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Abstract In this paper, we apply the recently developed normal form theory for abstract
Cauchy problems with non-dense domain in Liu et al. (J Diff Equ 257:921–1011, 2014)
to study normal forms for an age structured model. We provide detailed computations for
the Taylor’s expansion of the reduced system on the center manifold, from which explicit
formulae are given to determine the direction of the Hopf bifurcation and the stability and
amplitude of the bifurcating periodic solutions.
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1 Introduction

In modeling some biological and epidemiological processes, the age variable (age of the
individual, chronological time since infection or time since cell division) plays a key role in
determining the birth, growth and death rates of the populations and their interactions with
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each other. Age structured models, described by hyperbolic partial differential equations,
have been studied by many researchers (see the monographs of Cushing [6], Diekmann and
Heesterbeek [7], Hoppenstead [14], Iannelli [15], Metz and Diekmann [28], Thieme [35],
Webb [37], and the references cited therein).Various approaches have been developed to study
age structured models, such as (a) characteristics method (Webb [37], Metz and Diekmann
[28], Iannelli [15]), (b) variational method (Anita [1]), and (c) integrated semigroups method
(Thieme [33,34,36], Magal and Ruan [23,24]).

Classical results on age-structured models focus on the existence, bounded and stability of
solutions. Recently, great attention has been paid to the nonlinear dynamics of such models.
It has been shown that some age-structured models exhibit non-trivial periodic solutions
induced byHopf bifurcation (see Prüss [30], Cushing [5], Swart [32], Kostava andLi [17], and
Bertoni [2]). Since age-structured models can be rewritten as abstract semilinear equations
with non-dense domain (Thieme [33,34,36], Magal and Ruan [23,24]), Magal and Ruan
[25] developed the center manifold theory for abstract semilinear Cauchy problems with
non-dense domain and applied the results to consider Hopf bifurcation of a specific age-
structured model of the following form:

⎧
⎪⎪⎨

⎪⎪⎩

∂u(t, a)

∂t
+ ∂u(t, a)

∂a
= −μu(t, a), a ∈ (0,+∞) ,

u(t, 0) = αh
(∫ +∞

0 γ (a)u(t, a)da
)

,

u(0, .) = ϕ0 ∈ L1+ ((0,+∞) ;R) ,

(1.1)

where u(t, a) denotes the density of a population at time t with age a, μ > 0 is the mor-
tality rate of the population, αγ (a) is the fertility rate at a, and the function h(·) describes
some limitation for the reproduction. Based on this study, Liu et al. [19] established a Hopf
bifurcation theorem for abstract Cauchy problems with non-dense domain and, as an applica-
tion, obtained a Hopf bifurcation theorem for general age structured models. Center-unstable
manifolds for non-densely defined semilinear Cauchy problems were studied in Liu, Magal
and Ruan [20].

Normal form theory is very useful in simplifying the forms of equations restricted on the
center manifolds when study the nonlinear dynamics, such as the existence of bifurcations
and periodic solutions. Normal form theory has been well-developed for various types of
equations, including ordinary differential equations (Guckenheimer and Holmes [12], Chow
et al. [4]), partial differential equations (Kokubu [16], Eckmann et al. [9]), functional differ-
ential equations (Faria andMagalhães [10,11]), etc. More recently, a normal form theory has
been developed by Liu et al. [21] for the non-densely defined abstract Cauchy problems.

We already knew (Magal and Ruan [25]) that when τ > 0, system (1.1) undergoes a
Hopf bifurcation at the positive equilibrium. The goal of this paper is to apply the normal
form theory developed in Liu et al. [21] to the age-structured model (1.1) to determine
the direction of the Hopf bifurcation and study the stability and amplitude of the bifurcating
periodic solutions. Note that two approaches were developed in Liu et al. [21]: (a) calculating
the Taylor expansion of the reduced system of (1.1) on the center manifold, and (b) evaluating
the normal forms of (1.1) restricted on the centermanifold directly. Equation (1.1)was studied
in [21] by using the second approach. In this paper we will use the first approach to study
(1.1). Namely, we will calculate the Taylor expansion of the reduced system of (1.1) on the
center manifold, determine the direction of the Hopf bifurcation, and study the stability and
amplitude of the bifurcating periodic solutions.

At first, we make the following assumptions.
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Assumption 1.1 Assume that μ > 0, α > 0, γ ∈ L∞ (0,+∞) is a map defined by

γ (a) = (a − τ)n e−ς(a−τ)1[τ,+∞)(a) =
{

(a − τ)n e−ς(a−τ), if a ≥ τ

0, otherwise,

where τ ≥ 0, ς ≥ 0, n ∈ N, and assume that ς > 0 whenever n ≥ 1. The map h : R → R

is defined by
h (x) = x exp(−βx), ∀x ∈ R,

where β > 0.

In order to explore the asymptotic behavior of system (1.1), we observe some basic facts.
Set

α0 :=
(∫ +∞

0
γ (a) e−μada

)−1

.

Then for each α > α0, there exists a unique positive equilibrium

uα(a) = e−μaC̄, ∀a ≥ 0,

with

C̄ =
ln
(
α
∫ +∞
0 γ (a) e−μada

)

β
∫ +∞
0 γ (a) e−μada

.

So α0 is the first bifurcation point with respect to the parameter α.

When n = ς = τ = 0, the above system can be rewritten as the following simple ordinary
differential equation

dU (t)

dt
= αh (U (t)) − μU (t).

In this case the asymptotic behavior is fairly simple since the positive equilibrium is globally
asymptotic stable (when it exists) and no oscillations occur around the positive equilibrium.
This indicates that the oscillations around the positive equilibrium depend strongly on the
shape of the function γ.

Set

Xk(t) :=
∫ +∞

τ

(a − τ)k e−ςau(t, a)da, ∀k = 0, . . . , n.

Then (by using classical time differentiability results for age structured models), we obtain
for t ≥ τ the following system of delay differential equations:

⎧
⎪⎨

⎪⎩

dX0(t)

dt
= e−(ς+μ)τ αh (eςτ Xn(t − τ)) − (ς + μ) X0(t),

dXk(t)

dt
= kXk−1(t) − (ς + μ) Xk(t), ∀k = 1, . . . , n.

(1.2)

The observation is interesting itself since we have reduced the scalar age structured model
into a class of cyclic feedback systems with delay. We refer to Mallet-Paret and Sell [26,27]
for a nice survey and more results on such systems. Here the feedback h is only locally
monotone, and theory of monotone cyclic feedback systems can probably be applied locally
around the positive equilibrium. We will not study the local oscillating properties of the
system (1.2). Nevertheless, this observation can probably be useful in understanding the
qualitative properties of system (1.1).

Now consider themap g (x) := n! e−(ς+μ)τ αh(x)
(ς+μ)n+1 and define Xmax ∈ (0,+∞) at which g(x)

attains its maximum. Then we can apply the theory of monotone delay differential equations
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to (1.2) (see Smith [31] for more results on the subject), or applying the same argument to
the age structured model (1.1) we obtain the following result (the proof is left to the reader).

Proposition 1.2 Let Assumption 1.1 be satisfied and assume that

Xn :=
∫ +∞

τ

(a − τ)n e−ςau(a)da ≤ Xmax.

Then thepositive equilibriumof system (1.1) is globally asymptotically stable in L1+ (0,+∞)\
{0} .

Therefore, in order to obtain some undamped oscillations for system (1.1), we need the
two following ingredients

τ > 0 and h′ (Xn
)

< 0.

From the results in Magal and Ruan [25, Chapter 5], we know that when τ > 0, there exists
α1 > α0, such that the positive equilibrium uα undergoes a Hopf bifurcation (see also [3]
for more detailed computations). Now assume that we can compute the normal form for the
FDE (1.2) by using one of the above mentioned methods. Then the stability of the bifurcating
periodic orbits of system (1.1) for the L1 topology will not follow from such a study. This
simple remark shows that we need to compute the normal form for system (1.1) in order to
derive some qualitative properties related to the original topology in L1.

The paper is organized as follows. In Sect. 2we reformulate system (1.1) as an abstract non-
densely defined Cauchy problem and present the Hopf bifurcation results obtained in [3,25].
In Sect. 3, we apply the normal form theory to system (1.1) and compute the third Taylor’s
expansion of the reduced system on the center manifold, from which explicit formulae are
given to determine the direction of the Hopf bifurcation and the stability and amplitude of
the bifurcated periodic solutions.

2 Existence of Hopf Bifurcation

In this section, we reformulate the PDE (1.1) as a non-densely defined Cauchy problem.
Following the approach introduced by Thieme [34], we consider

X := R × L1 ((0,+∞) ,R)

endowed with the product norm
∥
∥
∥
∥

(
χ

ϕ

)∥
∥
∥
∥ = |χ | + ‖ϕ‖L1 .

Let A : D(A) ⊂ X → X be the linear operator on X defined by

A

(
0
ϕ

)

=
(−ϕ(0)

−ϕ′ − μϕ

)

with
D(A) = {0R} × W 1,1 ((0,+∞) ,R) .

Then A is non-densely defined and

D(A) = {0R} × L1 ((0,+∞) ,R) := X0.
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Let H : X0 → X be the map defined by

H

((
0
ϕ

))

=
(
h
(∫ +∞

0 γ (a)ϕ(a)da
)

0L1

)

.

Then by identifying u(t, .) to v(t) =
(

0R
u(t, .)

)

∈ X0, the system (1.1) can be reformulated

as the following non-densely defined abstract Cauchy problem

dv(t)

dt
= Av(t) + αH(v(t)), for t ≥ 0, v(0) =

(
0
ϕ

)

∈ D(A). (2.1)

Here the solution of system (2.1) is understood as an integrated solution, that is, v ∈
C
(
[0, τ ] , D(A)

)
and satisfies

∫ t

0

(
0
u(s, .)

)

ds ∈ D(A),

and for each t ∈ [0, τ ] ,
(
0
u(t, .)

)

=
(
0
ϕ(.)

)

+ A
∫ t

0

(
0
u(s, .)

)

ds +
∫ t

0
αH

((
0
u(s, .)

))

ds.

We have
ρ (A) = {λ ∈ C : Re(λ) > −μ},

and for each λ ∈ ρ (A) ,

(λI − A)−1
(

χ

ψ

)

=
(
0
ϕ

)

⇔ ϕ(a) = e−(λ+μ)aχ + ∫ a
0 e−(λ+μ)(a−s)ψ(s)ds.

It is readily checked that

∥
∥(λI − A)−1

∥
∥ ≤ 1

λ + μ
,∀λ > −μ,

so A is a Hille-Yosida operator. Now we consider A0, the part of A in X0, which is defined
by

A0

(
0
ϕ

)

= A

(
0
ϕ

)

=
(
0
−ϕ′ − μϕ

)

,∀
(
0
ϕ

)

∈ D(A0),

and

D(A0) =
{(

0
ϕ

)

∈ {0R} × W 1,1 ((0,+∞) ,R) : ϕ(0) = 0

}

.

The linear operator A0 is the infinitesimal generator of a strongly continuous semigroup{
TA0(t)

}

t≥0 of bounded linear operators on X0, which is defined by

TA0(t)

(
0
ϕ

)

=
(
0
T̂Â(t)ϕ

)

with

T̂Â(t) (ϕ) (a) =
{
e−μtϕ(a − t), if a − t ≥ 0,
0, otherwise.
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Then we consider {SA(t)}t≥0 ⊂ L (X) the integrated semigroup generated by A. That is

the family of bounded linear operators on X, such that for each x =
(

χ

ψ

)

∈ X, the map

t → SA(t)x is an integrated solution of the Cauchy problem

dSA(t)x

dt
= ASA(t)x + x, for t ≥ 0, and SA(0)x = 0.

Thus, we deduce that

SA(t)

(
χ

ψ

)

=
(
0
L(t)χ

)

+
∫ t

0
TA0(l)

(
0
ψ

)

dl

with

L(t) (χ) (a) =
{
0, if a − t ≥ 0,
e−μaχ, if a − t ≤ 0.

Finally define a convolution

(SA ∗ f ) (t) =
∫ t

0
SA(t − s) f (s)ds

for f ∈ L1 (0, τ ; X) . Then for each f ∈ L1 (0, τ ; X) , the map t → (SA ∗ f ) (t) belongs
to C1 ([0, τ ] , X0) ∩ C ([0, τ ] , D(A)) , and

(SA � f ) (t) := d

dt
(SA ∗ f ) (t)

satisfies

(SA � f ) (t) = A
∫ t

0
(SA � f ) (l)dl +

∫ t

0
f (l)dl, ∀t ∈ [0, τ ] .

Then the integrated solution of system (2.1) is unique and is given by

v(t) = TA0(t)

(
0
ϕ

)

+ (SA � αH(v(.))) (t), ∀t ≥ 0.

Set
X0+ := {0} × L1+ (0,+∞) .

Since h : [0,+∞) → [0,+∞) is Lipschitz continuous, we have the following results (see
Thieme [34] or Magal [22]).

Proposition 2.1 Let Assumption 1.1 be satisfied. Then for each α ≥ 0, there exists a family

of continuous maps {Uα(t)}t≥0 on X0+ such that for each x =
(
0
ϕ

)

∈ X0+, the map

t → Uα(t)x is the unique integrated solution of (2.1), that is,

Uα(t)x = x + A
∫ t

0
Uα(s)xds +

∫ t

0
αH(Uα(l)x)dl, ∀t ≥ 0,

or equivalently,

Uα(t)x = TA0(t)x + d

dt
(SA ∗ αH(Uα(.)x)) (t), ∀t ≥ 0.

Moreover, {Uα(t)}t≥0 is a continuous semiflow, that is,

Uα(t)Uα(s) = Uα(t + s), ∀t, s ≥ 0, Uα(0) = I d,

and the map (t, x) → Uα(t)x is continuous from [0,+∞) × X0+ into X0+.

123



J Dyn Diff Equat

The positive equilibrium solution of (2.1) is given for each α > α0 by

v̄α =
(
0
uα

)

.

The linearized system of (2.1) around v̄α is

dw(t)

dt
= Aw(t) + αDH(v̄α)w(t) for t ≥ 0, v(t) ∈ X0,

where

αDH(v̄α)

(
0
ϕ

)

=
(

η(α)
∫ +∞
0 γ (a)ϕ(a)da

0

)

and

η(α) = αh′
(∫ +∞

0
γ (a)ūα(a)da

)

=
1 − ln

(
α
∫ +∞
0 γ (a) e−μada

)

∫ +∞
0 γ (a) e−μada

.

To simplify the notation, we set

Bαx = Ax + αDH(v̄α)x with D(Bα) = D(A).

Let {TBα (t)}t≥0 be the linear C0-semigroup on X generated by Bα.

The essential growth bound ω0,ess (Bα) ∈ [−∞,+∞) of Bα is defined by

ω0,ess (Bα) := lim
t→+∞

ln
(∥
∥TBα (t)

∥
∥
ess

)

t
.

To conclude this section we summarize some results obtained in Magal and Ruan [25] and
Chu et al. [3].

Lemma 2.2 Let Assumption 1.1 be satisfied. Then the linear operator Bα : D(A) ⊂ X → X
is a Hille-Yosida operator and

ω0,ess (Bα) ≤ −μ.

Set
� := {λ ∈ C : Re (λ) > −μ} .

Recall that the esolvent set of Bα is defined by ρ (Bα) = {λ ∈ C : λI − Bα is invertible} .

Denote by σ(Bα) := C\ρ (Bα) the spectrum of Bα. By using the above lemma, we know
that for each λ ∈ �,

λ ∈ σ (Bα) ⇔ �(α, λ) = 0,

where the characteristic function is

�(α, λ) := 1 − η(α)

∫ +∞

0
γ (a) e−(λ+μ)ada for each λ ∈ �.

Moreover, by using the fact that γ (a) = (a − τ)n e−ς(a−τ)1[τ,+∞)(a), for each λ ∈ �, the
characteristic equation

�(α, λ) = 0

is equivalent to

1 = n!η(α)
e−(λ+μ)τ

(ς + λ + μ)n+1 . (2.2)

In the following, we regard α as the bifurcation parameter in considering the Hopf bifurcation
of system (2.1).
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Proposition 2.3 Let Assumption 1.1 be satisfied and assume that τ > 0. Then the charac-
teristic equation (2.2) with α = αk, k ∈ N \ {0} , has a unique pair of purely imaginary roots
±iωk, where

αk = (ς + μ)n+1

n!e−μτ
exp

⎛

⎜
⎝1 +

⎛

⎝

√

(ς + μ)2 + ω2
k

β + μ

⎞

⎠

n+1⎞

⎟
⎠

and ωk > 0 is the unique solution of

−
(

ωτ + (n + 1) arctan
ω

ς + μ

)

= π − 2kπ.

By proving in addition the transversality condition, we obtain the following result on Hopf
bifurcation (Magal and Ruan [25]).

Theorem 2.4 (Hopf Bifurcation) Let Assumption 1.1 be satisfied and assume that τ > 0.
Then there exists a positive sequence {αk}, k = 1, 2, . . . , where αk is defined in Proposition
2.3, such that the age structured model (1.1) undergoes a Hopf bifurcation at the equilibrium
u = uαk . In particular, a non-trivial periodic solution bifurcates from the equilibriumu = uαk

when α = αk .

3 Direction and Stability of Hopf Bifurcation

In this section we study the direction and stability of the Hopf bifurcation by applying the
normal form theory developed in Liu, Magal and Ruan [21] to the Cauchy problem (2.1).

3.1 Spectral Decomposition

We first include the parameter α into the state variable. Consider the system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dα(t)

dt
= 0,

dv(t)

dt
= Av(t) + α (t) H(v(t)),

α(0) = α0 ∈ R, v(0) = v0 ∈ X0.

(3.1)

Making a change of variables
v(t) = v̂(t) + vα,

we obtain the system
⎧
⎪⎪⎨

⎪⎪⎩

dα (t)

dt
= 0,

d v̂(t)

dt
= Av̂(t) + α(t)H (̂v(t) + vα) − α(t)H(vα).

Now set
α = α̂ + αk,

we obtain ⎧
⎪⎪⎨

⎪⎪⎩

dα̂ (t)

dt
= 0,

d v̂(t)

dt
= Av̂(t) + Ĥ (̂α, v̂) ,

(3.2)
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where
Ĥ (̂α, v̂) := (̂α + αk)

[
H (̂v(t) + v(̂α+αk )) − H(v(̂α+αk ))

]
.

We have
∂v̂ Ĥ (̂α, v̂) (w) = (̂α + αk) DH (̂v + v(̂α+αk )) (w)

and

∂α̂ Ĥ (̂α, v̂) (̃α) = α̃

{

H (̂v + v(̂α+αk )) − H(v(̂α+αk ))

+ (̂α + αk)

[

DH (̂v + v(̂α+αk ))

(
dv(̂α+αk )

dα̂

)

−DH(v(̂α+αk ))

(
dv(̂α+αk )

dα̂

)]}

.

So
∂v̂ Ĥ(0, 0) = αk DH(vαk ) and ∂α̂ Ĥ(0, 0) = 0.

Set
X = R × X , X0 = R × D(A).

Consider the linear operator A : D(A) ⊂ X → X defined by

A
(

α̂

v̂

)

=
(
0(
A + αk DH

(
vαk

))
v̂

)

=
(
0
Bαk v̂

)

with
D(A) = R×D(A),

and the map F : D(A) → X defined by

F

(
α̂

v̂

)

=
⎛

⎝
0

W

(
α̂

v̂

)

⎞

⎠ ,

where W : D(A) → X is defined by

W

(
α̂

v̂

)

:= (̂α + αk)
[
H (̂v + v(̂α+αk )) − H(v(̂α+αk ))

] − αk DH
(
vαk

)
(̂v) .

Then we have

F

(
0
0

)

= 0 and DF

(
0
0

)

= 0.

Now we can reformulate system (3.2) as the following system

dw(t)

dt
= Aw(t) + F (w(t)) , w(0) = w0 ∈ D(A). (3.3)

The following three lemmas are obtained in Magal and Ruan [25].

Lemma 3.1 Let Assumption 1.1 be satisfied and assume that τ > 0. Then

σ
(
Bαk |�̂c(X)

)
= {iωk,−iωk} , σ

(
Bαk |(I−�̂c)(X)

)
= σ

(
Bαk

) \ {iωk,−iωk}
with

�̂±iωk

(
δ

ψ

)

=
(
0
d�(α,±iωk )

dλ

−1 [
δ + ∫ +∞

0

∫ +∞
s γ (l) e−(±iωk+μ)(l−s)dlψ(s)ds

]
e−(±iωk+μ).

)
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and

�̂c

(
1
0

)

=
(
0
d�(αk ,iωk )

dλ

−1
e−(iωk+μ). + d�(αk ,−iωk )

dλ

−1
e−(−iωk+μ).

)

.

Set {
b1 := e−(iωk+μ). + e−(−iωk+μ).

b2 := e−(iωk+μ).−e−(−iωk+μ).

i

⇔
{
2e−(iωk+μ). = b1 + ib2
2e−(−iωk+μ). = b1 − ib2.

We also have

�(αk, iωk) = 0 ⇔ η(αk)

∫ +∞

0
γ (a) e−(iωk+μ)ada = 1

and

d�(αk, iωk)

dλ
= η(αk)

∫ +∞

0
aγ (a) e−(iωk+μ)ada

= η(αk)

∫ +∞

0
(a − τ) γ (a) e−(iωk+μ)ada

+ τη(αk)

∫ +∞

0
γ (a) e−(iωk+μ)ada

= η(αk)

∫ +∞

τ

(a − τ)n+1 e−ς(a−τ)e−(iωk+μ)ada + τ

= (n + 1)!η(α)
e−(iωk+μ)τ

(ς + iωk + μ)n+2 + τ

= (n + 1)

(ς + iωk + μ)
+ τ.

So
d�(αk, iωk)

dλ
= (n + 1)

(ς + iωk + μ)
+ τ = (n + 1)

√

(ς + μ)2 + ω2
k

[(ς + μ) − iωk] + τ.

Therefore, we have

Re

(
d�(αk, iωk)

dλ

)

= (n + 1) (ς + μ)
√

(ς + μ)2 + ω2
k

+ τ,

Im

(
d�(αk, iωk)

dλ

)

= − (n + 1) ωk
√

(ς + μ)2 + ω2
k

,

and
d�(αk,−iωk)

dλ
= d�(αk, iωk)

dλ
.

Moreover

�̂c

(
1
0

)

=
∣
∣
∣
∣
d�(αk, iωk)

dλ

∣
∣
∣
∣

−2
(
0

Re
(
d�(αk ,iωk )

dλ

)
b1 + Im

(
d�(αk ,iωk )

dλ

)
b2

)

.

The set
{( 0

b1

)
,
( 0
b2

)}
is a basis of Xc := �̂c (X) . Observe that by construction we have

Bαk

(
0

e−(±iωk+μ).

)

=
(
0
− ( d

da + μI
)
e−(±iωk+μ).

)

= ±iωk

(
0
e−(±iωk+μ).

)

,
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so

Bαk

(
0

b1

)

= −ωk

(
0

b2

)

, Bαk

(
0

b2

)

= ωk

(
0

b1

)

,

and we obtain that the matrix of Bαk |�̂c(X)with respect to basis
{( 0

b1

)
,
( 0
b2

)}
is

Bαk |�̂c(X) =
(
0 ωk

−ωk 0

)

.

Set
�̂h := (

I − �̂c
)
.

Lemma 3.2 Let Assumption 1.1 be satisfied and assume that τ > 0. Then we have

�̂h

(
1
0

)

=
(
1

− d�(αk ,iωk )
dλ

−1
e−(iωk+μ). − d�(αk ,−iωk )

dλ

−1
e−(−iωk+μ).

)

=
(
1

−
∣
∣
∣
d�(αk ,iωk )

dλ

∣
∣
∣
−2 [

Re
(
d�(αk ,iωk )

dλ

)
b1 + Im

(
d�(αk ,iωk )

dλ

)
b2
]

)

.

For each λ ∈ iR \ {−iωk, iωk} ,

(
λI − BC

αk
|�̂h(X)

)−1
�̂h

(
1
0

)

=
(
0

− d�(αk ,iωk )
dλ

−1 e−(iωk+μ).

(λ−iωk )
− d�(αk ,−iωk )

dλ

−1 e−(−iωk+μ).

(λ+iωk )
+ �(αk, λ)−1 e−(λ+μ).

)

.

Moreover, if λ = iωk, we have
(
iωk I − BC

α |�̂h (X)

)−1
�̂h

(
1
0

)

=
⎛

⎝
0

− d�(αk ,−iωk )
dλ

−1 e−(−iωk+μ).

2iωk
+ d�(αk ,iωk )

dλ

−2
[
− d�(αk ,iωk )

dλ
· − 1

2
d2�(αk ,iωk )

dλ2

]
e−(iωk+μ).

⎞

⎠ ,

and if λ = −iωk, we have
(
−iωk I − BC

α |
�̂h (X)

)−1
�̂h

(
1
0

)

=
(
0
d�(αk ,iωk )

dλ

−1 e−(iωk+μ).

2iωk
+ d�(αk ,−iωk )

dλ

−2
[
− d�(αk ,−iωk )

dλ
· − 1

2
d2�(αk ,−iωk )

dλ2

]
e−(−iωk+μ).

)

.

Lemma 3.3 Let Assumption 1.1 be satisfied and assume that τ > 0. Then

σ (A) = σ
(
Bαk

) ∪ {0} .

Moreover, we have for λ ∈ ρ (A) ∩ � = � \ (σ (
Bαk

) ∪ {0}) that

(λI − A)−1

⎛

⎝
r(

δ

ψ

)

⎞

⎠ =
⎛

⎜
⎝

r

λ
(
λI − Bαk

)−1
(

δ

ψ

)

⎞

⎟
⎠

and the eigenvalues 0 and ±iωk ofA are simple. The corresponding projectors �0,�±iωk :
X + iX → X + iX are defined by
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�0

(
r
v

)

=
(
r
0

)

, �±iωk

(
r
v

)

=
(
0
�̂±iωkv

)

,∀
(
r
v

)

∈ X + iX .

Note that we have
�iωk (x) = �−iωk (x), ∀x ∈ X + iX .

In this context, the projectors �c : X → X and �h : X → X are defined by

�c (x) := (
�0 + �iωk + �−iωk

)
(x) , ∀x ∈ X ,

�h (x) := (I − �c) (x) , ∀x ∈ X ,

and we denote by

Xc := �c (X ) ,Xh := �h (X ) ,Ac := A |Xc
,Ah := A |Xh

.

Then by Lemmas 3.1 and 3.3, we have

�c

⎛

⎝
0R(
1
0L1

)

⎞

⎠ =
⎛

⎝
0R

�̂iωk

(
1
0L1

)

+ �̂−iωk

(
1
0L1

)

⎞

⎠ =
⎛

⎝
0R

�̂c

(
1
0L1

)

⎞

⎠ .

Define the basis of Xc = R (�c) by

e1 =
⎛

⎝
1
0R
0L1

⎞

⎠ , e2 =
⎛

⎝
0R(
0R
b1

)

⎞

⎠ =
⎛

⎝
0R(
0R
e−(μ+iωk ). + e−(μ−iωk ).

)

⎞

⎠ ,

e3 =
⎛

⎝
0R(
0R
b2

)

⎞

⎠ =
⎛

⎜
⎝

0R(
0R
e−(μ+iωk ).−e−(μ−iωk ).

i

)

⎞

⎟
⎠ .

We can readily check the following lemma.

Lemma 3.4 For λ ∈ iR we have

(λI − Ah)
−1 �h

⎛

⎝
0(
1
0

)

⎞

⎠ =
⎛

⎝
0
(
λI − BC

α |
�̂h (X)

)−1
�̂h

(
1
0

)

⎞

⎠ .

3.2 Computation of the Normal Form

We apply the method described in Liu et al. [21, Theorem 4.2] for k = 2. The main point is to
compute L2 ∈ Ls

(X 2
c ,Xh ∩ D(A)

)
by solving the following equation for each (w1, w2) ∈

X 2
c :

d

dt

[
L2(e

Actw1, e
Actw2)

]
(0) = Ah L2(w1, w2) + 1

2!�h D
2F (0) (w1, w2). (3.4)

Note that

d

dt

[
L2(e

Actw1, e
Actw2)

]
(0) = L2 (Acw1, w2) + L2 (w1,Acw2) .

So system (3.4) can be rewritten as

L2 (Acw1, w2) + L2 (w1,Acw2) = Ah L2(w1, w2) + 1

2!�h D
2F (0) (w1, w2). (3.5)
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We first observe that

D2F(0) (w1, w2) =
(
0R

D2W (0) (w1, w2)

)

and

D3F(0) (w1, w2, w3) =
(
0R

D3W (0) (w1, w2, w3)

)

for each

w1 :=
(

α̂1

v1

)

, w2 :=
(

α̂2

v2

)

, w3 :=
(

α̂3

v3

)

∈ D(A),

with vi =
(
0R
ϕi

)

, i = 1, 2, 3, where

D2W (0) (w1, w2)

= D2W (0)

((
α̂1

v1

)

,

(
α̂2

v2

))

= αk D
2H

(
vαk

)
(v1, v2) + α̂2DH

(
vαk

)
(v1) + α̂1DH

(
vαk

)
(v2)

+ α̂2αk D
2H

(
vαk

)
(

v1,
dvα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

)

+ α̂1αk D
2H

(
vαk

)
(

v2,
dvα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

)

, (3.6)

and

D3W (0) (w1, w2, w3)

= D3W (0)

((
α̂1

v1

)

,

(
α̂2

v2

)

,

(
α̂3

v3

))

= α̂1D
2H

(
vαk

)
(v2, v3) + α̂2D

2H
(
vαk

)
(v1, v3) + α̂3D

2H
(
vαk

)
(v1, v2)

+ 2α̂2α̂3D
2H

(
vαk

)
(

v1,
dvα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

)

+ 2α̂1α̂3D
2H

(
vαk

)
(

v2,
dvα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

)

+ 2α̂1α̂2D
2H

(
vαk

)
(

v3,
dvα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

)

+ α̂2α̂3αk D
2H

(
vαk

)
(

v1,
d2vα̂+αk

d (̂α)2

∣
∣
∣
∣
α̂=0

)

+ α̂1α̂3αk D
2H

(
vαk

)
(

v2,
d2vα̂+αk

d (̂α)2

∣
∣
∣
∣
α̂=0

)

+ α̂1α̂2αk D
2H

(
vαk

)
(

v3,
d2vα̂+αk

d (̂α)2

∣
∣
∣
∣
α̂=0

)

+αk D
3H

(
vαk

) (
v1,v2, v3

) + α̂3αk D
3H

(
vαk

)
(

v1,v2,
dvα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

)

+ α̂2αk D
3H

(
vαk

)
(

v1, v3,
dvα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

)

+ α̂1αk D
3H

(
vαk

)
(

v2, v3,
dvα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

)

+ α̂2α̂3αk D
3H

(
vαk

)
(

v1,
dvα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

,
dvα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

)

+ α̂1α̂3αk D
3H

(
vαk

)
(

v2,
dvα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

,
dvα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

)

+ α̂1α̂2αk D
3H

(
vαk

)
(

v3,
dvα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

,
dvα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

)

, (3.7)
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with (k = 1, 2, 3)

DkH
(
vαk

)
((

0

ϕ1

)

, . . . ,

(
0

ϕk

))

=
⎛

⎝ h(k)
(∫ +∞

0 γ (a) uαk (a) da
) k

�
i=1

∫ +∞
0 γ (a) ϕi (a) da

0

⎞

⎠ ,

h(1)(x) = (1 − βx) exp (−βx) ,

h(2)(x) = (
β2x − 2β

)
exp (−βx) ,

h(3)(x) = (−β3x + 3β2) exp (−βx) ,

vαk =
(

0

uαk

)

=
⎛

⎝
0
ln
(
αk

∫+∞
0 γ (a)e−μada

)

β
∫+∞
0 γ (a)e−μada

exp(−μ·)

⎞

⎠ ,

∫ +∞

0
γ (a) uαk (a) da =

ln
(
αk

∫ +∞
0 γ (a) e−μada

)

β
,

duα̂+αk

dα̂
= 1

α̂ + αk
× exp (−μ·)

β
∫ +∞
0 γ (a) e−μada

,

∫ +∞

0
γ (a)

duα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

(a)da = 1

βαk
,

d2uα̂+αk

d (̂α)2
= − 1

(̂α + αk)
2 × exp (−μ·)

β
∫ +∞
0 γ (a) e−μada

,

∫ +∞

0
γ (a)

d2uα̂+αk

d (̂α)2

∣
∣
∣
∣
α̂=0

(a)da = − 1

β (αk)
2 .

To simplify the computation, we use the eigenfunctions of A in Xc and consider

ê1 :=
⎛

⎝
1(
0R
0C

)

⎞

⎠ , ê2 :=
⎛

⎝
0R(
0R
e−(μ+iωk ).

)

⎞

⎠ , ê3 =:
⎛

⎝
0R(
0R
e−(μ−iωk ).

)

⎞

⎠ .

We have
Aê1 = 0, Aê2 = iωk ê2, and Aê3 = −iωk ê3.

In order to simplify the notation, from now on we set

χ :=
∫ +∞

0
γ (a) e−μada = n! exp(−μτ)

(μ + ς)n+1 . (3.8)

(i) Computation of L2 (̂e1, ê1): We have

�h D
2F (0) (̂e1, ê1) = 0

and
Acê1 = 0.

By (3.5) we have

L2 (Acê1, ê1) + L2 (̂e1,Acê1) = Ah L2 (̂e1, ê1) + 1

2!�h D
2F (0) (̂e1, ê1).
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So
0 = Ah L2(̂e1, ê1).

Since 0 belongs to the resolvent set of Ah, we obtain

L2(̂e1, ê1) = 0. (3.9)

(ii) Computation of L2 (̂e1, ê2): Since Acê1 = 0 and Acê2 = iωk ê2, the equation

L2 (Acê1, ê2) + L2 (̂e1,Acê2) = Ah L2(̂e1, ê2) + 1

2!�h D
2F (0) (̂e1, ê2)

is equivalent to

(iωk − Ah) L2 (̂e1, ê2) = 1

2!�h D
2F (0) (̂e1, ê2),

where

D2F (0) (̂e1, ê2)

=

⎛

⎜
⎜
⎝

0R

D2W (0)

⎛

⎝

(
1
0X

)

,

⎛

⎝
0R(
0R
e−(μ+iωk ).

)

⎞

⎠

⎞

⎠

⎞

⎟
⎟
⎠

=
⎛

⎝
0R

DH
(
vαk

)
(
0R
e−(μ+iωk ).

)

⎞

⎠

+
⎛

⎝
0R

αk D2H
(
vαk

)
((

0R
e−(μ+iωk ).

)

,
dvα̂+αk

dα̂

∣
∣
∣
α̂=0

)

⎞

⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0R
h(1)

(∫ +∞
0 γ (a) uαk (a) da

) ∫ +∞
0 γ (a) e−(μ+iωk )ada

+αkh(2)
(∫ +∞

0 γ (a) uαk (a) da
) ∫ +∞

0 γ (a) e−(μ+iωk )ada
∫ +∞
0 γ (a)

duα̂+αk
dα̂

∣
∣
∣
α̂=0

(a)da

0L1

⎞

⎟
⎟
⎟
⎟
⎠

.

Thus, we have

D2F (0) (̂e1, ê2) = c12

⎛

⎝
0R(
1
0L1

)

⎞

⎠

with

c12 = h(1)
(∫ +∞

0
γ (a) uαk (a) da

)∫ +∞

0
γ (a) e−(μ+iωk )ada

+αkh
(2)

(∫ +∞

0
γ (a) uαk (a) da

)∫ +∞

0
γ (a) e−(μ+iωk )ada

×
∫ +∞

0
γ (a)

duα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

(a)da

=
(

1 − β

∫ +∞

0
γ (a) uαk (a) da

)

exp

(

−β

∫ +∞

0
γ (a) uαk (a) da

)
χ

1 − ln (αχ)

+αk

(

β2
∫ +∞

0
γ (a) uαk (a) da − 2β

)

exp

(

−β

∫ +∞

0
γ (a) uαk (a) da

)

123



J Dyn Diff Equat

× χ

1 − ln (αχ)
× 1

αk

1

β

= χ

1 − ln (αχ)

[(

1 − β

∫ +∞

0
γ (a) uαk (a) da

)

exp

(

−β

∫ +∞

0
γ (a) uαk (a) da

)

+
(

β

∫ +∞

0
γ (a) uαk (a) da − 2

)

exp

(

−β

∫ +∞

0
γ (a) uαk (a) da

)]

= − χ

1 − ln (αχ)
exp

(

−β

∫ +∞

0
γ (a) uαk (a) da

)

= − χ

1 − ln (αχ)

(

αk

∫ +∞

0
γ (a) e−μada

)−1

= − 1

αk(1 − ln (αχ))
.

So

L2 (̂e1, ê2) = − 1

2αk(1 − ln (αχ))
(iωk − Ah)

−1 �h

⎛

⎝
0R
1
0L1

⎞

⎠ .

By using a similarmethod togetherwith Lemmas 3.2 and 3.3, we obtain the following results:

L2(̂e1, ê2) = L2 (̂e2, ê1) =
⎛

⎝
0(
0
ψ1,2

)

⎞

⎠ , (3.10)

L2(̂e1, ê3) = L2 (̂e3, ê1) =
⎛

⎝
0(
0
ψ1,3

)

⎞

⎠ , (3.11)

L2 (̂e2, ê3) = L2 (̂e3, ê2) =
⎛

⎝
0(
0
ψ2,3

)

⎞

⎠ , (3.12)

L2 (̂e2, ê2) =
⎛

⎝
0(
0
ψ2,2

)

⎞

⎠ , (3.13)

L2 (̂e3, ê3) =
⎛

⎝
0(
0
ψ3,3

)

⎞

⎠ , (3.14)

where

ψ1,2 (a) = ψ1,3 (a) := − 1

2αk (1 − ln (αkχ))

×
⎛

⎜
⎝

− d�(αk ,−iωk )
dλ

−1 e−(−iωk+μ)a

2iωk

+ d�(αk ,iωk )
dλ

−2
[
− d�(αk ,iωk )

dλ
a − 1

2
d2�(αk ,iωk )

dλ2

]
e−(iωk+μ)a

⎞

⎟
⎠ ,

ψ2,2 (a) = ψ3,3 (a) := βχ (ln (αkχ) − 2)

2 (1 − ln (αkχ))2

×
⎛

⎝
− d�(αk ,iωk )

dλ

−1 e−(iωk+μ)a

iωk

− d�(αk ,−iωk )
dλ

−1 e−(−iωk+μ)a

3iωk
+ �(αk, 2iωk)

−1 e−(2iωk+μ)a

⎞

⎠ ,
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and

ψ2,3 (a) = βχ (ln (αkχ) − 2)

2 (1 − ln (αkχ))2

×
⎛

⎝
d�(αk ,iωk )

dλ

−1 e−(iωk+μ)a

iωk
−

d�(αk ,−iωk )
dλ

−1 e−(−iωk+μ)a

iωk
+ �(αk, 0)−1 e−μa

⎞

⎠ .

By using (3.9)–(3.14), and the fact that

e1 = ê1, e2 = ê2 + ê3, and e3 = ê2 − ê3
i

,

we obtain the following lemma.

Lemma 3.5 The symmetric and bilinear map L2 : X 2
c → Xh ∩ D(A) is defined by

(a) L2 (e1, e1) = 0;
(b) L2 (e1, e2) and L2 (e2, e1) are defined by

L2 (e1, e2) = L2 (e2, e1) =
⎛

⎝
0R(
0R
2Reψ1,2

)

⎞

⎠ ;

(c) L2 (e1, e3) and L2 (e3, e1) are defined by

L2 (e1, e3) = L2 (e3, e1) =
⎛

⎝
0R(
0R
2Imψ1,2

)

⎞

⎠ ;

(d) L2 (e2, e2) is defined by

L2 (e2, e2) =
⎛

⎝
0R(
0R
2Reψ2,2 + 2ψ2,3

)

⎞

⎠ ;

(e) L2 (e2, e3) and L2 (e3, e2) are defined by

L2 (e2, e3) = L2 (e3, e2) =
⎛

⎝
0R(
0R
2Imψ2,2

)

⎞

⎠ ;

(f) L2 (e3, e3) =
⎛

⎝
0R(
0R
−2Reψ2,2 + 2ψ2,3

)

⎞

⎠ .

We define G2 : X → Xh ∩ D(A) by

G2(�cw) := L2 (�cw,�cw) , ∀w ∈ X ,

and the change of variable ξ2 : X → X and ξ−1
2 : X → X by

ξ2 (w) := w − G2(�cw) and ξ−1
2 (w) := w + G2(�cw), ∀w ∈ X ,

and F2 : D(A) → X by

F2(w) := F
(
ξ−1
2 (w)

)
+ AG2(�cw) − DG2(�cw)Ac�cw

− DG2(�cw)�cF
(
ξ−1
2 (w)

)
.
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By applying in Liu et al. [21, Theorem 4.2] to (3.3) for k = 2, we obtain the following
theorem.

Theorem 3.6 By using the change of variables

w2(t) = w(t) − G2 (�cw(t)) ⇔ w(t) = w2(t) + G2 (�cw2(t)) ,

the map t → w(t) is an integrated solution of the Cauchy problem (3.3) if and only if
t → w2(t) is an integrated solution of the Cauchy problem

⎧
⎨

⎩

dw2(t)

dt
= Aw2(t) + F2(w2(t)), t ≥ 0,

w2(0) = w2 ∈ D(A).
(3.15)

Moreover, the reduced equation of the Cauchy problem (3.15) is given by the ordinary dif-
ferential equation on R × Xc :

⎧
⎪⎪⎨

⎪⎪⎩

dα̂(t)

dt
= 0,

dyc(t)

dt
= Bαk |�̂c(X)yc(t) + �̂cW (I + G2)

(
α̂(t)
yc(t)

)

+ R̂c

(
α̂(t)
yc(t)

)

,

(3.16)

where R̂c ∈ C4 (R × Xc, Xc) , and R̂c

(
α̂(t)
yc(t)

)

is a remainder term of order 4, that is,

R̂c

(
α̂

yc

)

= ‖(̂α, yc)‖4 O (̂α, yc) ,

where O (̂α, yc) is a function of (̂α, yc) which remains bounded when (̂α, yc) goes to 0, or
equivalently,

D j R̂c (0) = 0 for each j = 1, 2, 3.

Furthermore,
∂ j R̂c (0)

∂ j α̂
= 0, ∀ j = 1, 2, 3, 4,

which implies that

R̂c

(
α̂

yc

)

= O
(
α̂3 ‖yc‖ + α̂2 ‖yc‖2 + α̂ ‖yc‖3 + ‖yc‖4

)
.

In the following theorem we compute the Taylor’s expansion of the reduced system (3.16)
by using the formula obtained for L2 in Lemma 3.5.

Theorem 3.7 The reduced system (3.16) expressed in terms of the basis {e1, e2, e3} has the
following form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dα̂(t)

dt
= 0,

d

dt

(
x(t)
y(t)

)

= Mc

(
x(t)
y(t)

)

+ (
H̃2 + H̃3 + R̂c

)

⎛

⎝
α̂(t)(
x(t)
y(t)

)

⎞

⎠ ,
(3.17)

where

Mc =
[

0 ωk

−ωk 0

]

;
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he map H̃2 : R3 → R
2 is defined by

H̃2

⎛

⎝
α̂

x
y

⎞

⎠ = χ2 (̂α, x, y)

∣
∣
∣
∣
d�(αk, iωk)

dλ

∣
∣
∣
∣

−2
⎡

⎣
Re

(
d�(αk ,iωk )

dλ

)

Im
(
d�(αk ,iωk )

dλ

)

⎤

⎦ ,

in which

χ2 (̂α, x, y) = − 2

αk [1 − ln (αkχ)]
α̂x + 2χβ (ln (αkχ) − 2)

[1 − ln (αkχ)]2
x2;

the map H̃3 : R3 → R
2 is defined by

H̃3

⎛

⎝
α̂

x
y

⎞

⎠ = χ3 (̂α, x, y)

∣
∣
∣
∣
d�(αk, iωk)

dλ

∣
∣
∣
∣

−2
⎡

⎣
Re

(
d�(αk ,iωk )

dλ

)

Im
(
d�(αk ,iωk )

dλ

)

⎤

⎦ ,

in which

χ3 (̂α, x, y)

=
(

− 2α̂

αkχ
+ 4β (ln (αkχ) − 2) x

1 − ln (αkχ)

)

×
[
(
x2 − y2

)
∫ +∞

0
γ (a)Reψ2,2 (a) da

+ (
x2 + y2

)
∫ +∞

0
γ (a) ψ2,3 (a) da + 2xy

∫ +∞

0
γ (a) Imψ2,2 (a) da

+ 2α̂x
∫ +∞

0
γ (a)Reψ1,2 (a) da + 2α̂y

∫ +∞

0
γ (a) Imψ1,2 (a) da

]

+ 1

(αk)
2 (1 − ln (αkχ))

α̂2x + 2βχ

αk (1 − ln (αkχ))2
α̂x2

+ 4β2 (− ln (αkχ) + 3) χ2

3 (1 − ln (αkχ))3
x3;

and the remainder term R̂c ∈ C4
(
R
3,R2

)
satisfies

R̂c

⎛

⎝
α̂

x
y

⎞

⎠ = O

(

α̂3
∥
∥
∥
∥

(
x
y

)∥
∥
∥
∥ + α̂2

∥
∥
∥
∥

(
x
y

)∥
∥
∥
∥

2

+ α̂

∥
∥
∥
∥

(
x
y

)∥
∥
∥
∥

3

+
∥
∥
∥
∥

(
x
y

)∥
∥
∥
∥

4
)

. (3.18)

Proof We firstly prove that the reduced system (3.16) expressed in terms of the basis
{e1, e2, e3} has the following form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dα̂(t)

dt
= 0,

d

dt

(
x(t)
y(t)

)

= Mc

(
x(t)
y(t)

)

+ (
Ĥ2 + Ĥ3 + R̂c

)

⎛

⎝
α̂(t)(
x(t)
y(t)

)

⎞

⎠ ,
(3.19)

where the map Ĥ2 : R3 → R
2 is defined by

Ĥ2

⎛

⎝
α̂

x
y

⎞

⎠ = ψ̃

∣
∣
∣
∣
d�(αk, iωk)

dλ

∣
∣
∣
∣

−2
⎡

⎣
Re

(
d�(αk ,iωk )

dλ

)

Im
(
d�(αk ,iωk )

dλ

)

⎤

⎦ (3.20)

with

ψ̃ = − α̂

αkχ

∫ +∞

0
γ (a) ψ (a) da + β (ln (αkχ) − 2)

2χ

(∫ +∞

0
γ (a) ψ (a) da

)2
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and
∫ +∞

0
γ (a) ψ (a) da

= x
2χ

1 − ln (αkχ)
+ 2

(
x2 − y2

)
∫ +∞

0
γ (a)Reψ2,2 (a) da

+ 2
(
x2 + y2

)
∫ +∞

0
γ (a) ψ2,3 (a) da + 4xy

∫ +∞

0
γ (a) Imψ2,2 (a) da

+ 4α̂x
∫ +∞

0
γ (a)Reψ1,2 (a) da + 4α̂y

∫ +∞

0
γ (a) Imψ1,2 (a) da.

The map Ĥ3 : R3 → R
2 is defined by

Ĥ3

⎛

⎝
α̂

x
y

⎞

⎠ = ψ̂

∣
∣
∣
∣
d�(αk, iωk)

dλ

∣
∣
∣
∣

−2
⎡

⎣
Re

(
d�(αk ,iωk )

dλ

)

Im
(
d�(αk ,iωk )

dλ

)

⎤

⎦ , (3.21)

where

ψ̂ = 1

(αk)
2 (1 − ln (αkχ))

α̂2x + 2βχ

αk (1 − ln (αkχ))2
α̂x2 + 4β2 (− ln (αkχ) + 3) χ2

3 (1 − ln (αkχ))3
x3.

By using the Taylor’s expansion of W around 0, the reduced system (3.16) can be rewritten
as follows:

dα̂(t)

dt
= 0,

dyc(t)

dt
= Bαk |�̂c(X)yc(t) + 1

2! �̂cD
2W (0)

(

(I + G2)

(
α̂(t)
yc(t)

))2

+ 1

3! �̂cD
3W (0)

(

(I + G2)

(
α̂(t)
yc(t)

))3

+ R̃c

(
α̂(t)
yc(t)

)

.

Set

yc =
(
0
xb1 + yb2

)

=
(
0

x
(
e−(μ+iωk ). + e−(μ−iωk ).

) + y
(
e−(μ+iωk ).−e−(μ−iωk ).

i

)

)

.

Since we consider {e1, e2, e3} as the basis for Xc = R (�c) , i.e.,
{( 0

b1

)
,
( 0
b2

)}
is a basis of

Xc := �̂c (X ) , we obtain that

Mc =
[
0 ωk

−ωk 0

]

.

Now we compute Ĥ2 (X ). We have

(I + G2)

(
α̂

yc

)

= α̂e1 + xe2 + ye3 + L2 (̂αe1 + xe2 + ye3, α̂e1 + xe2 + ye3)

= α̂e1 + xe2 + ye3 + α̂2L2 (e1, e1) + x2L2 (e2, e2) + y2L2 (e3, e3)

+ 2α̂xL2 (e1, e2) + 2α̂yL2 (e1, e3) + 2xyL2 (e2, e3) .
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By Lemma 3.5, it follows that

(I + G2)

(
α̂

yc

)

=
⎛

⎝
α̂(
0
ψ

)

⎞

⎠

⇔ ψ (a) = x
(
e

−(μ+iωk )a + e−(μ−iωk )a
)

+ y

(
e−(μ+iωk )a − e−(μ−iωk )a

i

)

+ 2
(
x2 − y2

)
Re

(
ψ2,2 (a)

) + 2
(
x2 + y2

)
ψ2,3 (a)

+ 4α̂xRe
(
ψ1,2 (a)

) + 4α̂yIm
(
ψ1,2 (a)

) + 4xyIm
(
ψ2,2 (a)

)
. (3.22)

By (3.6) we deduce that

1

2!D
2W (0)

⎛

⎝
α̂(
0
ψ

)

⎞

⎠

2

= α̂DH
(
vαk

)
(
0
ψ

)

+ 1

2
αk D

2H
(
vαk

)
((

0

ψ

)

,

(
0

ψ

))

+ α̂αk D
2H

(
vαk

)
((

0
ψ

)

,

(
0
1
αk

× exp(−μ·)
β
∫+∞
0 γ (a)e−μada

))

=
(

ψ̃

0

)

,

where

ψ̃ = − α̂

αkχ

∫ +∞

0
γ (a) ψ (a) da + β (ln (αkχ) − 2)

2χ

(∫ +∞

0
γ (a) ψ (a) da

)2

with
∫ +∞

0
γ (a) ψ (a) da

= x
2χ

1 − ln (αkχ)
+ 2

(
x2 − y2

)
∫ +∞

0
γ (a)Reψ2,2 (a) da

+ 2
(
x2 + y2

)
∫ +∞

0
γ (a) ψ2,3 (a) da + 4xy

∫ +∞

0
γ (a) Imψ2,2 (a) da

+ 4α̂x
∫ +∞

0
γ (a)Reψ1,2 (a) da + 4α̂y

∫ +∞

0
γ (a) Imψ1,2 (a) da.

By projecting on Xc and using Lemma 3.1 and the same identification as above, we obtain

1

2! �̂cD
2W (0)

(

(I + G2)

(
α̂

yc

))2

= ψ̃�̂c

(
1

0

)

= ψ̃

∣
∣
∣
∣
d�(αk, iωk)

dλ

∣
∣
∣
∣

−2
[
0

Re
(
d�(αk ,iωk )

dλ

)
b1 + Im

(
d�(αk ,iωk )

dλ

)
b2

]

,

and (3.20) follows. Set

R̂c

(
α̂

yc

)

= R̃c

(
α̂

yc

)

+ 1

3! �̂c

{

D3W (0)

(

(I + G2)

(
α̂

yc

))3

− D3W (0)

(
α̂

yc

)3
}

.
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Then by (3.22) and (3.7), we deduce that the remainder term satisfies the order condition

(3.18). Thus, it only remains to compute 1
3! D

3W (0)

(
α̂

yc

)3

. In order to compute Ĥ3 (X ),

we consider

D3W (0)

(
α̂

yc

)3

= 3α̂D2H
(
vαk

)
(yc, yc) + 6 (̂α)2 D2H

(
vαk

)
(

yc,
dvα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

)

+ 3 (̂α)2 αk D
2H

(
vαk

)
(

yc,
d2vα̂+αk

d (̂α)2

∣
∣
∣
∣
α̂=0

)

+ αk D
3H

(
vαk

)
(yc, yc, yc)

+ 3α̂αk D
3H

(
vαk

)
(

yc, yc,
dvα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

)

+ 3 (̂α)2 αk D
3H

(
vαk

)
(

yc,
dvα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

,
dvα̂+αk

dα̂

∣
∣
∣
∣
α̂=0

)

.

Using the same notation as above for yc and after some computation, we deduce that

1

3!D
3W (0)

(
α̂

yc

)3

=
(

ψ̂

0

)

with

ψ̂ = 1

6
h(2)

(∫ +∞

0
γ (a) uαk (a) da

)(

3̂a

(
2xχ

1 − ln (αkχ)

)2

+ 3 (̂α)2

αkβ

2xχ

1 − ln (αkχ)

)

+ 1

6
h(3)

(∫ +∞

0
γ (a) uαk (a) da

)

×
[

αk

(
2xχ

1 − ln (αkχ)

)3

+ 3α̂

β

(
2xχ

1 − ln (αkχ)

)2

+ 3 (̂α)2

αkβ2

2xχ

1 − ln (αkχ)

]

= 1

(αk)
2 (1 − ln (αkχ))

α̂2x + 2βχ

αk (1 − ln (αkχ))2
α̂x2

+ 4β2 (− ln (αkχ) + 3) χ2

3 (1 − ln (αkχ))3
x3.

By Lemma 3.1, we obtain

1

3! �̂cD
3W (0)

(
α̂

yc

)3

= ψ̂�̂c

(
1
0

)

= ψ̂

∣
∣
∣
∣
d�(αk, iωk)

dλ

∣
∣
∣
∣

−2
[
0

Re
(
d�(αk ,iωk )

dλ

)
b1 + Im

(
d�(αk ,iωk )

dλ

)
b2

]

and (3.21) follows. Moreover, (3.19) can be rewritten as (3.17). ��

From Theorem 3.7, dropping the auxiliary equation for the parameter, we obtain the
following equations
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d

dt

(
x(t)
y(t)

)

= Mc

(
x(t)
y(t)

)

+χ2 (̂α, x, y)

∣
∣
∣
∣
d�(αk, iωk)

dλ

∣
∣
∣
∣

−2
⎡

⎣
Re

(
d�(αk ,iωk )

dλ

)

Im
(
d�(αk ,iωk )

dλ

)

⎤

⎦

+χ3 (̂α, x, y)

∣
∣
∣
∣
d�(αk, iωk)

dλ

∣
∣
∣
∣

−2
⎡

⎣
Re

(
d�(αk ,iωk )

dλ

)

Im
(
d�(αk ,iωk )

dλ

)

⎤

⎦

+ R̂c

⎛

⎝
α̂

x
y

⎞

⎠ , (3.23)

whereMc, χ2 (̂α, x, y) , χ3 (̂α, x, y) and R̂c are defined inTheorem3.7 and α̂ is the parameter
here.

3.3 Direction and Stability of Hopf Bifurcation

Wenow study the direction of theHopf bifurcation and the stability of the bifurcating periodic
solutions following the Hopf bifurcation theorem presented in Hassard et al. [13, p. 16]. We
first make some preliminary remarks. Rewrite system (3.23) as follows

dX

dt
= F(X, α̂), (3.24)

where the equilibrium point is X = 0 ∈ R
2 and the critical value of the bifurcation parameter

α̂ is 0. Since the equilibrium solutions belong to the center mainfold, we have for each |̂α|
small enough that

F(0, α̂) = 0.

Notice that ∂x F (0, α̂) is unknown whenever α̂ �= 0. The system (3.23) only provides an
approximation of order 2 for ∂x F (0, α̂) with respect to α̂. Nevertheless by using Magal and
Ruan [25, Proposition 4.22], we know that the eigenvalues λ(̂α) of ∂x F (0, α̂) are the roots
of the original characteristic equation

1 = η(α)

∫ +∞

0
γ (a) e−(μ+λ)ada ⇔ 1 = η (̂α + αk)

∫ +∞

0
γ (a) e−(μ+λ)ada (3.25)

with

η(α) =
1 − ln

(
α
∫ +∞
0 γ (a) e−μada

)

∫ +∞
0 γ (a) e−μada

= 1 − ln (αχ)

χ
,

and
λ(0) = ±ωki.

The implicit function theorem implies that the characteristic equation has a unique pair of
complex conjugate roots λ(̂α), λ(̂α) close to iωk,−iωk for α̂ in a neighborhood of 0. Here
λ(̂α) = a(̂α)+ ib(̂α), a(0) = 0 and ib(0) = iωk (where ωk > 0 are provided by Proposition
2.3 for k ∈ N). From (3.25), we have

η′ (̂α + αk)

∫ +∞

0
γ (a) e−(μ+λ(̂α))ada − η (̂α + αk)

∫ +∞

0
aγ (a) e−(μ+λ)ada

dλ(̂α)

dα̂
= 0
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and
∫ +∞

0
aγ (a) e−(μ+λ)ada =

∫ +∞

τ

a (a − τ)n e−(μ+λ)ada

=
∫ +∞

τ

(a − τ)n+1 e−(μ+λ)ada + τ

∫ +∞

τ

(a − τ)n e−(μ+λ)ada

= (n + 1)! e−(λ+μ)τ

(ς + λ + μ)n+2 + τn! e−(λ+μ)τ

(ς + λ + μ)n+1

=
[

(n + 1)

(ς + λ + μ)
+ τ

]

n! e−(λ+μ)τ

(ς + λ + μ)n+1

=
[

(n + 1)

(ς + λ + μ)
+ τ

] ∫ +∞

0
γ (a) e−(μ+λ)ada.

Thus

η′ (̂α + αk) − η (̂α + αk)

[
(n + 1)

(ς + λ + μ)
+ τ

]
dλ(̂α)

dα̂
= 0

and

dλ(0)

dα̂
= η′ (αk)

η (αk)

[
(n + 1)

(ς + iωk + μ)
+ τ

]−1

= η′ (αk)

η (αk)

(ς + iωk + μ)

(n + 1) + τ (ς + iωk + μ)

= η′ (αk)

η (αk)

(ς + iωk + μ) [[(n + 1) + τ (ς + μ)] − iτωk]

[(n + 1) + τ (ς + μ)]2 + τ 2ω2
k

a′(0) = Re

[
η′ (αk)

η (αk)

[
(n + 1)

(ς + iωk + μ)
+ τ

]−1
]

= η′ (αk)

η (αk)
Re

[
(ς + iωk + μ)

(n + 1) + τ (ς + iωk + μ)

]

It follows that

a′(0) = αkχ

[ln (αkχ) − 1]

(ς + μ) [(n + 1) + τ (ς + μ)] + τω2
k

[(n + 1) + τ (ς + μ)]2 + τ 2ω2
k

> 0. (3.26)

Finally, the spectrum of ∂x F (0, α̂) is

σ (∂x F (0, α̂)) =
{
λ(̂α), λ(̂α)

}
.

Using a procedure as in the proof of Kuznetsov [18, Lemma 3.3 on p. 92] and introducing a
complex variable z, we rewrite system (3.24) for sufficiently small |̂α| as a single equation:

·
z = λ(̂α)z + g(z,

−
z ; α̂), (3.27)

where

λ(̂α) = a(̂α) + ib(̂α), g(z,
−
z , α̂) =

3∑

i+ j=2

1

i ! j !gi j (̂α)zi
−
z
j + O(|z|3).

On can verify that system (3.24) satisfies

(1) F(0, α̂) = 0 for α̂ in an open interval containing 0, and 0 ∈ R
2 is an isolated stationary

point of F ;
(2) F(X, α̂) is jointly CL+2(L ≥ 2) in X and α̂ in a neighborhood of (0, 0) ∈ R

2 × R;
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(3) A(̂α) = DX F(0, α̂) has a pair of complex conjugate eigenvalues λ and λ̄ such that
λ(̂α) = a(̂α) + ib(̂α), where b(0) = ω0 > 0, a(0) = 0, a′(0) �= 0,

then by Hassard et al. [13, Theorem II, p. 16], there exist an εp > 0 and a CL+1−function

α̂(ε) =
[ L2 ]
∑

1

α̂2iε
2i + O(εL+1), 0 < ε < εp, (3.28)

such that for each ε ∈ (0, εp) system (3.24) has a family of periodic solutions Pε(t) with
period T (ε) occurring for α̂ = α̂(ε). The period T (ε) of Pε(t) is a CL+1−function given by

T (ε) = 2π

ω0

⎡

⎢
⎣1 +

[ L2 ]
∑

1

τ2iε
2i

⎤

⎥
⎦ + O(εL+1), 0 < ε < εp. (3.29)

Two of Floquet exponents of Pε(t) approach 0 as ε ↓ 0. One is 0 for ε ∈ (0, εp) and the
other is a CL+1−function

κ(ε) =
[ L2 ]
∑

1

κ2iε
2i + O(εL+1), 0 < ε < εp. (3.30)

Moreover, Pε(t) is orbitally asymptotically stable with asymptotic phase if κ(ε) < 0 and
unstable if κ(ε) > 0.

Next we need to compute the coefficients α̂2i and κ2i in (3.28) and (3.30). If the Poincaré
normal form of (3.27) is

·
ξ = λ(̂α)ξ +

[L/2]∑

j=1

c j (̂α)ξ |ξ |2 j + O(|ξ ||(ξ, α̂)|L+1) ≡ C(ξ, ξ , α̂), (3.31)

where C(ξ, ξ , α̂) is CL+2 jointly in (ξ, ξ , α̂) in a neighborhood of 0 ∈ C × C × R, then the
results in Hassard et al. [13, p. 32 and p. 44] imply that the periodic solution of period T (ε)

such that ξ(0, α̂) = ε of (3.31) has the form

ξ = ε exp[2π i t/T (ε)] + O(εL+2),

where

T (ε) = 2π

ω0

[

1 +
L∑

1

τiε
i

]

+ O(εL+1) (3.32)

and

α̂(ε) =
L∑

1

α̂iε
i + O(εL+1). (3.33)

Furthermore, the coefficients are given by the following formulae:

α̂1 = 0,

α̂2 = −Rec1(0)

a′(0)
,

α̂3 = 0,

α̂4 = − 1

a′(0)

[

Rec2(0) + α̂2Rec
′
1(0) + a′′(0)

2
α̂2
2

]

,
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τ1 = 0,

τ2 = −1

ω0

[
Imc1(0) + α̂2b

′(0)
]
,

τ3 = 0,

τ4 = − 1

ω0

[

a′(0)̂α4 + a′′(0)
2

α̂2
2 + Imc′

1(0)̂α2 + Imc2(0) − ω0τ
2
2

]

,

κ1 = 0

κ2 = 2Rec1(0),

where

c1(0) = i

2ω0

(

g20(0)g11(0) − 2 |g11(0)|2 − 1

3
|g02(0)|2

)

+ g21(0)

2
. (3.34)

Applying the results in [13, pp. 45–51], we can change Eq. (3.27) into the Poincaré normal
form (3.31) by using the following transformation:

z = ξ + χ(ξ,
−
ξ ; β̂) = ξ +

L+1∑

i+ j=2

1

i ! j !χi j (β̂)ξ i
−
ξ

j

, χi j ≡ 0 for i = j + 1.

To use the bifurcation formulae for κ(ε), α̂(ε) and T (ε), we need only to compute
c1(0), c′

1(0), and c2(0). For sufficiently small ε, if κ2 �= 0, α̂2 �= 0, the stability of the
bifurcating periodic solutions and the direction of the Hopf bifurcation are determined by
the signs of κ2 and α̂2.

By introducing a complex variable z = x + iy, when α̂ = 0 the system (3.23) reduces to

·
z = −iωk z(t) + [χ2 (0,Re (z) , Im (z)) + χ3 (0,Re (z) , Im (z))]

(
d� (αk, iωk)

dλ

)−1

+ h.o.t.

Set z(t) := z(t), then we obtain

dz(t)

dt
= iωk z(t) + [χ2 (0,Re (z) ,−Im (z)) + χ3 (0,Re (z) ,−Im (z))]

(
d�(αk, iωk)

dλ

)−1

+ h.o.t. (3.35)

where

χ2 (0,Re (z) ,−Im (z)) = 2χβ (ln (αkχ) − 2)

[1 − ln (αkχ)]2
(Re (z))2 ,

χ3 (0,Re (z) ,−Im (z)) = 4β (ln (αkχ) − 2)

1 − ln (αkχ)
Re (z)

×
[
(
(Re (z))2 − (Im (z))2

)
∫ +∞

0
γ (a)Reψ2,2 (a) da

+ (
(Re (z))2 + (Im (z))2

)
∫ +∞

0
γ (a) ψ2,3 (a) da

− 2Re (z) Im (z)
∫ +∞

0
γ (a) Imψ2,2 (a) da

]

+ 4β2 (− ln (αkχ) + 3) χ2

3 (1 − ln (αkχ))3
(Re (z))3 ,
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with

ψ2,2 (a) = βχ (ln (αkχ) − 2)

2 (1 − ln (αkχ))2

×
⎛

⎝−d�(αk, iωk)

dλ

−1 e−(iωk+μ)a

iωk
− d�(αk,−iωk)

dλ

−1 e−(−iωk+μ)a

3iωk+�(αk, 2iωk)
−1 e−(2iωk+μ)a

⎞

⎠ ,

ψ2,3 (a) = βχ (ln (αkχ) − 2)

2 (1 − ln (αkχ))2

×
⎛

⎝
d�(αk, iωk)

dλ

−1 e−(iωk+μ)a

iωk
− d�(αk,−iωk)

dλ

−1 e−(−iωk+μ)a

iωk+�(αk, 0)−1 e−μa

⎞

⎠ .

Now by considering Eq. (3.35), we obtain that after some computations

g11 = χβ (ln (αkχ) − 2)

[1 − ln (αkχ)]2

(
d�(αk, iωk)

dλ

)−1

.

Moreover, we deduce that

g20 = g11, g02 = g11,

g21 = ice + c f + be − ib f + 3ae − i3a f

4
(3.36)

where

a = 4χ2β2 (3 − ln (αkχ))

3 [1 − ln (αkχ)]3

+ 4β (ln (αkχ) − 2)

1 − ln (αkχ)

[∫ +∞

0
γ (a)Reψ2,2 (a) da +

∫ +∞

0
γ (a) ψ2,3 (a) da

]

,

b = 4β (ln (αkχ) − 2)

1 − ln (αkχ)

[

−
∫ +∞

0
γ (a)Reψ2,2 (a) da +

∫ +∞

0
γ (a) ψ2,3 (a) da

]

,

c = 8β (ln (αkχ) − 2)

1 − ln (αkχ)

∫ +∞

0
γ (a) Imψ2,2 (a) da,

e =
∣
∣
∣
∣
d�(αk, iωk)

dλ

∣
∣
∣
∣

−2

Re

(
d�(αk, iωk)

dλ

)

,

f =
∣
∣
∣
∣
d�(αk, iωk)

dλ

∣
∣
∣
∣

−2

Im

(
d�(αk, iωk)

dλ

)

.

Hence, we obtain

c1(0) = i

2ω0

(

g20(0)g11(0) − 2 |g11(0)|2 − 1

3
|g02(0)|2

)

+ g21(0)

2

and

α̂2 = −Rec1(0)

α′(0)
, κ2 = 2Rec1(0), τ2 = −1

ωk

[
Imc1(0) + α̂2b

′(0)
]
.

We summarize the above discussions into a theorem on the direction and stability of Hopf
bifurcation in the age structured model (1.1).
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Theorem 3.8 The direction of the Hopf bifurcation described in Theorem 2.4 is determined
by the sign of α̂2 : if α̂2 > 0(<0), then the bifurcating periodic solutions exist forα > αk(α <

αk). The bifurcating periodic solutions are stable (unstable) if κ2 < 0(>0). The period of
the bifurcating periodic solutions of the age structured model (1.1) increases (decreases) if
τ2 > 0(<0).

Wewould like to mention that though normal forms have been developed for some partial
differential equations byKokubu [16] andEckmann et al. [9], but their results are for parabolic
equations and do not apply to our age structured model (1.1) which is a hyperbolic equation.
Thenormal form theory developed inLiu et al. [21] is for general abstract semilinear equations
with non-dense domain which can be applied to several types of equations. In this paper, we
have applied the theory to study the normal form of a class of hyperbolic partial differential
equations. We believe that this normal form theory can be applied to some other types of
equations including delay differential equations (Faria and Magalhães [10,11]), transport
equations (Perthame [29]), reaction–diffusion equations (Kokubu [16], Eckmann et al. [9]),
and partial differential equations with delay (Ducrot et al. [8]).
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