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Introduction

Let $k$ be an algebraically closed field of arbitrary characteristic and
$X$ be a normal projective surface over $k$ . Since every normal surface
is Cohen-Macaulay, there exists the dualizing sheaf $\omega_{X}$ on $X$ and $X$ is a
Gorenstein surface if and only if $\omega_{X}$ is invertible. (We use the words
“dualizing sheaf” and “canonical divisor” interchangeably.) A typical
example of a Gorenstein surface is an effective divisor on a non-singular

threefold. In this article, we determine the structure of normal Gorenstein
surfaces with ample anti-canonical sheaf $\omega_{X}^{-1}$ . If $X$ is non-singular, such
a surface is called a Del Pezzo surface and the structure of Del Pezzo
surfaces is fairly well-known.

Our first result is that such a surface is either rational or a cone
over an elliptic curve and that the singularities on such a surface are
rational double points or the unique simple elliptic singular point, ac-
cording as $X$ is rational or is a cone over an elliptic curve. These results
are proved in \S 2. In the case $k$ is the complex number field, the same
result is obtained by Brenton in [2] using topological properties of ruled
surfaces. Our proof uses the theory of resolution of normal surface
singularities. An advantage of our proof is that we can treat the problem
independent of the characteristic of the base field $k$ .

In \S 3, we will study more closely the case that $X$ is rational. We
will show that the minimal resolution $\tilde{X}$ of such a surface $X$ can be
obtained from $P^{2}$ by blowing up the points in “almost general position”,
except for the case when $X$ is a normal quadric surface in $P^{\epsilon}$ . Such
surfaces are the ones studied by Demazure in [4].

In \S 4, we will study the anti-canonical model and the configuration

of the singular points on such a surface. If we put $d=\deg X=\omega_{X}\cdot\omega_{X}$ ,
we can show that $X$ is a subvariety of degree $d$ in $P^{d}$ if $d\geqq 3$ , a hyper-
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surface of degree 4 in the weighted projective space $P(1,1,1,2)$ if $d=2$

and a hypersurface of degree 6 in $P(1,1,2,3)$ if $d=1$ . As for the singular
points on $X$, if $d\geqq 3$ , all the possible configurations of the singular points
on $X$ are known (cf. [11]). We treat the case $d=2$ in this article and
show that the configuration of the singular points on $X$ is a proper sub-
graph of the extended Dynkin diagram $(\tilde{E}_{7})$ except for three cases. Also,
we will show that the maximal number of singular points on $X$ is 6 if
$d=1$ or 2.

The authors would like to express their gratitude to Professor M.
Miyanishi for showing them the article [4].

In this article, we use the following notations. $P(n_{0}, \cdots, n_{d})=$

Proj $(k[T_{0}, \cdots, T_{d}])$ is the weighted projective space (where we put
deg $(T_{\ell})=n_{i}$ for $i=0,1,$ $\cdots,$

$d$). We write $P^{d}=P(1, \cdots, 1)$ as usual. $F_{n}$

is the $P^{1}$-bundle over $P^{1}$ defined by $F_{n}=P(p\oplus p(n))$ . $h^{i}(X, *)$ means
$\dim_{k}H^{i}(X, *)$ .

\S 1. The exceptional divisors and the geometric genus of a singu-
larity.

Let $X$ be a normal Gorenstein surface and $x$ be a singular point of
X. We denote by $\pi:\tilde{X}\rightarrow X$ a minimal resolution of $x$ and by $A$ the
exceptional set $\pi^{-1}(x)$ . Let $A=\bigcup_{i=1}^{n}A_{i}$ be the irreducible decomposition
of $A$ . Recall that the fundamental cycle $Z_{0}$ of $A$ is the minimum among
the effective cycles $Z$ with $Z\cdot A_{i}\leqq 0$ for every $i=1,$ $\cdots,$ $n$ . We know
that the support of $Z_{0}$ coincides with $A$ .

LEMMA 1.1. The canonical divisor $K_{\tilde{X}}$ of $\tilde{X}$ is linearly equivalent
to $\pi^{*}(\omega_{X})-\sum_{i=1}r_{i}A_{i}$ with $r_{i}\geqq 0$ for all $i=1,$ $\cdots,$ $n$ . Moreover, $\sum_{i=1}r_{l}A_{i}\geqq Z_{0}$

unless $r_{i}=0$ for all $i=1,$ $\cdots,$ $n$ .

PROOF. This follows from the facts that $p_{a}(A_{i})=(A^{2}+K_{\tilde{X}}\cdot A)/2+1\geqq 0$

and that $A_{i}^{2}\leqq-2$ if $p_{a}(A_{i})=0$ .

Let us denote the divisor $\sum_{i=1}^{n}r_{i}A_{t}$ by $W$. The following proposi-
tions are the key results for this article.

PROPOSITION 1.2. ([1], [7]). Uuder the assumptions as above, the
following conditions are equivalent.

(i) $(R^{1}\pi_{*}ff_{\tilde{X}})_{r}=0$ (resp. $\dim_{k}(R^{1}\pi_{*}(d_{\tilde{X}}))_{x}=1$).

(ii) $x$ is a rational double point (resp. a minimally elliptic singular
point).

(iii) $W=0$ (resp. $W=Z_{0}$).
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In [7], Laufer proved the above result in the case $k=C$ . But it is
easy to check that the proposition holds over an algebraically closed field
of arbitrary characteristic, using the method of “computation sequence”

defined in [7]. Recall that the geometric genus $p_{g}(\ovalbox{\tt\small REJECT}_{x})$ is defined by
$p_{g}(p_{x})=\dim_{k}R^{1}\pi_{*}(\ovalbox{\tt\small REJECT}_{\tilde{X}})_{x}$ .

PROPOSITION 1.3. If $p_{g}(ae)\geqq 2$ , then $p_{g}(p_{l})\geqq p_{a}(Z_{0})+1$ .

PROOF. As $(R^{1}\pi_{*}(\beta_{\tilde{X}})_{x})\cong\lim H^{1}(Z, d_{Z})$ by the comparison theorem

and as the mappings of the $projective\leftarrow$ system of the right hand side are
surjective, we have only to show that $\dim_{k}H^{1}(W, P_{W})\geqq p_{a}(Z_{0})+1$ . By
Proposition 1.2 and by our assumption, we have $W>Z_{0}$ . If we put
$Y=W-Z_{0}$ , we have the exact sequence of sheaves

$0\rightarrow p_{Y}(-Z_{0})\rightarrow C^{7_{W}}\rightarrow p_{z_{0}}\rightarrow 0$

and the exact sequence of cohomology groups

$H^{0}(p_{W})\rightarrow H^{0}(p_{z_{0}})\rightarrow H^{1}(p_{Y}(-Z_{0}))\rightarrow H^{1}(p_{W})\rightarrow H^{1}(p_{z_{0}})\rightarrow 0$ .

We have $\dim_{k}H^{0}(p_{z_{0}})=1$ ([7], (2.6)). So, the mapping $H^{0}(p_{W})\rightarrow H^{0}(8_{z_{0}})$

is surjective. On the other hand, by the adjunction formula, we have
$\omega_{Y}=p_{Y}(-W+Y)=p_{Y}(-Z_{0})$ . So, $\dim_{k}H^{1}(p_{Y}(-Z_{0}))=\dim_{k}H^{0}(p_{Y})>0$ .
Thus we have $\dim_{k}H^{1}(8_{W})=\dim_{k}H^{1}(\ovalbox{\tt\small REJECT}_{z_{0}})+\dim_{k}H^{1}(\beta_{Y}(-Z_{0}))\geqq p_{a}(Z_{0})+1$ .

\S 2. Structure of the surfaces.

In this section, $X$ is a normal Gorenstein surface with ample anti-
canonical sheaf $\omega_{X}^{-1}$ and $\pi:\tilde{X}\rightarrow X$ is a minimal resolution of $X$. We call
the self-intersection number $d=\omega_{X}\cdot\omega_{X}$ the degree of $X$ (the intersection
number is taken in the sense of [6]). Since $\omega_{X}^{-1}$ is ample, it is clear that
$d\geqq 1$ .

PROPOSITION 2.1. $X$ is birationally equivalent to a ruled surface.

PROOF. By [10], it suffices to show that $H^{0}(mK_{\tilde{X}})=0$ for all $m\geqq 1$ .
Since $X$ is normal, it follows from the isomorphism $p_{X}\cong\pi_{*}(p_{\tilde{X}})$ that
$H^{0}(\omega_{X}^{m})\cong H^{0}(\pi^{*}\omega_{X}^{m})$ for all $m$ . But in the notation of \S 1, we have $h^{0}(\omega_{X}^{n})=$

$h^{0}(\pi^{*}\omega_{X}^{m})=h^{0}(mK_{\tilde{X}}+mW)\geqq h^{0}(mK_{\tilde{X}})$ and $h^{0}(\omega_{X}^{m})=0$ since $\omega_{X}^{-1}$ is ample.

THEOREM 2.2. If $X$ is a normal projective Gorenstein surface with
$\omega_{X}^{-1}$ ample and if $\pi:\tilde{X}\rightarrow X$ is a minimal resolution of $X$, then one of
the following two cases occurs.

(1) $X$ is rational.
(2) $\tilde{X}$ is a P’-bundle over an elliptic curve $C$ and $\tilde{X}\cong P(p_{c}\oplus \mathscr{L})$ ,
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where $ \mathscr{G}$ is a line bundle on $C$ with deg $\Leftrightarrow \mathscr{G}>0$ . $X$ is obtained by con-
tracting the minimal section of $\tilde{X}$.

PROOF. We have the spectral sequence

$E_{2}^{p,q}=H^{p}(X, R^{q}\pi_{*}(d_{\tilde{X}}))-H^{p+q}(X, p_{\overline{\lambda}})$ ,

which induces an exact sequence

(2.3) $0\rightarrow H^{1}(p_{X})\rightarrow H^{1}(p_{\tilde{X}})\rightarrow H^{0}(R^{1}\pi_{*}(\beta_{\tilde{X}}))\rightarrow H^{2}(p_{X})$ .
By Serre duality, $H^{2}(\rho_{X})=H^{0}(\omega_{X})=0$ since $\omega_{X}^{-1}$ is ample. We put $q=$

$h^{1}(p_{\tilde{X}})$ . We can divide the situation into three cases.
Case 1. $R^{1}\pi_{*}(p_{\tilde{X}})=0$ .

In this case, the singular points of $X$ are rational double points. Hence
$K_{\tilde{X}}\cong\pi^{*}(\omega_{X})$ . If $X$ is obtained by n-times blowing up from a $P^{1}$-bundle,
then $0<d=(\omega_{X}\cdot\omega_{X})=K_{\tilde{X}}^{2}=8-8q-n$ . Thus $q=0$ and $X$ is a rational
surface.

Case 2. $\dim_{k}H^{0}(R^{1}\pi_{*}(p_{\tilde{X}}))=1$ .
Let $f:\tilde{X}\rightarrow C$ be a fibre space structure over a nonsingular curve $C$ with
general fibre $P^{1}$ . Note that the genus of $C$ is $q$ . From the exact sequence
(2.3), we have $q\geqq 1$ . By the assumption, there exists only one minimally
elliptic singular point $x$ on $X$. Let $Z_{0}$ be the fundamental cycle of $\pi^{-1}(x)$ .
Then, by Proposition 1.2, $K_{\tilde{X}}=\pi^{*}(\omega_{X})-Z_{0},$ $p_{a}(Z_{0})=1$ and therefore $Z_{0}$ is
not contained in a fibre of $f$.

Claim. $Z_{0}$ is reduced and is a section of the morphism $f$.
To prove this, we need the following

LEMMA 2.4. Under the assumption of Case 2, let $B$ be an irreducible
curve on $\tilde{X}$ which is a component of a fibre of $f$. If $B\cdot Z_{0}>0$ and $\pi(B)$

is not a point, then $B^{2}=0$ .

PROOF OF LEMMA. Since $B$ is a rational curve, $K_{\tilde{X}}\cdot B+B^{2}=-2$ .
Hence $B^{2}=-2+\pi^{*}(\omega_{X}^{-1})\cdot B+Z_{0}\cdot B\geqq 0$ . Thus $B^{2}=0$ .

PROOF OF CLAIM. The cycle $Z_{0}$ does not contain any fibre component.
For, if it did, there exists a component of the fibre which is not a com-
ponent of $Z_{0}$ and meets $Z_{0}$ . But this is impossible by Lemma 2.4. Let
$D$ be a general fibre of $f$. Then $K_{\tilde{X}}\cdot D+D^{2}=-2$ . As $K_{\tilde{X}}=\pi^{*}(\omega_{X})-Z_{0}$ ,
$Z_{0}\cdot D=2+\pi^{*}(\omega_{X})D\leqq 1$ and so $Z_{0}\cdot D=1$ . This shows the Claim.

As $p_{a}(Z_{0})=1$ and $Z_{0}$ is a section of $f$, we have shown $q=1$ . Also,
Lemma 2.4 shows that $X$ is a $P^{1}$-bundle. So, there exists a locally free
sheaf $g$ of rank 2 on $C$ such that $X=P(g)$ . It remains to show that
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87 is decomposable. But if $g$ is indecomposable, the self-intersection
number of the minimal section is $0$ or 1 by [18], which contradicts the
fact $Z_{0}^{2}<0$ . Note that if $C=\beta_{c}\oplus \mathscr{L}$ with deg $(\mathscr{L})>0$ , then deg $(\mathscr{L})=$

$d=(\omega_{X}\cdot\omega_{X})$ .
Case 3. $\dim_{k}H^{0}(R^{1}\pi_{*}(p_{\tilde{X}}))\geqq 2$ .

We will show that there is no $X$ belonging to this case. If there exists
a point on $X$ with $p_{g}(pae)\geqq 2$ , let $Z_{0}$ be the fundamental cycle of $\pi^{-1}(x)$ .
Then $p_{a}(Z_{0})>0$ by [1], Theorem 3. So $Z_{0}$ is not contained in a fiber of
$f$. Then a component of $Z_{0}$ dominates the base curve $C$ and we have
$p_{a}(Z_{0})\geqq p_{a}(C)$ . But by Proposition 1.3, we have $p_{g}(p_{x})>p_{a}(Z_{0})$ and this
contradicts the fact $q\geqq\dim_{k}(H^{0}(R^{1}\pi_{*}(\theta_{\tilde{X}}))$ .

If all singularities of $X$ are rational or minimally elliptic, let $x(i=$

$1,$
$\cdots,$ $m,$ $m\geqq 2$) be the set of elliptic singularities of $X$. If $Z_{0}^{i}$ is the

fundamental cycle of $\pi^{-1}(x_{l})$ , we have $K_{\tilde{X}}=\pi^{*}(\omega_{X})-\sum_{i=1}Z_{0}^{l}$ by Proposition
1.2. As in the proof of Case 2, each $Z_{0^{i}}$ is a section of $f$. Let $D$ be a
general fibre of $f$. Then $-2=D\cdot K_{X}=D\cdot\pi^{*}(\omega_{X})-\sum_{i=1}^{m}D\cdot Z_{0}\leqq-1-m$ ,
which is a contradiction.

COROLLARY 2.5. If $X$ is a normal projective Gorenstein surface
with $\omega_{X}^{-1}$ ample, then $H^{1}(X, P_{X})=0$ .

PROOF. This follows immediately from Theorem 2.2 and (2.3).

REMARK. In the case ch $(k)=0$ , we can prove Theorem 2.2 without
using Proposition 1.3. In fact, consider the spectral sequence

$E_{2}^{p,q}=H^{p}(X, R^{q}\pi_{*}\pi^{*}\omega_{X})-H^{p+q}(X, \pi^{*}\omega_{X})$ ,

which induces an exact sequence

$(*)$ $0\rightarrow H^{1}(\omega_{X})\rightarrow H^{1}(\pi^{*}\omega_{X})\rightarrow H^{0}(R^{1}\pi_{*}(p_{\tilde{X}}))\rightarrow H^{2}(\omega_{X})$ .

By Serre duality, $H^{2}(\omega_{X})\cong k$ and by [9] it follows that $H^{1}(\rho_{X})=H^{1}(\omega_{X})=0$

and $H^{1}(\pi^{*}\omega_{X})=0$ . So $\dim_{k}H^{0}(R^{1}\pi_{*}(p_{\tilde{X}}))$ equals to $0$ or 1. Therefore,
$q\leqq 1$ by the exact sequence (2.3).

\S 3. The rational case.

Let $X,\tilde{X},$ $\pi$ be as in \S 2. In this section, we treat the case when
$X$ is rational more closely. In this case, the singular points of $X$ are
rational double points. We will show that the smooth surfaces which
can appear as $\tilde{X}$ are the ones studied by Demazure in [4].

3.1. Let $\Sigma=\{P_{1}, \cdots, P_{r}\}$ be a finite set of points on the projective
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plane $P^{2}$ (infinitely near points allowed) and assume that $|\Sigma|=r\leqq 8$ .
Denote by $\Sigma_{j}$ the $8ubset\{P_{1}, \cdots, P_{j}\}(1\leqq j\leqq r)$ and let $V(\Sigma_{j})\rightarrow P^{2}$ be the
blowing up of $P^{f}$ with center $\Sigma_{j}$ . Then there exists a sequence of
blowing-ups

$V(\Sigma)=V(\Sigma_{\gamma})\rightarrow V(\Sigma_{r-1})\rightarrow\cdots\rightarrow V(\Sigma_{1})\rightarrow P^{2}$

Let $E_{\dot{f}}$ be the exceptional set of the j-th step ( $E_{j}\subset V(\Sigma_{j})$ and $E_{\dot{f}}$ is con-
tracted to the point $P_{j}$ of $V(\Sigma_{j-1}))$ .

DEFINITION 3.2. ([4]). The points of $\Sigma$ are in general (resp. almost
general) position if

(i) no three (resp. four) of them are on a line.
(ii) no six (resp. seven) of them are on a conic.
(iii) all the points are distinct (resp. for all $j(1\leqq j\leqq r-1)$ , the point

$P_{j+1}$ on $V(\Sigma_{j})$ does not lie on any proper transform $\hat{E}$ of $E(1\leqq i\leqq j)$

such that $\hat{E}_{i}^{2}=-2$).

(iv) when $|\Sigma|=8$ , there exists no singular cubic which passes through
all the points of $\Sigma$ and has one of them as the singular point (no cor-
responding condition for almost general position).

It is easy to see that the points of $\Sigma$ are in general position if and
only if the anti-canonical divisor $-K_{V(\Sigma)}$ of $V(\Sigma)$ is ample. A non-singular
projective surface $V$ is called a Del Pezzo surface if $-K_{V}$ is ample. It
is known that a Del Pezzo surface is isomorphic to $P^{2}$ or $P^{1}\times P^{1}$ or $V(\Sigma)$

as above, where the points of $\Sigma$ are in general position.
In [4], Demazure showed the following

THEOREM 3.3 ([4], III, Th. 1). Let $V=V(\Sigma)$ as above with $|\Sigma|=r\leqq 8$ .
Then the following conditions are equivalent.

(a) The points of $\Sigma$ are in almost general position.
(b) The anti-canonical system $|-K_{V}|$ of $V$ has no fixed components.
(c) The anti-canonical system $|-K_{V}|$ of $V$ contains a non-singular

elliptic curve.
(d) $H^{1}(V, P_{V}(nK_{V}))=0$ for all $n\in Z$.
(e) $D\cdot K_{V}\leqq 0$ for every effective divisor $D$ on $V$.
(f) For an irreducible curve $D$ on $V$, either $D\cdot K_{V}<0$ or $D\cdot K_{\gamma}=0$

and $D^{2}=-2$ .

Demazure also proved that if the points of $\Sigma$ are in almost general
position, then the complete linear system $|-mK_{\gamma}|$ gives a birational
morphism for some $m>0$ and that its image is a normal Gorenstein
surface with ample anti-canonical divisor. Now, we will show the
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converse.

THEOR$fM3.4$ . If $X$ is a nomal projective Gorenstein surface with
$\omega_{X}^{-1}$ ample and if $H^{1}(\tilde{X}, ff_{\tilde{X}})=0$ , then

(i) $1\leqq d=\omega_{X}\cdot\omega_{X}\leqq 9$ .
(ii) $X$ is smooth or the singular points of $X$ are rational double

points.
(iii) If $d=9$ , then $X\cong P^{2}$ .
(iv) If $d=8$ , then either (a) $X\cong P^{1}\times P^{1}$ or (b) $X\cong F_{1}$ or (c) $X$ is the

cone over a quadric in $P^{2}$ (in this case, $\tilde{X}\cong F_{2}$ and the resolution $\pi$ is
given by contracting the minimal section of $\tilde{X}$).

(v) If $1\leqq d\leqq 7$ , then there exists a set $\Sigma$ of points on $P^{2}$ such that
the points of $\Sigma$ are in almost general position, $|\Sigma|=9-d$ and $\tilde{x}\cong V(\Sigma)$ .
In this case, the resolution $\pi$ is the contraction of all curves on $\tilde{X}$ with

self-intersection number $-2$ .

PROOF. The assertion (ii) follows from (2.3). Then $K_{\tilde{X}}\cong\pi^{*}(\omega_{X})$ and
the resolution $\pi$ is obtained by a complete linear system $|-mK_{\tilde{X}}|$ for
some $m>0$ . We need the following

LEMMA 3.5. We have $K_{\tilde{X}}^{2}>0$ and if $C$ is an irreducible curve on $\tilde{X}$,
then

(1) $C\cdot K_{\tilde{X}}\leqq 0$ and $C\cdot K_{\tilde{X}}=0$ if and only if $\pi(C)$ is a point.

(2) $C^{2}\geqq-2$ and if $C^{2}=-2$ , then $C\cong P^{1}$ and $\pi(C)$ is a point.
(3) If $C^{2}=-1$ , then $C\cong P^{1}$ and $C\cdot K_{\tilde{X}}=-1$ .

PROOF. As $K_{\tilde{X}}=\pi^{*}(\omega_{X}),$ $K_{\tilde{X}}^{2}=\omega_{X}\cdot\omega_{X}=d>0$ . As $\omega_{X}^{-1}$ is ample, (1) is
clear. Since $C\cdot K_{\tilde{X}}+C^{2}\geqq-2,$ $C^{2}\geqq-2$ and if $C^{2}=-2$ , then $C\cdot K_{\tilde{X}}=0$ and
$p_{a}(C)=0$ . If $C^{2}=-1$ , then $2p_{a}(C)-2=C\cdot K_{\tilde{X}}-1\leqq-1$ and we have
$p_{a}(C)=0$ .

COROLLARY 3.6. The relatively minimal model of $\tilde{X}$ is either $P^{2}$ ,
$P^{1}\times P^{1}$ or $F_{2}$ .

PROOF. This is clear by Lemma 3.5, (2).

PROOF OF THEOREM 3.4 continued. Since $\tilde{X}$ is rational, we have
rank (Pic $(\tilde{X})$ ) $+K_{\tilde{X}}^{2}=10$ . Hence $1\leqq d\leqq 9$ . The statements (iii) and (iv) are
immediate from Lemma 3.5 and Corollary 3.6. If $1\leqq d\leqq 7$ , then $\tilde{X}$ has
$P^{2}$ as its relatively minimal model. Let us take $\Sigma$ so that $x\cong V(\Sigma)$ .
Then $|\Sigma|=9-d$ and the points of $\Sigma$ are in almost general position by

Lemma 3.5 and Theorem 3.3 (f). This concludes the proof of Theorem
3.4.
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\S 4. The anti-canonical model of $X$ and the description of singu-
larities of $X$.

4.1. Let $X,\tilde{X},$ $\pi$ be as in \S 2. We say that $X$ is of rational (resp.

of elliptic) type if $\tilde{X}$ is rational (resp. if $\tilde{X}$ is an elliptic ruled surface).

PROPOSITION 4.2. (i) The anti-canonical system $|\omega_{\overline{x}}^{1}|ofX$ contains
a non-singular elliptic curve.

(ii) For a non-singular elliptic curve $C$ in $|\omega_{X}^{-1}|$ , the natural map

$H^{0}(X, \omega_{X}^{m})\rightarrow H^{0}(C, \omega_{X}^{n}\otimes^{\rho_{c}})$

is surjective for all $meZ$.
(iii) If deg $X=d$ , then

$\dim_{k}H^{0}(X, \omega_{X}^{-n*})=\left\{\begin{array}{ll}d\cdot m(m+1)/2+1 & (m\geqq 0)\\0 & (m<0)\end{array}\right.$

and $H^{1}(X, \omega_{X}^{n})=0$ for all $meZ$.

PROOF. If $X$ is of rational type, then by Theorem 3.3 (c), there exists
a non-singular elliptic curve $C$ in $|-K_{\tilde{X}}|$ . Since the curve $C$ does not
meet any rational curve $D$ with $D^{2}=-2$ , the morphism $\pi$ is an isomor-
phism on a neighborhood of $C$. Thus (i) follows from the fact $K_{\tilde{X}}=\pi^{*}(\omega_{X})$ .
The assertion (ii) follows from Theorem 3.3 (d) and the fact $H^{0}(\tilde{X}$,
$\rho_{\tilde{X}}(mK_{\tilde{X}}))\cong H^{0}(X, \omega_{X}^{m})$ for every $meZ$. The assertion (iii) from (ii) using
induction on $m$ and noticing that $\omega_{X}\otimes p_{c}$ is an invertible sheaf of degree
$-d$ on $C$. If $X$ is of elliptic type, the ”infinite section“ of the bundle
$X=P(\rho_{c}\oplus Z)$ is the desired elliptic curve of (i) and if we identify the
base curve and the infinite section, we’ have $-\mathscr{G}\cong\omega_{X}^{-1}\otimes \mathcal{O}_{c}$ . Moreover, if
we put $T$ the section of $\omega_{X}^{-1}$ corresponding to the infinite section, we can
see easily that the graded ring $\oplus,{}_{n\geqq 0}H^{0}(X, \omega_{X}^{-}‘‘)$ is isomorphic to
$R(C,- \mathscr{G})[T]$ , where $R(C, \mathscr{L})$ is the graded ring $\oplus_{n*\geqq 0}H^{0}(C, \mathscr{L}^{n})$ . Then
the assertions (ii) and the former half of (iii) is clear. As for the latter
half of (iii), as $R(C, \mathscr{L})[T]$ is a Macaulay ring, the assertion follows
from (5.1.6) of [15].

REMARK 4.3. We put $R(X)=\oplus_{m\geq 0}H^{0}(X, \omega_{X}^{-n})$ with the grading
$(R(X))_{m}=H^{0}(X, \omega_{X}^{-m})$ . Then, as $\omega_{X}^{-1}$ is ample, $X$ is naturally isomorphic
to Proj $(R(X))$ with $\rho_{X}(1)\cong\omega_{X}^{-1}$ by (5.1.7) of [15]. Then Proposition 4.2
shows that there is an element $t\neq 0,$ $t\in R(X)_{1}$ such that $ R(X)/t\cdot R(X)\cong$

$R(C, \mathscr{G})$ , where $C$ is a smooth elliptic curve and $-\mathscr{G}$ is a line bundle of
degree $d$ on $C$. As the structure of $R(C, \mathscr{L})$ is well-known (cf. [13]),
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we have the following

THEOREM 4.4. (i) If $d\geqq 4,$ $R(X)\cong k[T_{0}, \cdots, T_{d}]/I$, deg $(T)=1(0\leqq$

$i\leqq d)$ and I is generated by $d(d-3)/2$ quadrics. In particular, if $d=4$ ,
$X$ is a complete intersection of two quadrics in $P^{4}$ .

(ii) If $d=3,$ $R(X)\cong k[T_{0}, T_{1}, T_{2}, T_{\theta}]/(F)$ , deg $(T_{i})=1(0\leqq i\leqq 3)$ and
deg $(F)=3$ . That is, $X$ is a cubic surface in $P^{\epsilon}$ .

(iii) If $d=2$ , $R(X)\cong k[x, y, z, w]/(F)$ , deg $(x)=\deg(y)=\deg(z)=1$ ,
deg $(w)=2$ and deg $(F)=4$ . That is, $X$ is a hypersurface of degree 4 in
the weighted projective space $P(1,1,1,2)$ .

(iv) If $d=1,$ $R(X)\cong k[x, y, z, w]/(F)$ , deg $(x)=\deg(y)=1$ , deg $(z)=2$ ,
deg $(w)=3$ and deg $(F)=6$ . That is, $X$ is a hypersurface of degree 6 in
$P(1,1,2,3)$ .

PROOF. This follows from Remark 4.3 (cf. [5], \S 3).

COROLLARY 4.5. (i) If $d\geqq 3$ , then $\omega_{X}^{-1}$ is very ample and its global

sections yield an embedding of $X$ in $P^{d}$ as a subvariety of degree $d$ .
(ii) If $d=2$ , then $\omega_{X}^{-z}$ is very ample and its sections yield an em-

bedding of $X$ in $P^{6}$ as a subvariety of degree 8.
(iii) If $d=1$ , then $\omega_{X}^{-\epsilon}$ is very ample and its sections yield an em-

bedding of $X$ in $P^{6}$ as a subvariety of degree 9.
Moreover, the above embeddings define $p$rojectively normal varieties

and they are defined by quadratic equations except for the case $d=3$ .

PROOF. (i) (resp. (ii)) is clear since $R(X)$ (resp. $R(X)^{(2)}$ ) is generated

by its elements of degree 1. As for (iii), to show that $R(X)^{(3)}$ is gener-

ated by its element of degree 1, it suffices to check that the coefficient
of $z^{3}$ of the equation $F$ in Theorem 4.4, (iv) is not $0$ , which will be shown

in Proposition 4.6. (For a graded ring $R=\oplus_{n\geqq 0}R_{n}$ , we write $R^{(d)}=\oplus_{n\geq 0}R_{nd}$

with the grading $(R^{(d)})_{n}=R_{nd}.)$

PROPOSITION 4.6. Assume that ch $(k)\neq 2$ .
(i) If $d=2$ , then $X$ is a double covering of $P^{2}$ and the ramifica-

tion divisor is a quartic curve without multiple component. In this case,
$X$ is of elliptic type if and only if the ramification divisor is four lines
meeting in a point.

(ii) If $d=1$ , then $X$ is a double covering of a quadratic cone in
$P^{3}$ and the ramification divisor is an intersection of the cone with a
cubic surface without multiple components which does not pass the vertex

of the cone. In this case, $X$ is of elliptic type if and only if the rami-

fication divisor is the intersection of the cone with three hyperplanes
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meeting in a point.

PROOF. (i) It is easy to see that the point p $=(0,0,0,1)ofP(1,1,1,2)$
is a singular point which is not Gorenstein (cf. [16], Theorem 1.7, Prop-
osition 2.3). As $X$ is Gorenstein, $X$ does not pass the point $p$ . Noting
this fact and that ch $(k)\neq 2$ , we may assume $F=w^{2}-Q(x, y, z)$ in Theorem
4.4, (iii), where $Q$ is a quartic form. Consider the projection $ P(1,1,1,2)\rightarrow$

$P^{2}$ defined by $(x, y, z, w)\rightarrow(x, y, z)$ . As the center $p$ does not lie on $X$,
$X$ is a double covering of $P^{2}$ and the ramification divi8or is defined by
$Q=0$ . Since $X$ is normal, $Q$ has no multiple components. If $X$ is of
elliptic type, we may assume that $Q$ does not include the variable $x$ as
in the proof of Proposition 4.2 and so $Q$ is the equation of four lines
meeting at the point $(1, 0,0)$ . Note that this double-covering is defined
by $|\omega_{X}^{-1}|$ since $H^{0}(X, \omega_{X}^{-1})$ is spanned by $x,$ $y,$ $z$ .

(ii) By the same argument as in (i), we may assume that $F=w^{2}-$

$G(x, y, z)$ in Theorem 4.4, (iv), where $G$ is a weighted homogeneous poly-
nomial of degree 6. Also, the projection $P(1,1,2,3)\rightarrow P(1,1,2)$ defined
by $(x, y, z, w)\rightarrow(x, y, z)$ gives a double covering of $X$ onto $P(1,1,2)$ and
it is easy to see that $P(1,1,2)$ is isomorphic to a quadratic cone in $P^{3}$ .
The ramification divisor is defined by $G(x, y, z)=0$ on $P(1,1,2)$ which is
a cubic hypersurface section of the cone if we identify $P(1,1,2)$ with
the cone. The point $(0,0,1,0)$ or $P(1,1,2,3)$ is a singular point which
is not Gorenstein. So, $X$ does not pass this point since $X$ is Gorenstein.
This means that $G(O, 0,1)\neq 0$ . If $X$ is of elliptic type, we may assume
that $F=w^{2}-z(z-y^{2})(z-\lambda y^{2})$ for some $\lambda\in k,$ $\lambda\neq 0,1$ and conversely. One
may also notice that the linear system $|\omega_{X}^{-2}|$ defines the double covering
of $X$ to a quadratic cone in $P^{3}$ , since $H^{0}(X, \omega_{X}^{-2})$ is spanned by $x^{2},$ $xy,$ $y^{2}$

and $z$ .

$Rf$MARK 4.7 (cf. [12], Proposition 2.13). If dl“ is a normal Gorenstein
local ring of dimension 3 with the maximal ideal $\mathfrak{m}$ , which is a rational
singularity, then M. Reid showed that the projectivized tangent cone (or
a-tangent cone for some weighting $\alpha$) of $\rho$ is a Gorenstein surface whose
anti-canonical sheaf is ample. So, such a surface is the one we are treat-
ing if it is normal.

4.8. Now, let us study the singular points on $X$. We call a rational
double point by the name of the corresponding Dynkin diagram. Also,
we say that the configuration of singularities on $X$ is $D_{4}+3A_{1}$ , for ex-
ample, if there are one $D_{4}$-singularity and three $A_{1}$-singularities on $X$

and no more. In this case, we denote Sing $(X)=D_{4}+3A_{1}$ . If $d\geqq 3$ , all
possible configurations of singularities on $X$ are known (cf. [11], [3], [8]).
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So we treat the case $d\leqq 2$ .

THEOREM 4.9. Assume that $X$ is of rational type, ch $(k)\neq 2$ and $d\leqq 2$ .
(i) The maximal number of singular points on $X$ is 6.
(ii) If $d=2$ , then, unless the ramification divisor $C$ of the double

covering $X\rightarrow P^{2}$ is four lines, Sing (X) is a proper subgraph of the
extended Dynkin diagram $\tilde{E}_{7}$ . Mereover, every proper subgraph of $\tilde{E}_{7}$

actually appears as Sing (X) for some X. If $C$ is four lines, then
Sing (X) is $6A_{1}$ or $D_{4}+3A_{1}$ .

PROOF. (i) As $X$ is a double covering of $P^{2}$ or $P(1,1,2)$ , the
singular points of $X$ corresponds to singular points of the ramification
divisor. (If $d=1$ , the point of $X$ which is mapped to the singular point
of $P(1,1,2)$ is a smooth point.) If $C$ is the ramification divisor of the
double covering, then $\dim_{k}H^{1}(p_{c})=3$ (resp. 4) if $d=2$ (resp. $d=1$). As
$C$ has at most 4 (resp. 3) irreducible components if $d=2$ (resp. $d=1$),

there are at most 6 singular points on $C$ .
(ii) Let us list up all the possible singularities which can appear as

singularities of $C$ .

TABLE 4.10

The equation
$oftheonC$.singularity

$y(y-x^{n})$ $(1\leqq n\leqq 4)$

$y^{z}-x^{2n+1}$ $(1\leqq n\leqq 3)$

$xy(x-y)$

$xy(x-y)(x-\lambda y)$ $(\lambda\neq 0,1)$

$y^{3}-x^{4}$

$x(y^{2}-x^{n})$ $(n=3,4)$

$y(y^{2}-x^{3})$

The corresponding singularity
on $X$,

$A_{2n-1}$

$A_{2n}$

$D_{4}$

elliptic
$E_{6}$

$D_{n+2}$

$E_{7}$

Thanks to the classification of quartic plane curves (cf. [19], p. 38), we
can check that all possible subgraphs actually occur.

EXAMPLE 4.11. We write the defining equation of $X$ as $w^{2}-Q(x, y, z)$ .
(a) If $Q=x(x^{2}z-y^{3})$ , Sing $(X)=E_{7}$ .
(b) If $Q=xy(xz-y^{2})$ , Sing $(X)=D_{6}+A_{1}$ .
(c) If $Q=(x^{2}-yz)(x^{2}-yz-y^{2})$ , Sing $(X)=A_{7}$ .
(d) If $Q=z(x^{3}-y^{2}z)$ , Sing $(X)=A_{5}+A_{2}$ .
(e) If $Q=xy(x^{2}+y^{2}-2xz-2yz+z^{2})$ , Sing $(X)=2A_{3}+A_{1}$ .

These examples exhaust the proper subgraphs which have 7 vertices.

REMARK. As for the case $d=1$ , the situation seems to be much more
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complicated. In [14], the case where Sing (X) has 8 vertices is treated.

References

[1] M. ARTIN, On isolated rational singularities of surfaces, Amer. J. Math., 88 (1966),

129-136.
[2] L. BRENTON, On singular complex surfaces with negative canonical bundle, with appli-

cations to singular compactification of C and 3-dimensional rational singularities,
Math. Ann., 248 (1980), 117-124.

[31 J. W. BRUCE and C. T. C. WALL, On the classification of cubic surfaces, J. London Math.
Soc. (2), 19 (1979), 246-256.

[41 M. DEMAZURE, Surfaces de Del Pezzo, Lecture Notes in Math., 777, Springer, 1980.
[5] T. FUJITA, On the hyperplane section principle of Lefschetz, J. Math. Soc. Japan, 32

(1980), 153-169.
[61 S. KLEIMAN, Toward a numerical theory of ampleness, Ann. of Math., 84 (1966), 293-344.
[7] H. B. LAUFER, Minimally elliptic singularities, Amer. J. Math., 99 (1977), 1267-1295.
[8] E. LOOIJENGA, On the semi-universal deformation of a complex space with an isolated

singularity, I, Unimodularity, Topology, 16 (1977), 257-262.
[9] D. MUMFORD, Pathology III, Amer. J. Math., 88 (ISS7), 94-103.
[10] D. MUMFORD, Enriques’ Classification of Surfaces in char p, I, Global Analysis, Princeton

Univ. Press, Princeton, 1969.
[11] H. C. PINKHAM, Simple elliptic singularities, Del Pezzo Surfaces and Cremona Transfor-

mations, Proc. Symp. in Pure Math., 3O (Several Complex Variables), 69-70, A.M.S.,
1977.

[12] M. REID, Canonical 3-folds, in Journees de geometrie algebrique d’Anger8, ed. A. Beauville,

Siithoff and Noordhoff, Alphen, (1980), 273-310.
[13] K. SAITO, finfach elliptische Singularitaten, Invent. Math., 23 (1974), $\mathfrak{B}9-325$ .
[14] L. BRENTON, D. DRUCKER and G. C. E. PRINS, Graph theoretic techniques in algebraic

geometry II, Construction of singular complex surfaces of the rational cohomology
type of $CP^{2}$ , preprint.

[151 S. GOTO and K. WATANABE, On graded ring8 I, J. Math. Soc. Japan, 3O (1978), 179-213.
[161 S. MORI, On a generalization of complete intersections, J. Math. Kyoto Univ., 15 (1975),

619646.
[17] M. NAGATA, Rational surfaces I, Mem. Coll. Sci. Univ. Kyoto, 32 (1960), 351-370.
[181 M. NAGATA, On self-intersection number of a section on a ruled surface, Nagoya Math.

J., 37 (1970), $ 191-1\Re$ .
[191 S. IITAKA, K. UENO and Y. NAMIKAWA, L’esprit de Descartes et geometrie algebrique,

Sugaku Seminar (extra issue), Nihon-Hyoron-sha, Tokyo, 1980 (in Japanese).

Present Address:
HOKKAIDO COLLEGE OF

SENSHU UNIVEBSTY
$B_{lBA1-8H1}$ , HOKKAIDO 079-01
AND

DEPARTMENT OF MATHEMATICS
NAGOYA INSTITUTE or TWHNOLOGY
GOK18O-CHO, SHOWA-KU, NAGOYA 466


