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Abstract

Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease with very few effective

treatments. The key effector cells in fibrosis are believed to be fibroblasts, which differenti-

ate to a contractile myofibroblast phenotype with enhanced capacity to proliferate and pro-

duce extracellular matrix. The role of the lung epithelium in fibrosis is unclear. While there

is evidence that the epithelium is disrupted in IPF, it is not known whether this is a cause

or a result of the fibroblast pathology. We hypothesized that healthy epithelial cells are

required to maintain normal lung homeostasis and can inhibit the activation and differentia-

tion of lung fibroblasts to the myofibroblast phenotype. To investigate this hypothesis, we

employed a novel co-culture model with primary human lung epithelial cells and fibroblasts

to investigate whether epithelial cells inhibit myofibroblast differentiation.

Measurements and Main Results

In the presence of transforming growth factor (TGF)-β, fibroblasts co-cultured with epithelial

cells expressed significantly less α-smooth muscle actin and collagen and showed marked

reduction in cell migration, collagen gel contraction, and cell proliferation compared to fibro-

blasts grown without epithelial cells. Epithelial cells from non-matching tissue origins were

capable of inhibiting TGF-β induced myofibroblast differentiation in lung, keloid and Graves’

orbital fibroblasts. TGF-β promoted production of prostaglandin (PG) E2 in lung epithelial
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cells, and a PGE2 neutralizing antibody blocked the protective effect of epithelial cell co-

culture.

Conclusions

We provide the first direct experimental evidence that lung epithelial cells inhibit TGF-β

induced myofibroblast differentiation and pro-fibrotic phenotypes in fibroblasts. This effect is

not restricted by tissue origin, and is mediated, at least in part, by PGE2. Our data support

the hypothesis that the epithelium plays a crucial role in maintaining lung homeostasis, and

that damaged and/ or dysfunctional epithelium contributes to the development of fibrosis.

Introduction

Fibrosis refers to the process of excessive accumulation of scar tissue, and occurs in a variety of

chronic diseases affecting organs as diverse as the lung, kidney, eye, heart and skin. Abnormal

activation and proliferation of fibroblasts is accompanied by excess production of extracellular

matrix proteins and an imbalance in matrix turnover are hallmarks of fibrotic disorders [1, 2].

Tissue fibrosis is responsible for significant morbidity and mortality related to organ failure

and occurs when there is dysregulation of normal wound healing.

Idiopathic pulmonary fibrosis (IPF) is a severe form of pulmonary fibrosis, in which the

underlying pathophysiology remains poorly understood [3, 4]. Unlike other interstitial lung

diseases, such as silicosis, where the initial injury/insult is known, the causes of IPF remain

elusive. An emerging concept is that normal interactions between epithelium and the mesen-

chyme play an important role in maintaining lung homeostasis, and that damaged lung epithe-

lium contributes to pulmonary fibrosis [5–8]. For example, lung epithelial cells were shown to

be an important site of production of pro-fibrotic factors including TGF-β, TNF-α and PDGF

[9–12]. Furthermore, fibroblastic foci are associated with damaged epithelial cells [8], and a

recent study showed that injury directed to type II alveolar epithelial cells increases collagen

accumulation in the lung in a mouse model [13]. However, it remains unclear as to whether

epithelial damage is a cause of fibrosis or is a result of the presence of excess myofibroblasts

and fibroblastic foci [14]. The role played by healthy lung epithelium in maintaining homeosta-

sis remains largely unexplored.

Prostaglandin E2 (PGE2) is the major arachidonic acid metabolite produced by alveolar epi-

thelial cells (AECs) in humans. Patients with IPF were found to have significantly reduced

amounts of PGE2 in the epithelial lining fluids [15]. Early studies using rat and mouse alveolar

epithelial cells showed that epithelial cells inhibit fibroblast proliferation by directly secreting

PGE2 or indirectly inducing fibroblast PGE2 secretion. [16–18] Although multiple reports have

shown that addition of exogenous PGE2 inhibits pro-fibrotic functions of myofibroblasts in

vitro [19–21], no one has yet investigated whether human lung epithelial PGE2 might play a

role in maintaining normal lung homeostasis by inhibiting the effects of pro-fibrotic insults.

Here, we provide the first direct experimental evidence that normal human lung epithelial

cells can prevent the development of a pro-fibrotic phenotype in human lung fibroblasts, both

from normal subjects and patients with IPF. This effect is mediated by PGE2, and is not con-

fined to cells of lung origin, as epithelial cells from multiple tissues can inhibit myofibroblast

differentiation. Our data reinforces the concept that fibrosing diseases are indeed involve

disordered epithelial-fibroblast crosstalk, and encourages the importance of additional investi-

gations of cell-cell communication in lung disease.
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Materials and Methods

Cell Culture Studies

All patient samples were obtained with written informed consent under the approval of the

University of Rochester Institutional Review Board. Primary human alveolar epithelial cells

were isolated from subjects undergoing lung biopsy for suspected new or metastatic lung

cancer. AECs were harvested from tissue distal to the nodules as previously described [22], via-

bility and purity were assessed by trypan blue method, and modified papanicolaou staining.

Purified cells were grown on rat tail collagen coated tissue culture plates in Dulbecco’s modified

Eagle’s medium (DMEM) (Gibco) supplemented with 10% fetal bovine serum. After two days

in culture serum levels were reduced to 5%, cells continue to express surfactant protein-C

(Pro-SPC) as assessed by Immunocytochemistry. Primary human lung fibroblasts (HLFs) were

derived and grown as previously described [23, 24]. Primary human small airway epithelial

cells (SAEC) were purchased from Lonza (Allendale, NJ) and maintained in Small Airway Epi-

thelial Cell Growth Medium (SAGM; basal medium plus growth supplements, Lonza). Cells

were used between passage 4 and 10. Primary keloid fibroblasts and Graves’ orbital fibroblasts

[25] were grown in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco) supplemented with

10% fetal bovine serum, 100 U/ml penicillin/streptomycin and 2mM L-glutamine. Primary

human neonatal epidermal keratinocytes (HEKn) were grown in SAGM.

Reagents

Recombinant human TGF-β1 was purchased from R&D Systems (Minneapolis, MN). Prosta-

glandin E2 (PGE2), anti-COX-2 antibody, COX-2 inhibitor SC-58125, and prostaglandin E2
monoclonal antibody (2B5) were purchased from Cayman Chemicals (Ann Arbor, MI).

Lyophilized porcine pancreatic elastase was purchased fromWorthington Biochemical Corpo-

ration (Lakewood, NJ). CD-45 Dynabeads were purchased from Invitrogen (Carlsbad, CA).

OptiPrep was purchased from Sigma-Aldrich (St. Louis, MO). Rat-tail collagen was purchased

from Roche (Germany).

Fibroblast-SAEC Co-culture

On day 0, epithelial cells were plated on the apical side of 0.4 μm cell culture inserts (Transwell

Permeable Support, Corning, NY) in SAGM. On day 1, fibroblasts were plated in 12-well plates

in supplemented MEM. On day 3, the fibroblasts were washed with PBS and changed to

SAGM, and culture inserts with SAECs were added to each well of fibroblasts. The cells main-

tained as co-cultures with indicated treatments for 72 hours unless otherwise indicated

(Fig 1A).

Fibroblast-AEC Co-culture

On day 0, primary AECs were plated on the apical side of rat tail collagen coated 0.4 μm cell

culture inserts in DMEM supplemented with 10% FBS. On day 1, fibroblasts were plated in

12-well plates in supplemented MEM. On day 3, the fibroblasts were washed with PBS and co-

cultured with AECs in DMEM-5% FBS with indicated treatments for 72 hours.

Western Blot

Whole cell lysates were prepared using NP-40 lysis buffer with protease inhibitors (Sigma-

Aldrich) and analyzed as previously described [26]. Protein expression was detected using α-

SMA (Sigma-Aldrich, St. Louis, MO), GAPDH (Abcam, Cambridge, MA) and COX-2 primary
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antibodies with horseradish peroxidase (HRP)-conjugated secondary antibodies (Jackson

ImmunoResearch, West Grove, PA) and visualized by enhanced chemiluminescence.

Collagen Slot Blot

7μl aliquots of cell culture medium were applied to Immobilon-P PVDF membranes under

gentle vacuum using a slot blot manifold (Harvard Apparatus). Soluble collagen was detected

using COL1A1 (L-19) antibody (Santa Cruz Biotechnology) followed by HRP-conjugated sec-

ondary antibodies and visualized by enhanced chemiluminescence.

Collagen Gel Contraction Assay

HLFs were seeded within collagen gels as previously described [27], except that gels were

floated in SAGM containing indicated experimental treatments. For co-culture experiments,

SAECs cultured in Transwell inserts were added to wells containing fibroblast-seeded collagen

gels.

Cell Migration Assays

HLF migration assay was performed as previously described [27], except when co-cultured,

HLFs were incubated with SAECs grown in Transwell inserts as described above.

Fibroblast Proliferation

HLFs were plated onto 96-well tissue culture plates. 24 hours later cells were washed with PBS,

and treated in fresh SAGM or SAEC-conditioned medium with or without TGF-β for 24

hours. [3H]-thymidine (1 uCi/μl) was added to cells for an additional 18 hours. [3H]-thymidine

incorporation was determined as previously described [28] [29].

PGE2 Quantification

PGE2 in cell culture medium were quantified using PGE2 Express EIA Kit according to manu-

facturer’s instructions (Cayman Chemicals, Ann Arbor, MI).

PGE2 Neutralization

Conditioned medium was incubated with 10 μg/ml of 2B5 anti-PGE2 antibody for 30 minutes

at room temperature prior to treating the HLFs [30].

Statistics

Statistical analysis was conducted using either one-way ANOVA with Tukey post-test or Stu-

dent’s t-test using Prism software version 5 (Graphpad, La Jolla, CA). P values are listed in the

figure legends. Results were considered significant when p<0.05. All raw data for the figures

shown in this manuscript is contained in an online data supplement.

Fig 1. SAECs inhibit TGF-β induced pro-fibrotic protein expression in human lung fibroblasts. (A) A schematic of co-culture system of HLFs and
SAECs. HLFs and SAECs were grown separately on lower wells and upper inserts, respectively, of a Transwell co-culture system. HLFs were washed with
PBS, co-cultured with SAECs with or without TGF-β for 72 hours (unless otherwise indicated). (B) HLFs were treated with 5ng/ml TGF- β in the presence or
absence SAECs and α-SMA protein expression was analyzed by western blot and densitometric analysis. (C) Soluble collagen in culture medium from co-
cultures was measured by slot blot with densitometric analysis. (D, E) HLFs were co-cultured with SAECs from two additional (different donors). Blots are
representative of at least three independent experiments. (F) Alveolar epithelial cells were co-cultured with HLFs, and HLF expression of α-SMA was
determined by western blot. Note that in Fig 1F, the indicated samples were resolved on the same gel, and intervening irrelevant lanes are not shown.
Densitometry of n = 3 replicates per cell strain, normalized to untreated control. Data shown are mean ± SD. *** = p<0.001 ** = p<0.01 and * = p<0.05 by
ANOVA.

doi:10.1371/journal.pone.0135266.g001

Epithelium Inhibits Myofibroblast Differentiation

PLOS ONE | DOI:10.1371/journal.pone.0135266 August 6, 2015 5 / 19



Results

Human lung epithelial cells inhibit TGF-β induced α-SMA expression in
human lung fibroblasts

To determine whether lung epithelial cells are capable of exerting anti-fibrotic effects on fibro-

blasts, we designed a co-culture system in which normal primary human lung fibroblasts

(HLFs) are co-cultured with primary human small airway epithelial cells (SAECs) separated by

permeable culture inserts (Fig 1A). HLFs were treated with or without TGF-β1 (5ng/ml) in the

presence or absence of epithelial cells for 72 hours. Fibroblast lysates were assessed for expres-

sion of α-smooth muscle actin (SMA), a marker of myofibroblast differentiation, by western

blot. HLFs stimulated with TGF-β1 differentiated to myofibroblasts and expressed α-SMA, as

we and others have reported [26, 31, 32]. However, when co-cultured with SAECs, myofibro-

blast differentiation after TGF-β1 stimulation was almost completely inhibited (Fig 1B). In

addition to reducing α-SMA expression, co-culture with SAECs significantly reduced soluble

collagen expression by TGF-β treated HLFs compared to HLFs that were cultured alone (Fig

1C). The ability of SAECs to inhibit myofibroblast differentiation was a consistent property of

SAEC strains from multiple donors (Fig 1D and 1E). Because it is currently unknown which

type(s) of lung epithelial cells may be most important in IPF, we also examined the effect of

freshly isolated alveolar epithelial cells (AECs). AECs also potently inhibited TGF-β induced

myofibroblast differentiation of human lung fibroblasts (Fig 1F).

SAECs inhibit TGF-β induced α-SMA expression in both normal and
fibrotic human lung fibroblasts

The ability of SAECs to suppress myofibroblast differentiation was also a consistent property

of multiple lung fibroblast strains. We evaluated primary HLFs from 2 additional non-fibrotic

donors and from 3 IPF patients. Interestingly, SAECs were potently effective at inhibiting

TGF-β stimulated myofibroblast differentiation in both normal and fibrotic HLFs (Fig 2A

and 2B).

Epithelial cells inhibit TGF-β induced α-SMA expression in fibroblasts
irrespective of their tissue origin

Epithelial cells and fibroblasts are contiguous in many injury and wound healing situations.

Given our results (Figs 1 and 2) that primary lung epithelial cells are capable of inhibiting

TGF-β induced α-SMA expression in both normal and fibrotic lung fibroblasts, we examined

whether epithelial cells were capable of protecting fibroblasts from pro-scarring insult irrespec-

tive of their tissue origin. Graves’ ophthalmopathy is an autoimmune disease in which orbital

fibroblasts proliferate and differentiate to myofibroblasts in response to infiltrating T cells [29,

33]. Keloid scars represent a fibroproliferative disorder characterized by abnormal wound heal-

ing and high levels of α-SMA and collagen expression [34]. Using the same co-culture system,

we cultured Graves’ orbital and keloid fibroblasts with SAECs. Interestingly, SAECs inhibited

TGF-β stimulated α-SMA expression in both Graves’ orbital fibroblasts and keloid fibroblasts.

(Fig 3A and 3B).

Next, we also wanted to determine whether epithelial cells from other sources could inhibit

myofibroblast differentiation of lung fibroblasts. We co-cultured lung fibroblasts with either

primary human neonatal epidermal keratinocytes (HEKn) or the human lung alveolar epithe-

lial cell line, A549, in the presence of TGF-β. Epithelial cells from diverse origins suppressed

myofibroblast differentiation (Fig 3C and 3D).
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Fig 2. SAECs inhibit TGF-β induced α-SMA protein expression in multiple normal and fibrotic human lung fibroblast strains. (A) Two additional
normal, and (B) three additional IPF fibroblast strains from different donors were treated with or without 5ng/ml TGF-β and co-cultured with SAECs for 72
hours. α-SMA protein expression was analyzed by western blot. Representative blots are shown. Note that in Fig 2A, the indicated samples were resolved on
the same gel, and intervening irrelevant lanes are not shown. Densitometry of n = 3 replicates per cell strain, normalized to untreated control. Data shown are
mean ± SD. *** = p<0.001 ** = p<0.01 and * = p<0.05 by ANOVA.

doi:10.1371/journal.pone.0135266.g002
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Fig 3. Epithelial cells inhibit TGF-β induced α-SMA protein expression in fibroblasts irrespective of their
tissue origin.Multiple strains of human epithelial cells and fibroblasts were treated with or without 5ng/ml TGF-
β and co-cultured for 72 hours. (A) SAECs co-cultured with Graves’ orbital fibroblasts. (B) SAECs co-cultured
with keloid fibroblasts. (C) Human epidermal keratinocytes-neonatal co-cultured with HLFs. (D) A549 cells co-
cultured with HLFs. α-SMA protein expression was analyzed by western blot. Each lane represents a replicate
culture. Representative blots are shown from at least two independent experiments per condition.

doi:10.1371/journal.pone.0135266.g003
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Human lung epithelial cells decrease collagen gel contraction and
migration of human lung fibroblasts

We also studied whether epithelial cells were capable of inhibiting other key pro-fibrotic effec-

tor functions exhibited by lung fibroblasts, specifically increased contractile ability and migra-

tion. Collagen gel contraction assays measure the ability of fibroblasts to organize and contract

a collagen matrix in vitro. As predicted, TGF-β increased contraction of collagen gels by the

fibroblasts, but the fibroblasts that were co-cultured with SAECs failed to contract in response

to TGF-β (Fig 4A).

Next, we evaluated whether epithelial cells were capable of inhibiting fibroblast migration.

Fibroblasts that were co-cultured with SAECs showed a reduction in migration capability at

24 and 48 hours (Fig 4B and 4C). These data indicate that normal lung epithelial cells in the

presence of HLFs are capable of inhibiting properties normally associated with a fibrotic

phenotype.

Epithelial cells inhibit TGF-β induced fibroblast proliferation without
affecting cell viability

Another important phenotypic characteristic of fibroblasts from IPF patients is proliferation

[35, 36]. To investigate whether epithelial cells were capable of inhibiting TGF-β induced fibro-

blast proliferation, we examined cell proliferation using the 3H-thymidine incorporation assay.

Fig 4. SAECs inhibit collagen gel contraction and fibroblast migration. (A) HLFs were seeded into collagen gels and floated in medium containing 5ng/ml
TGF-β. SAECs were grown separately on Transwell inserts and added to the wells. After 72 hours gels were weighed and percent contraction was calculated.
n = 3–4 per group. (B) HLFs were grown on 6-well plates until they formed a confluent monolayer. A scratch wound was made on HLFmonolayer, cells were
washed with PBS and co-cultured with SAECs. HLF migration was tracked over time and imaged by phase contrast microscopy. (C) The scratch assay was
performed on 3 replicate cultures for each condition. Each culture was photographed at 3 locations, and the width of the scratch was determined at 3 positions in
each photograph (total of 9 measurements per condition), and percentage of original width was calculated bymeasuring the width between the edges of the
scratch wound in three distinctive areas of each image. Data shown are mean ± SEM. *** = p<0.001 by ANOVA.

doi:10.1371/journal.pone.0135266.g004
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Because we could not perform Transwell-style co-cultures in the 96-well format, we treated

HLFs with or without TGF-β in SAEC conditioned medium. Epithelial cell conditioned

medium significantly reduced the TGF-β induced fibroblast proliferation without affecting the

baseline untreated cell proliferation rate (Fig 5A). We also assessed cell viability of HLFs that

were co-cultured with SAECs for 72 hours using trypan blue dye exclusion. No significant dif-

ferences in viability were noted among the fibroblast alone versus co-culture groups (Fig 5B).

SAECs exert anti-fibrotic effects through the soluble mediator PGE2

Because the co-culture system used in our current study prevents direct cell-to-cell contact, we

hypothesized that paracrine mediators produced by the SAECs were responsible for the inhibi-

tory effect described above. One candidate for soluble antifibrotic mediator is prostaglandin E2
(PGE2). Exogenous PGE2 has been shown to have diverse anti-fibrotic effects on mouse lung

fibroblasts, as well as human lung fibroblasts [19, 20, 37]. To determine whether lung epithelial

cells secrete PGE2, we measured PGE2 levels in cell culture medium from the fibroblast com-

partment of fibroblast-SAEC co-cultures, fibroblast-primary alveolar epithelial cell co-cultures

and SAEC single cultures at different time points using a competitive enzyme immunoassay

(EIA). Cultures of SAEC alone had higher levels of PGE2 at 72 hours, and this was further

increased by TGF-β treatment (Fig 6B). Cultures of fibroblasts alone had less PGE2 compared

to cultures of SAECs alone and TGF-β treatment did not significantly increase PGE2 levels in

the culture medium. Increased levels of PGE2 were detected in the medium of fibroblasts that

had been co-cultured with SAECs at 24 and 72 hours (Fig 6A and 6B). Similar results were seen

in primary alveolar epithelial cell (AEC)-HLF co-culture at 72 hours post co-culture (Fig 6C).

Furthermore, SAECs treated with increasing doses of TGF-β showed a dose dependent increase

of PGE2 levels in cell culture medium (Fig 6D).

Cyclooxygenase (COX) 2 is the rate-limiting enzyme, in the conversion of arachidonic acid

to prostaglandins including PGE2. Therefore, we investigated COX-2 expression in SAECs that

were co-cultured with HLFs. COX-2 protein expression was higher in epithelial cells that were

Fig 5. SAECs inhibit TGF-β induced fibroblast proliferation without affecting cell viability. (A) HLFs were treated with 5ng/ml TGF-β in fresh SAGM or
in SAEC conditioned medium for 24 hours. Cells were allowed to incorporate 3H-thymidine for another 18 hours. n = 6 per group. Data shown are mean ± SD.
*** = p<0.001 by ANOVA. (B) HLFs were treated with 5ng/ml TGF-β in the presence or absence SAECs for 72 hours and HLF viability was measured by
trypan blue dye exclusion method. n = 3 per group.

doi:10.1371/journal.pone.0135266.g005
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co-cultured with HLFs treated with TGF-β than in epithelial cells co-cultured with HLFs not

treated with TGF-β (Fig 6E).

We next examined whether exogenous PGE2 was capable of inhibiting TGF-β induced α-

SMA expression in primary adult HLFs. HLFs treated with PGE2 showed a dose-dependent

reduction of TGF-β induced α-SMA protein expression (Fig 6F). Taken together, these data

suggest that normal SAECs are capable of inhibiting TGF-β induced α-SMA protein expression

through the potent anti-fibrotic mediator PGE2.

We used two approaches to confirm that SAEC-derived PGE2 is responsible for inhibiting

myofibroblast differentiation. First, we incubated primary HLFs treated with TGF-β with either

the COX-2 inhibitor SC58125, or with conditioned medium from SAECs that had been treated

with SC58125 [38]. SC58125 alone did not increase myofibroblast differentiation in TGF-β-

stimulated HLFs, demonstrating that fibroblast autologous COX-2 activity does not retard

differentiation (Fig 7A). However, conditioned medium from untreated SAECs, but not from

SAECs treated with SC58215, was able to inhibit α-SMA expression. This confirms that the

antifibrotic effector is a soluble molecule downstream of COX-2, and is produced by SAECs

and not HLFs. To further identify that the active product was PGE2, we incubated SAEC-con-

ditioned medium with anti-PGE2 neutralizing antibody [30, 39, 40] before applying to the

HLFs. HLFs treated with SAEC-conditioned medium in the presence of TGF-β had reduced

Fig 6. SAECs exert anti-fibrotic effects through the soluble mediator PGE2. PGE2 in culture medium from SAEC-HLF co-cultures was measured by
competitive EIA at 24 hours (A) and 72 hours (B) after TGF-β treatment. (C) PGE2 concentrations in culture medium from AEC-HLF co-cultures were
measured at 72 hours. (D) PGE2 in culture medium from SAECs that were treated with TGF-βwas measured at 48 hours post treatment. Data shown are
mean ± SEM for n = 3 replicates. *** = p<0.001, ** = p<0.01 and * = p<0.05 by ANOVA. ### = p<0.001 by student’s t-test. (E) COX-2 protein expression
was analyzed by western blot in SAECs that were co-cultured with HLFs and treated with or without 5ng/ml TGF-β. Densitometry of n = 3 replicates,
normalized to untreated control. Data shown are mean ± SD. *** = p<0.001 by student’s t-test. (F) HLFs were treated with or without 5ng/ml TGF-β, or with
5ng/ml TGF-β and increasing concentrations of exogenous PGE2 for 24 hours in serum-free MEM. α-SMA protein expression was analyzed by western blot.
A representative blot is shown.

doi:10.1371/journal.pone.0135266.g006
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Fig 7. Epithelial cell PGE2 production is COX-2 dependent and is reversed by a PGE2 neutralizing
antibody. (A) Conditioned mediumwas collected from SAECs treated with or without 70nMSC-58125 for 24
hours. HLFs were treated with 5ng/ml TGF-β either in the presence or absence of SC58125 alone, or in the
presence of SAEC conditioned medium from control or SC58125-treated SAECs. α−SMA protein expression
was analyzed after 48 hours by western blot and densitometric analysis. (B) Conditioned medium from SAECs
was neutralized by addition of 10μg/ml of anti- PGE2 antibody, 2B5. HLFs were treated with 5 ng/ml TGF-β in
either fresh SAGM, SAEC conditioned medium, or PGE2 neutralized SAEC conditioned medium for 48 hours.
α-SMA protein expression was analyzed by western blot. A representative blot frommultiple independent
experiments is shown. Samples were resolved on the same gel, and intervening irrelevant lanes are not shown.
Note that, Neut. Ab– 2B5, PGE2 neutralizing antibody, CTRL Ab–control antibody, n.s.–not significant. Data
shown are mean ± SEM for n = 3 replicates. *** = p<0.001 by ANOVA.

doi:10.1371/journal.pone.0135266.g007
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α-SMA protein expression levels. Pre-treating SAEC-conditioned medium with anti-PGE2
neutralizing antibody significantly reversed the inhibitory effect exerted by SAEC-conditioned

medium (Fig 7B).

Discussion

Herein, we provide the first direct experimental evidence that healthy lung epithelial cells can

exert a wide array of anti-fibrotic effects on lung fibroblasts, even in the presence of the strong

pro-fibrotic stimulus TGF-β. Furthermore, we show that epithelial cells from different tissue

origins can inhibit TGF-β stimulated myofibroblast differentiation of fibroblasts from multiple

sites. This suggests that epithelial-fibroblast cross-talk is a generalized phenomenon that occurs

widely, is important for maintaining normal tissue homeostasis, and may represent a new ther-

apeutic target in multiple scarring diseases.

The role of the lung epithelium in IPF remains controversial, and is under active investiga-

tion. However, a number of reports show IPF lung epithelium exhibit changes, such as

hyperplastic type 2 alveolar epithelial cells, that co-express markers of other epithelial cells,

microscopic epithelial denudation, and honeycomb lesions comprised of bronchiolar epithe-

lium [8]. Two studies in mice showed that targeted injury to lung epithelial cells induces lung

fibrosis [13, 41]. Here, rather than consider how a damaged epithelium might promote fibrosis,

we investigated how healthy lung epithelium acts to maintain fibroblast homeostasis against

the pro-fibrotic insult, TGF-β. We show strong evidence that primary human small airway epi-

thelial cells are capable of inhibiting a diverse array of pro-fibrotic functions (Figs 1, 4 and 5).

This evidence is strengthened by the fact that we used primary human cell strains of epithelial

cells and fibroblasts from different donors (Figs 1 and 2). To evaluate the generality of this phe-

nomenon, we performed co-culture experiments using fibroblasts and epithelial cells from

non-matching tissue types. In all cases the epithelial cells were capable of potently inhibiting

α SMA expression in the fibroblasts with which they were “cross co-cultured” (Fig 3). Interest-

ingly, others have reported epithelial cell destruction in keloid scars [42], similar to reports

showing loss of epithelial cells in lung fibrosis [43]. Our new results highlight the existence of

an epithelial-mesenchymal interaction, independent of tissue type, that is important in main-

taining tissue homeostasis and normal wound healing response.

Epithelial-mesenchymal crosstalk could be mediated through soluble factors that act either

in an autocrine or a paracrine manner or by cell adhesion complexes, which require direct cell-

cell contact. The Transwell co-culture model limits direct cell-cell contact, but allows small

molecules to act as messengers between the two compartments. Our results demonstrate that

SAECs produce more PGE2 in response to TGF-β when cultured alone, as well as in co-culture,

compared to HLFs (Fig 6). This is the first report showing that lung epithelial cells upregulate

PGE2 and COX-2 in response to TGF-β stimulation (Fig 6). This could be as a result of epithe-

lial cells attempting to maintain tissue homeostasis in response to a strong fibrotic stimulus.

We used an irreversible COX-2 inhibitor and a PGE2 neutralizing antibody to demonstrate

that the inhibitory properties of SAEC co-culture are conveyed largely through PGE2 (Fig 7). It

is worth noting that the level of PGE2 measured in cell culture supernatants is lower than the

concentration of exogenous PGE2 required for inhibition of TGF-β induced α-SMA expres-

sion. The steady-state level of PGE2 measured in co-culture represents an equilibrium between

production by SAECs and uptake by SAECs and fibroblasts, and probably reflects a low contin-

ual synthesis that maintains its biological effect. In contrast, a single bolus of exogenous PGE2
added at the beginning of the experiment must be large enough to account for degradation and

inactivation in culture over time, so it is not surprising that the effective concentration for a

single bolus of PGE2 is higher than the levels in co-culture.
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It has been previously reported that addition of exogenous PGE2 into cell culture medium

inhibits pro-fibrotic effector functions of human lung fibroblasts in vitro [19–21, 44]. It was

also reported that mouse and rat epithelial cells could inhibit serum-stimulated proliferation of

lung fibroblasts via PGE2 [16, 17], but other pro-fibrotic effector functions were not measured,

and a pro-fibrotic stimulus was not tested. Here, we report that healthy lung epithelial cells are

an important source of PGE2, that normal human lung epithelial cells upregulate PGE2 in

response to TGF-β, and that human lung epithelial cells inhibit myofibroblast differentiation

even in the presence of TGF-β. Our results are consistent with data that IPF patients have

reduced COX-2 expression and PGE2 production in their lungs [15, 45–47], and in bronchial

epithelial cells [48]. Deficiency in microsomal prostaglandin E synthase-1 (mPGES-1), the

enzyme that converts prostaglandin H2 (PGH2) to PGE2 worsens bleomycin induced pulmo-

nary fibrosis [49]. PGE2 has also being shown to be effective in protecting murine lungs against

bleomycin induced pulmonary fibrosis [50, 51].

We previously reported that IPF fibroblasts are resistant to some anti-fibrotic treatments in

vitro [52], and it has been shown that fibroblasts derived from patients with IPF fail to upregu-

late COX-2 and PGE2 synthesis when stimulated with LPS or IL-1 [45]. Moreover, multiple

studies showed that IPF fibroblasts are less responsive to exogenous PGE2 [53, 54]. Interest-

ingly, SAECs were equally effective in inhibiting TGF-β induced α−SMA expression in normal

and IPF fibroblasts. While PGE2 appears to convey the majority of the antifibrotic effects of

SAECs, we cannot rule out that other mediators might also contribute. If present, these addi-

tional mediators might modify IPF fibroblast responses to PGE2, explaining why IPF fibro-

blasts are resistant to exogenous PGE2 but not SAECs. Whether or not PGE2 is the sole

antifibrotic mediator, our results suggest that the underlying cross-talk between epithelial

cells and fibroblasts is intact in IPF and might be amenable/accessible to new therapeutic

modification.

Fibroblasts are also reported to be a source of PGE2 in some reports [55–57], suggesting that

fibroblasts can dampen their own myofibroblast differentiation via an autocrine pathway.

However, in our experiments, TGF-β did not upregulate PGE2 production in fibroblasts cul-

tured alone, and blockade of COX-2 with SC58125 did not result in increased myofibroblast

differentiation. Therefore, we conclude that autocrine production of PGE2 by lung fibroblasts

does not significantly contribute to the results we observed.

Lung alveolar epithelium consists of type I and type II cells. IPF is characterized in part by

the loss of type I cells that are important for gas exchange and the accumulation of hyperplastic

type II cells and bronchiolar cuboidal cells [58]. Therefore, it would be intriguing to consider

whether type I or type II cell were more effective at inhibiting myofibroblast differentiation.

The majority of studies evaluating alveolar epithelial prostaglandin production used type II

AECs [17, 59], and to our knowledge there are no current reports comparing PGE2 production

between two cell types. Here, we show that freshly isolated primary alveolar epithelial cells cul-

tured under conditions that favor the type I phenotype [22] produced high levels of PGE2 (Fig

6D) and were potent inhibitors of myofibroblast differentiation (Fig 1D). A549 cells, an alveo-

lar type II-like cell line derived from an adenocarcinoma, were also effective inhibitors of

myofibroblast differentiation (Fig 3D), with no obvious advantages or disadvantages over the

freshly isolated AECs. However, A549 cells may not accurately represent all the phenotypes of

type II cells, and we were unable to rigorously investigate the effects of type I and type II cells

due to limited availability of donor tissue. However, it is intriguing that type I cells are strongly

protective, given the relative paucity of type I cells in fibrotic lungs [58].

Taken together, our data suggests that normal healthy lung epithelium is indispensible for

maintaining tissue homeostasis. Epithelial injury or damage leading to lung fibrosis could

cause reduction of epithelial cell number and/or reduce COX-2 and PGE2 production resulting
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in a loss of the protective antifibrotic activity of the epithelium. In turn, this would trigger an

amplified fibrotic response, leading to tissue fibrosis. In future studies, we hope to further

explore the antifibrotic properties of the epithelium using known risk factors of IPF as injury

stimuli to the epithelium, as well as to further dissect other potentially important pathways.

However, it is noteworthy that most of the known lung injury stimuli such as TGF-β (Fig 6),

and silica [60] causes an upregulation of PGE2 production in lung epithelial cells, yet there is

diminished PGE2 in IPF patients. This suggests that loss of epithelial cells and thereby loss of

protective effects might be a crucial step in amplifying the pathogenic cascade in fibrosis. A

recent publication supports this notion by showing that transplantation of type II alveolar epi-

thelial cells reverses bleomycin-induced lung fibrosis [61].

Our findings reinforces PGE2 as a viable therapeutic option for organ fibrosis and also

opens up potential treatment options based on restoring dysfunctional epithelium in IPF lungs

or at least restoring the important signaling mechanisms that maintains the tissue homeostasis.

Our data encourages these options, and hope for clinical feasibility, as our co-culture model

was equally effective in fibrotic and normal lung fibroblasts.
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