × C,C∗ = C([0, r]; R) (as in [11]), i.e.,

(α, β)k = α(0)β(0) −
∫ 0

−r

∫ θ

0

α(ξ − θ)dηk(θ)β(ξ)dξ ,(1.8k)

we use the adjoint theory to decompose C by Λk := {λ ∈ C : λ satisfies (1.3k) and
Reλ = 0}:

C = Pk ⊕Qk , Pk = spanΦk , P ∗k = spanΨk ,

(Ψk,Φk)k = I , dimPk = dimP ∗k := mk , Φ̇k = ΦkBk ,

where Pk is the generalized eigenspace for (1.6k) associated with Λk and Bk is an
mk ×mk constant matrix (throughout this paper, see [8] for standard definitions
and results for FDEs).

Similarly to [9], [11], [14], we use the above decompositions to decompose C by
Λ:

C = P ⊕Q , P = Imπ , Q = Kerπ,

where dim P =
∑N

k=1mk := M and π : C −→ P is the projection defined by

πφ =
N∑
k=1

Φk(Ψk, 〈φ(·), βk〉)kβk .(1.9)

Now, we want to enlarge the phase space C in such a way that (1.1) can be written
as an abstract ODE in a Banach space. To accomplish that, we follow closely the
work done for autonomous retarded FDEs in [5].
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2. Decomposition of the phase space

For phase space, we take the Banach space BC introduced in (H4). In terms
of the function X0 above, the elements of BC have the form ψ = φ + X0α, with
φ ∈ C, α ∈ X , so that BC ≡ C ×X ; its norm is equivalent to the norm |φ+X0α| =
|φ|C + |α|X .

In BC, we consider an extension of the infinitesimal generator of {T (t)}t≥0, still
denoted by A,

A : C1
0 ⊂ BC −→ BC, Aφ = φ̇+X0[L(φ) + d∆φ(0)− φ̇(0)] ,(2.1)

defined on C1
0 := {φ ∈ C : φ̇ ∈ C, φ(0) ∈ dom (∆)}. On the other hand, (·, ·)k

can be continuously defined by the same expression (1.8k) on C∗ × BC, where
BC := {γ : [−r, 0] −→ R | γ is continuous on [−r, 0) and ∃ limθ→0− γ(θ) ∈ R}.
Thus, it is easy to see that π, as defined in (1.9), is extended to a continuous
projection (which we still denote by π), π : BC −→ P . In particular, for α ∈ X we
have

π(X0α) =
N∑
k=1

ΦkΨk(0)〈α, βk〉βk.(2.2)

The projection π leads to the topological decomposition

BC = P ⊕Ker π,(2.3)

with the property Q ⊂
6=

Kerπ. With the above notation, we have the following

lemma:

Lemma 2.1. P ⊂ {φ ∈ C : φ̇ ∈ C, φ(0) ∈ dom(∆), φ̇(0) = d∆φ(0) + Lφ}, and π
commutes with A in C1

0 .

Proof. From [8], it is known that Pk is contained in the domain of the infinitesimal
generator of the C0 semigroup associated with (1.6k); so, φ̇(0) = µkφ(0) + Lk(φ),
for φ ∈ Pk, k = 1, . . . , N . Therefore, for φ =

∑N
k=1 Φkakβk ∈ P , we obtain

d∆φ(0) + L(φ) =
N∑
k=1

(
Φk(0)akµkβk + L(Φkakβk)

)
=

N∑
k=1

(
Φk(0)akµk + Lk(Φkak)

)
βk =

N∑
k=1

Φ̇k(0)akβk = φ̇(0),

and the first statement holds. From (H2) and (H3), for k ∈ N and φ ∈ C we have

〈L(φ), βk〉βk = 〈L
(∑
j≥1

〈φ(·), βj〉βj
)
, βk〉βk = L(〈φ(·), βk〉βk)

and, then, from (1.5k),

〈L(φ), βk〉 = Lk(〈φ(·), βk〉).(2.4)
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Let φ ∈ C1
0 . Integrating by parts, using [8, Chap. 7], (1.7k), and (1.8k), we have

A(πφ) =
d

dθ
(πφ) =

N∑
k=1

Φ̇k(Ψk, 〈φ(·), βk〉)kβk =
N∑
k=1

Φk(−Ψ̇k, 〈φ(·), βk〉)kβk

=
N∑
k=1

Φk
[
− Ψ̇k(0)〈φ(0), βk〉+

∫ 0

−r

∫ θ

0

Ψ̇k(ξ − θ)dηk(θ)〈φ(ξ), βk〉dξ
]
βk

=
N∑
k=1

Φk
[
Ψk(0)

∫ 0

−r
dηk(θ)〈φ(θ), βk〉

−
∫ 0

−r

∫ θ

0

Ψk(ξ − θ)dηk(θ)〈φ̇(ξ), βk〉dξ
]
βk

=
N∑
k=1

Φk
[
Ψk(0)

(
µk〈φ(0), βk〉+ Lk(〈φ(·), βk〉)− 〈φ̇(0), βk〉

)
+ (Ψk, 〈φ̇(·), βk〉)k

]
βk ;

on the other hand,

π(Aφ) = π
(
φ̇+X0[L(φ) + d∆φ(0)− φ̇(0)]

)
=

N∑
k=1

Φk
[
(Ψk, 〈φ̇(·), βk〉)k + Ψk(0)〈L(φ) + d∆φ(0)− φ̇(0), βk〉

]
βk.

From (2.4), and since 〈d∆φ(0), βk〉 = µk〈φ(0), βk〉 by (H2), we conclude that
A(πφ) = π(Aφ).

Decomposition (2.3) and Lemma 2.1 allow us to decompose (1.1) as a system of
abstract ODEs on RM ×Kerπ, with linear and nonlinear parts separated and with
finite and infinite dimensional variables also separated in the linear term. More
precisely, for ut = v(t), the abstract ODE in BC associated with (1.1) is

d

dt
v = Av +X0F (v).(2.5)

Decompose v ∈ C1
0 according to (2.3) as v(t) =

∑N
k=1 Φkzk(t)βk + y(t), where

zk(t) = (Ψk, 〈v(t)(·), βk〉)k ∈ Rmk , 1 ≤ k ≤ N, y(t) ∈ C1
0 ∩ Kerπ = C1

0 ∩ Q := Q1.
Then, using (2.2) and Lemma 2.1, we see that in BC ≡ RM ×Ker π equation (2.5)
is equivalent to the system

żk =Bkzk + Ψk(0)〈F (
N∑
p=1

Φpzpβp + y), βk〉, k = 1, . . . , N,

d

dt
y =A1y + (I − π)X0F (

N∑
p=1

Φpzpβp + y),

(2.6)

where A1 is defined by A1 : Q1 ⊂ Ker π −→ Ker π,A1φ = Aφ for φ ∈ Q1, and
Ker π is taken as a Banach space with the norm induced from BC. It will turn
out that the spectrum of A1 plays a most important role, so the next lemma is
meaningful.

Lemma 2.2. σ(A1) = σP (A1) = σ(A) \ Λ.
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Proof. First we note that A1 is a closed operator on the Banach space Ker π, since
A is closed as an operator on BC. Using the same reasoning as in the proofs of [5,
Lemmas (5.1) and (5.2)], we can show that: (i) the operator A from dom (A) to
C and its extension on BC defined by (2.1) have the same spectrum, which is only
composed of eigenvalues; (ii) σP (A1) = σ(A) \Λ; (iii) σ(A1) ⊂ σ(A). It remains to
prove that (A1 − λI) is surjective if λ ∈ Λ. Using again the same argument as in
the proof of [5, Lemma (5.2)], together with [13, Prop. 4.9], for λ ∈ Λ we deduce
that Im (A1 − λI) ⊃ Q.

Now, consider f ∈ Kerπ written as f = fP + fQ + X0α, with fQ ∈ Q, α ∈ X
and fP = −

∑N
k=1 ΦkΨk(0)〈α, βk〉βk. As f = (I − π)f, A commutes with π in C1

0

and C1
0 ∩Ker π = Q1, then f ∈ Im(A1 − λI) iff f ∈ Im (A− λI).

Let λ ∈ Λ. To complete the proof, it is sufficient to show that for each α ∈ X
there exists h ∈ C1

0 such that (A−λI)h = f , where f = −
∑N
k=1 ΦkΨk(0)〈α, βk〉βk+

X0α; i.e., for each α ∈ X there exists h ∈ C1
0 such that

ḣ− λh = −
N∑
k=1

ΦkΨk(0)〈α, βk〉βk,(2.7a)

L(h) + d∆h(0)− ḣ(0) = α .(2.7b)

From (2.7a), we obtain

h(θ) = eλθh(0)− eλθ
N∑
k=1

(∫ θ

0

e−λtΦk(t)Ψk(0)dt
)
〈α, βk〉βk.

So, the existence of an h ∈ C1
0 satisfying (2.7a,b) is equivalent to the existence of

h(0) ∈ dom (∆) such that

∆(λ)h(0) = −α−
N∑
k=1

[
Lk

(
eλθ
∫ θ

0

e−λtΦk(t)Ψk(0)dt
)
− Φk(0)Ψk(0)

]
〈α, βk〉βk

= −α+
N∑
k=1

(e−λ·Ik,Φk)kΨk(0)〈α, βk〉βk ,

where ∆(λ) is as in (1.2), we write L(φ) = L(φ(θ)), and Ik is the mk×mk identity
matrix.

Let hk, αk ∈ R, be the coefficients of h(0), α, respectively, in βk: h(0) =∑
k≥1 hkβk, α =

∑
k≥1 αkβk. Thus, the former equation is equivalent to the se-

quence of equations

hk
(
λ− µk − Lk(eλ·)

)
=

{
−αk, if k > N,

−αk + (e−λ·Ik,Φk)kΨk(0)αk, if 1 ≤ k ≤ N.
(2.8k)

For k > N , (2.8k) has a solution hk ∈ R, since λ /∈ Λ implies λ−µk−Lk(eλ·) 6= 0.
For 1 ≤ k ≤ N , the existence of a solution hk ∈ R for (2.8k) is assured by the last
part of the proof of [5, Lemma (5.2)].

It remains to verify that h(0) ∈ dom (∆). For p > N , we define hp =
∑p

k=1 hkβk.
Then, hp ∈ dom (∆), the sequence (hp) converges in X to

−α+
N∑
k=1

(e−λ·Ik,Φk)kΨk(0)αk
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and

d∆(hp) =
N∑
k=1

hkµkβk +
p∑

k=N+1

(αk + λhk − Lk(eλ·)hk)βk

=
N∑
k=1

hkµkβk +
p∑

k=N+1

(αk + λhk)βk − L
(
eλ·

p∑
k=N+1

hkβk
)
,

which converges in X , as p→ +∞. Since d∆ is a closed operator, we conclude that
h(0) =

∑
k≥1 hkβk ∈ dom (∆).

Before we proceed with the normal form procedure, we write (2.6) in a simpler
form by considering its first N equations as a unique equation in RM . For this,
define the M × M constant matrix B = diag (B1, . . . , BN), the N × M matrix
Φ = diag (Φ1, . . . ,ΦN ) and the M × N matrix Ψ =diag (Ψ1, . . . ,ΨN). Then, in
BC ≡ RM ×Kerπ, (2.6) becomes

ż = Bz + Ψ(0)

 〈F (
∑N

k=1 Φkzkβk + y), β1〉
. . .

〈F (
∑N

k=1 Φkzkβk + y), βN 〉

 ,

d

dt
y = A1y + (I − π)X0F

( N∑
k=1

Φkzkβk + y
)
,

z = (z1, . . . , zN) ∈ RM , y ∈ Q1.

(2.9)

3. Normal forms for the flow on invariant manifolds

We describe the computation of normal forms using formal series, though we are
interested in situations where only a few terms of those series are computed. We
consider the formal Taylor expansion

F (v) =
∑
k≥2

1
j!
Fj(v), v ∈ C,

where Fj is the jth Fréchet derivative of F . Then, (2.9) (i.e., (1.1) in BC ≡
RM ×Ker π) is written as

ż =Bz +
∑
j≥2

1
j!
f1
j (z, y),

d

dt
y =A1y +

∑
j≥2

1
j!
f2
j (z, y) ,

(3.1)

where z = (z1, . . . , zN ) ∈ RM , y ∈ Q1 and fj = (f1
j , f

2
j ), j ≥ 2, are defined by

f1
j (z, y) = Ψ(0)

 〈Fj(∑N
k=1 Φkzkβk + y), β1〉

. . .

〈Fj(
∑N

k=1 Φkzkβk + y), βN 〉

 ,

f2
j (z, y) = (I − π)X0Fj

( N∑
k=1

Φkzkβk + y
)
.

(3.2)

As for autonomous FDEs [5], [6], normal forms for (2.9) (or (3.1)) are obtained by
a recursive procedure, computing at each step the terms of order j ≥ 2 from the
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terms of the same order and the terms of lower orders already computed in previous
steps, through a transformation of variables of the form

(z, y) = (ẑ, ŷ) +
1
j!

(U1
j (ẑ), U2

j (ẑ)) ,(3.3j)

where z, ẑ ∈ RM , y, ŷ ∈ Q1 and U1
j : RM −→ RM , U2

j : RM −→ Q1 are homoge-
neous polynomials of degree j in z.

We denote by f j = (f
1

j , f
2

j) the terms of order j in (z, y) obtained after the
computation of the normal form up to order j−1, i.e., after performing the change
of variables (3.3`) of orders ` ≤ j − 1. Following [5, Section 4], we conclude that
this recursive process transforms Eq. (2.9) into the equation

ż =Bz +
∑
j≥2

1
j!
g1
j (z, y),

d

dt
y =A1y +

∑
j≥2

1
j!
g2
j (z, y) ,

(3.4)

where gj = (g1
j , g

2
j ), j ≥ 2, are the new terms of order j, given by

g1
j = f

1

j(z, y)− [DU1
j (z)Bz −BU1

j (z)],

g2
j = f

2

j(z, y)− [DU2
j (z)Bz −A1(U2

j (z))], j ≥ 2 .

Let us introduce the following notation: for a normed space Y , VMj (Y ) denotes
the space of homogeneous polynomials of degree j in M variables z = (z1, . . . , zM )
with coefficients in Y ,

VMj (Y ) =
{ ∑
|q|=j

cqz
q : q ∈ NM

0 , cq ∈ Y
}

(zq = zq11 . . . zqMM for q = (q1, . . . , qM ) ∈ NM
0 ), with the norm

∣∣∑
|q|=j cqz

q
∣∣ =∑

|q|=j |cq|Y . Defining the operators Mj = (M1
j ,M

2
j ), j ≥ 2, by

M1
j : VMj (RM ) −→ VMj (RM ),

(M1
j p)(z) = Dp(z)Bz −Bp(z),

M2
j : VMj (Q1) ⊂ VMj (Ker π) −→ VMj (Ker π),

(M2
j h)(z) = Dzh(z)Bz − A1(h(z)),

(3.5)

and putting Uj = (U1
j , U

2
j ), we have

gj = f j −MjUj .(3.6)

Theorem 3.1. The operators M2
j , j ≥ 2, are closed, and their spectra are

σ(M2
j ) = σP (M2

j ) = {(q, λ)− µ : µ ∈ σ(A) \ Λ, q ∈ NM
0 , |q| = j},

where λ = (λ1, . . . , λM ), λ1, . . . , λM are the elements of Λ, each one of them ap-
pearing as many times as its multiplicity as a root of the associated characteristic
equation, (q, λ) = q1λ1+· · ·+qMλM , |q| = q1+· · ·+qM , for q = (q1, . . . , qM ) ∈ NM

0 .

With a few changes, the proof of this theorem is identical to that of [5, Th.
(5.4)], and we omit it. However, one must realize that the main tool for this proof
is Lemma 2.2.
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This theorem allows us to characterize in spectral terms the situation in which
the procedure described above leads to normal forms in a locally center manifold.

Theorem 3.2. Suppose that (H1)-(H4) hold and Λ = {λ ∈ σ(A) : Reλ = 0} 6= ∅.
Then, there exists a formal change of variables (z, y) = (z, y) +O(|z|2) such that:

(i) (3.1) is transformed into (3.4), where g2
j (z, 0) ≡ 0, j ≥ 2;

(ii) a locally center manifold for (1.1) at zero satisfies y = 0, and the flow on it
is given by the M–dimensional ODE

ż = Bz +
∑
j≥2

1
j!
g1
j (z, 0) ,(3.7)

which is in normal form (in the usual sense of ODEs).

Proof. From Theorem 3.1 we deduce that 0 /∈ σ(M2
j ), j ≥ 2. It is then possible

to choose U2
j so that g2

j (z, 0) ≡ 0, j ≥ 2, and (i) follows. The existence of a local
center manifold for (1.1) is garanteed by (H1)-(H4). This manifold is tangent to
P at zero. Clearly, for (3.4), y = 0 is an equation for the center manifold. The
transformation of variables can be chosen so that (3.7) is in normal form, since the
operators M1

j are precisely those operators appearing in the computation of normal
forms for ODEs in RM [1], [3], [7].

For the sake of simplicity, we have considered Λ = {λ ∈ σ(A) : Reλ = 0}.
Now consider the second case referred to in Section 1, that is, let Λ be another
nonempty finite subset of σ(A). Suppose, as before, that the elements of Λ are
solutions of the first N equations (1.3k) and that P is the invariant space of the
linearized equation d

dtu(t) = d∆u(t) + L(ut) associated with Λ. For this case, we
also obtain the results of Section 2, as well as the procedure leading to (3.4) and
Theorem 3.1. If there exists a locally invariant manifold MΛ,F for (1.1) tangent
to P at zero, for that manifold we achieve a result similiar to the one stated above
for the center manifold, if we guarantee that there are no resonances in the second
equation of (3.1).

Definition 3.1. We say that Eq. (3.1) (or, equivalently Eq. (1.1)) satisfies the
nonresonance conditions relative to Λ if

(q, λ) 6= µ for all µ ∈ σ(A) \ Λ and q ∈ NM
0 , |q| ≥ 2,(3.8)

where λ = (λ1, . . . , λM ), λ1, . . . , λM are the elements of Λ, each one of them ap-
pearing as many times as its multiplicity as a root of the associated characteristic
equation, (q, λ) = q1λ1+· · ·+qMλM , |q| = q1+· · ·+qM , for q = (q1, . . . , qM ) ∈ NM

0 .

Remark 3.1. Clearly, if the nonresonance conditions in (3.8) hold, Theorem 3.1
assures that 0 /∈ σ(M2

j ), j ≥ 2. Thus, U2
j can be chosen in such a way that

g2
j (z, 0) ≡ 0, j ≥ 2, and Theorem 3.2 is still valid if we replace the center manifold

by MΛ,F , provided that it exists. For instance, if Λ = {λ ∈ σ(A) : Re λ > 0} 6= ∅,
then Theorem 3.2 is valid with “unstable manifold” instead of “center manifold”.
(Note that the existence of this manifold under (H1)-(H4) follows from [11].)

Under (H1)-(H4), we now define normal forms.

Definition 3.2. Equation (3.4) is called a normal form for (3.1) (or (1.1)) rel-
ative to Λ if g1

j , g
2
j are defined by (3.6), U2

j = (M2
j )−1f

2

j , and (3.7) is in normal
form.
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Remark 3.2. In order to have (3.7) in normal form, note that

U1
j (z) = (M1

j )−1Pjf
1

j(z, 0)

for j ≥ 2, where Pj is the projection of VMj (RM ) into Im M1
j and (M1

j )−1 is a
right inverse of M1

j , corresponding to a choice of complementary spaces to Ker M1
j

and Im M1
j in VMj (RM ) ([5]).

Remark 3.3. Consider equations with parameters of type

d

dt
u(t) = d∆u(t) + L(α)(ut) + F (ut, α),(3.9)

where α ∈ Rp, L : Rp −→ L(C;X), F : C × Rp −→ X are Ck functions, k ≥ 2,
with F (0, α) = 0, D1F (0, α) = 0 for all α ∈ Rp. For these equations, the normal
form procedure is reduced to that described above by introducing the parameter
α as a variable with α̇(t) = 0, as done in [6] for FDEs. Given a nonempty finite
subset Λ of eigenvalues of the infinitesimal generator A associated with the linear
PFDE d

dtu(t) = d∆u(t) + L(0)(ut), as in the situation of Remark 3.1, we conclude
that the nonresonance conditions relative to Λ are now

(q, λ) 6= µ for all µ ∈ σ(A) \ Λ, q ∈ NM
0 , |q| ≥ 0,(3.10)

if the following additional condition is satisfied: 0 ∈ Λ whenever 0 ∈ σ(A) (cf. [6]).

4. The associated FDE

In this section, we associate with Eq. (2.9) (or Eq. (1.1)) an FDE with an
equilibrium at zero, in such a way that, under appropriate additional hypotheses,
the normal form on the center manifold for that FDE can be chosen so that it
coincides with the normal form (3.7) on the center manifold of the original PFDE
(1.1), at least up to some finite order. Here, we shall state what happens up to
third order only, because we shall apply the results to equations for which a Hopf
bifurcation occurs — so, the singularity is generically determined to third order.

Let us first introduce some notation. If there is no possible confusion, we shall
use the same symbols to denote corresponding functions, both for the associated
FDE to be considered and for (1.1). We denote CN := C([−r, 0]; RN) with the sup
norm and define the linear operator R ∈ L(CN ; RN) by

R(φ) =
(
µkφk(0) + Lk(φk)

)N
k=1

for φ = (φ1, . . . , φN ) ∈ CN . Let A0 be the infinitesimal generator of the C0

semigroup on CN defined by the solutions of the linear FDE ẋ(t) = R(xt). Its
spectrum σ(A0) coincides with its point spectrum σP (A0), and λ ∈ σ(A0) iff λ
satisfies the characteristic equation det [λI − R(eλ·I)] = 0, which is equivalent to
λ− µk − Lk(eλ·) = 0, for some 1 ≤ k ≤ N [8]. Then, Λ = {λ ∈ σ(A) : Reλ = 0} is
also the set of characteristic eigenvalues of R with real part zero. With the notation
of Sections 1 and 2, let CN ≡

∏N
k=1 C([−r, 0]; R) be decomposed by Λ:

CN = P ⊕Q ≡
N∏
k=1

(Pk ⊕Qk),

with P =
∏N
k=1 Pk, Q =

∏N
k=1 Qk. As in [5], [6], we enlarge the space CN , consid-

ering the space BCN of the functions from [−r, 0] to RN bounded and continuous
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on [−r, 0) with possibly a jump discontinuity at 0. We decompose BCN by Λ as
BCN = P ⊕Ker π0, where π0 is now the projection

π0 : BCN −→ P, π0(φ+X0α) = Φ[(Ψ, φ) + Ψ(0)α] for φ ∈ CN , α ∈ RN ,

where X0 is the matrix valued function given by X0(θ) = 0,−r ≤ θ < 0, X0(0) = I,
and (·, ·) is the adjoint bilinear form on C∗N × CN associated with R, (ψ, φ) =(
(ψk, φk)k

)N
k=1

, for ψ = (ψk)Nk=1 ∈ C∗N , φ = (φk)Nk=1 ∈ CN .

Definition 4.1. The FDE in CN :

ẋ(t) = R(xt) +
(
〈F (

N∑
k=1

xt,kβk), βp〉
)N
p=1

,(4.1)

where x(t) =
(
xk(t)

)N
k=1

, xt =
(
xt,k

)N
k=1

, is called the FDE associated with
equation (1.1) by Λ at zero.

Decomposing xt = Φz(t) + yt, with z(t) ∈ RM and yt ∈ Kerπ0 ∩ C1
N = Q ∩ C1

N

:= Q1, in BCN ≡ RM×Ker π0 Eq. (4.1) is equivalent to the system

ż = Bz + Ψ(0)
(
〈F
( N∑
k=1

(Φkzk + yk)βk
)
, βp〉

)N
p=1

,

d

dt
y = A0,1y + (I − π0)X0

(
〈F
( N∑
k=1

(Φkzk + yk)βk
)
, βp〉

)N
p=1

,

(4.2)

where A0,1 : Q1 ⊂ Kerπ0 −→ Kerπ0, A0,1φ = φ̇ + X0[R(φ) − φ̇(0)], φ ∈ Q1 and
z = (z1, . . . , zN ), y = (y1, . . . , yN), zk ∈ Rmk , yk ∈ Q1

k := Qk ∩C1.

Theorem 4.1. Suppose (H1)-(H4) hold and let Λ = {λ ∈ σ(A) : Reλ = 0} 6= ∅.
Consider (1.1) with F of class C3 given by F (v) =

1
2!
F2(v) +

1
3!
F3(v) + o(|v|3).

With the above notation, assume also

〈DF2(u)(φβj), βp〉 = 0 for 1 ≤ p ≤ N, j > N and all u ∈ P , φ ∈ C.(H5)

Then, for a suitable change of variables, the equations on the center manifold for
both (1.1) and (4.1) are the same, up to third order terms.

The proof of this theorem is based on the possibility of identifying the operators
M2
j , j ≥ 2, defined in (3.5) with the corresponding operators appearing in the

computation of normal forms relative to Λ for (4.1) [5]. These last operators will
be also denoted by M2

j . Throughout this section we always assume (H1)-(H4)
and consider Λ = {λ ∈ σ(A) : Reλ = 0} 6= ∅, although we could consider other
nonempty finite sets for which conditions (3.8) were satisfied.

To prove Theorem 4.1, we need two preliminary results.

Definition 4.2. Let Y ⊂ BCN , Z ⊂ BC. For F = (F1, . . . , FN ) ∈ VMj (Y ), f =∑
p≥1 fpβp ∈ VMj (Z), we say that F coincides with f on the first N coordinates if

Fp = fp, p = 1, . . . , N , and we write F = f (mod Λ) or F (z) = f(z) (mod Λ).

Lemma 4.2. For j ≥ 2, let f ∈ VMj (Kerπ), f =
∑
p≥1 fpβp and suppose that

h =
∑

p≥1 hpβp is the solution of equation

M2
j h = f (PFDE) .(4.3)
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If we define F := (f1, . . . , fN), H := (h1, . . . , hN), then F ∈ VMj (Kerπ0) and H is
the solution of

M2
jH = F (FDE) .(4.4)

In other words, if f ∈ VMj (Kerπ), F = f (mod Λ), then F ∈ VMj (Kerπ0) and
(M2

j )−1F = (M2
j )−1f (mod Λ).

We have written (PFDE), (FDE) in, respectively, (4.3), (4.4) to tell us which
operators M2

j we are considering. We shall do the same below, whenever confusion
might occur.

Proof. Let f =
∑

p≥1 fpβp ∈ VMj (Kerπ) and h =
∑

p≥1 hpβp be the unique solution
of (4.3) (Theorem 3.1). First, we shall see that F = (f1, . . . , fN ) ∈ VMj (Ker π0)
and H = (h1, . . . , hN ) ∈ VMj (Q1) = dom(M2

j ) (FDE).
If we write hp(z) =

∑
|q|=j hq,pz

q, then we have h(z) =
∑
|q|=j h

qzq, where hq =∑
p≥1 hq,pβp. Since h ∈ VMj (Q1) = dom(M2

j ) (PFDE), we have hq ∈ Q1 = C1
0 ∩

Kerπ. In particular, hq,p are C1 functions and, for q ∈ NM
0 , |q| = j,

0 = π(hq) =
∑
p≥1

π(hq,pβp) =
∑
p≥1

( N∑
k=1

Φk
(
Ψk, 〈hq,p(·)βp, βk〉

)
k
βk

)

=
N∑
k=1

Φk
(
Ψk, hq,k

)
k
βk,

and then

Φk
(
Ψk, hq,k

)
k

= 0 , k = 1, . . . , N, |q| = j.(4.5)

On the other hand, the above definition of π0 yields

π0(φ+X0α) =
(
Φk(Ψk, φk)k + Ψk(0)αk

)N
k=1

,

for φ = (φk)Nk=1 ∈ CN , α = (αk)Nk=1 ∈ RN . Since H(z) =
∑
|q|=j(hq,k)Nk=1z

q, from
(4.5) we obtain π0

(
(hq,k)Nk=1

)
= 0, so H ∈ VMj (Q1). Similarly, we prove that

F ∈ VMj (Kerπ0).
It remains to prove that H is a solution of (4.4). Recall ([5]) that

(M2
jH)(z) = DzH(z)Bz −A0,1(H(z))

= DzH(z)Bz − Ḣ(z) +X0

[
Ḣ(z)(0)−R(H(z))

]
,

where A0,1 is as in (4.2) and Ḣ(z) denotes the derivative of H(z)(θ) relative to θ.
But (4.3) is equivalent to Dzh(z)Bz −A1(h(z)) = f(z), or, more explicitly, to

Dzhp(z)Bz − ḣp(z) +X0

[
ḣp(z)(0)− µphp(z)(0)− Lp(hp(z))

]
= fp, ∀p ∈ N ,

(4.6)

where ḣp(z)(θ) = d
dθhp(z)(θ). Therefore, the first N equations of (4.6) are equiva-

lent to (4.4), and the lemma is proved.
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Let F ∈ Ck, k ≥ 2. We have defined the terms of order j in (z, y), fj =
(f1
j , f

2
j ), 2 ≤ j ≤ k, by (3.2), writing (2.9) as

ż = Bz +
k∑
j=2

1
j!
f1
j (z, y) + · · · ,

d

dt
y = A1y +

k∑
j=2

1
j!
f2
j (z, y) + · · · , z ∈ RM , y ∈ Q1,

(4.7)

where the dots stand for higher order terms. For (4.2) we obtain

ż = Bz +
k∑
j=2

1
j!
f1

0,j(z, y) + · · · ,

d

dt
y = A0,1y +

k∑
j=2

1
j!
f2

0,j(z, y) + · · · , z ∈ RM , y ∈ Q1 ,

(4.8)

where now

f1
0,j(z, y) = Ψ(0)

(
〈Fj
( N∑
k=1

(Φkzk + yk)βk
)
, βp〉

)N
p=1

,

f2
0,j(z, y) = (I − π)X0

(
〈Fj
( N∑
k=1

(Φkzk + yk)βk
)
, βp〉

)N
p=1

,

(4.9)

for z = (z1, . . . , zN ), y = (y1, . . . , yN), zk ∈ Rmk , yk ∈ Q1
k, k = 1, . . . , N .

As in Section 3, for (4.2) we define f0,j = (f
1

0,j , f
2

0,j), U0,j = (U1
0,j , U

2
0,j), g0,j =

(g1
0,j, g

2
0,j) with obvious meanings.

Remark 4.1. From (3.2) and (4.9), it is evident that f1
0,j(z, 0) = f1

j (z, 0), j ≥ 2.
Since M1

j defined by (3.5) and the corresponding operators M1
j appearing in the

computation of normal forms for autonomous FDEs are precisely the same ([5]),
in particular, for j = 2, we deduce that U1

0,2 = U1
2 and g1

0,2(z, 0) = g1
2(z, 0) for an

adequate choice of variables (3.32).

For the coordinates in the infinite dimensional space, we now have the following
lemma:

Lemma 4.3. Let F ∈ C2. Then, f2
0,2(z, 0) = f2

2 (z, 0) (mod Λ), U2
0,2(z) = U2

2 (z)
(mod Λ). Futhermore, for F (v) = 1

2F2(v) +O(|v|2), if (H5) is fulfilled, then

Dyf
1
0,2(z, y)|y=0U

2
0,2(z) = Dyf

1
2 (z, y)|y=0U

2
2 (z) .(4.10)

Proof. We have

f2
0,2(z, 0) = (I − π0)X0

(
〈F2

( N∑
k=1

Φkzkβk
)
, βp〉

)N
p=1

= −
(

ΦpΨp(0)〈F2

( N∑
k=1

Φkzkβk
)
, βp〉

)N
p=1

+X0

(
〈F2

( N∑
k=1

Φkzkβk
)
, βp〉

)N
p=1

,
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and, from (3.2) and (2.2),

f2
2 (z, 0) = (I − π)X0F2

( N∑
k=1

Φkzkβk
)

= −
N∑
p=1

ΦpΨp(0)〈F2

( N∑
k=1

Φkzkβk
)
, βp〉βp +X0

∑
p≥1

〈F2

( N∑
k=1

Φkzkβk
)
, βp〉βp .

Then f2
0,2(z, 0) = f2

2 (z, 0) (mod Λ). Therefore, since M2
2U

2
0,2(z) = f2

0,2(z, 0) (FDE)
and M2

2U
2
2 (z) = f2

2 (z, 0) (PFDE), we conclude from Lemma 4.2 that U2
0,2(z) =

U2
2 (z) (mod Λ).
Suppose now that (H5) holds. Let h =

∑
j≥1 hjβj ∈ Q1 and define H =

(hk)Nk=1 ∈ Q1 (proof of Lemma 4.2). From (4.9) and for the FDE, we have

Dyf
1
0,2(z, y)|y=0(H) = Ψ(0)

(
〈DF2

( N∑
k=1

Φkzkβk
)( N∑

k=1

hkβk
)
, βp〉

)N
p=1

.

For the PFDE, and from (3.2) and (H5), we obtain

Dyf
1
2 (z, y)|y=0(h) = Ψ(0)

(
〈DF2

( N∑
k=1

Φkzkβk
)
(h), βp〉

)N
p=1

= Ψ(0)
(
〈DF2

( N∑
k=1

Φkzkβk
)( N∑

k=1

hkβk
)
, βp〉

)N
p=1

+ Ψ(0)
(
〈DF2

( N∑
k=1

Φkzkβk
)( ∑

j>N

hjβj
)
, βp〉

)N
p=1

= Dyf
1
0,2(z, y)|y=0(H) .

(4.11)

Since U2
0,2(z) = U2

2 (mod Λ), formula (4.10) is proved.

Proof of Theorem 4.1. In [5, Section 6], the following formula is given:

f0,3 = f0,3 +
3
2

[(Df0,2)U0,2 − (DU0,2)g0,2];

analogously,

f3 = f3 +
3
2

[(Df2)U2 − (DU2)g2].

Then, for y = 0,

f
1

0,3(z, 0) = f1
0,3(z, 0) +

3
2

[Dzf
1
0,2(z, 0)U1

0,2(z) +Dyf
1
0,2(z, y)|y=0U

2
0,2(z)

−DU1
0,2(z)g1

0,2(z, 0)],

and

f
1

3(z, 0) = f1
3 (z, 0) +

3
2

[Dzf
1
2 (z, 0)U1

2 (z) +Dyf
1
2 (z, y)|y=0U

2
2 (z)−DU1

2 (z)g1
2(z, 0)].

From Remark 4.1 and Lemma 4.3 we have f
1

0,3(z, 0) = f
1

3(z, 0). As in Remark
4.1, but now for the case j = 3 instead of j = 2, we conclude that g1

0,3(z, 0) = g1
3(z, 0)

for adequate changes of variables in (4.7) and (4.8), and the theorem is proved.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NORMAL FORMS AND HOPF BIFURCATION 2231

Remark 4.2. As pointed out in Remark 3.1, instead of center manifolds we can
consider other invariant manifolds associated with Λ, provided that they exist and
that the nonresonance conditions in (3.8) are satisfied (which is the case for unstable
or center–unstable manifolds).

Remark 4.3. Certainly, we could find a hypothesis similar to (H5) which would
ensure that the equations on the center manifold for (1.1) and (4.1) were the same,
up to terms of a certain finite order. However, in the examples presented in the
next section, we shall compute only normal forms up to cubic terms.

5. Examples

Recall that for PFDEs of type (3.9) the parameter α is introduced as a variable
(see Remark 3.3 and [6]) — hence, the role of the variable z is now assumed by
(z, α) and U1

j , U
2
j are functions of (z, α). Note that at the end we can drop the

auxiliary equation α̇(t) = 0 added to deal with the parameter.
As an illustration, we shall present here two scalar PFDEs of type (3.9) with

a generic Hopf singularity at zero (see, e.g., [1], [3], [4], [7], [12] for general work
on Hopf bifurcation for ODEs and FDEs). For the first PFDE, (H5) holds and
the results of Section 4 are applicable; however, this does not happen for the
second PFDE, and then the associated FDE does not provide complete infor-
mation. In both cases, we shall use complex coordinates, i.e., we shall consider
C = C([−r, 0]; C), since complex variables allow us to diagonalize the matrix B in
(2.9), which implies that the operators M1

j , j ≥ 2, are also diagonal, simplifying
the computation of the nonlinear terms of the normal form.

Example 5.1. Consider the Hutchinson equation with diffusion (see, for instance,
[2], [9], [10], [11], [14]):

∂u(t, x)
∂t

= d
∂2u(t, x)
∂x2

− au(t− 1, x)[1 + u(t, x)], t > 0, x ∈ (0, π),

∂u(t, x)
∂x

= 0 , x = 0, π,

where d > 0, a > 0. This equation can be written in abstract form in C =
C([−1, 0];X) as

d

dt
u(t) = d∆u(t) + L(a)(ut) + f(ut, a),(5.1)

where X = {v ∈ W 2,2(0, π) : dv
dx = 0 at x = 0, π}, L(a)(v) = −av(−1), f(v, a) =

−av(0)v(−1). However, in the following, we shall begin considering the general
case of any f : C ×R→ X such that f ∈ C3, f(0, a) = 0, D1f(0, a) = 0, for a > 0.

The functions

βk(x) =
cos(kx)

‖ cos(kx)‖2,2
are normalized eigenfunctions of d∆ = d(∂2/∂x) on X , with corresponding eigen-
values µk = −dk2, k ≥ 0, and (H1)-(H4) hold for a > 0 ([9], [11]). By linearizing
(5.1) about the equilibrium u = 0, for this case the characteristic equations (1.3k)
are

λ+ ae−λ + dk2 = 0, (k = 0, 1, . . . ).(5.2k)
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[14] showed (using a result of [8]) that, for a < π/2, all roots of all equations
(5.2k) have negative real parts, so the zero solution is stable; when a = π/2, (5.20)
has the unique pair ±iπ/2 of (simple) solutions on the imaginary axis, and all
other solutions of (5.2k), k ≥ 0, have negative real parts. To study the qualitative
behavior near the critical point a = π/2, let a = π/2 + α. Again from [14], there
is a pair of solutions λ(α), λ(α) of (5.20), with λ(0) = iπ/2 and Re λ′(0) > 0
(Hopf condition), and then a Hopf bifurcation occurs at α = 0. With the notation
of the preceeding sections (except that now k ∈ N0 instead of k ∈ N), let Λ =
{iπ/2,−iπ/2}. Defining L := L(π/2) and F (v, α) = −αv(−1)+f(v, π/2+α), (5.1)
is written as

d

dt
u(t) = d∆u(t) + L(ut) + F (ut, α).(5.3)

Since L(ψβ0) = −π2ψ(−1)β0, the operator L0 : C([−1, 0]; R)→ R corresponding
to the eigenvalue µ0 = 0 and defined by (1.50) is L0(ψ) = −π2ψ(−1). Following
Section 4, the FDE associated with (5.1) by Λ at the equilibrium point u = 0, α = 0
is ẋ(t) = L0(xt) + 〈F

(
xtβ0, α

)
, β0〉, i.e., the FDE in C([−1, 0]; R)

ẋ(t) = −π
2
x(t− 1) + 〈F (xtβ0, α), β0〉.(5.4)

We obtain P = P0, dim P = dim P0 = 2, and P0 = span Φ, where in complex
coordinates (cf. [6])

Φ(θ) = (φ1(θ), φ2(θ)) = (ei
π
2 θ, e−i

π
2 θ), B = diag (iπ/2,−iπ/2),

Ψ(0) =
(
ψ1(0)
ψ2(0)

)
, with ψ1(0) = ψ2(0) =

1− iπ2
1 + π2

4

.
(5.5)

In BC = P ⊕Kerπ decomposed by Λ, Eq. (5.3) becomes (cf. (2.9))

ż = Bz + Ψ(0)〈F (Φzβ0 + y, α), β0〉,
d

dt
y = A1y + (I − π)X0F (Φzβ0 + y, α) , z ∈ C2, y ∈ Q1;

(5.6)

and, in BC = P ⊕Kerπ0, (5.4) becomes (cf. (4.2))

ż = Bz + Ψ(0)〈F
(
(Φz + y)β0, α

)
, β0〉,

d

dt
y = A0,1y + (I − π0)X0〈F

(
(Φz + y)β0, α

)
, β0〉 , z ∈ C2, y ∈ Q1.

(5.7)

Suppose that (H5) holds: since β0 = 1/
√
π, that means

〈D1F2(Φc, α)(ψβk), 1〉 = 0, for all k ∈ N, c ∈ C2, ψ ∈ C.

On the other hand, for Eq. (5.3) there exists a two–dimensional local center
manifold tangent to P at u = 0, α = 0, which is stable [9]. Theorem 4.1 allows us
to conclude that the equations on the center manifold for Eq. (5.3) and Eq. (5.4)
(or, equivalently, for Eq. (5.6) and Eq. (5.7)) coincide up to third order terms —
which are sufficient to determine a generic Hopf bifurcation. For Eq. (5.4), we are
able to write that equation without additional calculus, using [6].

For instance, let Eq. (5.1) be the Hutchinson equation with diffusion:

d

dt
u(t) = d∆u(t)− au(t− 1)[1 + u(t)] ,(5.8)
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a, d > 0. Then F (v, α) = −αv(−1)− (π2 + α)v(−1)v(0), and

F2(v, α) = −2αv(−1)− πv(−1)v(0),

D1F2(v, α)(u) = −2αu(−1)− π
(
u(−1)v(0) + v(−1)u(0)

)
,

(5.9)

and clearly (H5) is fulfilled. In this case, the associated FDE (5.4) in C is

ẋ(t) = −ax(t− 1)[1 +
1√
π
x(t)],

which is the well–known Wright equation under the change x 7−→ 1√
π
x, so we

can apply the results in [6]. Its equation on the center manifold is given in polar
coordinates (ρ, ξ) by

ρ̇ = Re λ′(0)αρ+
1
π
Kρ3 +O

(
α2ρ+ |(ρ, α)|4

)
,

ξ̇ = − π

2
+O

(
|(ρ, α)|

)
,

(5.10)

where Reλ′(0) and K are as in [6, Ex. (3.24) with N = 0]:

Reλ′(0) =
2π

4 + π2
> 0, K =

π(2 − 3π)
5(4 + π2)

< 0 .(5.11)

Theorem 4.1 tells us that the flow on the center manifold for (5.8) at u =
0, a = π/2 is also given by (5.10), where (5.11). Therefore, the periodic solutions
associated with the generic Hopf bifurcation for (5.8) are stable, because K < 0.

Example 5.2. Consider the scalar PFDE (see [13])

∂u(t, x)
∂t

=
∂2u(t, x)
∂x2

+ u(t, x)− au(t− 1, x)[1 + u(t, x)], t ≥ 0, x ∈ (0, π),

u(t, 0) = 0, u(t, π) = 0, t ≥ 0 ,

(5.12)

where a > 0. In the abstract space C = C([−1, 0];X), with X = {v ∈ L2(0, π) :
v(0) = v(π) = 0}, this equation is

d

dt
u(t) = ∆u(t) + u(t)− au(t− 1) + f(ut, a),(5.13)

for f : C ×R→ X, f(v, a) = −av(−1)v(0). But, in the following, we shall consider
the general case of any f ∈ C3 such that f(0, a) = 0, D1f(0, a) = 0, a > 0.

In X , the sequence of eigenvalues of ∆ is {−k2}∞k=1, with normalized eigenfunc-
tions βk(x) =

√
2/π sin(kx). The linearized equation about the equilibrium point

zero is
d

dt
u(t) = ∆u(t) + L(a)(ut), for L(a)(v) := v(0)− av(−1), v ∈ C ,

with characteristic equations

λ+ ae−λ + (k2 − 1) = 0 (k = 1, 2, . . . ).(5.14k)

Using [8, Th.A.5, pg. 339], it can be shown that, for 0 < a < π/2, all roots of
(5.14k) have negative real parts, k ≥ 1. At the critical point a = π/2, [13] showed
that Eq. (5.141) has two simple roots ±iπ/2 and the remaining roots have negative
real parts; futhermore, all solutions of Eq. (5.14k), k ≥ 2, have negative real parts.
Using [8, Lemma 4.1, pg. 254], we conclude that the Hopf condition is satisfied:
changing the parameter a by putting a = π

2 + α, Eq. (5.141) is λeλ = −π2 + α
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and has a pair of eigenvalues λ(α), λ(α), λ(α) = γ(α) + iσ(α), of class C1, with
λ(0) = iπ/2, γ′(0) > 0; hence, a Hopf bifurcation occurs at u = 0, α = 0.

Let Λ = {iπ/2,−iπ/2}, N = 1, and recall the notation of the previous sections.
Hypotheses (H3)-(H4) hold for L := L(π/2). Since L(ψβ1) = [ψ(0)− π

2ψ(−1)]β1 for
ψ ∈ C = C([−1, 0]; R), the operator L1 : C → R corresponding to the eigenvalue
µ1 = −1 is

L1(ψ) = ψ(0)− π

2
ψ(−1),

and the associated FDE given by Definition 4.1 has linearization at zero ẋ(t) =
−π2x(t − 1), as for Example 5.1. In BC = P ⊕ Kerπ decomposed by Λ and using
complex coordinates, Eq. (5.13) is written as (cf. (2.9))

ż = Bz + Ψ(0)〈F (Φzβ1 + y, α), β1〉,
d

dt
y = A1y + (I − π)X0F (Φzβ1 + y, α), z ∈ C2, y ∈ Q1 ,

(5.15)

with B,Φ = Φ1,Ψ(0) = Ψ1(0) still given by (5.5), β1(x) =
√

2
π sinx and F (v, α) =

−αv(−1) + f(v, α + π/2), for v ∈ C, α ∈ R. For Eq. (5.13), the associated FDE
(4.1) is

ẋ(t) = −π
2
x(t− 1) + 〈F (xtβ1, α), β1〉 , xt ∈ C.

The existence of a two–dimensional local center manifold for Eq. (5.13) tangent to
P at u = 0, a = π/2 follows from [9]. If F satisfies (H5), then the normal forms on
the center manifold for the original PFDE and for the FDE above coincide up to
cubic terms, and can be calculated without additional computations using [6].

However, consider the particular case of (5.12), i.e., f(v, a) = −av(−1)v(0).
Then, Eq. (5.13) becomes

d

dt
u(t) = ∆u(t) + u(t)− au(t− 1)[1 + u(t)],(5.16)

and its associated FDE by Λ is

ẋ(t) = −ax(t− 1)[1 +
4
3
( 2
π

)3/2
x(t)].(5.17)

As in Eq. (5.8), we have (5.9). A few calculations give for z = (z1, z2), ψ ∈ C, k ≥ 2

〈D1F2(Φzβ1, α)(ψβk), β1〉 = π[i(z1 − z2)ψ(0)− (z1 + z2)ψ(−1)]ck ,(5.18)

with

ck := 〈β1βk, β1〉 =

{
0, if k even,

−
(

2
π

)3/2 4
k(k2−4) , if k odd.

(5.19)

Clearly, (H5) fails, and therefore we cannot apply Theorem 4.1. Nevertheless, we
still can profit from the relationship between the PFDE (5.16) and its associated
FDE by Λ (5.17).

It is well known that, among the cubic terms, it is sufficient to know the coeffi-

cients of
(
z2

1z2

0

)
and

(
0

z1z
2
2

)
to study the qualitative behavior of the generic Hopf

bifurcation.
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Lemma 5.1. Let

ż = Bz +
1
2
g1

2(z, 0, α) +
1
3!
g1

3(z, 0, α) + · · · , z ∈ C2,(5.20)

ż = Bz +
1
2
g1

0,2(z, 0, α) +
1
3!
g1

0,3(z, 0, α) + · · · , z ∈ C2,(5.21)

where the dots stand for higher order terms, be normal forms in complex coordinates
on the center manifold at zero for (5.16), and (5.17), respectively. Then,

g1
3(z, 0, α) = g1

0,3(z, 0, 0) +
(
cz2

1z2

cz1z
2
2

)
+O(|z|α2),

where

c =
3
2
π2ψ1(0)

∑
k>1

c2k(1 + i)
k2 − 1− π

2 + iπ
,

the bar denotes complex conjugation, and the ck are given by (5.19).

Proof. Using (4.11) and the proof of Theorem 4.1, for y = 0 we deduce that

f
1

3(z, 0, α) = f
1

0,3(z, 0, α) +
3
2

Ψ(0)〈D1F2(Φzβ1, α)(
∑
k>1

hk(z, α)βk), β1〉,(5.22)

where h(z, α) := U2
2 (z, α) =

∑
k≥1 hk(z, α)βk, i.e., h(z, α) is the unique solution of

(M2
2h)(z, α) = f2

2 (z, 0, α). For hk(z) := hk(z, 0), (5.18) yields

〈D1F2(Φzβ1, 0)(
∑
k>1

hk(z)βk), β1〉

= π
[
i(z1 − z2)

∑
k>1

ckhk(z)(0)− (z1 + z2)
∑
k>1

ckhk(z)(−1)
]

= π
[
z1

∑
k>1

ck
(
ihk(z)(0)− hk(z)(−1)

)
− z2

∑
k>1

ck
(
ihk(z)(0) + hk(z)(−1)

)]
.

(5.23)

Now we need to compute hk(z), by solving the equation (M2
2h)(z, 0) = f2

2 (z, 0, 0).
From (3.2) and (2.2), we have

f2
2 (z, 0, 0) = −ΦΨ(0)〈F2(Φzβ1, 0), β1〉β1 +X0F2(Φzβ1, 0),

and then 〈f2
2 (z, 0, 0), βk〉 = −πX0〈Φ(0)zΦ(−1)zβ2

1 , βk〉 = X0iπ(z2
1−z2

2)ck for k > 1.
On the other hand, the definition of M2

2 in (3.5) leads to

Dzhk(z)Bz − ḣk(z) = 0,

ḣk(z)(0) + (k2 − 1)hk(z)(0) +
π

2
hk(z)(−1) = iπ(z2

1 − z2
2)ck,

(5.24k)

where k > 1 and ḣk(z)(0) = d
dθhk(z)(θ)|θ=0. For each k > 1, it is easy to solve

(5.24k) by setting hk(z)(θ) =
∑
|q|=2 hq,k(θ)zq. It turns out that hq,k = 0 for

q 6= (2, 0), (0, 2), h(0,2),k = h(0,2),k, and, finally,

hk(z)(θ) = ckiπ
( z2

1

k2 − 1− π
2 + iπ

eiπθ − z2
2

k2 − 1− π
2 − iπ

e−iπθ
)
.
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Using (5.22) and (5.23), we obtain

f
1

3(z, 0, 0) = f
1

0,3(z, 0, 0) +
3π2

2
Ψ(0)

∑
k>1

c2k

( (−1 + i)z3
1 + (1 + i)z2

1z2

k2 − 1− π
2 + iπ

+
(1− i)z1z

2
2 − (1 + i)z3

2

k2 − 1− π
2 − iπ

)
.

Thus, we write g1
3(z, 0, 0) in the form

g1
3(z, 0, 0) = g1

0,3(z, 0, 0) +
(
cz2

1z2

cz1z
2
2

)
,

with

c =
3
2
π2ψ1(0)

∑
k>1

c2k(1 + i)
k2 − 1− π

2 + iπ
.

Since from [6, Section 3] we know that g1
3(z, 0, α) ∈ Ker (M1

3 ) and g1
3(z, 0, α) =

g1
3(z, 0, 0) +O(|z|α2), the lemma is proved.

Recall that (5.17) is the Wright equation after the change of variables x 7−→ c1x,
with c1 given by (5.19). Hence, we apply to it the results in [6], as in the former
example. This, and the lemma above, will give us all the information we need, as
we shall describe below.

For the Wright equation ẋ(t) = −ax(t − 1)[1 + x(t)], the normal form on the
center manifold at x = 0, a = π

2 ([6, Ex. (3.24) with N = 0]) is written in polar
coordinates (ρ, ξ) as

ρ̇ =γ′(0)αρ+K1ρ
3 +O

(
α2ρ+ |(ρ, α)|4

)
,

ξ̇ =− π

2
+O

(
|(ρ, α)|

)
,

(5.25)

where K1 = K, γ′(0) = Reλ′(0), and Reλ′(0) and K are given by (5.11). Then,
(5.21) (that is, the normal form on the center manifold at x = 0, a = π

2 for (5.17))
is given in polar coordinates by the same Eq. (5.25) with K1 = c21K. Now, consider
(5.20), the normal form on the center manifold for (5.16). From Remark 4.1 (for
the variables z, α instead of z), we have g1

0,2(z, 0, α) = g1
2(z, 0, α). Writing it in real

coordinates w through the change of variables z1 = w1 − iw2, z2 = w1 + iw2, and
using Lemma 5.1, as well as the notation used there, we obtain

ẇ = B1w +
1
2
S−1g1

0,2(Sw, 0, α) +
1
3!
S−1g1

0,3(Sw, 0, α)

+
1
3!
ρ2

(
(Re c)w1 + (Im c)w2

−(Im c)w1 + (Re c)w2

)
+O(|w|α2 + |(w,α)|4),

with B1 = S−1BS =
(

0 π
2

−π2 0

)
, S =

(
1 −i
1 i

)
and ρ2 = w2

1 + w2
2 . In polar

coordinates (ρ, ξ), we have w1 = ρ cos ξ, w2 = ρ sin ξ, and since Eq. (5.21) became
Eq. (5.25) with K1 = c21K, we deduce that this normal form is transformed into

ρ̇ = γ′(0)αρ+K∗ρ3 +O
(
α2ρ+ |(ρ, α)|4

)
,

ξ̇ = − π

2
+O

(
|(ρ, α)|

)
,

(5.26)
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where K∗ = c21K + 1
3!Re c and γ′(0) = Reλ′(0), K are given by (5.11). Now, we

must determine the sign of K∗. After a few calculations, we obtain

1
3!

Re c =
1
4
π2
∑
k>1

c2kRe
( (1 + i)ψ1(0)
k2 − 1− π

2 + iπ

)
=

π2

4 + π2

∑
k>1

c2kAk,

with

Ak =
(1 + π/2)(k2 − 1− π/2) + π(1− π/2)

(k2 − 1− π/2)2 + π2
.

Studying the sign of the derivative of the function (1+π/2)x+π(1−π/2)
x2+π2 , we deduce

that A3 = maxk≥3 Ak. On the other hand, Parseval’s formula yields∑
k>1

c2k =
∑
k>1

〈β2
1 , βk〉2 = ‖β1‖2 − 〈β2

1 , β1〉2 = 1− c21 = 1− 27

9π3
.

Therefore,

K∗ <
27(2 − 3π) + 5πA3(9π3 − 27)

45π2(4 + π2)
.

It is straightforward to show that

A3 <
27(3π − 2)

5π(9π3 − 27)
;

then K∗ is negative, and the theorem below follows.

Theorem 5.2. For Eq. (5.16) a generic supercritical Hopf bifurcation occurs from
u = 0, a = π/2 on its center manifold, with the associated periodic solutions being
stable.

Proof. Since K∗ < 0 in (5.26), the periodic solutions are stable in the center man-
ifold, thus stable in the whole space, because there is no root of the characteristic
equations (5.14k) with positive real part; and γ′(0)K∗ < 0 implies that the bifur-
cation is supercritical (cf., e.g., [3], [4], [6]).
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