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ABSTRACT. - We begin a study of normal form theorems for parabolic
partial differential equations. We show that despite the presence of reson-
ances one can construct a partial normal form for perturbations of the
Ginzburg-Landau equation. The normal form transformation is expressed
in terms of singular integral operators, whose behavior can be controlled
in the appropriate function spaces.

RESUME. 2014 Nous commençons une étude de forme normale pour des

equations aux dérivées partielles paraboliques. Nous montrons que, malgré
les resonances, il est possible de construire une forme normale partielle
pour les perturbations de l’équation de Ginzburg-Landau. La transforma-
tion normalisante s’exprime par des opérateurs integraux différentiels sin-
guliers qui peuvent etre bornés dans des espaces fonctionnels appropriés.
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1. INTRODUCTION

In hydrodynamics, as in many other phenomena described by partial
differential equations, simplified equations appear naturally as descriptions
of bifurcations. These simplified equations usually describe "amplitudes"
or other envelope functions on time and space scales which are related to
the bifurcation parameter. An example where this reduction can be proved
with mathematical rigor is provided by the bifurcation near the instability
threshold of the Swift-Hohenberg equation ([CE1], [CE2]): This equation
is

where u = u (x, t ), u : R x R + -~ R. If one rescales the solutions as

with ~= /a/3, then the function v satisfies the equation

when a&#x3E;0. One can then show that for times of order ~(1) in ( 1. 3), or,
equivalently, for times of order (9 (E-2) in (1.1), the evolution given
by (1. 3) is close to that of

when w (x, 0) = v (x, 0). Thus, (1.4) is some sort of normal form for this
type of bifurcation. We may thus ask in which sense the solutions of

equations such as (1. 4) are dynamically equivalent. Is the term E2 ax negli-
gible ? Do higher order nonlinear terms matter in ( 1.1 )?
The aim of the present paper is to discuss the normal forms of some

parabolic PDE’s. We consider the equation

where R is a polynomial whose terms are all of degree 4 or higher. We
ask whether there is a coordinate transformation (in function space),
H:v-H(v), depending on s which eliminates R. Furthermore, we

require H to exist uniformly in  when J.1 is greater than or equal to zero
and not too large. We shall show that the lowest order monomial of

degree n &#x3E;__ 4 in R can indeed be eliminated by a coordinate transformation,
leading to a new remainder term Q, whose lowest order term is of degree
n’ &#x3E; n. We would like to iterate the procedure, eliminating the lowest order
term of Q, but this raises new difficulties, since Q contains terms which
are not pure powers of v (as in R), but convoluted kernels. We have only
preliminary results in the direction of eliminating further terms.

Before stating our result in detail, it is perhaps useful to relate it to the
existing literature on normal forms. Normal forms for diffeomorphisms

Annales de l’lnstitut Henri Poincaré - Physique théorique



289PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

and flows have been studied extensively, see [PD] for a review of the
literature. Our result can viewed as a first step towards an analogue of
the Sternberg Linearization Theorem for PDE’s of the form (1. 5). In
finite dimension, the Sternberg Linearization Theorem asserts that ~
vector fields X: RS  RS with X(0)=0 can be linearized by a ~ local
diffeomorphism if DX(0) satisfies the "eigenvalue condition" (nonreson-
ance condition) ([N], p. 38): The eigenvalues i = 1, ... , s of DX (0)
satisfy

for all choices of positive integers mi satisfying 2~~~. In the infinite
dimensional case, there is continuous spectrum, and more importantly,
the analogue of the condition (1.6) is violated, since the continuous

spectrum of the Laplacian is ~== 2014A~, k E R and it is easy to find values
of ki , k2,k3 for which = + 

In the case of ordinary differential equations, violation of the non-
resonance condition (1.6) produces zero denominators in terms in the
sum which defines the normal form transformation. (And hence, renders
the transformation meaningless.) However, due to the presence of continu-
ous spectrum, the normal form transformation is defined in terms of

integrals rather than sums. Under certain conditions, we can integrate
right through the resonances. This can be done because the singularity is
relatively weak and the phase space volume over which we integrate is

sufficiently large if the term we want to eliminate is of order 4 or higher.
Note that there are weaker sorts of normal form theorems than the

Sternberg theorem. For instance, the Grobman-Hartmann theorem requi-
res only that the linear vector field be hyperbolic, at the cost of being
able to conclude only that the function conjugating the vector field to the
normal form is only continuous. However, even such a result (naively)
fails here since for  &#x3E;__ 0, zero is in the spectrum of the linearized version
of ( 1. 5).
Another fact which is often encountered in finite dimensional normal

form theorems is that while it may be impossible to reduce a system to a
linear normal form, there may nonetheless be a useful nonlinear normal
form. The most common example of this phenomenon is a hamiltonian
vector field near a hyperbolic fixed point. Relationships among the eigen-
values which are inherent in the hamiltonian nature of the problem mean
that (1.6) is inevitably violated. Nonetheless one can still (often) transform
the system to the Birkhoff normal form. We encounter a similar situation
here. Our normal form is not linear, but contains a cubic term. Technically,
the reason for this is that the integrals referred to in the previous paragraph
diverge if one tries to eliminate terms of order three. On a more fundamen-
tal level, these terms cannot be eliminated because it is known that if  = 0

Vol. 58, n° 3-1993.
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in ( 1. 5), the asymptotic behavior of the solutions of the linear and non-
linear equations is different, and hence they cannot be conjugate.
We conclude this introduction by reviewing some related work.

An interesting paper dealing with continuous spectrum is [S], which
deals with Klein-Gordon equations. In that case, one finds essen-

tially ~,k = ,~k~+ m2, with m &#x3E; 0 and n such eigenvalues always satisfy

the condition (1. 6), i. e., k2i + m2 on the hypersurface
i= 1

n

03A3 ki = k, n &#x3E;_ 2. Two further related papers are [Se] and [D]. In [D], the
i=i

discrete Laplacian is considered in ( 1. 5), and then y is required to be
sufficiently large as a function of the discretization parameter. In [Se], the
Laplacian is not discrete but it is multiplied by a non-real coefficient
which, again, prevents the appearance of resonances. This is similar to
earlier work [Ni] on the nonlinear Schrodinger equation.

After a first version of this paper had been completed, the related paper
of McKean and Shatah [MS] came to our attention. They also study
normal forms of partial differential equations. In the result closest to ours,
they show that if in ( 1. 5) one sets ~ = 0, and if the cubic term is not

present, then a nonlinearity can be completely eliminated if
j9~4, i. e., under these hypotheses one can conjugate the equation to a
linear normal form. In contrast to our use of singular integrals to construct
the normal form, they rely on an infinite dimensional analogue of the
scattering method proof of the Sternberg theorem. In our example, this
method seems unfortunately inapplicable because we do not understand
sufficiently well the asymptotic behavior of the solutions of the normal
form equation. Furthermore, in the case 0, one would need a stable
manifold theorem for partial differential equations in order to apply this
method, and that result is also unavailable.

2. THE CONJUGATION

We next describe the derivation of an equation for conjugation, in

momentum space. We define the operator P by

We want to transform the problem (as expressed in momentum space)

by a transformation J given by

Annales de l’Institut Henri Poincaré - Physique théorique
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Here, Un is of degree n ~ 4 and the effect of the transformation should be
to replace it with terms of degree &#x3E;_ 5. The notation v* 3 stands for threefold
convolution.

Our aim is to determine Hn. We now assume that Un is homogeneous
of degree ~4, and we require Hn to be homogeneous of the same
degree. The transformation Hn found in this way will be adequate for any
polynomial whose lowest order homogeneous term is equal to Un. Let
w = J v. Then

Hence

The terms on the r. h. s. in (2 . 2) have been arranged by degrees and the
five lines correspond to degrees n, n + 2, 2 n -1, 2 n + 1, and 3 n, respec-
tively. We can eliminate the terms of degree n in Eq. (2.2) by setting

This is our main equation, and we now rewrite it in more explicit form.
Since U~ is typically v*n, we will restrict our attention to operators of the
form

and try to construct Hn in the same form, i. e.,

Despite the functional notation, the kernels u, h, etc., should be thought
of as tempered distributions (of some relatively mild type) on the manifold
defined by k = ~p~. In terms of these kernels, Eq. (2.3) is equivalent to

Conversely, if h is a solution of this division problem which defines an
operator v - Hn (v) on the space of functions v of interest to us, then the

Vol. 58, n° 3-1993.
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main equation (2. 3) wil 1 hold. It is always possible to define, for 

as a tempered distribution on the manifold as well as the function

since this just amounts to multiplying u by a reoo function and integrating.
If the limit of hE as s 1 0 exists as a tempered distribution on the manifold
defined by k = ~pi, it is a solution of the division problem (2. 6), and it
only remains to see whether the limit H" = lim Hn, E defines a continuous

operator on the right space.
There are now two problems we want to address:
(i ) On which space of functions can the map v H Hn (v) be defined?
(ii) Is the map v H v + Hn (v) invertible?

3. STATEMENT OF RESULTS

We want to study H" for the case u= 1. We change variables of

integration in the Eq. (2 . 8) Then,

where

It is also convenient to define, for p &#x3E; 0 and real k, the corresponding
linear functional

Annales de l’Institut Henri Poincaré - Physique théorique



293PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

Thus

With these notations, we have

where

Throughout, we consider the norms

We call j/ 13 and ~’~ the corresponding Banach spaces of complex
functions. Note that functions in ~’~ need not be continuously differentia-
ble. In particular, for ~=0, the function defined by (3 . 3)
has, in general, a discontinuous derivative at k= 0, even when v is rcoo. In
Appendix B we show, by an explicit calculation, that this happens even
for the case of a Gaussian v. For functions of n real variables, we define
analogously

We denote and ~Y~’n, ~ the corresponding Banach spaces.
THEOREM 3 . 1. - Suppose v E for some [3 &#x3E; 1 /2. Then for all n &#x3E;__ 4,

the’function k H (Hn v) (k) = Fn (k, v) is continuous
on R. If this function has a Holder continuous derivative on R. If
Jl = 0, its restrictions to [0, (0) and to ( - 00, 0] have Holder continuous
derivatives. In these two cases, there is a constant Bn such that -

Remark. - If Jl &#x3E; 0, the linear part of the r. h. s. of Eq. ( 1. 5) is unstable,
for jLi=0 it is marginally stable, and, for ~.  0 it is globally stable. In this
last case, the function u = 0 is a stable fixed point in L2 n L 00. Our theorem
covers the unstable and marginally stable cases in a uniform setting.
The operator Hn, as defined above does not map real functions into

real functions. But if v is real, the operator defined by v H Re Hn (v) is
also a solution to our problem. The proof of Theorem 3.1 will be based

Vol. 58, n° 3-1993.
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on inductive bounds on the functions Wn and Vn in Section 4. These
bounds will then be combined with estimates on the integral (3.4) in
Section 5.

COROLLARY 3 . 2. - Suppose v E f % for some 03B2 &#x3E; 1 /2 and  &#x3E;_ 0. Then for
all ~~4, the map v H v + Hn (v) is bounded and invertible on a small ball in
~p, centered at the origin.

It follows at once from Theorem 3 .1 that, on a sufficiently
small ball centered at the origin in ~p, the map v - Hn (v) is a contraction.
Remark. - In this paper, the function 03B6 ~ log(03B6) is always under-

stood as being defined in CBR _ and real for ~ &#x3E; 0. Similarly

~ = exp (log (Ç)/2) is positive on R + .

4. PHASE SPACE BOUNDS

We assume throughout P&#x3E; 1/2. The bounds on Wn and Vn are summari-
zed in

PROPOSITION 4 .1. - For every ~3, there is a constant Cn such that,
for any v E f (},

p, then

Proof of Proposition 4.1. - Throughout, the letters c, C:n denote con-
stants which can vary between equations, and which may depend on p,
but not on v. From Eq. (3 . 2), we have for p&#x3E;O, n&#x3E;l, by a change of
variables,

In particular,

Annales de l’Institut Henri Poincaré - Physique théorique
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with

Clearly, Ln is nothing but the volume of the n - 2 dimensional unit sphere.
Thus, if v is bounded, then

This bound is valid for all k. However, if ~&#x3E;2~p, then in the integrand
of (4. 3), the argument of every v has modulus at least I k 1/2 n, and there-
fore v E V03B2 implies

Note also that if (p E ’Y~’n, p, n &#x3E;_ 2,

so that Eq. (4 . 2) follows from Eq. (4 .1 ).
In view of the bounds (4. 6) and (4. 7), we can distinguish the two cases

Case 1. - Combining (4 . 6) and (4 . 7) yields Eq. (4.1) for 
The proof of Eq. (4. 2) is then obvious in the case p _ 1.

Case 2. - p&#x3E; 1. In this case, we proceed by induction on n, starting
from n = 2. From Eq. (3 . 2), we have

Hence,

To simplify the notation, we formulate our further calculations for
functions p of the form Q9 ... Q9 vn. The extension to general p is
immediate. Starting from (3 . 2) for n + 1 instead of n, and writing

for j  n, and we find :

Vol. 58, n° 3-1993.
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and, by a further change of variables,

Before using Eqs. (4.11) and (4.12) to obtain iterative bounds on W~
we note a simplifying effect of the symmetry of Eq. (3.1). The integral of

Eq. (4. 3) is also equal to n times the integral over the region where 
n

In this region, because of the constraint ~ zn must be strictly
t=0

positive. Suppose and that there are p of the z~ taking values &#x3E;0:

these add up to at most px. The other variables add up to the opposite
amount, so that the sum of their squares is at most (px)2. Hence we have

_ £ 2  (p + I ) 2  n -1 x2. Thus, in this region, z2 &#x3E;_ 11=03A3z2i ~ (p+1)px ~ n (n-1)x2. Thus, in this region, z2n~1 n(n-1).
Therefore,

Going through the same changes of variables as before, we obtain:

In view of (4 . 8), it suffices to prove, for p &#x3E; 1,

where Mj9)==(l+/~)~. The corresponding result for Vn is then obvious.
Note also that Wn(k, p, v)=Wn(-k, p, v), with ?(~)=~(-~). It suffices
therefore to consider only A:~0.
We perform now an inductive step from n &#x3E;__ 3 to n + 1. The step from

n = 2 to n = 3 will be dealt with later. Suppose that (4 .1 ) holds for some

~3. To prove that it holds for n + 1, we use Eq. (4.14), substituting the

postulated bound for and set p=hJ(n+l)/n. Some

Annales de l’Institut Henri Poincaré - Physique théorique
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elementary estimates on the resulting integral, and variants of these estima-
tes we will need later are stated in the following lemma.

LEMMA 4 . 2. - Let 1/2 and 1/2. For any n &#x3E;_ 2 there is a
constant Mn such that for all a &#x3E; 0, b &#x3E; 0,

Proo, f ’. - The proofs are given in Appendix A.
It is now clear that Eq. (4 .16) proves the induction step ~3-~+1.

We next consider the step from n = 2 to n = 3. Using the bounds Eqs. (4.10)
and (4.14), we get the desired estimate from Eq. (4.17).

Bounds on First Derivatives

In addition to the bounds on oWn and V~ of Proposition 4.1, we shall
also need bounds on their first and second derivatives. Since

we have immediately from Proposition 4 .1 and Eq. (4 . 10):

COROLLARY 4 . 3. - For all n &#x3E;-_ 3, there is a constant Cn such that,
whenever v and v’ are both in 1/ Ii’

For n=2,

Vol. 58, n° 3-1993.
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We consider next the p-derivative. For all ~3, we get from (4 . 3),

The second term is bounded in modulus by n V" (I v I (8) ... (8)1 I (8) v’ I ).
Therefore, using Eq. (4.2), we find:

PROPOSITION 4 . 4. - For all n &#x3E;_ 4 there is a constant K[ such that,
whenever v and v’ are both in 1/ 13’

For n= 3,

Bounds on Second Derivatives

We shall assume throughout that v, v’ E 1/ [3. We start by recasting
Eq. (4 . 22) in the following "inductive" form, valid for n &#x3E;_ 2:

Bound on I) Wn

We now take n &#x3E;_ 3 and differentiate in p. This yields several terms which

1. We consider the first term in (4.25) reexpressed with the help of

(4 . 3) for n + 1 :

Annales de l’lnstitut Henri Poincaré - Physique théorique
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Differentiating with respect to p, this gives two terms, T1 and T2:

The first term is bounded using Eq. (4 .1 ), and yields

Since I Zn + 1 ~ __ 1, the term T2 can be bounded using Eq. (4. 2), yielding

Since T 1= 0 for n = 3, we find

2. We consider now the integral in (4. 25) and differentiate with respect
to p. This gives two boundary terms, T3, T~, and two terms T 5’ T6 from
differentiating the factor p - and the square root in VVn, respectively. The
boundary terms are

Using again Eq. (4.1) we see that they vanish for n &#x3E; 3, and when n = 3,
the first of these two terms decreases slower at infinity, and their total
contribution is bounded by

The term Ts is bounded by 
which by Eq. (4 .1 ) leads to

Vol. 58, n° 3-1993.
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The term T~ equal to

After changing variables q= p t n and using t I __ I , this term can
(n + 1 )

be estimated by Eq. (4.18) and yields

Combining the bounds, and replacing n + 1 by n, we get the

PROPOSITION 4. 5. - For every n &#x3E;_ 4, there is a constant Cn such that

Bound on ak ðp Wn
In analogy with Proposition 4. 5, we have

PROPOSITION 4 . 6. - For every n &#x3E;- 4, there is a constant Cn such that

Proof. - We go back to Eq. (4 . 25) for ~~3, and differentiate in k.
This gives a sum of three terms

The terms Si and S~ are readily bounded by

using Corollary 4 . 3 for S 1, then (4 . 19), (4 .11 ), and (4 . 2) for S2. We now
deal with S3. Here, the v" must be interpreted in the weak sense, i. e., it

Annales de l’Institut Henri Poincaré - Physique théorique
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has to be integrated by parts with respect to the variable q. (Alternatively,
the same expression can be obtained without ever mentioning v", e. g., by
changing to the integration variable q + k/(n + 1), differentiating in k, then
changing back to ~.) This yields:

The term S31 arises, when integrating by parts, from differentiating the
first argument of the Wn factor. It is equal to S2/n. The boundary terms
give S 3 2 and 833: 

.

These terms are handled like T3 and T4. They vanish for n &#x3E; 3, and for
n = 3 they are bounded by

Upon integrating by parts, there is a term coming from Oqq/p which is
equal to

This term is bounded by 1 s341 + k2 + p2)-P-l/2// p ~+1. Finally there
is a term where the derivative acts on the second argument of W :

It is estimated in the same way as the term T6 in Eq. (4. 29), and is
bounded by C (1 + k2 + p2) - ~ I I v I I~+ 1. The proof of Proposition 4 . 6 is
complete.

Bound on ak Wn
Finally, we bound the second derivative with respect to k:
PROPOSITION 4. 7. - For any n &#x3E;_ 4, there is a constant Cn such that

Proof - For ~~3, a formula for is obtained in the same way
as in the case of OkOp Wn+l (using formal integration by parts). This gives

Vol. 58, n° 3-1993.
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The details are now essentially the same as in the case of ~k~03C1 and are
left to the reader.

5. PROPERTIES OF Fn

In this section, v is fixed and such that ~ ~ 1 and 1. Recall that

Fn has been defined as:

We take ~4, so that the bounds established in the previous section give:

Because of these v), as defined by Eq. (5 .1), is even
and holomorphic in ç for Im ~0, and has (not necessarily even) Holder
continuous boundary values on R from the upper and lower half-planes.

Annales de l’Institut Henri Poincaré - Physique théorique
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We note the following identities:

We now propose to find bounds on , and

I a~ F" (k, ç, v) + i rl, for real ~ and small, positive q. It suffices
to deal with the case We give all details for the case of a~ Fn (k, ~, v)
and give indications on the changes needed for the two other cases.
We rewrite Eq. (5.6) as

(Here we make the inessential assumption Otherwise the
definition of ~ and(p would be changed by replacing ( 1 + p2) - 2 with
( 1 + p2) -p with p &#x3E;_ 1/2.) Each of the functions ~ H R + (k, Ç) is a Cauchy
transform of the Lipschitz function p H p (k, p), and its boundary value
as 1m ç ! 0 is therefore Holder continuous (of any exponent  1 ) in the
variable ~.

We have by Eq. (5 . 3):

For all ex E [0, 1 ), combining Eq. (5.3) and (5.4), we have:

Finally, if p - ~  1 /2, we have for all e E [0, 1 ], by Eqs. (5 . 3) and (5 . 4):

and, by interpolation,

Vol. 58, n° 3-1993.
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Analogous estimates can be obtained for the case of the function

F,(~ ~ ~ with p replaced by p, v) and for with

p replaced p, v).

Bounds on |R ± (k, 03B6) i

VVe choose a E 0 1 and split the integral 5 . 9 ) representing R +(k, 03B6)
2

into three contributions, denoted K1, K2, and K3, corresponding to the
ranges of integration (201400,~2014~], [~2014~~+~], and [~+~, oo), respec-

tively. Then, using the bound (5.11),

The last integral is equal to

where the contour ~ follows the boundary of in the

positive direction. It can thus be computed by residues, yielding

The term K3 is treated in a similar manner. Therefore:

We next split K2 as K21 + K22.

This is bounded by

Annales de l’Institut Henri Poincare - Physique théorique
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The term K2 2 is equal to

so that

The quantity (k, ç) is estimated in the same way. Combining these
estimates, we get

for all sufficiently small E&#x3E; O.

Holder continuity of k - R+ (k, Ç)

We apply the same treatment as above to

using now the bounds (5.12) and (5.14) instead of (5 .11 ) and (5 . 13).
We have to choose here (x~220142p. All the estimates are completely
analogous to those for R+ (k, Q and we find that for every ae(2-2p, 1 ),
a&#x3E;0, Ke(0, 1- a) and sufficiently small 8&#x3E;0, there is a constant C

such that

The same holds for R _ . It is elear that the same kind of estimates work
for R:t (k, ~ + h) - R + (k, ~), with the same result. Therefore,

THEOREM 5. 1. - Let n &#x3E;__ 4. The function (k, Ç) ~ Fn (k, ç, v) extends to
function in R x { ç : 1m ç ~ 0 ~ . For each sufficiently small E &#x3E; 0, there is

a constant Cn (E) such that for all real k and ç, and every bi-index m with

Moreover, if 0  K  2 J3 -1, K  I , there is a C’n (s, K) such that for h1 |,

Vol. 58, n° 3-1993.
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To prove Theorem 3.1, it suffices to apply Theorem 5.1 with

If ~ = 0, then this means ~ ==~~1-1/~+~0,
while for  &#x3E; 0, the square root depends differentiably on k. If   0, the

square root is not differentiable at 

APPENDIX A

Here, we give the proof of Lemma 4 . 2. We begin by proving Eq. (4. 16).
We distinguish two cases:

1. in that case

2. na  2 b: then

The last integral is bounded by l/6(y- 1) and also bounded by 1 if b _ 1,
hence in the present case,

This proves Eq. (4.16).
We next consider Eq. (4.17). We again distinguish two cases:
1. na &#x3E;_ 2 b: then .

2. na  2 b: then

The last integral is bounded by 1 and also by

Annales de l’Institut Henri Poincaré - Physique théorique
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and the assertion follows.

Finally, we prove Eq. (4.18). Note that the integral is bounded.
If the integral is bounded by Therefore we can

restrict our attention to the case when b &#x3E;_ 1 and a  2 b. The part of the
integral from t= I/n to t = 1 can be estimated by (4 .17); that part is

bounded by

We next consider the range of integration 0  t _ This contribution is
bounded by

Finally, the contribution from 2014 1 ~ ~ 0 can be bounded by

The proof is complete.

APPENDIX B

In this section, we briefly discuss the Gaussian example, i. e., the case
when

with some fixed A&#x3E;O. Then, for any integer n &#x3E;_ 2,

We now consider, for any integer ~3,

If n is odd and n &#x3E;_ 3, we get

If n is even and ~4, we find:

Here En is an entire function such that E~ (z) = En (z*)*.

Vol. 58, n° 3-19~3.
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If we choose n = 4 and § = J(n - 1) (k2jn + p.) + i 0, then there are three
cases:

~) ~&#x3E;0: Then ç is a holomorphic function of k in a neighborhood of R.
Therefore, g) is ~1 on R with a Holder continuous derivative.

&#x26;) ~=0: Therefore, has a

Holder continuous derivative on RB0.
c) ~  0: Then the derivative of ç is infinite at A;= ± 

ACKNOWLEDGEMENTS

This work was made possible by the hospitality of the IHES and the
University of Geneva. It was partially supported by the NSF DMS-
9002059 and the Fonds National Suisse.

REFERENCES

[CE1] P. COLLET and J.-P. ECKMANN, Instabilities and Fronts in Extended Systems, Princeton
University Press, 1990.

[CE2] P. COLLET and J.-P. ECKMANN, The Time-dependent Amplitude Equation for the
Swift-Hohenberg Problem, Commun. Math. Phys., Vol. 132, 1990, pp. 139-153.

[D] M. Y. DENISOV, Reduction of the nonlinear Diffusion Equation to linear Form,
Functional Analysis and its Applications, Vol. 19, 1985, pp. 57-58.

[MS] H. MCKEAN and J. SHATAH, The nonlinear Schrödinger Equation and the nonlinear
heat Equation Reduction to normal Form, Comm. Pure Appl. Math., Vol. 44,
1991, pp. 1067-1080.

[N] E. NELSON, Topics in Dynamics I: Flows, Princeton University Press, 1970.
[Ni] N. V. NIKOLENKO, Complete integrability of the nonlinear Schrödinger Equation.

Soviet Math. Dokl., Vol. 17, 1976, pp. 295-298.

[PD] J. PALIS and W. DE MELO, Geometrical Theory of Dynamical Systems, an Introduction,
Springer-Verlag, 1982.

[Se] V. I. SEDENKO, On the normal Form of nonlinear partial Differential Equations on
the real Axis, Math. U.S.S.R. Sbornik, Vol. 34, 1978, pp. 111-117.

[S] J. SHATAH, Normal Forms and Quadratic nonlinear Klein-Gordon Equations, Comm.
Pure and Appl. Math., Vol. 38, 1985, pp. 685-696.

( Manuscript received April 22, 1992.)

Annales de l’Institut Henri Poincaré - Physique théorique


