
INFORMATIQUE THÉORIQUE ET APPLICATIONS

VILIAM GEFFERT

Normal forms for phrase-structure grammars

Informatique théorique et applications, tome 25, no 5 (1991), p. 473-
496.

<http://www.numdam.org/item?id=ITA_1991__25_5_473_0>

© AFCET, 1991, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.

org/legal.php). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme

Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1991__25_5_473_0
http://www.numdam.org/legal.php
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications
(vol. 25, n° 5, 1991, p. 473 à 496)

NORMAL FORMS FOR PHRASE-STRUCTURE GRAMMARS (*)

by Viliara GEFFERT (l)

Abstract. — S ome new normal forms for the phrase-structure grammars are presented, Each
phrase-structure grammar can be replaced by an equivalent grammar wit h all of the context f ree
rules being of the from S -*• v, where S is the initial nonterminal, what concerns non context free
rules five different situations may occur: either two extra rules of the form AB -> e, CD -*• e, or
two extra rules AB -> e, CC -> E, or two extra rules AA -* e, BBB -> e, or even a single extra rule
ABBBA -» £, or a single extra rule ABC -> e. In all cases, no additional nonterminal symbols are
required.

Résumé. - Quelques nouvelles formes normales pour grammaires de type 0 sont présentées.
Chaque langage récursivement énumèrable peut être engendré par une grammaire où les règles
« context-free » sont de forme S —> v, où S est le symbole initial non terminal. En ce qui concerne
les règles « non context-free », on a l'une des cinq situations suivantes :ou bien deux règles du type
AB -• s, CD -> s, ou deux règles du type AB -> e, CC -> e, ou deux règles du type AA -> s,
BBB -> e, ou une règle du type ABBBA -* s, ou règle du type ABC -* e. Dans tous les cas aucun
symbole non terminal additionnel n 'est nécessaire.

1. INTRODUCTION

Problems concerning normal forms of various devices generating or recog-
nizing languages have turned out to be of crucial importance in the develop-
ment of the formai language theory. Using normal forms, we shall obtain a
mentally simpler manipulation with the phrase-structure grammars, while
preserving their generative power. In spite of the fact that much research has
been done on the comparison of many différent models of grammars and
automata, the central position of the context-free languages (and grammars)
remains. One of the important advantages in dealing with the context-free
grammars is the fact that each dérivation can be represented by a dérivation
tree, in contrast to more powerful types of grammars. A similar characteriza-
tion of the recursively enumerable languages would also be useful. It was

(*) Received 1990..
l1) University of P. J. Safârik, Department of Computer Science, Jesennâ 5, 04154 Kosice,

Czechoslovakia.

Informatique théorique et Applications/Theoretical Informaties and Applications
0988-3754/91/05 473 24/$4A0/@ AFCET-Gauthier-Villars

474 V. GEFFERT

shown in [13], that each phrase-structure grammar is equivalent to a grammar
with rules in one of the following forms:

(i) A ->• v9 (ii) or AB ->• s.
Some similar results can also be found in [6], and [12]. We are going to

establish a stronger resuit; namely, that the context-free rules can be of the
form S->v, where S is the initial nonterminal, using only two extra non-
context-free rules AB -» s, CD -* e. Clearly, 5, A, B, C, D are the only
nonterminal symbols used by this type of grammar. Then we shall show that
each recursively enumerable language may also be generated by a grammar
having all of its rules context-free, of the form S -> v, and two extra rules
AB -> e, CC -• e, or AA -+ s, BBB -> e, or even a single extra rule; either
ABBBA -> £5 or ABC -• e. In all cases, no additional nonterminal symbols
are used. These normal forms have already been announced in [2] and [3].
Problems concerning grammars with a single extra non-context-free rule of
the form AB -• e (but using a slightly different approach, so-called Dyck^
reductions of the context-free languages) can be found in [8].

The paper is organized as follows: We begin in the Section 2 by giving
some basic définitions. This section also gives some auxiliary theorems con-
ceerning a characterization of the recursively enumerable languages by a pair
of homomorphisms presented in [1], which is necessary to prove the main
results. Section 3 proves the main theorem — the représentation of the recursi-
vely enumerable languages by a grammar with only two non-context-free
rules AB -> e, CD -> £. Section 4 concerns the other types of normal forms
and Section 5 discusses the time and space complexities of grammars in these
normal forms.

2. THE HOMOMORPHIC REPRESENTATION - A VARIANT OF THE POST CORRES-
PONDENCE PROBLEM

We are going to define the main notions here. (The reader is assumed to
be familiar with the basic définitions and notation of formai language theo-
ry — this may be found in [5] or [7].) Then we shall establish a characterization
of the recursively enumerable languages by a pair of homomorphisms [1],
which is necessary to prove the main results. It is based on the notion of a
g-system, introduced by Rovan [10, 11] in order to unify the theory of
grammars. The g-system is a generalization of the notion of grammar, it is
an iterated rewriting of the sentential form by a nondeterministic finite
state 1-a-transducer [4], (We could use the classical définition of the phrase-
structure grammar as well, but using the g-systems, we shall obtain better

Informatique théorique et Applications/Theoretical Informaties and Applications

NORMAL FORMS FOR PHRASE-STRUCTURE GRAMMARS 4 7 5

time and space complexities for the resulting phrase-structure grammars in
normal form, since the g-systems give us a more natural correspondence
between various types of devices and the phrase-structure grammar in normal
form.)

DÉFINITION: A generative System (g-systern, for short) is a 4-tuple
G = (N, T, P, S), where N and T are fini te aplhabets of nonterminal and
terminal symbols, S in N is an initial symbol, and P represents a binary
relation over F * x P (where V~N\J T). P is given in the form of a I-a-
transducer [4] (from V+ to F*), i.e., P=(K9 F, V9H, ql9 qF\ where A: is a
finite set of states, ql9 qF in K are initial and final states, respectively, and H
is a finite subset of KxVxV**K (the set of transitions, or edges).

ueV+ is said to directly generate v, written u => z>, if P is able to rewrite w
to u, i. e., there exists a path of transitions

(ql9 sx, vl9 qx)(ql9 s2, v29 q2). . .(qn~u sn, vn9 qF)eH+,

such that s1. . .sn = u, and ẑ . . . ZJB = u.

Finally, f/ie language genrated by G is the set L (G) = { I V Ê P ; S = > * W } ,

where =>* is the transitive and reflexive closure of the relation =>.

As is usual in the theory of grammars, G is said to be of time compîexity
T(n) if, for each weL(G) of length n, there exists a dérivation of at most
T(ri) steps generating w. Similarly, G is of space compîexity S (ri) if, for each
weL(G) of length n, there is some dérivation of w in which each sententiaî
form is of length at most S(n).

It can be easily seen that for each phrase-structure grammar G there exists
a g-system G' such that L(G') = L(G). Intuitively, each rule Ax. . ,An -+ v in
G will be replaced by a path of transitions in the 1-a-transducer of G' (from
<li t° qF)> rewriting A1. . ,An to v. (See [1] for the detailled proof.)

We shall now establish a characterization of the recursively enumerable
languages by a pair of homomorphisms and a quotient [1], (The quotient is
understood as an opération inverse to concaténation, Le., u\uv = v for each
u, v. This implies that u\v is defined only if M is a prefix of v.) The pair of
homomorphisms hu h2: Z$ -• S | can be used to generate a language L £ £ *
(where HA, EB, and SL are some alphabets, ELg£B) as follows: For each
string a e S] , check if A1(a)\A2(a) is defined [Le., if Ai (a) is a prefix of
A2(oc)]5 and then if hl(a)\h2(oi) is in S | \ If this is the case, then generate
w = hx (a)\A2(a) to the output, it is a word in L,

vol 25, n° 5, 1991

476 V. GEFFERT

THEOREM 1: For each effectively given recursively enumerable language L
one can effectively construct a pair of homomorphisms hu h2: Z^ -> S | such
that

some

{Where S^, S 5 are some alphabets, XB^EL .) Thus, weE£ is a word in L if
and only if there exists some a G ZjJ swcA £/*#* A2 (a) = h1 (a) w.

Construction and informai idea of the proof: The proof is based on the fact
that g-systems are capable of generating any recursively enumerable language.
The construction is similar to the construction of the Post Correspondence
Problem imitating the computation of a Turing machine (and its halting
problem). [9] But, instead of a Turing machine, we shall rather simulate the
dérivation of a word by a g-system generating the language L:

Let L = L(G) for some g-system G~(N, SL, P, S), where P is a 1-a-trans-
ducer, Le. P=(K, V, V, H, ql9 qF\ where K=JVUI1L. Define

= {a0, al9 a2,

where a0, a^ a2, a3, b0, bx, b2 are new symbols. We now define hx and h2:

TABLE

a0

a2

a3

to, X v, q')
À

(g,A)q'

h2{x)

°b2
gFb1

e
q(q, A)

V

Remark

for to, a)eKx V
(ç, A, v, q')tH

First, we shall briefly show that if S => % v then there exists a e l] such
that

, (2.1)

by induction on the length of a dérivation in G:

A: If v = S (the length of dérivation is zero), then (2.1) holds for a = a0:

Informatique théorique et Applications/Theoretical Informaties and Applications

NORMAL FORMS FOR PHRASE-STRUCTURE GRAMMARS 477

B: Now assume (2.1) holds for dérivations of length k. Let S=>%u=>Gv
be the dérivation of length k+ 1. We have, by induction, ax e l] such that

(2.2)

for some y e S | . Since u=>Gv, there exists a path of transitions
(ku su vuk[). . .(&„, ^ vn9 K) in if+ such that

= v1 . . .vn,

for /= 1, . . ., n—\

(2.3)

We can construct a by appending certain symbols to a^ First, let oc2 — OL1 ar,
From (2.2) and (2.3) we have

Now we extend oc2 by (A:l5 sx). . .(kn, sn):

l(ku sj. . .kn(kn9 sn)

j . . ,{kn9 sn)a2

Next, we append the symbol a2:

n2 y3-*) y°\ S\' • * Sn °2 Kl VK1> Sl) ' • • Kn \Kn> Sn) H¥°\

h1(a4) remains a prefix of A2(a4), because q^ku by (2.3). Finally, let us
append (kl9 5 l s vu k\). . .{kn, sn, vn, k'n):

as = a1a1(ku sx). . ,(kn9 sn)a2(ku su vl9 k[). . ,{kn9 sn, vn9 k'n)

hi (a5) = . . .b2qI(ku sx)k[(k29 s2)k2. . .(kn9 sn)k'n

h2(a5)= . . .b2kl(kus1)k2(k2,s2). . .kn(kn9 sn)qFb1v1v2. . .vn

vol. 25, n° 5, 1991

478 V. GEFFBRT

By (2.3) we have k'i = ki + x for z — 1, t . ., n—\, k'n = qF, and also v — vx. . .u„.
Thert the strings a — a5 and v — vx. . ,t>„ again satisfy (2.1) and the claim is
verified.

Thus, for each v such that S =̂ >* v we have oc' e S^ such that
^2 (° 0 - ^i (°Ó^i v - Let a^a'a3. Clearly A2 (a) = hx (a) v, L e. v = /zx (a) \A 2 (°0*

Moreover, we have also shown that, having a dérivation
5 = w01> ^ ! ^ . , , s=> wfc => w, a can always be chosen in the form

wherê ^ — [^1. Therefore, we can always find an a satisfying
w = ht (a) \A 2 (a) such that

We shall not detail the long technical vérification showing that this is the
only way of forming an a with the desired properties, since the complete
formai proof can be found in [1], D

Nöw, by suitably encoding the alphabet £B into a two-letter alphabet, we
shall establish a different version of Theorem 1 — a représentation of recursi-
vely enumerable languages by a modification of the Post Correspondence
Problem:

DÉFINITION: Let T>h—{ax, . . ., anL) be an alphabet. The Extended Post
Correspondence (ËPC, for short) is

P^({(uu vx), . . ., (MrJ vr)}, (zav . . ., zatiL)),

where uh vh zae{Q, 1 }* for each i"= 1, . . ., r, and each ae£L .
The language represented by P in ££ , written L (P), is the set:

L(P)={xx. . . x n eSf ; 3su . . ., ste{l, . . ., r}9

/ ^ l such that usi. . . ^ ^ M ^ . . .uSlzxl. . .zXn}.

Note, that the classical Post Correspondence Problem [9] is to détermine
whether or not 8eL(P), where P is an EPCfor 21^= 0 [i. e . L (?) i 0 * = {8}].

THEOREM 2: i w £Ö?C/Z recursively enumerable language L there exists an
Extended Post Correspondence P such that L (P) = L.

Informatique théorique et Applications/Theoretical Informaties and Applications

NORMAL FORMS FOR PHRASE-STRUCTURE GRAMMARS 4 7 9

Proof: By the use of Theorem 1, weSJ is a word in L if and only if there
exists a n a e S] such that h2(a) = h1(a)w. (Where hu h2 are some homomor-
phisms from L^ to E|9

lfj:A={el9 . ..,enA}9 XL={al9 . . ., anL}, and XB={al9 . . ., anB), nB^nL,

then iv = x 1 . , . x „ 6 { c l J . . . J u n L } * is a word in L if and only if there exists
an 0L = eSi. . .esie{eu . . ., ^ n j 4 } + such that

Our next task is now to encode the symbols of ZB into the strings over a

two-letter alphabet, Le. to define a homomorphism c: DJ->{(), 1}*. Let

k— flog2(«B)l+ 1, and

c(<2;)= è£. . .bl
ö, for each z= l , . . ., nB,

where bl
k. . .b

l
0 is the number i written in binary notation (with leading zeroes

if needed). This encoding is unambiguous, Le. c(u) = c(v) if and only if w = z>,
for each w, vel.%. Now we defme

^ = ({ (« 1 , V i l - • - (*nA, V«A)}> (Zai> • - - ' Z a ^ l

where

M ^ C ^ J (e)̂), .
t o r e a c h i—\,...9nA

zai = c(at), for each fll.eSi={ûlJ . . ., ctnL}.

Now, since c is unambiguous, the condition (2.5) is satisfied if and only if

c(*2fei))• • -c{h2(es)) = c(hx (esi)). . .c{hx (es))c(Xl). . .c(xn),

and hence if and only if

vsi>..vs=usi...usizxi...zxn. (2.6)

Thus, w = xl. . .x„eEf is a word in L if and only if there exist
su . . ., ste { 1, . . ., nA }, / ^ 1 satisfying (2.6), which proves the theorem. •

We also have, by (2.4), the correspondence between time/space complexi-
ties of g-system and the extended Post correspondence: If weL(G) = L(P) is
generated by a dérivation S^wo=>G. . . =>Gwk=>cw, then we can fïnd a

vol. 25, n° 5, 1991

480 V. GEFFERT

solution of P for w of length

(2.7)

for some constant c. Before passing to our main results, we need two more
technical lemmas which will be applied later.

LEMMA 1: Let hx, h2:
yLA —*^B be a pair of homomorphisms representing a

language L (as it was shown in Theorem 1). Then, for any oceEJ ifhl(a) is a
prefix of h2 (a), then h1 (oL)\h2 (ot) does not contain a substring xh1 (J)9 where

and teXA such that h2(t) = e.

Proof: Suppose lemma does not hold for hu h2 of Theorem 1. Then, there
exists an oceS^ such that hl(a) is a prefix of h2(a), and w = A1 (a)\A2(a)
does contain a substring xh1(t), for some xeZL and for some teHA such
that h2 (0 = e.

Since h2 (a) = h1 (ot) w, we may conclude that h2 (oc) also contains a substring
xh1(t). If A2 (/) = £, then either t = a3 or t = (q, A, £, qf)eH, by Table in
Theorem 1. Therefore hx (t) = bu or hx (t) = (q9 A)q'.

But this implies that h2 (oc) contains a substring xbu or x(q, A) q\ for some
j e I L i F . A contradiction in either case, since the symbol bx must be
preceded either by b0 or by qF in h2(a), but never by xeV (see Table).
Similarly, (q, A)eKx V must be preceded by q e K, but never by x e V. D

LEMMA 2: Let P= ({ (wl5 B^ , . . ., (wp, T?F) } , (zfll, . . .,za^)) ie a« EPC repre-
senting a language L. Then, there is no loss of generality in assuming thaï for

any sl9 . . .9ste{l, . . .9r} if uSl . . . usi is a prefix of vsi . . . vs%9 then
u
Sl - - • usi\v

si • * • V3t d°es not contain a substring zxut9 where X Ê S L , and

t e { 1, . . . , r } such that vt — £.

Proof: We may assume, without loss of generality, that an EPC representing
a language L has been designed by the use of Theorem 1 and 2. Now, the
argument merely mirrors the proof of Lemma 1, since the symbols of EB

were unambiguously encoded by strings in {0,1 }*. D

3. THE MAIN RESULT

We can now state and prove the main theorem. We shall show that any
recursively enumerable language may be generated by a grammar having all
of its rules context-free, of the form S -> v, where S is the initial nonterminal,

Informatique théorique et Applications/Theoretical Informaties and Applications

NORMAL FORMS FOR PHRASE-STRUCTURE GRAMMARS 4 8 1

but two extra rules AB ->- s, CD -> s. The proof is based on the représentation
by an extended Post correspondence: We have shown that for each recursively
enumerable language L there exists an EPC

P=({(uuv1), . . .,(ur9vr)}, (zai, . . .,^„L))

such that L(P)~L, i. e. w = xx . . . I „ Ë ^ is a word in L if and only if there
exists su . . . ,5 (e{ 1, . . . , r } , / ^ 1 such that

Since uti vi3 zae{0,1 }* for each z = l , . . . , r , and for each ae^LL, we can use

the following way of generating w = x 1 . . . xn:

lst stage:

'R 'R o v Y =±> 7/jR
 7

tR
 A y Y

Zx„ • * • Z
X1 à

 X
l • • •

 X
n => Z

xn * * * ZX! A X
l • • • X

n

2nd stage:

z'x
R . . .

x n

tR 'R 'R 'R "
Z
xn • • - Z x x

 Wsi * * * U
S1

 V
S1

where z .̂, ŵ ., x?". dénote strings over some new alphabets (0 ' , 1'}, and
{0", 1"} corresponding to zx., uSj, vSj9 respectively. Formally, defme two
auxiliary homomorphisms b', b" by A'(0) = 0', * f (l) = l f , 6"(0) = 0",
6"(1)=1" . Then u's = b'(us), vi' = fe"(us), and z; = *'(zx), for each 5 = 1 , . . . , r ,
x e £ L . [Similarly, cp', (p" will be simplified notations for è'((p), b" (cp), respec-
tively, for each (p e { 0,1 }*.]

Note that, the only thing we should be able to do in the lst stage of
dérivation is to rewrite the symbol S to z'x

RSx, for each x e I L (and also to
A in the last step). Similarly, the 2nd stage will be just repeated rewriting of
A to u's

RAvs\ for each ,s=l s . . . , r (and to u's
Rv's' in the last step). It should

be clear that, for the first two stages, we need context-free rules only.

vol 25, n° 5, 1991

482 V. GEFFERT

3rd stage:

Z
xn • • • Z

Xi
 U

si • • • Wsi u s i - • * V
si

 X
l ' ' • X

n

• • • * «

if and only if q>x = cp2.
Now we have to check, whether or not our EPC has a solution for xt . . . xn

(or, more exactly, whether the sentential form we have generated represents
a solution to P for xx . . . %J, and, if and only if we have found a solution
(i. e. <Pi = 92)s

 w e have to erase <pi*<P2> which gives the terminal string
w — xt . . . xn. The 3rd stage is therefore a cancellation of substrings O'O",
VI" (by rules O'O" -^ s, and 1' 1" —• e). Clearly, the only place where we can
apply these rules is the "frontier" between <p\R and 9'2', since <pi*e{0', 1'}*,
q>2 e{0", 1"}*, and xi . . . x„eEJ. It now foilows easily that cp'̂ cpïw=>* w
if and only if cpi = cp2- I* is obvious, that this way of rewriting générâtes
exactly the language L(P), and we can now construct a phrase-structure
grammar with six nonterminal symbols, namely S, A, 0', 0", 1', 1" and
with only two non-context-free rules O'O" -• e, 1' 1" -• s, for each recursively
enumerable language L.

We are now going to eliminate the symbol "^4", and to replace it everywhere
by " 5 " , The only thing causing problems is that we can now use a 2nd stage
rule (/. e. S-*us

RSv's', for some s=\, . . ,,r) before applying the last rule of
the lst stage (S -> z^Sx^. In the next theorem, it will be seen that if we
violate the correct ordering, then we shall not be able to dérive a terminal
string in the 3rd stage of dérivation, because the extended Post correspon-
dence, constructed in Theorem 2, has some "nice" technical properties such
that the condition <Pj = q>2 cannot be satisfied in this case. We are now ready
for the main theorem:

THEOREM 3: Each recursively enumerable language L can be generated by a
phrase-structure grammar with 5 nonterminal symbols, using only context-f ree
rules of the form S^v, where S is the initial symbol, but two extra rules
AB -+e,CD-+ z.

Proof: Let

P= ({ (uuvx), . . ., (wr, vr)} , [zav . . ., zeaj)

Informatique théorique et Applications/Theoretical Informaties and Applications

NORMAL FORMS FOR PHRASE-STRUCTURE GRAMMARS 4 8 3

be an EPC such that L{P) = L. We may also assume that P satisfies the
conditions of Lemma 2. Define a grammar G = (7's Z£, P, S), by

P=GEN(J EPCU TEST,

where

G£7V= {S->zf Sx

/generating terminal symbols in the lst stage,

/generating a solution of P in the 2nd stage,

U{S^u's
Rv'8'-9s=l9...,r}9

/terminating the 2nd stage,

rEST={0'0"->e, l ' r - ^ e } ,

/checking and erasing the solution of P in the 3rd stage of dérivation.
(Recall that u's, v's\ z'x are simplified notations for the strings over {0', V },

{0", 1"}, corresponding to us, vs, zx, respectively.) Let x1 . . . xneL. Since
), then there exist su . . . , ^e{ 1, . . . , r } , / ^ l such that

Then

° ^^G ZJC„ • • • z x t ° x l * - •

/ u s i n g 5 - • z ; f 5 x £ e GEN, f o r i = « , . . . , 1,

'R JR
2 w

' * * V
si

 X
l • * * X

n

/ u s i n g 5 -» w;f 5 v ; j e £ P C , for i = = / , . . . , 2 , a n d 5 -> i^f ^ ;

= (p f q>2 ^ 1 • • • X
n ^G * i . . . X «

/using 0'0" -> £, 1' 1" ^EGTEST, since <Pi = cp2,
hence it follows that xx . . . jcrteL(G)-

vol 25, n° 5, 1991

484 V. GEFFERT

Conversely, let S=>%xx . . . xneE£. There are three ways of rewriting the
symbol S in the sentential form:

for each x e EL, using rules in GEN,

for each s=l, . . ., r, using rules in EPC.

Thus if S=>*pSq, then pe {0', 1'}*, and ^ ({ 0 " ; l " } U y * . Using any
rule in TEST is disabled until the symbol S disappears, since the sentential
form does not contain any substring of the form 0'0", or 1' 1". On the other
hand, after using some S -^u'Rv" e EPC, there is no possibility to use any
rule in GEN or EPC, since the sentential form does not contain the symbol
S and the rules in TEST are not capable of generating it.

Then the dérivation 5=>gx1 . . . xM is of the form

S ^>* pSq

/by rules in GENU EPC,

/ the symbol S is annihilated by an EPC rule, for some ^ e { 1 , . . . , r } 5

=>* xx...xn

/by rules in TEST

Since/>w£e{0',l'}*, vs\qe({Wf,l"}\Ji:L)*, and the rules in TEST are
able only to cancel the substrings 0'0", 1'1", we have pur

s
R = q>'R, and

vs[q = <p" xx . . . xn, for some cpe{0,1 }*:
If there were a substring xt 0" in v"x q, for some i= 1, . . ., n, then we would

not be able to generate a terminal string, since there is no possibility to
cancel the symbol 0" because we cannot generate the symbol 0' between xt

and 0". The same argument holds for ^-l". This implies that, before using
S -• z'^Sx^, we cannot apply any EPC rule rewriting S to ut

RSvt', for
v[' #6. Then the dérivation must be of the form:

lst stage:

S =>* q>'RSxx...xn

Informatique théorique et Applications/Theoretical Informaties and Applications

NORMAL FORMS FOR PHRASE-STRUCTURE GRAMMARS 4 8 5

/using S -* ztR Sxt G GEN, or S -> iït
RSv"eEPC, for v" = e,

2nd stage:

i/
R Ç7/' 7)" V V

. . . uS2 à t?S2 . . . vsi xx . . . xn

/using S^u'RSv".eEPC, and 5 -> ŵ f ^ e ^PC, for some
sl9 . . . , ^ { 1 , . . . , r } , / ^ l ,

3rd stage:

. . . xn

/using O'O" -> e, 1' 1" -• ES TEST.

Now we are going to elimate the use of EPC rules in the lst stage. It is
easy to verify that vSl . . . vsl = uSl . . . wSIcp, or, equivalently,

since we were able to dérive a terminal string in the 3rd stage. If, in the fîrst
stage before applying S->z'J^Sx1€ GEN, we rewrote S to ut

R Sv"9 for v" = s
(and hence also vt = s), then cp'K would contain a substring wf'

K zR, for some
z e {1, . . ., n } . But then cp would contain a substring zx. ur

Then we would have su . . ., st e {1, . . ., r} such that

cp = w S l . . . u s \ v s x . . . v a i

would contain a substring zx.ut9 for some XjeZL, and some Ï G { 1 , . . , , r }
such that ut = 8. But that would contradict our assumption that the EPC P
we have used satisfies the conditions of Lemma 2. Consequently, using an
EPC rule in the lst stage of dérivation, we obtain a sentential form from
which we are not able to dérive any terminal string in the 3rd stage. It thence
appears that each dérivation generating a terminal string must be of the
form:

lst stage:

/by rules S -> zrR S xt e GEN,

vol. 25, n° 5, 1991

486 V. GEFFERT

2nd stage:

Z

'R1/R 'R o *r " y.
' • Z

xx
 U

si • • ' U
s2 à

 V
s2 • • •

 V
si

 X l * * •

'R 7
f
^u

tK
 i/

R
7)" 7)" Y X

/by rules S ̂ usf Svs[eEPC, and S ̂ u^v^eEPQ for some

3rd stage:

. . . xn

/by rules O'O" -> e, 1' 1" -+ze TEST.

Then, since we were able to dérive a terminal string in the 3rd stage, we
get

. usizxi

and hence we have sx . . . ste {1, . . ., r}, / ^ 1 such that ,s1 . . . sl is a solution
of P for xx . . . xn? but this holds only if x1 . . . xneL(P) = L. D

It can be easily seen that several known results are simple conséquences of
this theorem. For example, any recursively enumerable set can be recognized
by a nondeterministic 1-state machine ha ving two 1-turn pushdown stores.
We also obtain that each recursively enumerable language L can be expressed
in the form L=p{Lx), where Lt is a deterministic linear language, and/? is a
cancellation of well-balanced parentheses subwords over alphabet consisting
of two pairs of parentheses. We can use a cancellation of a palindrome prefix
over two-letter alphabet as well. If we restrict p to be a polynomially-bounded
erasing then we shall obtain a characterization of the class of iVP-languages
by deterministic linear (and hence also by context-free) languages.

4. SOME OTHER NORMAL FORMS

In this section, we shall be interested in a number of other normal forms
which generate all the recursively enumerable languages. We shall consider
several normal forms, but constructions will be given uniformly, by showing
the transformations for putting the grammar exhibited in Theorem 3 into

Informatique théorique et Applications/Theoretical Informaties and Applications

NORMAL FORMS FOR PHRASE-STRUCTURE GRAMMARS 4 8 7

these forms, Firstly, we. present an "improved" Version of Theorem 3, reduc-
ing the number of nonterminals by one, and simplifying one of the non-
context-free mies:

THEOREM 4: Each recursively^enumerable language L can be generated by a
phrase-structure grammar with 4 nonterminal symbols, using only context-free
rules of the form S->v, where S is the initial symbol, and two extra rules
AB -+£,CC-> s.

Proof: We may use Theorem 3 to construct a phrase-structure grammar
G = (N, T, P, S) generating a language L and then to encode the symbols
0', 1', 0", V'eN by symbols 1, Ç), 0. Formally, defme a homomorphism
A:{Ö f ;~ï f ;ö", l " } * - + { 1 , 0 , 0 } * ,

IW> A(0") = 001,

*(!')= 10, A(l") = 01.

But then we have to modify also the grammar G, which gives
G' = (JV, T,P', S), where

/instead of N= {S, 0', V, 0", 1"},

F = GEN' U EPC U TEST,

the rules are changed as follows:

GEN' = {S->h (z'x
R) Sx;xeI,L},

/instead of S -> z'f Sx,

/instead of 5 ^ w^ 5 ^ ' , S -> M^ ^'.
The cancellation of substrings O'O", l ' i" in the 3rd stage of the dérivation

will now correspond to the cancellation of 100001, and 1001, respectively.
But

ITEST'= {00-> e, 11->E}

will do as well.

vol. 25, n° 5, 1991

488 V. GEFFERT

A: The fïrst two stages of the dérivation: If G rewrites the symbol S to
z'x

R Sx by a rule in GEN, or to u's
RSv's' by a rule in EPC, then G' can rewrite

S to h(z'R)Sx, or to h(u'R)Sh(v"), by the corresponding rule in GEN' or
EPC, respectively.

On the other hand, neither TEST rules in G, nor TEST rules in G' are
applicable, since the sentential forms contain the symbol S: In G, the sentential
form structure is S =>*pSqw e { 0', 1' }* S { 0"l" }* S£, there are no substrings
O'O", l ' i " in pSqw. This corresponds to £=>£, h(p)Sh(q)we{ 100, 10}*
S {001, 01 }*£* in G', the sentential form does not contain any substrings
00, or IL

Hence, by a straightforward induction on the length of the dérivation, we
have that S^>%pSqw if and only if S=>%, h(p)Sh(q)w. Similarly, the annihi-
lation of the symbol S itself will be carried out by rewriting S to
h (uR) h (v's'l instead of u'R v".

B: The third stage of the dérivation: It is obvious that if cpi* cp2' w =>g w,
then cp! = cp25 anc* also A(9iR)^(92)w=>£, w. The cancellation of zeroes by
the rule 0'0" -> s (or cancellation of ones by ri"-*E) corresponds to the
cancellation of 100001' (or 1001), respectively, by the use of 0O->£,
11- • ee TEST.

Now, consider the case in which no terminal string can be generated from
91*92 w m G> because cp!#cp2* We shall show that neither can we dérive a
terminal string from h (cpiK) h (cp̂) w in G''.

Bl: If q>! and (p2 differ in at least one bit (at the same position) then the
dérivation will be blocked after some steps, because we shall obtain different
symbols at the "frontier" between {0', 1'}* and {0", 1"}*:

Either

or

There is only one possible dérivation hère, since there is always at most one
substring that can be modified, by at most one rule. From now on, the
dérivation cannot continue (in either case), since there are no substrings O'O",
l ' i", or S in the sentential form.

In G', this corresponds to the only possible dérivation, Le,,

Informatique théorique et Applications/Theoretical Informaties and Applications

NORMAL FORMS FOR PHRASE-STRUCTURE GRAMMARS 4 8 9

either

or

respectively. There is possibility to continue, but the only possible step is
either

>c,

or

e{199, if*}* 101 {ooi, 01 }*x*.

The dérivation is blocked in both cases, there is no substring to be modified.
Hence, no terminal string can be derived in G' either.

B2: If <p1^cp2s b u t there is no position with different bits, then cp2 is a
proper prefix of cpl3 or vice versa. The dérivation in G will then produce
either

or

<P'i*<P>
corresponding to

or to

respectively. Neither hère can we dérive a terminal string.

Thus, we have shown that q>i* cp2'
 W = > S w ^ an (^ o n r y

^ = ^ ^ w> which complètes the proof. D

vol. 25, n° 5, 1991

490 V. GEFFERT

We shall now present a normal form using only three nonterminals, but a
little longer non-context-free rules:

THEOREM 5: Each recursively enumerable language L can be generaled by a
phrase-structure grammar with 3 nonterminal symbols, using only context-free
rules of the form S -> v, where S is the initial symbol, but two extra rules
AA -* e, BBB -> e.

Proof: We shall again simulate the phrase-structure grammar
G = (N, T, P, S) of Theorem 3, but now a homomorphism h will be defined
by

A(0')=100,
A(10=10, A(l") = 001.

Define a grammar G' = (N', T, P\ S) by N'= {S, 0, 1},

P' - GEN' U EPC U TEST',

where

EPC={S^h(us
R)Sh(v's');s=\, . . . , r }

Cancellation of 0'0", and l ' l " will now correspond to

A: For the first two stages, we can state the exact correspondence between
dérivations in G and in G'\

S =>% a i*Sp> ^G a[Ra'2
RK^w^cp\R^w

will correspond to

S ^ S , h(0L'*)Sh{W)w

The TEST' rules of G' are not applicable, since the sentential form is in
{ 100, 10}* S{01, 001 }*££, and hence there are no substrings of the form
000, or IL

B: In the third stage of the dérivation, we have h (q>'R) h (q>2) w

e { 100, 10 }* { 01, 001 }* ZJ, so the only place we can modify is at the frontier

Informatique théorique et Applications/Theoretical Informaties and Applications

NORMAL FORMS FOR PHRASE-STRUCTURE GRAMMARS 4 9 1

between h (cpi*) and h (cp2'X by TEST' rules. The argument is therefore similar
to the proof of Theorem 4, there are the same cases to consider.

Both cancellation of zeroes and ones correspond to the cancellation of
10001:

A(O0A(O") =]

A (1^(1")= 10001 =>Gy 11 ^>G, e,

by the ruies 000-> e, l l ->e e TEST. Therefore, if (p^cp2 w^%w, then
cpj = q>2, and also h(cpi^)h(cp2)w =>G, w.

BI: If (pi 7̂ cp2 and we get a "prohibited" combination of different frontier
symbols, i.e.,
either

cp^ cp2 w = > G x j /^ 1 ' 0 " \[/2' w,

or

then either

h ((p[R) h (cp2) w =>g, A (\|/f) 1001

or

respectively. The dérivation has already been blocked in the fïrst case, since
the sentential form is in {100, 10}* 1001 {01, 001 }*££. In the second case,
the dérivation can continue, but the only possible step is

j) 100001 *0jr£)w ^G3 ^ ^

e{100, 10}* 101 {01, 001}*S*.

No further steps are possibîe and therefore the dérivation is blocked.

B2: If <Pi /q>2 because cp2 i
s a proper prefix of c^, or vice versa, then we

get a sentential form in {0', 1'}+ X£, or in { 0", 1 " } + E*. In G', this corres-
ponds to sentential forms in {100, 10 }+ SJ, or {01, 001 } + Ef, respectively.
No terminal string can be generated in either case. D

vol. 25, n° 5, 1991

492 V. GEFFERT

Now, we shall show a grammar with a single extra rule:

THEOREM 6: Each recursively enumerable language L can be generated by a
grammar with 3 nonterminal symbols, using only context-free rules of the form
S -> v, where S is the initial symbol, and a single extra rule ABEBA -> 8.

Proof: The phrase-structure grammar of the previous theorem used two
extra rules, namely 000 -> s, and 11 -• £. A careful study of the proof reveals
that, in each dérivation generating a terminal string, these rules were always
applied in pairs, rewriting by 000 -• e was immediately followed by the use
of 11 -> e. Furthermore, they were always applied at the same place, L e.

. . . => oc' 10001 P" w => oc' 11 P" w => oc' p" w =>. . .

Therefore, a single extra rule 10001 -> 8 will do as well. D

Finally, we are going to present another normal form using only a single
non-context-free rule:

THEOREM 7: Each recursively enumerable language L can be generated by a
phrase-structure grammar with 4 nonterminal symbols, using only context-free
rules of the form S -+ v, where S is the initial symbol, and a single extra rule
ABC -* 8.

Proof: The idea is again to imitate the phrase-structure grammar of Theo-
rem 3. The detailed proof is very similar to the previous ones, so we content
ourselves with a construction. Define a homomorphism h as follows:

h(0') =

h(V) = A, h(l") = BC

Next, construct a grammar Gr = (N',T,P\S) by N' = {S, A9 B, C},
F = GEN' U EPC U TEST', where

GEN' = {S-+h (z'x
R)

EPC={S^h(u's
R)Sh(v's');s=h . . . , r }

TEST'= {ABC-* E}. D

Informatique théorique et Applications/Theoretical Informaties and Applications

NORMAL FORMS FOR PHRASE-STRUCTURE GRAMMARS 4 9 3

5. TIME AND SPACE COMPLEXITY

First, we shall briefly review the time and space complexities of grammars
constructed in Section 3 and 4. Then we shall show that the simulation of
nondeterministic fc-tape Turing machine by a grammar in normal form is
quadratic, L e. it is not less time efficient than the simulation by an arbitrary
phrase-structure grammar.

Let L be a recursively enumerable language generated by some g-system
G. By Theorems 1 and 2, we can construct an extended Post correspondence
P such that L(P) = L(G). If a word W = JC1. . .xneL{G) is generated by a
dérivation

then, by (2.7), there exists a solution of P for w, i. e. there exist

s
l9 . l, . . ., r} , / ^ l satisfying v s i . . .vsi = usi. . .usizxi. . -z^

that Z^c £ | iv£ |. It can be shown that the simulation of P by a phrase-
» = o

structure grammar of Theorem 3 is linear: The first stage of its dérivation
consists of n steps, ra=|u> = | w k + 1 | , the second stage requires / steps,

t=c X! I wtI- ^ n e third one requires | cp2 I steps, since each step cancels exactly
i = 0

one symbol of cp ,̂ together with one symbol of cp'^. Note that
l l r

\ty2\~ Z! v"i I = YJ \vsi\=M.l, where M = m a x Vj\ (a constant dependent
i = 1 i = 1 i = 1

only on P). Thus the total number of steps is at most

Lu I rv
i I'

i = 0

for suitable constants d', d. The space complexity is also bounded by

All other grammars, constructed in Section 4, simulated the grammar of
Theorem 3. Each nonterminal symbol was encoded by a string of length at
most three, similarly, each dérivation step was imitated by at most three
steps. Thus all these grammars have the same time and space bound

In order to establish our normal forms, we could use the classical définition
of the phrase-structure grammar as well, instead of introducting a notion of

vol. 25, n° 5, 1991

494 V, GEFFERT

a g-system. However, an iterated rewriting of the sententiai form by a
nondeterministic 1-otransducer (i.e. g-system) makes manipulation much
easier and mentally simpler. For example, we have shown in [1] that every
regular set can be generated by logarithmically time-bounded g-system having
Y, | wt | e O (n), which gives a linear time-bound for the phrase-structure gram-
mar in our normal form, for each regular set. We are now going to show that,
if a language L is recognized by a A>pushdown non-deterministic automaton A
of time complexity TA (n) and space complexity SA («), then L is also generated
by a g-system of the same time and space complexity (for each k). From this
we shall obtain a phrase-structure grammar in normal form with the time

TA(n)

and space complexity bounded by £ Po where pt is the number of symbols

saved onto the pushdown stores of A at time t.
The proof is quite intuitive: Let xx. . .xn be an input of A. To describe

the computationai history of A at any given time we need to know three
things; the state q it is in, what has been scanned on the input tape, i.e.
xx . . .xh and what is on its pushdown stores, i.e. strings A$} (with the
symbol Aj on top, for each j = 1, . . ., k). In g-system this will correspond to
the sententiai form

where B is a new symbol, used as a bottom-of-the-stack marker. A move by
a particular transition (q\ yx, . . ., yk)e5(q, a, Ax, . . ., Ak) — the automaton
changes its state from q to q' and replaces the topmost symbol Aj by the
string jj on its >th pushdown (for each j= 1, . . ., k), providing the input
head scans the symbol a-will be imitated by rewriting the above sententiai
form to

(Where a = xi + l9 or a = z.) The foliowing edges in G are needed:

n^ (2)

(1) - f o r each
(2) - for each

Informatique théorique et Appiications/Theoretical Informaties and Applications

NORMAL FORMS FOR PHRASE-STRUCTURE GRAMMARS 4 9 5

(For each transition of A, we use some new distinct states ql9 . . ., qk9

#i, - - -, Çk> s o the onty states shared by different paths are q'j, and q'F.) The
dérivation will be initiated by rewriting S to qx {Zï B)k, which corresponds to
the initial computational history of A, and terminated by a path of edges
from q\ to q'F erasing qF Bk. (#,, qFi and Zj dénote the initial and final states
of A, and its initial pushdown symbol, respectively.) It should be clear that
A and G represent the same language, and that their time and space complexi-
ties are asymptotically equal

Since k tapes can be easily replaced by 2 k pushdowns, it follows immedi-
ately that each fc-tape nondeterministic Turing machine can be replaced by a
phrase-structure grammar in normal form of time complexity
O (TA(n). SA(n))^O (TA(n)). This simulation resuit can be extended up to
the multihead multidimensional multitape machines, to the L-systems with
interactions, and so forth.

We would like to conclude this paper by an interesting question concerning
a phrase-structure grammar having ail of its rules context-free, but one pair
of canceled parentheses, i.e., one extra rule of the form () -> e, which was
presented in [2], [The two extra rules of Theorem 3 can be viewed as a
cancellation of two pairs of parentheses, Le.,{) -» e, <) -» e.] This gram-
mar is equivalent to a grammar with context dependency restricted to syn-
chronization, a monotonie variant of this grammar corresponds to an abstract
family of languages (not full) lying bet ween the context-free and the context-
sensitive languages, The same class of languages was obtained independently
in [8], by the use of the Dyckj-réductions on the context-free languages.

ACKNOWLEDGEMENTS

The author thanks Branislav Rovan for several helpfül discussions, suggestions, and comments
concerning this work.

This work was performed as a part of SPZV 1-1-5/08 grant.

REFERENCES

1. V. GEFFERT, A Représentation of Recursively Enumerable Languages by two
Homomorphisms and a Quotient, Theoret. Comput. Sci., 1988, 62, pp. 235-249.

2. V. GEFFERT, Grammars with Context Dependency Restricted to Synchronization,
Proc. ofM.FC.S' 86, L.N.C.S., 1986, 233, Springer-Verlag, pp. 370-378.

3. V. GEFFERT, Context-Free-Like Forms for the Phrase-Structure Grammars, Proc.
ofM.F.C.S/ 88, L.N.C.S., 1988, 324, Springer-Verlag, pp. 309-317.

4. S. GINSBURG, Algebraic and Automata-Theoretic Properties of Formai Languages,
North-Hoïland, Amsterdam, 1975.

vol. 25, n° 5, 1991

496 V. GEFFERT

5. M. A. HARRISON, Introduction to Formai Language Theory, Addison-Wesley,
1978.

6. M. A. HARRISON and M. SCHOLNICK, A Grammatical Characterization of One
Way Nondeterministic Stack Languages, Ibid., 1971, 18, pp. 148-172.

7. J. E. HOPCROFT and J. D. ULLMAN, Formai Languages and Their Relation to
Automata, Addison-Wesley, 1969.

8. M. JANTZEN, M. KUDLEK, K. L. LANGE and H. PETERSEN, Dyckx-Réductions of
Context-Free Languages, Comput. Artificial Intelligence, 1990, 9, No. 1, pp. 3-18.

9. E. POST, A Variant of a Recursively Unsolvable Problem, Bull. Amer. Math, Soc,
1946, 52, pp. 264-268.

10. B. ROVAN, A Framework for Studying Gramars, Proc. of M.F.CS' 81, L.N.C.S.,
1981, 118, Springer-Verlag, pp. 473-482.

11. B. ROVAN, Complexity Classes of ^-Systems are AFL, Univ. Comeniana, Acta
Math. Univ. Comenian., XLVIII-XLIX, 1986, pp. 283-297.

12. E. S. SANTOS, A Note on Bracketed Grammars, J. Assoc. Comput. Mach., 1972,
19, pp. 222-224.

13. W. J. SAVITCH, HOW to Make Arbitrary Grammars Look Like Context-Free
Grammars, SJ.A.M. J. Comput., 2, No. 3, 1973.

Informatique théorique et Applications/Theoretical Informaties and Applications

